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ABSTRACT

Audio signals are often stored and transmitted in compressed
formats. Among the many available audio compression
schemes, MPEG-1 Audio Layer III (MP3) is very popular
and widely used. Since MP3 is lossy it leaves characteristic
traces in the compressed audio which can be used forensically
to expose the past history of an audio file. In this paper, we
consider the scenario of audio signal manipulation done by
temporal splicing of compressed and uncompressed audio sig-
nals. We propose a method to find the temporal location of the
splices based on transformer networks. Our method identifies
which temporal portions of a audio signal have undergone
single or multiple compression at the temporal frame level,
which is the smallest temporal unit of MP3 compression. We
tested our method on a dataset of 486,743 MP3 audio clips.
Our method achieved higher performance and demonstrated
robustness with respect to different MP3 data when compared
with existing methods.

Index Terms— MP3 compression, audio forensics, con-
volutional neural networks, transformer networks

1. INTRODUCTION

The advance in machine learning techniques makes generat-
ing high-quality speech or music possible [1]–[3]. Almost
everyone has the ability to tamper with audio signals due to
the availability of audio editing techniques. It is easy to syn-
thesize/manipulate “fake” speech signals that resembles the
style and voice of a given person, and to concatenate real and
synthetic signals to create new forged speech signals. This
poses significant threats to individuals, organizations, society
and national security.

This material is based on research sponsored by the Defense Advanced
Research Projects Agency (DARPA) and Air Force Research Laboratory
(AFRL) under agreement number FA8750-20-2-1004. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA, AFRL or the U.S. Government. Address all
correspondence to Edward J. Delp, ace@ecn.purdue.edu.

The detection of synthesize/manipulated speech is usually
challenging because of the flexibility of human voice, the
presence of acoustic noise or reverberation, and the complexity
of audio synthesis models [4]. However, audio signals are
mostly saved and shared using lossy compression techniques.
Lossy compression leaves distinct artifacts in the compressed
audio which can be used for forensic analysis [5], [6]. In this
paper we examine the forensic problem of detecting if an audio
signal has been spliced into another audio signal by detecting
locations in the signal that have been multiply compressed.
The spliced audio signal may be real or synthetic.

Introduced in 1993, MPEG-1 Audio Layer III (MP3) [7],
[8] has been one of the most popular digital audio compression
methods. It changed our ways of listening to music, podcasts,
and many other types of audio content. Despite having inferior
compression efficiency compared to Advanced Audio Codec
(AAC) [9], MP3 is still widely used due to compatibility with
many existing applications and lower computational complexity
[10].

Most of the existing MP3 audio forensics methods focus
on double MP3 compression detection. These methods predict
whether an entire MP3 file is compressed more than once. In
[5], [6], [11], [12], the authors used different statistical and
feature design techniques on the Modified Discrete Cosine
Transform (MDCT) coefficients for double compression de-
tection. Ma et al. [13] used the statistics of scalefactors for
detecting doubly compressed MP3 with the same data rate. In
[14], the authors used the Huffman table indices for double
compression detection. Yan et al. [15] addressed the problem
of double and triple compression detection using features ex-
tracted from scalefactors and Huffman table indices. In [16],
the authors addressed the MP3 multiple compression local-
ization problem for the first time. Essentially, their proposed
method detects double compression using the histogram of
MDCT coefficients. Localization was achieved by using small
sliding detection windows. This technique allows one to extend
any detection method to a localization method. Finally, more
modern methods make use of Deep Neural Networks (DNNs).
This is the case of Luo et al. [17] that proposed to use stacked
autoencoder networks to detect multiply compressed audio
signals.
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In this paper, we present an MP3 multiple compression
localization technique based on deep transformer neural net-
works [18]. Given an MP3 signal, our proposed method can
distinguish between single compressed temporal segments and
multiple compressed temporal segments thereby allowing us
to temporally localize where the audio signal may have been
spliced. Our proposed method can also be used for synthesized
audio detection.

