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Abstract—Numerous methods that automatically identify sub-
jects depicted in sketches as described by eyewitnesses have been
implemented, but their performance often degrades when using
real-world forensic sketches and extended galleries that mimic law
enforcement mug-shot galleries. Moreover, little work has been
done to apply deep learning for face photo-sketch recognition de-
spite its success in numerous application domains including tradi-
tional face recognition. This is primarily due to the limited number
of sketch images available, which are insufficient to robustly train
large networks. This letter aims to tackle these issues with the fol-
lowing contributions: 1) a state-of-the-art model pre-trained for
face photo recognition is tuned for face photo-sketch recognition
by applying transfer learning, 2) a three-dimensional morphable
model is used to synthesise new images and artificially expand
the training data, allowing the network to prevent over-fitting and
learn better features, 3) multiple synthetic sketches are also used
in the testing stage to improve performance, and 4) fusion of the
proposed method with a state-of-the-art algorithm is shown to fur-
ther boost performance. An extensive evaluation of several popu-
lar and state-of-the-art algorithms is also performed using publicly
available datasets, thereby serving as a benchmark for future algo-
rithms. Compared to a leading method, the proposed framework
is shown to reduce the error rate by 80.7% for viewed sketches and
lowers the mean retrieval rank by 32.5% for real-world forensic
sketches.

Index Terms—Augmentation, convolutional neural network,
deep learning, fusion, hand-drawn sketch, morphological model.

I. INTRODUCTION

ONE of the toughest heterogeneous face recognition (HFR)
scenarios, involving the comparison of face images resid-

ing in different modalities, is face photo-sketch recognition.
Apart from the significant modality gap, algorithms must also
contend with inaccuracies in sketch images arising from mem-
ory and communication deficiencies when an eyewitness pro-
vides the description of a suspect to a sketch artist [1]–[3]. These
issues cause traditional face reocgnition systems (FRSs) to per-
form poorly when tasked with identifying the subject in a sketch
given a gallery of photo images, leading to the development of
algorithms specifically designed for face photo-sketch recog-
nition. Although several methods described in literature have
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reportedly achieved high retrieval rates, these were typically
achieved by using sketches that bear a very high resemblance
to the original photos (therefore, ignoring distortions caused by
the memory and communication gaps) and failing to use an ex-
tended gallery to simulate the mug-shot galleries maintained by
law enforcement agencies.

Several state-of-the-art methods utilise hand-crafted features,
such as the scale-invariant feature transform (SIFT) and mul-
tiscale local binary pattern (MLBP) [2]–[5]. However, these
features are likely not optimal since they were not developed
for intermodality face recognition [6], and it would therefore be
desirable to employ descriptors that are better suited for the task
of face photo-sketch recognition. An approach that can be used
to learn appropriate descriptors is via deep learning, which has
proven to be successful in numerous domains including tradi-
tional face recognition [7]–[9]. However, there has been limited
work in using deep learning for face photo-sketch recognition.
One of the main reasons is the need of a large number of exam-
ples to robustly train deep networks and avoid issues, such as
over-fitting and local minima [9], [10], but there are relatively
few photo-sketch pairs that are publicly available. Moreover,
there is typically only one sketch per subject, making it hard for
a deep network to learn robust features [11]. The contributions
of this letter are thus:

1) To circumvent the single-sketch-per-subject problem, a
three-dimensional (3-D) Morphable model is employed
to vary facial attributes and automatically synthesise a
new large set of images.

2) The synthetic images are used to tune a state-of-the-art
deep network (pretrained on face photos) for the task of
face photo-sketch recognition via transfer learning.

3) Since forensic sketches often contain several inaccuracies,
the synthetic sketches can bear a better liking to the match-
ing photo than the original sketch. In fact, performance
is improved when multiple sketches for each subject are
used for comparison with the gallery photos.

4) The fusion of the proposed architecture with a leading
algorithm is shown to yield further improved performance
on both viewed and forensic sketches.

