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 [A need for caution] 

Forensic Speaker 
Recognition

T
here has long been a desire to be able to identify a 

person on the basis of his or her voice. For many 

years, judges, lawyers, detectives, and law enforce-

ment agencies have wanted to use forensic voice 

authentication to investigate a suspect or to con-

firm a judgment of guilt or innocence [3] [35]. Challenges, reali-

ties, and cautions regarding the use of speaker recognition 

applied to forensic-quality samples are presented.

Identifying a voice using forensic-quality samples is generally 

a challenging task for automatic, semiautomatic, and human-

based methods. The speech samples being compared  may be 

recorded in different situations; e.g., one sample could be a 

 yelling over the telephone, whereas the other might be a whis-

per in an interview room. A speaker could be disguising his or 

her voice, ill, or under the influence of drugs, alcohol, or stress 

in one or more of the samples. The speech samples will most 

likely contain noise, may be very short, and may not contain 

enough relevant speech material for comparative purposes. 

Each of these variables, in addition to the known variability of 

speech in general, makes reliable discrimination of speakers a 

complicated and daunting task.

Although the scientific basis of authentication of a person 

by using his or her voice has been questioned by researchers 

(e.g., by scientists in 1970 [4], British academic phoneticians 

in 1983 [5], and the French speech communication communi-

ty from 1990 to today [6]), there is a  perception among the 

©  BRAND X PICTURES

 Digital Object Identifier 10.1109/MSP.2008.931100

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:07 from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE   [96]   MARCH 2009

general  public that it is a straightforward task. As shown in [6], 

this misunderstanding partially began in 1962 with an article 

by Kersta, which appeared in Nature [7]. The article introduced 

the misleading term, voiceprint identification, which is still in 

vogue in daily newspapers, televised police dramas, and spy 

films. This term, voiceprint, leads many people to falsely 

believe that a graphical repre-

sentation of the voice, via a 

spectrogram, is just as reliable 

as the structure of the ridges 

and minutiae of the fingertips 

or genetic fingerprints (e.g., 

DNA) and that it allows for a 

highly reliable identification of 

the original speaker. This misconception complicates the work 

of those in the forensic speaker recognition domain by intro-

ducing a false premise that all voices are unique, and discern-

ibly so, under most conditions. Combating this mindset has 

become an ongoing process [30].

No two speakers are absolutely the same, differing somewhat 

in anatomy, physiology, and acoustically. Even identical twins 

can have similar acoustics and differ in their implementation of 

a single segment in their linguistic system [31].

In forensics, it is not sufficient to state how similar two 

speakers are, and typicality must also be addressed. To do this, 

an examiner compares evaluation parameters of the speaker at 

hand to a larger reference sample of speakers. A measure of typi-

cality helps quantify the strength of the forensic evidence, which 

is presented in the form of a likelihood ratio of two probabilities. 

Automatic speaker recognition systems can aid the forensic 

examiner in estimating the likelihood ratio.

With the developments in automatic speaker recognition 

over the last decade (e.g., [8] and [9]), there is an increased need 

to distinguish between its appropriate and inappropriate uses in 

various forensic voice authentication contexts and to differenti-

ate between common versus forensic speaker recognition appli-

cations. In 2003, several scientific institutions reported on the 

status of the use of automatic speaker recognition technologies 

in the forensic field [2]. They concluded by sending a clear 

need-for-caution message, including statements such as, “cur-

rently, it is not possible to completely determine whether the 

similarity between two recordings is due to the speaker or to 

other factors . . .,” “caution and judgment must be exercised 

when applying speaker recognition techniques, whether human 

or automatic . . .,” or “at the present time, there is no scientific 

process that enables one to uniquely characterize a person’s 

voice or to identify with absolute certainty an individual from 

his or her voice.”

After these conclusions, the progress observed in the speaker 

recognition area has been very impressive, as shown in the 

National Institute of Standards and Technology (NIST) evalua-

tion campaigns [10], [32], [33]. The major advancement was 

the appearance of new session variability modeling techniques, 

like the latent factor analysis (FA) or nuisance attribute projec-

tion (NAP) [11], [16]. The resulting level of performance 

encourages the use of automatic speaker recognition tech-

niques in the forensic field. This article aims to comment on 

this progress and to evaluate if the 2003 need-for-caution mes-

sage should be changed.

This article presents a summary of the progress made in the 

automatic speaker recognition field during the last few years and 

addresses the pertinence of the 

progress based on error rate cri-

terion. The experimental con-

text of this article, based on the 

NIST speaker recognition evalu-

ation (SRE) evaluations, is 

described in the next section. 