2. BACKGROUND

We first introduce a basic overview of MP3 compression. More
details of MP3 compression can be obtained in [7], [8], [10].
Then we provide an overview of transformer neural networks.

2.1. MP3 Compression

The block diagram of a typical MP3 encoder is shown in
Figure 1. To compress a digital audio signal using MP3, the
signal is first split into fixed time length sample windows
known as frames, where each frame contains 1152 temporal
samples [7], [8]. MP3 files are made up of a series of such
frames.

The input is first processed through a perceptual model
that drives the selection of coding parameters (lower branch of
Figure 1). During this step, the audio samples are transformed
into frequency domain using Fast Fourier Transform (FFT). The
FFT magnitude is passed to the psychoacoustic model, which
exploits the characteristics of Human Hearing System (HHS)
to balance between the sound quality and the data rate of the
compressed signal [19]. After this perceptual audio analysis,
the lossy coding step is next (upper branch of Figure 1). The
temporal samples are filtered into 32 equally spaced frequency
sub-bands using a polyphase filterbank. Each sub-band is
windowed according to the psychoacoustic model to reduce
artifacts and then transformed through MDCT, which leads
to 18 coefficients. In total, there are 32 × 18 = 576 MDCT
coefficients.
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Fig. 1: The block diagram of an MP3 encoder.

After the MDCT, the resulting coefficients are quantized
in the distortion control loop exploiting the psychoacoustic
analysis. The HHS has approximately 24 critical bands based
on a model of the HHS [19]. During quantization, the 32 sub-
bands are grouped into scalefactor bands, which approximates

the critical bands of HHS. The MDCT coefficients in each
scalefactor band is multiplied by a scalefactor before quantiza-
tion. The quantization step size increases as the frequencies
become greater, because the HHS is less sensitive to higher
frequency. The scalefactors and quantization step sizes work
together to satisfy both audio quality and data rate constraints.
After quantization, the MDCT coefficients are binary encoded
using one of the 32 predefined Huffman tables. The binary
coded coefficients, the encoding parameters (side-information)
such as scalefactors, Huffman table indices, quantization step
sizes are inserted in the data stream to form the compressed
audio signal.

2.2. Transformer Neural Networks

Transformer networks have shown excellent performance in
a variety of tasks such as language modeling [20], image
classification [21], object detection [22], protein structure
prediction [23].

Let the input to the transformer network be Z ∈ R𝑁×𝑑model ,
which contains 𝑁 elements, and each element is a vector
of 𝑑model dimensions. Transformer networks use the Self
Attention (SA) mechanism [18], [21] to exploit the relationship
between different elements in the input. Linear projection
U𝑞𝑘𝑣 ∈ R𝑑model×3𝑑ℎ is first used to generate three different
projected versions of the input, i.e., q, k, and v:

[q | k | v] = ZU𝑞𝑘𝑣 . (1)

Then, the vectors q and k are used to form the attention map
A ∈ R𝑁×𝑁 :

A = softmax
(
qk𝑇/√𝑑ℎ

)
. (2)

Finally, the SA of Z is the matrix multiplication of A and v:

SA(Z) = Av. (3)

The transformer networks we use are based on Multihead Self
Attention (MSA) [18], which is an extension of SA where ℎ

different SA values (called “heads”) are computed in parallel.
The ℎ different SA values are combined to the result of MSA
using the matrix U𝑚𝑠𝑎 ∈ R𝑑model×𝑑model :

MSA(Z) = [SA1 (Z) | · · · | SAℎ (Z)] U𝑚𝑠𝑎 . (4)

One must guarantee ℎ divides 𝑑model and set 𝑑ℎ = 𝑑model/ℎ
so that MSA(Z) and Z have the same dimensionality. More
details about transformers can be found in [18], [21].

