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RESEARCH Open Access

Forensic analysis of the microbiome of phones
and shoes
Simon Lax1,2*, Jarrad T Hampton-Marcell1, Sean M Gibbons1,3, Geórgia Barguil Colares4, Daniel Smith1,5,

Jonathan A Eisen6,7,8 and Jack A Gilbert1,2,3,9,10

Abstract

Background: Microbial interaction between human-associated objects and the environments we inhabit may have

forensic implications, and the extent to which microbes are shared between individuals inhabiting the same space

may be relevant to human health and disease transmission. In this study, two participants sampled the front and back

of their cell phones, four different locations on the soles of their shoes, and the floor beneath them every waking hour

over a 2-day period. A further 89 participants took individual samples of their shoes and phones at three different

scientific conferences.

Results: Samples taken from different surface types maintained significantly different microbial community structures.

The impact of the floor microbial community on that of the shoe environments was strong and immediate, as evidenced

by Procrustes analysis of shoe replicates and significant correlation between shoe and floor samples taken at the same

time point. Supervised learning was highly effective at determining which participant had taken a given shoe or phone

sample, and a Bayesian method was able to determine which participant had taken each shoe sample based entirely on

its similarity to the floor samples. Both shoe and phone samples taken by conference participants clustered into distinct

groups based on location, though much more so when an unweighted distance metric was used, suggesting sharing of

low-abundance microbial taxa between individuals inhabiting the same space.

Conclusions: Correlations between microbial community sources and sinks allow for inference of the interactions

between humans and their environment.

Keywords: Forensic microbiology, Source-sink dynamics, Shoe microbiome, Phone microbiome, Microbial time series

Background
In recent years, research into the microbial interactions

between humans and their surroundings has revolutionized

our understanding of the microbial ecology of the built en-

vironment [1]. The dynamic relationship between the bac-

teria associated with human skin and the microbiome of

indoor surfaces and of objects we interact with has demon-

strated the degree to which the human microbiome can

shape the microbial ecology of our homes, offices, hospitals,

and cities [2-6]. Characterizing this microbial dynamic is

critical for many purposes, such as determining the rate

and progression of microbial colonization of human infants

exposed to the indoor microbiome [7,8]. We therefore be-

lieve it is essential to determine how the microbial ecology

of the built environment establishes and fluctuates over

time.

Research on the microbial exchange between human

and built environments has illuminated the forensic poten-

tial of the microbiome. In some cases, human microbial

signatures have been used to match individuals to objects

they have interacted with, including computer keyboards

[9]. Work on the microbiome of multiple home surfaces

has shown that the microbial signature of a family can be

highly predictive of the microbiome of that family’s home

and that individuals within a home can be differentiated

[2]. Indeed, recent work on the microbial assemblages

associated with smart phones has shown that individuals

leave their skin microbiome on the surface of their phones

[10]. The rate at which these microbial communities
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change after they are deposited on a surface is also po-

tentially valuable for forensic applications. Recent work

has shown that postmortem, the microbiome of animal

hosts changes dramatically, but in a predictable man-

ner [11]. This predictability enables us to use microbial

assemblages to help explore not just where someone is

right now but also where they may have been recently

[12]. To explore the potential to determine the microbial

fingerprint of individuals on personal items, we performed

a detailed biogeographic and longitudinal characterization

of the microbial communities on personal mobile phones.

Additionally, we examined whether the microbial com-

munities associated with an individual’s shoes were deter-

mined by the floor microbiome associated with where

they were walking.

