
Chapter 24

FORENSIC ANALYSIS OF BIOS CHIPS

Pavel Gershteyn, Mark Davis and Sujeet Shenoi

Abstract Data can be hidden in BIOS chips without hindering computer perfor

mance. This feature has been exploited by virus writers and computer

game enthusiasts. Unused BIOS storage can also be used by criminals,

terrorists and intelligence agents to conceal secrets. However, BIOS

chips are largely ignored in digital forensic investigations. Few tech

niques exist for imaging BIOS chips and no tools are available specifi

cally for analyzing BIOS data.

This paper focuses on the Award BIOS chip , which is commonly

used in IBM compatible machines . It demonstrates how data may be

concealed within BIOS free space and modules in a manner that makes it

accessible using operating system commands. Furthermore, forensically

sound techniques are described for detecting and recovering concealed

data from BIOS chips.

Keywords: BIOS chips, Award BIOS, data concealment, evidence recovery

1. Introduction

The Basic Input/Output System (BIOS) is the lowest level of soft

ware in any embedded device or computer [4, 13, 16, 20]. A BIOS

typically resides on the motherboard within a read/write flash memory

chip [8] of capacity 128K to 512K. It interfaces the hardware with the

operating system , which is critical during the booting process. Also, it
provides diagnostics and utilities for the computer system. A BIOS is

motherboard-specific, allowing the operating system to load from and

use specific hardware configurations. It maintains several system set

tings, e.g., drive boot order and boot-up password protection. The

BIOS settings are stored separately in CMOS memory (not flash mem

ory), which requires a small battery to maintain its integrity [20]. After

the operating system loads, the BIOS passes control to the operating

system.

Please use the followtn g format when citing this chapte r:

Gershteyn . P . Davi s, M.. Shenoi , S.• 2006 in International Federat ion for Information Processing. Volume 222. Advances

in Digital Forensi cs II. eds. Olivier , M.. Shenoi . S , (Boston: Springer), pp. 301-313 .

302 ADVANCES IN DIGITAL FORENSICS II

Figure 1. Hidden data in a BIOS viewed using Windows XP.

BIOS chips may contain 25K to lOOK or more of unused space that can

be used to store data without hindering computer performance. Unused

BIOS storage space was exploited by the 1998 Win95jCIH virus that

wiped out hard drives. Computer game enthusiasts often overwrite BIOS

data to create personalized graphics. The same BIOS storage techniques

can be used by criminals, terrorists and intelligence agents to conceal

secrets, e.g., address books, financial data, incriminating photographs
and cryptographic keys.

Data concealed in a BIOS chip can be accessed relatively easily. Figure

1 shows hidden data stored in the D3VA1323.BIN module of an Award

BIOS chip viewed using the Windows XP command prompt. This is

possible because most of the data in D3VA1323. BIN is copied to RAM

during the boot process. Thus, the hidden data is discernible in a mem

ory dump produced by the debug tool.

Although BIOS chips can conceal significant amounts of data, they

are largely ignored in digital forensic investigations. Indeed, very few

techniques exist for imaging BIOS chips [10] and no tools are available

specifically for analyzing BIOS storage.

This paper focuses on the Award BIOS chip, which is commonly used

in IBM compatible machines. It demonstrates how data may be con

cealed within BIOS free space and modules in a manner that makes it

accessible using the operating system . Also, the paper suggests modi

fications to standard digital forensic procedures to include BIOS (and

other firmware) chips.

. The following section provides an overview of the Award BIOS chip,

including the boot process and storage organization. Next, procedures

are described for concealing data in various locations within an Award

Gershteyn, Davis & Shenoi 303

BIOS chip. Finally, forensically sound techniques are specified for de

tecting and recovering hidden data from Award BIOS chips.

2. Award BIOS Overview

This paper focuses on the Award Version 6 BIOS chip (EPoX EP

D3VAwith BIOS Version EPoX EP-D3VA ID# 03!23!200l-694X-596B

977-6A6LJPABC), which is representative of the family ofIBM PC com

patible BIOS chips. The BIOS chip contains modular software that facil

itates communication between a specific motherboard and the operating

system. The BIOS software runs from the BIOS chip at power-up and

performs all the tasks necessary for the operating system to load suc

cessfully. The software also provides diagnostic and configuration tools

for the user and low-level hardware routines for the operating system

[9] . BIOS software is stored in flash memory, which allows the software

to be upgraded. BIOS configuration data is stored on a separate CMOS

chip. Award BIOS software consists of compressed modules along with

executable code, which decompresses the modules and also provides for

error recovery.