The rest of this letter includes a summary of related work in
Section II followed by descriptions of the proposed methods in
Section III, which are then evaluated in Section IV. Directions
for future work and concluding remarks are given in Section V.

II. RELATED WORK

Several face hallucination (FH) techniques [13] have been
proposed in literature, which encompass intra-modality meth-
ods that transform photos and sketches such that comparison
can be done within the same domain. Prominent methods in-
clude Eigen-transformation (ET) [14] that performs synthesis
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Fig. 1. Proposed architecture, where synthetic images are created and used to train the DCNN in [9] via transfer learning. The first and second rows contain
original and synthesised photos and sketches, respectively, of a subject in the PRIP-HDC forensic sketch database [12]. Column ‘1’ contains images fitted with
a 3-D Morphable model, and “2” to “645” are synthesised versions of “1”. The synthetic sketch of variation “2” (represented with a green border) has a more
rounded appearance than the original sketch (red border) and bears a subjectively better similarity to the corresponding original photo (dashed orange border). As
shown in the yellow box, the DCNN is first trained for classification and then tuned for verification using triplet embedding.

using a linear combination of images, the Eigen-patches (EP)
extension [15] performing synthesis at a local level, and the
Bayesian framework in [16] that considers relationships among
neighbouring patches for model construction. A more thorough
review of FH algorithms may be found in [4], [13], [15]–[17].

State-of-the-art inter-modality methods that learn or extract
modality-invariant features include the D-RS approach [2], [18]
that compares SIFT and MLBP descriptors extracted from im-
ages that are convolved with three filters, the CBR method [19],
which compares MLBP features extracted from individual fa-
cial components, the FaceSketchID system in [12] which fuses
D-RS with CBR, and the recent LGMS method [4] that compares
MLBP features extracted from log-Gabor-filtered images using
the spearman rank-order correlation coefficient. Other methods
and further information can be found in [4], [6], [12], [13], [15],
[19]–[23].

Few works have considered the use of deep learning for face
photo-sketch synthesis and recognition, most notable being the
approaches in [24]–[27]. However, these systems generally use
relatively shallow networks or are primarily trained using im-
ages residing in a single modality (typically face photos).

Finally, few works consider the use of multiple sketches per
subject. Most relevant to this letter is the work done in [21],
[28], but the number of subjects and sketches used were both
limited since the latter were manually created by employing
several artists or software operators, making the process costly
and time-consuming. These problems are critical, especially in
the time-sensitive nature of real-world criminal investigations.

III. PROPOSED METHOD

A. Deep Convolutional Neural Network

As shown in Fig. 1, the proposed architecture consists of a
deep convolutional neural network (DCNN) on which transfer
learning is applied using both photos and sketches1 to allow the
network to learn the relationships between the two modalities.
The choice to use a pretrained network instead of initialising a
new one follows observations in literature that the former ap-
proach will enable faster convergence, mitigate the encountering
of local minima, and allow better generalisation [32], [33]. The
DCNN was chosen to be VGG-Face as described in [9], since
1) it was also designed for recognition of faces, albeit only

1In this letter, the focus is on using hand-drawn sketches due to the availability
of both viewed sketches and real-world forensic sketches.

photos, and 2) it is among the leading FRSs for unconstrained
face recognition. Hence, it provides a good starting point from
which the parameters can be tuned for face photo-sketch recog-
nition. A similar implementation methodology to [9] is ap-
plied for network training and testing, notably bootstrapping
the DCNN for classification followed by triplet embedding to
enable verification, and scaling the test images to three sizes to
enable multiscale testing.