The statistical Gaussian mixture 

model universal background model (GMM-UBM) approach used 

in the majority of the state-of-the-art systems is discussed in the 

following section, and the progress realized during the past years 

is also detailed. Evaluation of the performance and orientation of 

the research based on the objective of reducing error rates are 

presented. Finally, our views for future research and a conclusion 

with our message of caution are  presented.

THE NIST-SRE FRAMEWORK

The NIST-SRE began in 1996. Since then, NIST organized an 

SRE campaign annually, with few exceptions. The main objec-

tive of the NIST-SRE is to provide an integrated framework for 

scientifically evaluating the approaches and systems in the field 

of speaker recognition: the participants work on the same cor-

pus and protocols, the same performance criterion, and are 

time-synchronized by the campaign schedule. The main inter-

est for the participants is the availability of free, large, specifi-

cally designed speech corpora that are enlarged or renewed 

each year. The NIST evaluations are mainly funded by the U.S. 

Department of Defense, which has a double objective. First, the 

campaigns are a showcase for the highest-performing speaker 

recognition techniques and serve as a good place to select the 

most promising research directions. Second, the sponsor has 

an important impact on the focus of the research done by all 

the participants, by proposing new tasks or protocol evolutions. 

The success of the NIST-SRE is confirmed year after year, as 

shown both by the growing number of participating sites (more 

than 40 in 2008) and by the number of NIST-SRE-related sci-

entific publications in major conferences and journals.

NIST-SREs involve a text-independent speaker recognition 

task, mainly based on telephonic conversational speech. The 

systems have to answer the question, “did speaker X produce 

the speech recording Y and to what degree?” In this article, we 

focus on NIST-SRE core task. All the speech records are extract-

ed from two-speaker telephonic conversations of about 5 min in 

duration. Only one channel is kept, giving on average 2¼ min of 

speech per recording.

THE GMM-UBM APPROACH

The GMM-UBM approach is the dominant one in text- independent 

speaker recognition [13]. This approach is based on a statistical 

DURING THE LAST DECADE, A LARGE 
PART OF THE EFFORT DEDICATED TO 
THE SPEAKER RECOGNITION FIELD 

CONCERNED THE MISMATCH BETWEEN 
THE TRAINING AND TESTING SESSIONS.
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modeling paradigm, where a hypothesis is modeled by a 

GMM model:

 p 1x|l 2 5 a
i,m

i50

ai  
N 1x|mi, Si 2 , (1)

where ai, mi and Si are, respectively, the weights, the mean 

vectors, and the covariance 

matrices (generally diagonal) 

of the mixture components. 

During a test, the system has 

to determine whether the 

recording Y was pronounced 

by a given speaker S. This 

question is modeled by the likelihood ratio:

 
p 1  y|lhyp 2

p 1  y|lhyp 2
$ t, (2)

where Y is the test speech recording, lhyp is the model of the 

hypothesis where S pronounced Y, lhyp
 
corresponds to the 

model of the negated hypothesis (S did not pronounce Y), 

p 1  y|m 2  is the GMM likelihood function, and t is the decision 

threshold. The model lhyp is a generic background model, the 

so-called UBM, and is usually trained during the development 

phase using a large set of recordings coming from a large set of 

speakers. The model lhyp is trained using a speech record 

obtained from the speaker S. It is generally derived from the 

UBM by moving only the mean parameters of the UBM, using a 

Bayesian adaptation function.

TRACING THE PERFORMANCE 

EVOLUTION DURING THE PAST YEARS

In this article, we limit reporting to the period 2004–2008, 

because the task remained constant during that time and 

 general progress was observed. Our performance report is 

based on the work done in the Laboratoire Informatique 

d’Avignon (LIA), Université d’Avignon et des Pays de Vaucluse 

(different works were realized thanks to several cooperations, 

mainly with the Swansea University), a global representative 

of the general evolution of the speaker recognition domain. 

All the presented systems and approaches are integrated in 

the freely available open source system ALIZE/SpkDet (ALIZE/

Technolangue http://www.technolangue.net/ and MISTRAL/

RNTL http://mistral.univ- avignon.fr/) [14].