3. MULTIPLE MP3 COMPRESSION
LOCALIZATION

In this section we first introduce the temporal splicing detection
and localization problem. We then present our proposed
solution.
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3.1. Problem Formulation

In MP3 compression, each audio signal is composed by a series
of nonoverlapping fixed temporal length segments known as
frames. Let x be the audio signal x = {𝑥1, 𝑥2, . . . , 𝑥𝐿}, where
𝑥𝑙 is the 𝑙-th frame of the signal, and 𝐿 is the total number
of frames, which depends on the signal length. We can
associate to the audio file a sequence of labels y defined as
y = {𝑦1, 𝑦2, . . . , 𝑦𝐿}, where 𝑦𝑙 is the 𝑙-th binary valued label
indicating whether the 𝑙-th frame (𝑥𝑙) has been compressed
once (i.e., 𝑦𝑙 = 0) or more than one time (i.e., 𝑦𝑙 = 1).

During the creation of a spliced MP3 audio file, it is likely
that frames from different audio signals are concatenated in
time and compressed using MP3. Some of the audio signals can
be uncompressed (e.g., pristine or generated from a synthetic
speech), while others may have been compressed and then
decompressed. The final spliced signal will likely contain both
single and multiple compressed frames.

Our goal is to find ŷ, which is an estimate of the sequence
of labels y associated with the audio file x by examining the
MP3 compressed data for x on a frame by frame basis. In doing
so, we are able to detect if an audio file has undergone splicing,
and localize which frames have been compressed more than
one time.

3.2. Proposed Method

Our proposed method is shown in Figure 2. We examine the
MP3 data corresponding to the individual frames of the input
signal x = {𝑥1, 𝑥2, ..., 𝑥𝐿}. We examine 𝐿 frames at a time to
decide if the audio signal has been multiply compressed and
localize the splicing. A MP3 compressed frame consists of two
groups of samples known as granules [8], [9]. Each granule
contains 576 temporal samples from the respective two stereo
channels. Our proposed method uses the data produced by the
MP3 codec for a frame shown in Table 1 from the first channel
of the first granule. This data consists of MDCT coefficients,
quatization step sizes, scalefactors, Huffman table indices, and
sub-band window selection information. The MP3 codec data
we choose contain a complete set of parameters required to
decode the channel. We will use this information to decide if
an audio signal has been multiple compressed and localize the
muliple compressed frames.

The mdct_coef and scalefactor fields are used as inputs
to two separate Convolutional Neural Networks (CNNs) (i.e.,
CNN-1 and CNN-2) to find more features (see Figure 2). We
use CNN architectures that are similar to the well known
VGG CNN [24]. The depth and number of filters are changed
based on the size of the mdct_coef and scalefactor fields.
By denoting the convolutional layer as Conv<receptive field
size>–<number of filters> and the fully connected layers as
FC–<number of neurons>, the architecture and parameters of
each CNN are as follows:

• CNN-1: Conv3-32, Conv3-32, Maxpool, Conv3-64, Conv3-

64, Maxpool, Conv3-128, Conv3-128, Maxpool, FC-233,
Dropout, FC-233, Dropout.

• CNN-2: Conv3-16, Conv3-16, Maxpool, Conv3-32, Conv3-
32, Maxpool, Conv3-64, Conv3-64, Maxpool, FC-49, Dropout,
FC-49, Dropout.

Table 1: MP3 codec information fields used in our method.
Details about each field can be obtained from [25], [26].

Fields Description
part_23_length Size of coded binary data
scalefactor, scalefac_compress,
scalefac_scale, preflag Scalefactor value info

global_gain, subblock_gain,
big_values, region_count Quantization step sizes

table_select, count1_table Huffman table selection info
block_type, mixed_block_flag Sub-band window selection info
mdct_coef Decoded MDCT coefficients

For the 𝑙-th frame, we concatenate the outputs of CNN-1
and CNN-2 as well as the values of the remaining fields into a
feature vector z𝑙 ∈ R𝑑model , which is used as the input to the trans-
formers. The sizes of the CNN outputs are selected so that the
dimensionality of z𝑙’s satisfies 𝑑model = 300. The self attention
mechanism does not use the order information of the elements
in the input sequence. To allow the transformer to make use
of the temporal order of frames, the frames’ corresponding
feature vectors are added with positional encoding [18]. The
positional encoding is a series of 𝐿 distinct fixed-valued vectors
{p1, p2, . . . , p𝐿}, where p𝑙 ∈ R𝑑model . After adding positional
encoding, the 𝑙-th feature vector is z′

𝑙
= z𝑙+p𝑙 . The transformer

will likely be able to find the position of z′
𝑙

being 𝑙 based on
the p𝑙 component of z′

𝑙
.