Results and discussion
Identifying signatures on shoe and phone samples

To determine the extent to which the microbial commu-

nities of samples were driven by surface type (that is, shoe,

phone, or floor) and study participant, we employed a

combination of ordination and supervised learning

analyses. We found that microbial community struc-

ture was determined both by surface type and partici-

pant (PERMANOVA on weighted UniFrac; Pseudo-F =

19.7 and 22.7, respectively; P < 0.0001). The relative in-

fluence of surface type and interacting individual on mi-

crobial community structure was demonstrated by the

weighted (Figure 1A, B) and unweighted (Figure 1C, D)

UniFrac distance between samples. In both cases, the

first principle coordinate clearly demarcated sample sur-

face while the second principal coordinate demarcated

study participant. UPGMA hierarchical clustering of sam-

ples pooled by individual and surface type (Figure 1E, F)

further suggested surface type as the dominant influence

on microbial community structure, with phone and shoe

samples forming distinct groups, which were in turn

subdivided individually. In both ordination analyses, floor

samples clustered tightly with their longitudinally associ-

ated shoe samples.

The diagnostic power of microbial community profiles

for predicting which of the two study participants a shoe

or phone sample had been taken from was determined

using random forest supervised learning. Random forest

models were highly successful at determining which of the

two participants’ shoes a sample was taken from, correctly

classifying samples more than 50 times as effectively as

one would expect by chance (Table 1), which indicates

consistent differentiation in the shoe microbial commu-

nities of these two different people, even accounting for

Figure 1 Ordination of samples based on weighted and unweighted phylogenetic dissimilarity in community composition. (A, B) depict principal

coordinate (PCoA) plots for all samples in the study based on pairwise weighted UniFrac distance between samples, with sample points colored by

surface and person, respectively. (C, D) are similarly colored by surface and person but are based on unweighted UniFrac distance. (E, F) depict

UPGMA clustering of pooled and evenly rarified sample groupings based on weighted and unweighted UniFrac distance, respectively. Branches are

highlighted to reflect person of origin (colors as in B and D) and group names at branch tips are colored by surface as in A and C.
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temporal variability. This is likely due to the presence

of a ‘core microbiome’ on the shoes of individual study

participants, which we assessed by looking at the abun-

dances over time of the 100 taxa with the highest fea-

ture importance scores in the model (Additional file 1:

Figure S1). The majority of those 100 operational taxo-

nomic units (OTUs) were consistently detected on the

shoes of one participant over the course of the time

series, but not on those of the other participant.

In contrast to the high error ratio of models predicting

study participant, the models did no better than expected

by chance in determining which of the four shoe sites a

sample had been taken from, even when models were

segregated by study participant. We propose that this is

due to the homogenization of communities across the

shoe sole over time or to rapid changes in community

structure at each sampling site. A similar pattern was

observed in phone samples, with the models able to

classify the participant a phone sample was taken from

(error ratio of 13.6) but unable to determine whether

the sample had been taken from the front or back of a

given phone (Table 1).

Random forest models were also used to assess which

bacterial taxa were most associated with different surface

types. Models were trained on a genus-level summary of

the OTU table, and shoe and floor samples were merged

into a single surface type based on their similarity in or-

dination analyses. When trained at the genus level, models

were able to determine whether a sample was taken from a

phone or a shoe/floor with an error ratio of 3.6. The 20

genera with the highest feature importance scores are sum-

marized in Additional file 2: Figure S2, with skin-associated

genera such as Streptococcus, Propionibacterium, and

Corynebacterium highly enriched in phone samples rela-

tive to shoe samples.

Longitudinal interaction between shoe and floor

communities

To determine the extent to which the floor environments

a shoe has interacted with influence the sole’s microbial

community and to assess whether individual shoe and

floor time series could be matched based on similarity, we

employed a Bayesian source tracking approach [13]. These

Bayesian models predicted a dominant influence from

the correct source (Figure 2), which we believe shows

the similarity between shoe and floor microbial community

composition and may be used to infer where someone has

recently walked. On average, the models predicted that a

floor sample was the source of microbes for approximately

three quarters of the microbial community associated with

that shoe at that time point. Strikingly, floor samples had

significant predictive power despite often being taken in

areas the shoe did not directly touch (that is, proximate to

where the participant had actually stepped), which suggests

localized homogeneity of the floor microbial community.