The starting point of this performance report is the LIA-04 

system. This system, presented by the LIA during the 2004 SRE 

campaign, obtained state-of-the-art performance for a cepstral 

GMM-UBM system. It was slightly optimized for the 2006 cam-

paign, mainly at the feature extraction level (for example, by 

increasing the feature vector dimension to 50), producing a rel-

ative decrease of about 10% of the equal error rate (EER). The 

EER is the point at which the probability of false alarm (false 

acceptance) is equal to probability of a miss (false rejection). 

This optimized system will be used as the reference baseline sys-

tem in this article. The main results presented are issued from 

[15], where all the configuration details are given.

THE MIXED GMM AND SVM APPROACH

The discriminant classifiers based on support vector machines 

(SVM) were of great interest in the speech field. In speaker 

 recognition, an important evolution was proposed, mainly by 

[12]. It uses a mixed approach, associating the robustness of the 

statistical modeling provided by the GMM-UBM paradigm with 

the discriminant power of the 

SVMs. This approach, denoted 

GMM supervector SVM with 

linear kernel (GSL), uses the 

GMM-UBM  to model the train-

ing or testing data. Each 

recording is summarized by a 

supervector extracted from the corresponding GMM (obtained 

from the UBM by the maximum a posteriori procedure), com-

posed by the concatenation of the mean coefficients of all the 

GMM components. The supervectors are then used as inputs of 

the SVM classifier (with a linear kernel).

Table 1 shows the performances of such GSL systems com-

pared with GMM-UBM systems (and with the GMM-UBM 2004 

system, LIA-04). The relative gain between the GSL system and 

the baseline (GMM-UBM) is about 18% in terms of EER and 

about 14% in terms of the minimum detection cost function 

(minDCF). The minDCF is a value of the detection cost func-

tion, which is defined as the weighted sum of the miss and false 

alarm error probabilities, using an ideal threshold. The parame-

ters of this cost function are the relative costs of detection 

errors and the a priori probability of the target [36]. (The actual 

DCF does not assume the use of an ideal threshold.)

DEALING WITH THE SESSION MISMATCH

During the last decade, a large part of the effort dedicated to the 

speaker recognition field concerned the mismatch between the 

training and testing sessions. This mismatch comes from all 

the variability factors between two different recordings, except 

the interspeaker variability: environment, microphone or hand-

set, transmission channel; psychological and pathological state 

of the speaker, linguistic content, voice aging, etc. The different 

works proposed in the literature mainly concern the first few 

factors, because of the influence of the NIST-SRE and its spon-

sor. Several solutions were proposed to deal with this interses-

sion mismatch (with some important gains) at the acoustic level 

[17], [18] or the score level [19].

More recently, a new class of approaches was initiated by the 

works on the FA proposed by [11] for the GMM statistical para-

digm and in [20] in the framework of the SVM, with NAP. The 

[TABLE 1] PERFORMANCE OF GMM-UBM (GMM) COM-
PARED WITH GMM/SVM (GSL) SYSTEMS. PERFORMANCE 
OF GMM-UBM 2004 SYSTEM IS GIVEN FOR COMPARISON.

SYSTEM EER (%) minDCF (3100)
LIA04 9.36 4.21
GMM-UBM 8.47 3.94
GSL 6.88 3.37

This experiment is done on NIST-SRE 06, 1conv-1conv condition, English only, male set 

(694 target tests and 8299 nontarget tests).

FORENSIC APPLICATIONS OF 
SPEAKER RECOGNITION SHOULD 

STILL BE TAKEN UNDER A NECESSARY 
NEED FOR CAUTION.
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common novelty of both approaches is to directly model the 

intersession mismatches, rather than to compensate for their 

effects. This mismatch modeling implies the use of large speech 

corpora, with, for example, several recordings of a given speak-

er using several different handsets. In the previous example, the 

focus is on the variability due to the handset. It is important to 

notice that, for both FA and NAP, the underlying problem is 

inside the supervector space, with a large dimension (more 

than 25,000 in the case of the systems presented in this article). 

Both approaches are implemented in ALIZE/SpkDet [15], [21].

Table 2 presents the results for the FA-based systems. Results 

are provided for the GMM-UBM (using the symmetrical variant 

of FA proposed in [21]) and for the GSL system using classical 

FA. The improvement using both methods is clearly emphasized 

with a minDCF and an EER reduced by a factor of about 2 com-

pared with the baseline GMM-UBM reference system.

LONG DURATION TRAINING

The amount of speech available for training a speaker model is 

an important factor in terms of performance. To evaluate the 

impact of this factor on the performance of a modern speaker 

recognition system, we present two experiments: one gathered 

from the unsupervised training NIST-SRE condition and one 

from the long training condition.