BIOS executable code usually becomes inactive after the operating

system's hardware drivers are initialized. However, the BIOS may retain

limited control over low-level functions such as power management.

The following subsections describe the boot process and storage or

ganization of the Award BIOS chip.

2.1 BIOS Boot Process

A BIOS chip is critical to booting a computer. When a computer

is turned on, the processor reads instructions from memory location

OxFFFFO [13], which contains a jump call to the start of the BIOS pro

gram on the BIOS chip. When the BIOS is invoked, it executes a Power

On Self-Test (POST) that systematically checks that the necessary hard

ware is present and is in working order . At this point the video card

is not yet initialized, so errors are communicated to the user through a

series of beeps known as "beep codes" [1] . The BIOS also copies itself

into system RAM for faster access, decompressing its modules in the

process [7].

After the POST is completed, the system BIOS program finds and

executes the video-card's own built-in BIOS program that initializes

the video card. The system BIOS then locates and executes the BIOS

programs of other devices.

Following these invocations, the system BIOS performs additional
hardware tests and conducts a system inventory; this establishes hard-

304 ADVANCES IN DIGITAL FORENSICS II

BIOS Chip11mllil

RamBiN.bln

I D3VA1323.BIN I IWIrdext.rom I CPUCODE.BIN I ACPITBLBIN I
IAWirdBmp.bmp I IWIrdeyt.rom I_EN_CODE.BIN IAWDFlASH.EXE I

I 370110.ROM I

Free Space

Ox0002FE3F - Ox0003SFFE

Ox0003708F - Ox000373FA

Ox00037F66 - Ox00037FFD
Ox00038000 - Ox00038FFE

Ox00039801 - Ox00039FFE

Ox0003A278 - Ox0003BFFE

Ox0003D648 - Ox0003DFFE
Ox0003EFFD - Ox0003F064

Ox0003F066 - Ox0003FSFE

Ox0003FE64 - Ox0003FFE6

Figure 2. Award BIOS storage organization.

ware parameters. Next, the BIOS detects the memory size and identifies

the drives. A summary of the system configuration is then displayed to

the user .

The BIOS subsequently identifies its target boot drive, which is deter

mined by the BIOS settings. Next, it searches for a master boot record

and, upon finding it, starts loading the operating system. After the op

erating system is loaded, control passes from the BIOS to the operating
system.

2.2 BIOS Storage Organization

The storage organization of an Award BIOS chip is shown in Fig

ure 2. The BIOS has nine modules (D3VA1323.BIN, awardext .rom,

CPUCODE .BIN, ACPITBL.BIN, AwardBmp.bmp, awardeyt.rom, -EN_CODE.

BIN, AWDFLASH.EXE and 370110.ROM), which are stored at the start of

the flash memory. The modules are followed by executable BIOS code

and data interspersed with free space. Also, the BIOS has ten sections

of consecutive free space (Figure 2). Some of these sections comprise

several consecutive "blocks" of free space; each block only contains hex

strings of ODs and FFs.

The integrity of all the modules as well as the first and second blocks

of free space is protected by an 8-bit checksum. The integrity of the

third block of free space is protected by a second checksum. However,

all the free space following the third block is unprotected.

The checksum data are stored after the third block of free space at

memory addresses Ox37FFE - Ox37FFF. All the data stored after address

Gershteyn, Davis (3 Shenoi 305

Ox37FFF is not protected in any way. A checksum mismatch is treated

as a fatal error by the BIOS, which halts the booting process.

All the BIOS modules and most of the executable code and data are

stored in a compressed format using the LHA/LH5 algorithm [5J. The

BIOS chip incorporates code that decompresses the data during the

booting process.