We also formulated individual SourceTracker models for

each participant, in which the floor samples of individual

locations were treated as sources to the shoe samples

(Additional file 3: Figure S3). These models demonstrated

that bacterial taxa associated with the floor of a particular

location often increased in abundance on the shoe soles of

study participants while walking through that space.

To determine whether changes in the microbial commu-

nity of the four shoe environments tended to be similar at

each hourly sampling interval, we employed Procrustes

analysis of the four sets of principal coordinates (Additional

file 4: Figure S4). All three pairwise comparisons for each

study participant produced significant P values (P < 0.005;

Additional file 5: Table S1), demonstrating that changes in

the microbial communities of the four shoe environments

resemble each other at each sampling interval, and thus

suggesting a consistent impact from the floor microbial

community. Procrustes analysis of the principal coordi-

nates from the front and back of participants’ phones

did not produce significant P values, which we hypothesize

is likely due to greater heterogeneity in community com-

position across the surface area of an individual phone

at a given time point than would be observed across a

shoe at a given time point due to lower overall biomass

and high volatility in hand-associated microbial com-

munities. It is also likely that microbes from the back

of phones are likely to be sourced mostly from hands

while the front may also be sourced from the face of

the owner.

Table 1 Summary of predictive accuracy of random forest supervised learning models

Sample subset Predicted category N Estimated error ± SD Baseline error Ratio

All phone samples Person 104 0.037 ± 0.062 0.500 13.63

All shoe samples Person 211 0.010 ± 0.020 0.479 50.26

P1 phone samples Front/back 52 0.417 ± 0.206 0.481 1.15

P2 phone samples Front/back 52 0.268 ± 0.180 0.481 1.79

P1 shoe samples Shoe surface 110 0.705 ± 0.125 0.736 1.05

P2 shoe samples Shoe surface 101 0.796 ± 0.090 0.732 0.92

Tenfold cross validation models were constructed with 1,000 trees using OTUs from evenly rarified samples as predictors of sample origin. P1, person 1; P2, person 2,

SD, standard deviation, N, number.

Lax et al. Microbiome  (2015) 3:21 Page 3 of 8



To assess the speed at which the floor environment

influences the shoe sole microbial community, we looked

at the relationships between shoe and floor samples taken

from the same time point in principal coordinate (PC)

space. For both study participants, PC1 values for the floor

and shoe samples at each time point were highly corre-

lated for all four shoe environments (Figure 3A); we be-

lieve this is likely due to rapid contamination of the

shoe sole by the floor microbial community. In all but

one shoe environment (the right shoe heel of person 2),

the correlation between shoe and floor PC1 values from

the same time point was substantially higher than the

correlation between samples taken one time step apart

(Additional file 5: Table S2). In most cases, shoe microbial

communities quickly converged on a PC space similar to

that of the floor community (Figure 3B). These communi-

ties were largely segregated by the geographic location the

sample was taken from and by the material of that loca-

tion’s floor (wood, linoleum, etc.), further supporting the

possibility of rapid microbial transfer to the shoe sole.

Figure 2 Summary of predictive accuracy of SourceTracker models in determining which of the two study participants a sample was taken from

based only on the microbial communities of the floor samples those shoes had interacted with. For the models, all four shoe samples taken by

each participant at a given time point were consolidated and treated as individual sinks (N = 29 and 27 for persons 1 and 2, respectively). All floor

samples from the two participants’ time series were collapsed and treated as the two possible sources to the shoe sink communities.

A B

Figure 3 Immediate impact of floor microbial community on shoe microbial communities. (A) Correlation in the first principal coordinate values

of shoe and floor samples taken at the same time point. (B) Principal coordinate plots of all shoe and floor samples, split by individual and colored by

floor type and location at time of sampling.
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Although our experimental design only allows us to

assess the impact of the floor microbial community on that

of the shoe sole, it is of course also true that shoes influence

floor microbial communities by depositing microbes that

have adhered to them. As participants walk, bacteria may

adhere to shoes and be subsequently transferred back to

the floor in a dynamic process of continual loading and

unloading of microbes. A study of uptake and deposit of

particles via indoor foot traffic showed that in many cases

downplay of particles in the size range of bacteria from

shoe to floor is greater than uptake by the shoe [14].