We use a similar approach as described in [21] to binary
classify the feature vectors corresponding for each MP3 frame
as being “single compressed” or “multiple compressed”. The
network has 𝐿 special vectors, known as “class tokens”, which
are denoted by {c1, c2, . . . , c𝐿}, where c𝑙 ∈ R𝑑model . The input
to the transformer Z is the feature vector z𝑙’s interleaved with
the class tokens, which can be written as

Z =
[
c1 | z′1 | c2 | z′2 | . . . | c𝐿 | z′𝐿

]
∈ R2𝐿×𝑑model . (5)

Let tf (·) be the function corresponding to the transformer
network. After the transformer operations, the output can be
written as

tf (Z) =
[
c̃1 | z̃′1 | c̃2 | z̃′2 | . . . | c̃𝐿 | z̃′𝐿

]
∈ R2𝐿×𝑑model . (6)

To find the estimated labels for the 𝑙-th frame, we use a
Multilayer Perceptron (MLP) network to classify c̃𝑙 . During
training, the gradients with respect to c𝑙’s are computed and
used to update them using gradient descent [27]. That is,
we train each class token to collect information necessary to
determine the label for its corresponding time step. Finally,
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Fig. 2: The block diagram of the proposed method, which analyzes 𝐿 frames at a time. Each circular node ( 𝑙 ) represents a MP3
codec parameter vector whose corresponding frame is shown by the number inside. Each diamond node ( z′

𝑙 ) represents a vector
associated with the feature vector z′

𝑙
. Each rectangular node ( c𝑙 ) represents a vector associated with the class token c𝑙 . Different

groups of vectors are shown in different colors.
the label of each frame can be determined by only examining
the class tokens.

After preliminary experiments, we used 8 transformer lay-
ers with the number of heads ℎ = 15 in the Multihead Self
Attention (see Section 2.2), which yielded the best perfor-
mance.

The MLP network we use is made up of one layer of 800
neurons and a final output layer with 2 neurons using softmax
activation. We use the GELU [28] nonlinear activation function
in the CNNs and the transformer network.

After training, for a given MP3 audio frame sequence {𝑥1,
𝑥2, . . . , 𝑥𝐿}, our method generates a binary decision sequence
{�̂�1, �̂�2, . . . , �̂�𝐿} describing whether each frame is multiply
compressed or not. This enables one to localize the question-
able frames in an MP3 file and determine which part of the
MP3 frames may have been spliced.

4. EXPERIMENTS AND RESULTS

In this section we describe our experiments and present re-
sults comparing our method to other methods for splicing
localization using traces of multiple MP3 compression.

4.1. Dataset

The data for our experiments contain only uncompressed WAV
audio files. We used three publicly available datasets consisting
of speech and different music genres: LJSpeech [29], GTZAN
[30], and MAESTRO [31]. We then compressed the WAV files
using MP3. The MP3 sampling rate we selected is 44.1 kHz,
and the length of each frame is 1152/44100 ≈ 26.12ms. In our
experiments, our method examined 𝐿 = 20 frames at a time.

The MP3 compression data rates and data rate types used
in our experiments are shown in Table 2. We used Constant
Bit Rate (CBR) and Variable Bit Rate (VBR) compression.
The audio signals were compressed using FFmpeg1 v3.4.8
and LAME2 v3.100. We excluded low-quality MP3 compres-
sion configurations that make multiple-compression detection

1https://www.ffmpeg.org/
2https://lame.sourceforge.io/

unreliable [15]. We also excluded ultra-high-quality MP3
compression that is not recommended by FFmpeg [32].