Data may be concealed within BIOS free space and modules. Depend

ing on the location and amount of data concealed, the BIOS could remain

functional or it could become corrupted, which prevents the computer

from booting. BIOS chips are designed to be expandable. Consequently,

they have large amounts of free space that can be overwritten with data

without affecting BIOS operation.
BIOS modules contain text strings that are displayed as messages,

e.g., error messages and hardware data. These text strings can be over

written with data without affecting the BIOS.

Of course, the entire BIOS memory can be used to conceal data. This

makes the recovery of the data problematic, as the computer cannot be

booted with a corrupt BIOS. However, special devices and techniques

exist for booting such a computer and recovering hidden data [lOJ.

3. Corrupted BIOS Recovery Technique

Editing or "flashing" BIOS modules, free space or any other code/data

can corrupt a BIOS. Therefore, a BIOS data hiding strategy must in

corporate a technique for recovering from BIOS flashing errors.

Upon detecting an error, a BIOS chip attempts to re-flash itself using a

backup BIOS file from the floppy drive. However, automatic re-flashing

is unreliable because errors sometimes go undetected. Also, the data

hiding process can corrupt the flashing code (AWDFLASH . EXE) itself.

A BIOS Savior device can be used to recover from a data hiding at

tempt that results in a corrupted BIOS. This device provides a backup

BIOS chip and a hardware switch that enables the user to select whether

the computer will use the BIOS Savior chip or the original BIOS chip
for the booting process. The BIOS Savior plugs into the BIOS chip's

socket, and the original BIOS chip plugs into the BIOS Savior. There

fore, if the BIOS on the original chip is corrupted, the user can boot the

computer using the BIOS Savior, switch back to the original chip after

the computer is operational, and then flash the original chip.

Before a BIOS is edited, a backup copy of the BIOS must be pre

served within the BIOS Savior. This backup copy enables the computer

to boot successfully regardless of the changes made to its BIOS. Note

306 ADVANCES IN DIGITAL FORENSICS II

that the booting process involves three main steps: POST, hardware

initialization and master boot record access.

After data is written to the BIOS during the process of data hiding

(see Section 4), two possibilities exist. The first is that the overwritten

.BIOS will boot the computer successfully. If the BIOS checksum com

puted during the POST is incorrect, the BIOS will attempt to re-flash

itself. If the POST is unsuccessful and the BIOS checksum is correct,

a fatal error occurs and the system halts. Regardless of the situation,

the backup BIOS maintained in the BIOS Savior can be used to boot

the computer. This is accomplished simply by flipping the switch on the

BIOS Savior.

4. Hiding Data in BIOS Chips

This section describes procedures for hiding data in: (i) BIOS free

space, (ii) BIOS modules, and (iii) free space within BIOS modules. In

all three cases, substantial amounts of data can be concealed within the

BIOS without hindering computer performance.

Hiding data on a BIOS chip requires a separate workstation to edit and

store BIOS image files and to prepare the boot disk. Caldera Dr-DOS [2,

3] is used to create the boot disk and to facilitate BIOS flashing because

it does not contain any TSR (terminate and stay resident) programs.

A BIOS Savior device [12] is used to recover from BIOS flashing errors
(Section 3). A hex editor is used to modify BIOS images and modules.

AwardMod software [11] is used to load and store binary BIOS files

and directories containing extracted BIOS modules. Also, Uniflash [17],

a universal BIOS flashing utility, is used for BIOS read/writes instead

of the standard Award BIOS program (AWDFLASH.EXE), which leaves
portions of the chip unflashed.

4.1 Hiding Data in BIOS Free Space

The Award BIOS has 38,020 bytes of free space (located after the

block of compressed modules) that can be used for storing data. In

reality, 44,163 bytes of free space exist, but 6,143 bytes cannot be used

because data stored in certain locations is not retained.

The Award BIOS has 12 blocks of free space; the specific locations of

the blocks are shown in Table 1. Note that the first and last null bytes

(00 or FF) of each free space block are assumed to belong to the code

preceding/following the free space, and are therefore not counted.
Free space blocks are null blocks containing long strings of DOs or FFs

(Table 1). These free space blocks can be overwritten without corrupt

ing the BIOS. However, it is important to ensure that data written to

Gershteyn, Davis {3 Shenoi

Table 1. Award BIOS free space blocks.