To assess the stability of microbial community struc-

ture across the 12 individual shoe and phone time series,

we focused on weighted UniFrac distance between sam-

ples from consecutive time points and visualized community

volatility as a density plot of those distances (Additional

file 6: Figure S5). Phone-associated microbial commu-

nities were observed to be both less stable (higher me-

dian distance) and more variable in their rate of change

over time (broader distribution) than shoe-associated

communities. By contrast, little difference was observed

between the four shoe environments or between the

two phone environments. We hypothesize that the high

volatility of phone-associated microbial communities is

likely due to a small microbial biomass that would be

prone to a rapid turnover in community composition and

the very high volatility of hand-associated microbiota that

has been observed in previous studies [8].

Biogeographic influence on community structure

In addition to the two time series participants, we also col-

lected individual shoe and phone samples from volunteers

at three academic conferences, one in Vancouver, BC

(N = 29), one in Washington, D.C. (N = 26), and one in

California (N = 34). California samples were taken from

two different rooms at the same conference while

Vancouver and Washington samples were all taken from

the same room. We used these data both to corroborate

the patterns of diversity observed in the time series

with a larger number of participants and to assess the

A C E

B D F

Figure 4 Ordination of biogeographic samples based on weighted and unweighted phylogenetic dissimilarity in community composition. Panels

A and B depict principal coordinate (PCoA) plots for all biogeographic samples based on pairwaise weighted UniFrac distance between samples,

with sample points colored by surface and location respectively. C and D depict ordinations of shoe samples, colored by sampling location,

based on weighted and unweighted UniFrac distance, respectively. E and F depict ordinations of phone samples colored by sampling location

and are based on weighted and unweighted UniFrac distance, respectively.
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differentiation in community structure attributable to

geographic segregation.

As in the time series analyses, phone and shoe micro-

bial communities were significantly different (Figure 4;

Pseudo-F = 38.2 for weighted UniFrac, P < 0.0001). The

location at which samples were collected also played a

significant role in shaping community similarity, espe-

cially in shoe samples (Pseudo-F = 8.8, weighted UniFrac,

P < 0.0001) though also significantly in phone samples

(Pseudo-F = 4.9, weighted UniFrac, P < 0.0001). Random

forest models were able to determine which of the three

conferences a sample was taken from significantly better

than expected by chance for both the shoe and phone en-

vironments (error ratio = 11.7 and 8.0, respectively). This

suggests to us that, as seen in the time series data, differ-

ent sites maintain a significantly different floor microbial

community, which in turn shapes the microbial assem-

blage structure associated with the shoe samples.

Conclusions
Microbial communities show unique structure and com-

position based on surface type, the identity of the person

interacting with the surface, and geographic location.

This has significant implications for a variety of applica-

tions. While we suggest that it is possible to infer indi-

vidual identities based on the microbial community

associated with their smart phone surface, it is less likely

that this assemblage could be used to track where that

person has been recently located in space due to the rapid

turnover of the surface-associated microbial community.

We believe that the personalized-nature of the human

microbiome and the distinct community types associated

with urban and built environments may play a significant

role in future forensic investigations.

Methods
Sample collection

This article reports the results of two studies, one of

which employed longitudinal sampling of shoe and phone

microbial communities (time series study) and one of

which collected individual shoe and phone samples from

individuals attending three geographically disparate con-

ferences (biogeographical study). For the time series study,

two participants were recruited to sample their shoes and

phones every hour over the course of two 12-hour time

periods on consecutive days. Samples were collected by

the participants by rubbing sterile swabs pre-moistened

with 0.15 M saline solution on each site of interest. Floor

samples were taken immediately adjacent from wherever

the participant was standing at the time of shoe sampling;

not necessarily in an area where they had recently stepped.