B. Data Augmentation

Very deep architectures, such as the VGG-Face network, have
been shown to be more powerful than shallow networks and are
thus crucial to attain good performance [34], [35]. However,
such networks contain millions of trainable parameters and tend
to suffer from overfitting. Consequently, such networks must be
trained using not only a vast number of classes, but also numer-
ous images for each category [8], [9]. Databases for traditional
tasks, such as object and face recognition are often constructed
by exploiting the numerous images available on the web, but
sketches and the corresponding photos are rarely accessible and
only one sketch per subject is usually available both in real-life
and in publicly available databases. Hence, apart from the orig-
inal photos and sketches, the 3-D Morphable model2 in [37]
is used to enable variation of the attributes for each face im-
age and synthesise a new set of images with which to train the
network. Both individual facial features (eyes, nose, mouth, and
face shape) and global features (weight, age, height, and gender)
are adjusted, for a total of 645 images (including the original).3

The resultant method is named the DEEP (face) Photo-Sketch
System (DEEPS).

C. Multiple Synthetic Sketches for Recognition

While the synthetic images aid learning by permitting the
DCNN to be flexible for disparities in the facial attributes of
photos and sketches, it will be shown that they may also be
useful when determining the identity of a subject during test-
ing. This exploits the observation that attribute adjustments may
yield a sketch which counteracts the distortions and exaggera-
tions that are typically present within sketches when compared
to the corresponding photos. A real-world example is shown in
Fig. 1. Hence, the features of a subset of 199 synthetic sketches

2Model available: http://faces.cs.unibas.ch/bfm/main.php, fitted using the
method in [36] available at: https://github.com/waps101/3DMM_edges

3The exact parameters may be found at: http://wp.me/P6CDe8-7D
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TABLE I
MEANS AND STANDARD DEVIATIONS OVER 3 TRAIN/TEST-SET SPLITS FOR ALGORITHMS EVALUATED ON VIEWED HAND-DRAWN SKETCHES

Method Matching Rate (%) at Rank-N TAR@FAR=0.1% TAR@FAR=1.0% EER (%)

N=1 N=10 N=50 N=100 N=150

VGG-Face [9] 24.79 ± 1.87 47.35 ± 1.37 65.59 ± 1.23 75.54 ± 0.76 81.09 ± 1.51 30.76 ± 2.35 54.56 ± 2.23 12.51 ± 0.53
PCA [29] 2.32 ± 0.80 6.80 ± 0.94 12.02 ± 0.29 15.42 ± 1.08 19.65 ± 1.00 3.07 ± 0.38 6.47 ± 0.90 39.40 ± 1.19
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− - - -
ET (+PCA) [14] 24.54 ± 2.61 52.90 ± 1.80 73.38 ± 1.74 80.68 ± 1.04 84.74 ± 0.80 33.17 ± 1.83 58.71 ± 1.08 10.89 ± 0.52
EP (+PCA) [15] 34.91 ± 3.31 59.87 ± 1.75 77.94 ± 0.63 85.32 ± 0.66 88.39 ± 0.29 44.20 ± 1.46 68.41 ± 1.32 9.06 ± 0.16
LLE (+PCA) [30] 36.82 ± 1.97 62.77 ± 2.52 77.53 ± 0.52 85.90 ± 1.01 89.22 ± 0.76 46.19 ± 1.25 66.42 ± 1.14 10.49 ± 0.75
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−- -
HAOG [31] 54.89 ± 2.17 71.81 ± 0.80 84.58 ± 0.50 88.47 ± 0.76 90.46 ± 0.29 63.60 ± 2.09 80.43 ± 0.87 7.68 ± 0.31
CBR [19] 20.23 ± 2.36 44.69 ± 1.41 66.25 ± 0.76 73.80 ± 1.50 78.94 ± 0.80 28.28 ± 2.61 52.74 ± 0.86 13.42 ± 0.36
D-RS [2], [18] 75.04 ± 1.37 89.30 ± 1.29 95.19 ± 0.63 97.43 ± 0.57 98.42 ± 0.52 85.82 ± 1.88 94.94 ± 0.76 2.58 ± 0.13
D-RS+CBR [12] 80.18 ± 0.63 91.87 ± 0.14 96.52 ± 0.90 97.93 ± 0.63 98.42 ± 0.76 90.55 ± 0.90 97.26 ± 1.14 1.88 ± 0.36
LGMS [4] 82.92 ± 1.25 93.86 ± 0.38 97.93 ± 0.63 99.00 ± 0.00 99.17 ± 0.14 92.04 ± 0.90 98.01 ± 0.25 1.35 ± 0.25
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− - - -
DEEPS 78.19 ± 0.52 95.52 ± 1.49 98.92 ± 0.76 99.50 ± 0.25 99.83 ± 0.29 91.96 ± 0.72 98.67 ± 0.52 1.07 ± 0.25
LGMS [4]+DEEPS 94.61 ± 0.80 99.09 ± 0.14 99.83 ± 0.14 99.92 ± 0.14 99.92 ± 0.14 99.50 ± 0.25 99.92 ± 0.14 0.26 ± 0.04