307

Block Pattern Range

Block 1 FF Ox2FE3F-Ox35FFE

Block 2 00 Ox3708F-Ox373FA

Block 3 FF Ox37F66-0x37FFD

Ox37FFE-Ox37FFF

Block 4 FF Ox3800o-0x38FFE

Block 5 FF Ox39801-0x39FFE

Block 6 FF Ox3A278-0x3A744

Block 7 00 Ox3A745-0x3AFFF

Block 8 FF Ox3BOOo-Ox3BFFE

Block 9 00 Ox3D648-0x3DFFE

Block 10 00 Ox3EFFD-Ox3F064

Block 11 00 Ox3F066-0x3F5FE

Block 12 00 Ox3FE64-0x3FFE6

Comments

Protected by Checksum 1

Protected by Checksum 2

Protected by Checksum 3

Ox3A80o-0x3AFFF notrecoverablli

Entire block not recoverable

Blocks 1, 2 and 3 does not alter the checksums [19] . This is accomplished

by reserving one byte each in Block 2 and Block 3 to balance the check

sums. First, the 8-bit checksum of BIOSback . bin is computed before

any changes are made (the checksum value for the Award BIOS is EA).

Next, one byte in Block 2 is reserved by changing it to 00. Then, data

is written to Blocks 1 and 2, and checksum is re-calculated. Finally, the

reserved byte in Block 2 is changed to a value that makes the checksum

equal to EA. This "balancing value" is computed as [(Original Value)

(Current Value) + Ox100] mod Ox100. Block 3 is overwritten with data

and the corresponding Checksum 2 is balanced in a similar manner.

The following procedure specifies the steps involved in hiding data in

BIOS free space.

BIOS Free Space Overwriting Procedure

1. Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for

BIOS flashing.

2. Copy the Uniflash program (UNIFLASH .EXE) and all its required components

to the boot disk.

3. Boot the Award BIOS machine using the boot disk . After Caldera Dr-DOS

has booted, invoke UNIFLASH.EXE. Backup the original BIOS to the boot disk

as BIOSback.bin. Copy BIOSback.bin to the workstation hard drive.

4. Use the hex editor to write data to free space in BIOSback. bin, making sure

that Checksums 1 and 2 are preserved using balancing values . Save the changes
in a new file called BIOSeditOed. bin.

308 ADVANCES IN DIGITAL FORENSICS II

5. Complete the process of hiding data by copying BIOSedited. bin to the boot

disk. Boot the Award BIOS machine using the boot disk, and flash the BIOS

chip by invoking UNIFLASH .EXE.

6. Restart the computer to verify that it functions properly.

4.2 Hiding Data in BIOS Modules

The followingprocedure lists the steps involved in hiding data in BIOS

modules .

BIOS Module Overwriting Procedure

1. Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for

BIOS flashing.

2. Copy the Uniflash program (UNIFLASH.EXE) and all its required components

to the boot disk.

3. Boot the Award BIOS machine using the boot disk. After Caldera Dr-DOS

has booted, invoke UNIFLASH .EXE. Backup the original BIOS to the boot disk

as BIOSback . bin. Copy BIOSback. bin to the workstation hard drive.

4. Use AwardMod to extract modules in BIOSback. bin and store them in a di

rectory named BIOSBackup.

5. Use the hex editor to overwrite module data that is not critical to the operation

of the BIOS (e.g., text strings) . This data can be overwritten with text or

binary data.

6. After one or more modules are overwritten, use AwardMod to load all the

files in the BIOSBackup directory and store them in a new BIOS image called

BIOSedited. bin.

7. Preserve Checksum 1 in BIOSedited .bin using a balancing value in Block 1 or

2.

8. Complete the process of hiding data by copying BIOSedited . bin to the boot

disk. Boot the Award BIOS machine using the boot disk, and flash the BIOS

chip by invoking UNIFLASH .EXE.

9. Restart the computer to verify that it functions properly.

4.3 Hiding Data in BIOS Module Free Space

This section describes how data may be stored in the BIOS module

D3VA1323. BIN in a manner that makes it accessible from Windows using

the debug command.