Table 2: MP3 compression types used in our experiments.
The data rate of VBR compression decreases as quality index
increases. More details can be obtained from [32].

Compression type Bit rate/Quality

Constant Bit Rate (CBR) 64kbps, 96kbps, 128kbps,
160kbps, 192kbps, 256kbps

Variable Bit Rate (VBR) 1, 2, 3, 4, 5, 6

Our dataset generation scheme is described as follows.
We split each uncompressed WAV audio file into smaller
segments of 80–320 frames randomly. Each segment is further
temporally subdivided into “slices” of 𝐿/2 = 10 frames where
𝐿 is the number of frames our method examines at a time. Now,
each segment will contain 8–32 slices. In each segment, the
odd slices will be multiple compressed for 2–3 times. The even
slices will be single compressed. The compression parameters
are chosen from Table 2 at random. In Figure 3 we illustrate the
dataset generation method on a segment containing 4 slices. If
a slice needs to be compressed three times, then compression 1–
3 will be used. If a slice needs to be compressed two times, then
compression 2–3 will be used. Otherwise, only compression 3
will be used. For a given slice, after compression 1 the MP3
file is decompressed back to the time domain, which is used as
the input to compression 2. At compression 3, we gather the
decompressed or pristine time domain samples of all slices in
a segment and then compress them as one MP3 file. Therefore,
the parameters for compression 3 will be the same for all slices
in a given segment. This completes the construction of our
ground-truthed experimental data set.

4.2. Preparing an MP3 file For Training

Recall our method operates in the “MP3 domain” by examining
the MP3 codec fields shown in Table 1. To train our method,
we used a sliding window of length 𝐿 with offset step size 8 to
extract the MP3 codec fields from the MP3 compressed frames
as shown in Table 1.

We generated 486,743 MP3 frame sequences of length 𝐿

4
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CBR, 64kbps CBR, 64kbps CBR, 64kbps CBR, 64kbps
VBR, Q=4

CBR, 256kbps
CBR, 160kbps

𝐿/2 = 10 frames 𝐿/2 = 10 frames 𝐿/2 = 10 frames 𝐿/2 = 10 frames
Slice 1 Slice 2 Slice 3 Slice 4

Compression 1
Compression 2
Compression 3

1,1,1,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,0,0,0𝒚 = [ ]

Fig. 3: An illustration of our dataset generation method on a
segment of 40 frames (4 slices). The corresponding label for
this segment y is shown at the bottom.

from our experimental dataset. We used 54% of the frame
sequences in the training set; 13% of the frame sequences
in the validation set, and 33% of the frame sequences in the
testing set. The partition was done in a way that all frame
sequences generated from one segment can only be used in
one of the three sets.

Selecting the MP3 frame sequence length 𝐿 for analysis
is a trade-off between the accuracy of the estimation of ŷ and
the training difficulty of the network. Using a larger 𝐿 may
improve the performance, but it may also significantly increase
training time and the need of hyperparameter tuning. In our
experiments, we used 𝐿 = 20 corresponding to an audio signal
length of approximately 522.4ms. This may be small compared
to the typical length of most audio signals. In training we
used a sliding window stride of 8, which does not align with
the slice boundaries. In each sliding window, the index of the
first multiple compressed frame and the number of multiple
compressed frame are different. This forces the trained network
to predict the labels correctly given an arbitrary portion taken
from an audio signal. Therefore, our method is able to examine
longer audio files even if 𝐿 is relatively small.

4.3. Hyperparameters and Training

The entire network including the CNNs and the transformers
are trained end-to-end. We trained the network using the
Adam optimizer [33] with an initial learning rate of 10−4 and
a dropout rate of 0.2 until the validation accuracy no longer
increased for 20 epochs.

4.4. Results

We compared the performance of our method to [6], [11], [15],
which are introduced in Section 1. Since they are all detection
methods, we used the predictions from these methods on short
frame sequences of length 𝐿 ′ = 4 to approximate localization.
Choosing the length 𝐿 ′ for localization approximation is a
trade-off between classification accuracy and granularity of
localization. Larger 𝐿 ′ improves the label estimation of each
frame sequence, while smaller 𝐿 ′ improves the localization
accuracy. Selecting 𝐿 ′ = 4 is a reasonable balance between
these two factors [16].