and the original are computed for each subject. Since a sketch is
compared to the gallery photos, it is represented with 200 dis-
tance measures for each subject in the gallery. These distances
are fused using: 1) the median of the top 49 matches and the
match to the original sketch, and 2) the best match among nine
sketches and the original. Two distance values are thus obtained
for each comparison of a sketch with a photo, that are combined
using min-max normalisation and sum-of-scores fusion which
are reportedly among the best fusion approaches [21], [38], [39].
This method is denoted DEEPS multisketch (DEEPS-M) and is
only applied on forensic sketches, since viewed sketches gener-
ally bear an already close resemblance to the original photo and
any alteration to the facial attributes will likely reduce similarity.

D. System Fusion

Due to their substantial quantity, viewed sketches are used to
validate the performance of DEEPS with respect to several al-
gorithms proposed in literature. Specifically, the popular CUFS
database containing 606 subjects in the AR [40], XM2VTS
[41], and CUHK student [14], [42] databases are used together
with the sketches of 946 subjects in the CUFSF database [6] and
the corresponding photos in the color FERET database [43].
While most works use only CUFS, its sketches bear a great
resemblance to the corresponding photos and therefore model
the memory and communication gaps inadequately. However,
the CUFSF sketches were created to intentionally contain
several distortions and shape exaggerations to mimic real-world
sketches [6]. CUFS and CUFSF are combined, selecting:
(i) 800 subjects at random for training the face recognisers
and inter-modality methods, (ii) 350 subjects to train the
intra-modality methods, and (iii) 402 subjects for testing. All
methods are evaluated on three train/test set splits. Photos
and sketches populate the gallery and probe sets, respectively,
and the gallery is extended with the photos of 1521 subjects
to simulate the extensive mug-shot galleries maintained by
law-enforcement agencies, obtained from the MEDS-II,4

FRGC v2.0,5 Multi-PIE [44], and FEI6 databases.

4Available at: http://www.nist.gov/itl/iad/ig/sd32.cfm
5Available at: http://www.nist.gov/itl/iad/ig/frgc.cfm
6Available at: http://fei.edu.br/∼cet/facedatabase.html

Fig. 2. Ranks of all 47 subjects in the PRIP-HDC database [12] for LGMS
and DEEPS. Smaller values are desired.

As shown in Table I, the FRSs are generally inferior to the
intra-modality methods, which in turn typically lag behind the
performance of the inter-modality approaches. The only ex-
ception is CBR, whose poor performance is likely a result
of being designed to operate on software-generated sketches.
However, its fusion with D-RS as done in [12] yields im-
proved performance that is second only to the state-of-the-art
LGMS method. The proposed approach ultimately outperforms
all methods across virtually all performance metrics, except at
Rank-1. However, since law enforcement agencies would still
examine several tens or hundreds of top matches, the Rank-1
performance is arguably less important than other ranks. The
proposed artificial expansion of the training set and application
of transfer learning are clearly beneficial given the significantly
improved performance compared to the VGG-Face network that
was used as the basis of the proposed system.