Module D3VA1323 .BIN, which contains hardware-specific settings and
routines, has 5,057 bytes of free space that can be accessed from Win

dows using the debug command. The debug memory dump of locations

Gershteyn, Davis fj Shenoi 309

OxFOOOO - OxFFFFF contains some data from D3VA1323.BIN. Note that

debug uses the segment:offset memory notation [18]; the correspond

ing absolute memory address notation is 16*segment + offset. For ex

ample, the segment:offset address FOOO: 027E in RAM is equivalent to

the absolute address OxF027E in RAM. The following are the mappings

of memory addresses in debug notation to absolute addresses in the

D3VA1323.BIN module (when viewed as a file):

FOOO:027E - FOOO:13FF <=> Ox1027E - Ox113FF

FOOO :1514 - FOOO:1BFF <=> Ox11514 - Ox11BFF

FOOO :1C9F - FOOO:FFFF <=> Ox11C9F - Ox1FFFF

The last memory mapping contains two blocks of free space that con

stitute 5,057 bytes of OOs. Note that the last four digits of each pair of

starting and ending address are identical, which simplifies the task of

determining the memory addresses to be dumped to obtain the contents

of acertain location in D3VA1323.BIN.

BIOS Module Free Space Overwriting Procedure

1. Run a telnet server on the Award BIOS machine. Use a telnet client to

connect to the telnet server (this is needed to capture the screen output).

Execute the command debug. At the debug prompt, type: d FOOO: 0000 FFFF

and press enter. Save the output in a new text document: originalBIOS. txt.

2. Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for

BIOS flashing .

3. Copy the Uniflash program (UNIFLASH .EXE) and all its required components

to the boot disk .

4. Boot the Award BIOS machine using the boot disk. After Caldera Dr-DOS

has booted, invoke UNIFLASH.EXE. Backup the original BIOS to the boot disk

as BIOSback. bin. Copy BIOSback.bin to the workstation hard drive.

5. Use AwardMod to extract modules in BIOSback.bin (see Figure 3) and store

them in a directory named BIOSBackup.

6. Use the hex editor to view the module D3VA1323 .BI N. Compare D3VA1323.BIN

with originalBIOS. txt. Note that three hex segments of each of the two

files are identical because they map to each other (see the discussion immedi

ately preceding this procedure) . Therefore, data hidden in these locations in

D3VA1323 .BIN can be viewed using the debug command.

7. The third segment of D3VA1323 .BIN (l.e., Oxl1C9F - OX1FFFF) , which can be

viewed using the debug command, contains two blocks of OOs (Ox16FFB

Ox17FFE, Ox1DC42 - OX1DFFE) that can be overwritten without corrupting the

BIOS . Overwrite these blocks with data that is to be hidden.

8. After the module is edited, use AwardMod to load all the files in the BIOSBackup

directory and store them in a new BIOS image called BIOSedited .bin.

310

; f ; I

ADVANCES IN DIGITAL FORENSICS II

.

• . t : ;, t " ~ .:(C .. b 25J

:JBIOSOirecl()(¥

:IOJVA1323.BIN .

' Iawdlclext 'om .

I t:PlJ CO OE :~I~ . .

JACPlTBLBIN

IAwdldBmp.bmp

lawdll!eyl.lom

LEN _ c,£)O~ .BIN ...

IA W'D FlA sH : ~
h70 110}~O~

Figure 3. AwardMod screen during extraction of BIOS modules .

9. Preserve Checksum 1 in BIOSedited. bin using a balancing value in Block 1 or

2.

10. Complete the process of hiding data by copying BIOSedited. biD to the boot

disk. Boot the Award BIOS machine using the boot disk, and flash the BIOS

chip by invoking UNIFLASH. EXE.

11. Restart the computer to verify that it functions properly. Verify that the data

hidden in D3VA1323 .BIN can be viewed using the debug command.

5. Forensic Examination of BIOS Chips

A BIOS chip is a convenient location for hiding secrets because signif

icant amounts of data are easily stored and retrieved. Law enforcement

agents generally overlook BIOS chips during investigations. Moreover,

at this time, no established forensic procedures exist for imaging and

analyzing BIOS chips.