In Table 3, we compare the performance of our method to
that of the three previous methods. We used three different

metrics: Jaccard score [34], 𝐹1-score [35] and balanced ac-
curacy score [36]. Let I(y) be the function that returns the
set of indices for the one-entries in y. The Jaccard score can
be computed by |I (y)∩I (ŷ) |/|I (y)∪I (ŷ) |, which compares the
similarity between the predicted multiple compressed region
and the ground truth multiple compressed region [34]. The
𝐹1-score is the harmonic mean of the precision and recall,
which considers both factors at the same time [35]. The bal-
anced accuracy score is the traditional accuracy score with
class-balanced sample weights [36]. Our approach achieved
the highest score on all three metrics. We also tested our
method on a separately generated dataset containing 53,541
MP3 frame sequences with variable slice length ranging from
10 to 80 frames. For each slice, the slice length, compression
types and the number of compressions are chosen at random.
Our method achieved 81.64 balanced accuracy on this dataset,
which is close to the result in Table 3. This shows our method
did not learn strong dataset bias.

In Table 4, we show the recall [35] of each method on
multiply compressed MP3 frames against selected last MP3
compression types. It can be seen that the detection accuracy
decreases as the MP3 compression quality declines. Different
methods reacted to CBR and VBR compression in contrasting
manners. For [6] and our method, the performance was similar.
For [11], the score of VBR frames was significantly lower than
those of CBR; the behavior of [15] was the opposite.

In table 5, we show the recall of each method compared to
the number of MP3 compression applied to a frame. The recall
of our method is more consistent across different repetition
of MP3 compression. For all methods, the recall for double
compression is close to that of triple compression.

Overall, our approach demonstrated high localization per-
formance and robustness across many types of MP3 compres-
sion.

Table 3: Performance metrics comparison.

Method Jaccard
Score 𝐹1-score Balanced

Accuracy

Yan et al. [15] 13.53 18.71 53.35
Yang et al. [11] 30.73 40.95 55.28
Liu et al. [6] 48.18 58.91 68.72
Our Approach 80.50 84.43 84.49

Table 4: The recall of multiple compression localization
of each method against selected last MP3 compression types.
CBR compression is denoted by C<bit rate>; VBR compression
is denoted by V<quality index>.

Last MP3 Comression Type

Method C64 C128 C160 C192 V1 V2 V4 V6

Yan et al. [15] 17.30 6.86 6.80 4.87 22.80 23.23 22.59 17.55
Yang et al. [11] 19.27 70.75 71.71 66.21 45.58 39.05 27.12 22.06
Liu et al. [6] 58.45 56.48 54.47 55.01 55.15 56.41 57.47 67.93
Our Approach 73.09 88.06 89.65 90.84 93.31 91.21 83.52 65.51
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Table 5: The recall of each method against the number of MP3
compression.

Num. MP3 Compression

Method Single Double Triple Overall

Yang et al. [11] 67.28 43.51 43.02 43.27
Yan et al. [15] 91.71 14.86 15.10 14.98
Liu et al. [6] 79.36 57.27 58.85 58.06
Our Approach 84.61 83.76 84.92 84.34

5. CONCLUSIONS

We proposed a multiple MP3 compression temporal localiza-
tion method based on transformer neural networks that uses
MP3 compressed data. Our proposed method localizes mul-
tiple compression at the frame level. The experiment results
showed that our method had the best performance compared
to other approaches and was robust against many MP3 com-
pression settings. In the future, we will examine extending
this approach to other compression methods such as AAC.
We will also investigate the use of stereo channels as well
as the second granule in MP3 compressed frames. We will
generalize the concept of multiple compression detection to
compression history detection. That is, to find the number of
compressions and the types of compression used. Knowing the
compression history can greatly enhance the interpretability
for audio forensics.
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