LONG DURATION TRAINING

Table 3 presents the results in terms of EER and minDCF of two 

experiments using GSL-FA (GMM/SVM with FA) system, where 

only the training duration is different. Clearly, the use of three 

times more data for training a speaker model allows a drastic 

improvement in terms of EER (from 2.96% to 1.04%) as well as 

for the minDCF (from 1.35 to 0.76).

VERY LONG DURATION TRAINING

For several years, the NIST-SRE has included a long-duration 

training task. More recently, another task named the unsuper-

vised adaptation mode has been proposed, which is a mix 

between traditional one conversation (1 conv) training and long 

training . In this task, the system is able to take advantage of the 

data gathered during use.

Several research teams have proposed various solutions 

for this unsupervised-training framework [22], [23]. The 

LIA has developed such an approach named continuous 

adaptation [24], where the test data are always integrated 

into the targeted speaker model with a weight based on a 

confidence measure. This approach was applied to both the 

GMM-UBM and the GSL systems, with or without the ses-

sion variability techniques. 

In this article, we focus on the oracle mode, where the sys-

tem knows if a speech segment included in the training set of a 

given speaker belongs to this speaker. The results of the pure 

unsupervised mode are also provided for information. It is 

important to note that the relatively new unsupervised training 

systems obtain very impressive results on some corpora but 

show inconsistent results on other corpora. The use of the ora-

cle (supervised) mode eliminates this inconsistency. In this 

experiment, the number of tests per model speaker and the 

number of target tests by speaker (useful tests for model adapta-

tion) are variable. On average, there are 3.74 target tests per 

speaker model for the 264 target speakers, with 90 speaker mod-

els having zero target tests. For the remaining speakers, there is 

an average of 7.07 target tests.

Table 4 proposes a summary of the experimental results 

using unsupervised training. All the presented systems use FA. 

This table demonstrates that the amount of training data is a 

key factor in speaker recognition performance. With the oracle 

adaptation, the EER is divided by a factor between 2.6 and 2.8 

and the minDCF by a factor between 2.9 and 3.2. Compared 

with the reference baseline system (2006 GMM-UBM system 

without FA), the gain is significantly larger: the EER decreases 

from 8.67% for the reference system to 1.62% for the 

GMM-UBM system with FA and the oracle adaptation mode.

LOOKING AT ERROR RATES AS A PROGRESS CRITERION

As we have shown in this article, current speaker recognition 

systems are able to deal with large and increasing amounts of 

training data, either to reduce the session mismatch problem or 

to increase the quality of the targeted speaker models. This has 

resulted in an impressive level of performance, with an EER of 

2.3% for a task that is difficult. The potential for the presented 

[TABLE 3] PERFORMANCE DEPENDING ON THE TRAINING 
DURATION (ONE VERSUS THREE FILES) OF THE GSL-FA SYSTEM.

TRAINING DURATION EER (%) minDCF (3100)
ONE FILE (SHORT2-SHORT3) 2.96 1.35
THREE FILES (3CONV-SHORT3) 1.04 0.76

This experiment is done on NIST-SRE 08, short2-short3 condition versus 3conv-short3 

condition, English only, male set (short2-short3 involves 439 target tests and 6,176 

nontarget tests; 3conv-short3 involves 405 target tests and 4,905 nontarget tests).

[TABLE 4] PERFORMANCE WITH/WITHOUT UNSUPERVISED 
ADAPTATION AND WITH ORACLE ADAPTATIONS.

SYSTEM EER (%) minDCF (3100)
GMM-FA 4.55 1.59
GMM-FA-UNSUPERVISED 2.36 0.89
GMM-FA-ORACLE 1.62 0.50
GSL-FA 4.48 1.62
GSL-FA-UNSUPERVISED 2.27 0.81
GSL-FA-ORACLE 1.71 0.56

This experiment is done on NIST-SRE 06, 1conv-1conv, English only, male set (it includes 

694 target tests and 829 nontarget tests).

[TABLE 2] PERFORMANCE OF GMM/UBM WITH FACTOR 
ANALYSIS (GMM-FA), GMM/SVM WITH FACTOR ANALYSIS 
(GSL-FA) AND GMM/SVM WITH NAP (GSL-NAP) SYSTEMS, 
COMPARED WITH THE UBM/GMM BASELINE.