This section describes how common forensic tools can be used to ex

amine BIOS chips. In particular, searches based on regular expressions

'and file headers (e.g., file carving) can be used to identify and extract

data concealed in a BIOS.

Gershteyn, Davis & Shenoi 311

BIOS Data Recovery Procedure

1. Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for

BIOS flashing.

2. Copy the Uniflash program (UNIFLASH .EXE) and all its required components

to the boot disk.

3. Boot the Award BIOS machine using the boot disk. After Caldera Dr-DOS

has booted, invoke UNIFLASH.EXE. Backup the seized BIOS to the boot disk

as BIOSevidence. binj this creates a forensic image of the seized BIOS. Copy

BIOSevidence .bin to the workstation hard drive.

4. Use AwardMod to extract modules in BIOSevidence. bin and store them in a

directory named BIOSEvidence.

5. Use forensic tools (e.g., Foremost, EnCase, Forensic Tool Kit, ILook) to exam

ine BIOSevidence. bin and the extracted modules , especially D3VA1323 .BIN,

for text, file headers and regular expressions, and preserve all data of interest.

Also, examine D3VA1323 .BIN, which is 128K in size, manually using the hex

editor to detect all hidden text.

6. If hidden data cannot be found using the forensic tools , use the hex editor to

compare modules from the seized BIOS with those from a clean copy of the

BIOS image (e.g., one obtained from the motherboard manufacturer) . This

assists in locating hidden data.

7. Use forensically sound procedures to copy and preserve all data of interest.

6. Modifications to Forensic Procedures

Traditional digital forensic investigations involve three main steps :

initial response, media duplication (imaging) and imaged media analy

sis. Investigations are jeopardized when important evidence is stored in

media that are not seized by investigators or when the media are seized

but, for a variety of reasons, evidence is not recovered from the media.

The initial response step is typically executed on a live computer

system that contains volatile information. This volatile information,

e.g., current users, open sockets and running processes, is captured and

saved for further investigation. Code and data - including concealed

information - stored on a BIOS chip are not lost when a computer system

or embedded device is powered down. Therefore, no action specific to the

BIOS chip is necessary during the initial response step. Of course, initial

responders must be aware that importance evidence may be hidden in

the chip.

It is important that forensic examiners image a BIOS chip just as

they image other media (e.g., hard drives and flash memory) during the

media duplication step. The procedure for imaging a BIOS chip has

been described in Section 5.

312 ADVANCES IN DIGITAL FORENSICS II

Some authors (e.g., [15]) recommend that digital forensic examiners

view drive geometry data in the system BIOS configuration - before the

media duplication step - to obtain drive parameters that might aid in

media duplication. An analysis of the system BIOS configuration may

reveal that data is hidden in the BIOS. However, the examiner must be

alert to the fact that the BIOS may contain hidden data.

It is possible that the BIOS in a seized computer may be intentionally

corrupted, e.g., when the BIOS contains secret information or when the

owner has overwritten the BIOS to hinder the forensic investigation.
Such a computer will not boot. Therefore, the examiner may use a chip

programmer [161 to image the BIOS or the BIOS Savior device [121 to

boot the computer and image the BIOS. The latter technique has been

described in Section 3. Note that some BIOS chips are soldered directly

to their motherboards, which renders the BIOS Savior technique useless

and the chip programming technique risky at best.

During the imaged media analysis step, a forensic examiner would

analyze a BIOS image using standard forensic tools as described in Sec
tion 5. Once again, the examiner should be aware of where data might

be concealed and should conduct a thorough search of the BIOS image.

The locations where data might be hidden in a BIOS chip have been

described in Section 4.

7. Conclusions

Modern hardware components, such as dual-BIOS motherboards and

replaceable BIOS chips, simplify the task of concealing secret informa

tion in BIOS chips. However, digital forensic practice has not kept up

with advances in BIOS technology. As a result, few, if any, recognized

techniques exist for detecting and extracting hidden data from BIOS
chips. This paper has shown that even BIOS chips with checksum-based

integrity protection can be used to conceal data. The other main con

tributions of this paper include a technique for detecting and extracting

hidden data, and suggestions for modifying forensic examination proce

dures to accommodate BIOS chips.