All samples were immediately placed at −20°C, or on dry

ice in cases where samples were collected while partici-

pants were away from home or office. At each sampling

site, participants made note of their current environment

and of all actions taken over the proceeding hour. Par-

ticipant 1 wore flat-bottomed, rubber soled boots while

participant 2 wore sneakers with a more complex sole

topography. Each participant wore the same pair of shoes

on their 2 days of sampling, both with rubber soles.

For the biogeographical study: At three national and

international conferences during 2012, samples were

collected at random from participants’ phones and shoes.

Samples were collected by the participants by rubbing

sterile swabs pre-moistened with 0.15 M saline solu-

tion on each site of interest. All samples were immedi-

ately placed on dry ice and shipped to Argonne National

Laboratory, where they were stored at −80°C until

processed.

Library preparation

Total DNA was extracted from swabs using the Extract-

N-Amp plant PCR kit (Sigma, St. Louis, USA) following

the manufacture’s protocol with minor modifications.

After extraction, DNA was quantified using PicoGreen

(Invitrogen, Grand Island, USA) and a plate reader. DNA

was then amplified using the Earth Microbiome Project

barcoded primer set, adapted for the Illumina HiSeq2000

and MiSeq (Illumina, San Diego, USA) by adding nine

extra bases in the adapter region of the forward amplifica-

tion primer that support paired-end sequencing. The V4

region of the 16S rRNA gene (515 F-806R) was amplified

with region-specific primers that included the Illumina

flowcell adapter sequences and a 12-base barcode se-

quence [15,16]. Each 25 μl PCR reaction contained the

following: 12 μl of MoBio PCR Water (Certified DNA-Free;

MoBio, Carlsbad, USA), 10 μl of 5 Prime HotMasterMix

(1×), 1 μl of forward primer (5 μM concentration, 200 pM

final), 1 μl of Golay Barcode Tagged Reverse Primer (5 μM

concentration, 200 pM final), and 1 μl of template DNA.

The conditions for PCR were as follows: 94°C for 3 min to

denature the DNA, with 35 cycles at 94°C for 45 s, 50°C for

60 s, and 72°C for 90 s, with a final extension of 10 min at

72°C to ensure complete amplification. Amplicons were

quantified using PicoGreen (Invitrogen) and a plate reader.

Once quantified, different volumes of each of the prod-

ucts are pooled into a single tube so that each amplicon

is represented equally. This pool is then cleaned up

using UltraClean® PCR Clean-Up Kit (MoBio, Carlsbad,

USA), and then quantified using Qubit (Invitrogen, Grand

Island, USA). After quantification, the molarity of the pool

is determined and diluted down to 2 nM, denatured, and

then diluted to a final concentration of 4 pM with a 30%

PhiX spike for loading on the Illumina HiSeq2000 sequen-

cer (for the time series study), and a final concentration

of 6.1 pM with a 30% PhiX spike for sequencing on the

Illumina MiSeq (for the biogeographical study).
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Sequence processing and analysis

Unpaired reads of length 151 bp for both the time series

and biogeographic studies were clustered together at

97% identity using the Quantitative Insights Into Micro-

bial Ecology (QIIME) script pick_open_reference_otus.py,

with the May 2013 release of Greengenes (greenge-

nes.lbl.gov) as the reference. OTUs comprising only a

single read were discarded, and samples were rarified to

an even depth of 1,000 reads.

Analysis of beta-diversity was performed by calculating

the pairwise weighted and unweighted UniFrac [17] dis-

tance between each pair of samples, and the resulting

distance matrix was used for all downstream statistical

tests of sample similarity. The significance of sample

groupings was assessed using PERMANOVA (QIIME’s

compare_categories.py script) and statistical significance

was calculated by comparing the Pseudo-F statistic to a

distribution generated by 10,000 permutations of the

randomized dataset.