Empirically, it was also observed that there are several cases
where LGMS performs noticeably worse than DEEPS, and vice
versa. As shown in Fig. 2, this phenomenon also holds true for
the forensic sketches. Hence, the two approaches are combined
to determine if these methods can benefit from complemen-
tary information, using also min-max normalisation and sum-
of-scores fusion [38]. This is indeed the case, with the resultant
system comprehensively outperforming all other methods and
is able to reduce error rates by 75.7% and 80.7% compared to
DEEPS and LGMS, respectively.
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Fig. 3. Rank differences for all 47 subjects in the PRIP-HDC database [12]
when comparing DEEPS with DEEPS-M.

IV. RESULTS

The PRIP-HDC dataset [12] is used to evaluate the methods
considered on real-world images, containing hand-drawn foren-
sic sketches of 47 subjects created from eye-witness accounts
in real-world investigations. The mug-shot photos were avail-
able after the suspects in the sketches were identified [1], [2].
All subjects were only used for testing by employing the same
models that were trained on the viewed hand-drawn sketches,
due to the dataset’s small size. Also for this reason, traditional
performance measures may yield inaccurate results and there-
fore analysis is performed using the ranks at which algorithms
retrieve each subject directly. Additional results are also avail-
able as part of the Supplementary Material.

A. LGMS Versus DEEPS

Comparing DEEPS to the best-performing method in litera-
ture (LGMS, as discussed above) in terms of differences in the
ranks at which the identity of the subjects are retrieved as shown
in Fig. 2, it is evident that both methods perform relatively well
on the forensic sketches and achieve mean rank retrieval values
of 325.02 and 398.27, respectively. This demonstrates that, over-
all, DEEPS is able to successfully retrieve subjects at smaller
ranks than LGMS.

B. DEEPS Versus DEEPS-M

As shown in Fig. 3, DEEPS-M is generally able to retrieve
subjects at better ranks than DEEPS, lowering the mean rank
retrieval values to 312.11. This indicates that the proposed use of
multiple sketches can indeed be beneficial during deployment.
It is likely that performance can be improved with the use of a
more flexible Morphable model that allows better variation of
the facial features, which are also able to reflect more closely the
distortions and exaggerations that are typically found in forensic
sketches.

C. LGMS + DEEPS-M

As discussed in Section III-D, LGMS and DEEPS can pro-
vide complementary information when combined in the case of
viewed sketches. Fusion of the superior DEEPS-M with LGMS
can lead to smaller ranks than either approach as shown in Fig. 4,
indicating that the two methods also provide complementary in-
formation for forensic sketches. Indeed, the average rank value
is reduced by 13.9% and 32.5% compared to DEEPS-M and
LGMS, respectively, to 268.82. This demonstrates that the fu-
sion is overall substantially beneficial. Moreover, as depicted in
Fig. 5, instances where subjects are retrieved at large ranks can

Fig. 4. Examples of ranks (averaged over three set splits) at which the cor-
rect photo is retrieved given a query forensic sketch. Images available in the
PRIP-HDC database [12].

Fig. 5. Example where best matches retrieved by LGMS + DEEPS-M bear a
better liking to probe than the true match.

be simply a consequence of the top matches being more similar
to a probe sketch than the true corresponding photo, and not due
to a failure of the algorithm.

V. CONCLUSION & FUTURE WORK

This letter presented a face photo-sketch recognition system
utilising a 3-D Morphable model to vary facial features and
automatically generate new images, circumventing the problem
of having only a single sketch per subject thus enabling a deep
convolutional neural network to learn the relationships between
photos and sketches and exceed the performance of leading
methods. The combination of multiple sketches at test-time was
also shown to result in improved performance for real-world
sketches, since the facial feature variations can yield sketches
that are more similar to the matching photo than the original
sketch. Hence, this is one of only few works considering deep
learning for hand-drawn face sketches and multiple sketches
for subject identification. The proposals were also found to be
effective for real-world forensic sketches. It was further demon-
strated that the fusion of the proposed system with a leading
method yields further performance for both viewed and foren-
sic sketches. Future work includes the use of a more advanced
Morphable model which allows more flexibility in the varia-
tion of the facial features, and the application of the proposed
approaches for other HFR tasks.
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