"BIOS forensics" is an interesting area of digital forensic research. A

library of known good hashes of BIOS chips would make it trivial to ver

ify whether or not BIOS chips have been tampered. Note, however, that

in modern computers, the extended system configuration data (ESCD) is

typically stored on the BIOS chip, so the hash value computations would

have to omit certain areas of the BIOS. Boot disks and CDs that auto

mate the process of imaging BIOS chips would greatly benefit forensic

Gershteyn, Davis & Shenoi 313

investigators. Likewise, forensic tools for heuristically analyzing BIOS

images and detecting hidden data would be very valuable.

References

[1] BIOS Central (www.bioscentral.com).

[2] BIOSMods (www.biosmods.com).

[3] Bootdisk.com (bootdisk.com) .

[4] P. Croucher, The BIOS Companion, Electrocution Publishers, Cal

gary, Alberta, Canada, 1998.

[5] M. Darmawan, Award BIOS reverse engineering (www.codebreak

ers-journal.com/viewarticle.php?id=38), 2004.

[6] M. Darmawan, Award BIOS code injection (www.codebreakers

journal.com/viewarticle.php?id=58), 2005.

[7] D. Dunn, BIOS basics (freepctech.com/articles/artic1es.php?Article

Id=122), 2002.

[8] W . Gatliff, Implementing downloadable firmware with flash mem

ory, in The Firmware Handbook, J. Ganssle (Ed.), Elsevier, Burling

ton, Massachusetts, pp. 285-297, 2004.

[9] Gen-X-PC, BIOS info (www.gen-x-pc.com/BIOSJnfo.htm).

[10] P. Gershteyn, M. Davis, G. Manes and S. Shenoi, Extracting con

cealed data from BIOS chips, in Advances in Digital Forensics, M.

Pollitt and S. Shenoi (Eds.), Springer, New York, pp. 217-230, 2005.

[11] J. Hill, AwardMod (sourceforge.net/projects/awardmod), 2002.

[12] lOSS, RDI BIOS Savior (www.loss.com.tw), 2000.

[13] C. Kozierok, System BIOS (www.pcguide.com), 2001.

[14] K. Mandia, C. Prosise and M. Pepe, Incident Response and

Computer Forensics, McGraw-Hill/Osborne, Emeryville, Califor

nia, 2003.

[15] G. Mohay, A. Anderson, B. Collie, O. de Vel and R. McKemmish,

Computer and Intrusion Forensics, Artech House, Norwood, Mas

sachusetts, 2003.

[16] Phoenix Technologies, System BIOS for IBM PCs, Compatibles and

EISA Computers (2nd Edition), Addison-Wesley Longman, Boston,

Massachusetts, 1991.

[17] Rainbow Software, Uniflash (www.uniflash.org), 2005.

[18] D. Sedory, Removing the mystery from segment:offset addressing

(thestarman.dan123.com/esta]debug/Segments.html), 2004.

314 ADVANCES IN DIGITAL FORENSICS II

[19J R. Sevko, Editing the BIOS (www.winsov.ru/sios002.php) . 2003.

[20J J. Tyson, How BIOS works (computer.howstuffworks.com/bios.

htm) .

[21J A. Wong, Breaking Through the BIOS Barrier: The Definitive BIOS

Optimization Guide for PCs, Prentice Hall, Indianapolis, Indiana,

2004.

	Chapter 24 FORENSIC ANALYSIS OF BIOS CHIPS
	1. Introduction
	2. Award BIOS Overview
	2.1 BIOS Boot Process
	2.2 BIOS Storage Organization

	3. Corrupted BIOS Recovery Technique
	4. Hiding Data in BIOS Chips
	4.1 Hiding Data in BIOS Free Space
	BIOS Free Space Overwriting Procedure

	4.2 Hiding Data in BIOS Modules
	BIOS Module Overwriting Procedure

	4.3 Hiding Data in BIOS Module Free Space
	BIOS Module Free Space Overwriting Procedure

	5. Forensic Examination of BIOS Chips
	BIOS Data Recovery Procedure

	6. Modifications to Forensic Procedures
	7. Conclusions
	References