Random forest models

Random forest supervised learning models were used to

determine the diagnostic power of microbial community

profiles in predicting the surface type or participant a

sample originated from. These models form decision trees

using a subset of samples to identify patterns associated

with a metadata category and then test the accuracy of

the tree on the remaining samples not used for training.

Each model runs a number of independent trees and

reports the ratio of model error to random error as a

metric for the predictive power of the category’s micro-

bial communities. A greater ratio of baseline to model

error indicates a better ability to classify that grouping

by microbial community alone. The models were run using

the supervised_learning.py command in QIIME, with 1,000

trees per model and tenfold cross validation.

SourceTracker models

For the SourceTracker models, all four shoe samples taken

by each participant at a given time point were consoli-

dated and treated as individual sinks (N = 29 and 27

for participants 1 and 2, respectively). All floor samples

from the two participants’ time series were collapsed and

treated as the two possible sources to the shoe sink com-

munity. Models were run following QIIME tutorial guide-

lines (http://qiime.org/tutorials/source_tracking.html).

Procrustes

Procrustes analysis compares the shape of two PCoA

plots by optimally rotating and scaling one plot to best

fit the other, with the goodness of fit measured by the

M2 statistic. P values are generated using a Monte Carlo

simulation in which sample identifiers are shuffled (here

1,000 times) and the M2 statistic is compared to the

distribution drawn from these permutations. The pro-

portion of M2 values that are equal or lower than the

actual M2 value is the Monte Carlo P value.

Only time points in which all four shoe samples passed

quality filtering were considered (N = 24 for participant 1

and 19 for participant 2). For each participant, samples

were divided by shoe environment and four different

sets of principal coordinates were computed based on

weighted UniFrac distance between samples. The QIIME

script transform_coordinate_matricies.py was used for Pro-

crustes analysis, with the left heel coordinates used as the

reference and the other three coordinate matrices trans-

formed to best fit the reference.

Availability of supporting data

All sequencing data as well as the OTU table and

mapping file are available at http://figshare.com/articles/

Forensic_analysis_of_the_microbiome_of_phones_and_

shoes/1311743.

Additional files

Additional file 1: Figure S1. Heatmap of the abundances of the 100

OTUs with the highest feature importance scores in the random forest

model differentiating shoe samples by participant. Each row represents a

single OTU. All shoe samples taken by a participant at each time point

are collapsed, and blocks are ordered first by participant and then by time.

Additional file 2: Figure S2. Heatmap of the abundances of the 20

genera with the highest feature importance scores in the random forest

model differentiating shoe/floor and phone samples. For the heatmap, all

samples taken from a given surface environment were collapsed across

time points and heatmap color was normalized for each genus.

Additional file 3: Figure S3. SourceTracker models for individual

participants. All floor samples taken at each location were consolidated

and treated as possible sources. All four shoe samples per time point

were consolidated and treated as sinks. Bar height represents the mixing

proportion estimate for each source in each sink sample, with the source

environment where the participant was located at time of sampling

indicated by a higher opacity and a black box. For person 2, time point

10, the participant was on lawn outdoors and the floor sample failed to

produce enough reads to be included in the study.

Additional file 4: Figure S4. Procrustes analysis of shoe samples,

demonstrating relatedness of community succession in the four shoe

environments sampled in each person’s time series. Samples in the PCoA

plots are colored by the time point in which they were taken, and the

four samples per time point (left heel, right heel, left tip, right tip) are

connected by edges.

Additional file 5: Table S1. Summary of goodness of fit and respective

Monte Carlo P values for each Procrustes alignment in Figure S4. Table S2.

Correlation between PC1 values for floor and shoe samples taken from the

same time point (as in Figure 3A) and with a plus or minus 1 time point

differential. In all but one case, correlation is highest with no time lag,

suggesting an immediate impact of the floor community on the shoe

communities.

Additional file 6: Figure S5. Volatility of individual surfaces across their

time series, visualized as density plots of weighted UniFrac distances

between samples from consecutive time points. Plots are colored by the

median distance in those series of consecutive distances.
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