SYSTEM EER (%) minDCF (3100)

BASELINE (GMM) 8.67 3.37
GMM-FA 4.55 1.59
GSL-FA 4.48 1.62
GSL-NAP 5.28 1.69

This experiment is done on NIST-SRE 06, 1conv-1conv, English only, male set (it includes 

694 target tests and 829 nontarget tests).
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approaches is large, as the EER 

is about 1.62% with the oracle. 

Moreover, the session mismatch 

techniques are recent and 

should be able to deal with larg-

er corpora, increasing the num-

ber of variability factors they 

are able to model.

With the resulting error rates 

and additional weighted improve-

ments, it seems legitimate to ask 

if speaker recognition can be 

viewed as a solved problem. 

Indeed, if increasing the amount 

of available data decreases error rates, is it useful to work on the 

speaker recognition engine, itself? The end part of this section tries 

to answer this question by looking at the different factors linked to 

the performance as measured during NIST evaluations.

PERFORMANCE VARIABILITY

Multiple factors affect the performance of 

automatic speaker recognition systems, 

some depend on the speakers and others 

do not, while some factors can be difficult 

to isolate.

One factor hypothesized to affect per-

formance is voice aging. Figure 1 (from 

NIST-SRE ’05 [28], [33]) shows the impact 

of the elapsed time between recording the 

enrollment speech and the test speech. For 

a given, realistic threshold, the miss-prob-

ability error increases by a factor of two 

when the duration between enrollment 

and test exceeds one month; however, 

unfortunately, other factors were correlat-

ed with elapsed time, such as corpus col-

lection bias (e.g., different proportions of 

non-English speakers in the two condi-

tions). The hypothesis that factors other 

than voice aging are implied in the Figure 

1 results is also supported by the fact that 

this very large aging loss was no longer 

noticed in SRE’06. Moreover, voice aging, 

and its effect on performance, is an ongo-

ing research topic.

The duration and number of voice sam-

ples used in training are additional vari-

ables in system performance. In 

Table 5, we analyze the performance of the 

same LIA system, the GSL-FA, depending 

on the training conditions (short training 

based on one recording or long training 

based on three recordings) and the test 

subset (gender and language). All these 

results are extracted from the LIA NIST-

SRE 2008 official participation. 

The variation factors have an 

important impact on the perfor-

mance, raising EERs by up to a 

factor of 9 between two condi-

tions. It is also interesting to 

observe that the differences are 

not consistent when several fac-

tors are moving. A part of this 

inconsistency is an artifact of the 

evaluation itself; there are fewer 

speakers and tests in the native 

speaker only condition than in 

the English one, for example. 

Moreover, these results clearly show that a unique error rate does 

not correctly describe the overall performance of a system.

Doddington et al. analyzed the impact of a set of variability 

factors on system performance, using NIST-SRE results [26]. In 

[27], the authors analyzed the results of the LIA GMM-FA 
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[FIG1] Effect of time between enrollment and test recordings, NIST-SRE ’05.

[TABLE 5] RESULTS OF GSL-FA SYSTEM DEPENDING ON THE CORPUS 
SUBSET (EER% FOLLOWED BY MINDCF3100 IN PARENTHESES).

SHORT2-SHORT3 3CONV-SHORT3

MALE FEMALE MALE FEMALE
ALL LANGUAGE 5.95% (3.32) 8.54% (4.60) 3.67% (2.48) 6.58% (3.97)
ENGLISH RECORDS 2.96% (1.35) 3.54% (1.85) 1.04% (0.76) 2.05% (1.23)
ENGLISH RECORDS BY NATIVE 
SPEAKERS

0.89% (0.31) 2.14% (1.09) 2.10% (0.89) 3.42% (1.85)

This experiment is done on NIST-SRE’08, English only.

THE MAIN OBJECTIVE OF THE NIST-
SRE IS TO PROVIDE AN INTEGRATED 
FRAMEWORK FOR SCIENTIFICALLY 

EVALUATING THE APPROACHES AND 
SYSTEMS IN THE FIELD OF SPEAKER 
RECOGNITION: THE PARTICIPANTS 

WORK ON THE SAME CORPUS 
AND PROTOCOLS, THE SAME 

PERFORMANCE CRITERION, AND 
ARE TIME-SYNCHRONIZED BY THE 

CAMPAIGN SCHEDULE. 
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 system, inside the NIST-SRE 

framework. They remark that a 

few impostor trials are respon-

sible for about half of the sys-

tem errors. Figure 2 shows two 

detection error trade-off (DET) 

curves: one computed using all 

the NIST protocol tests and the 

other one when less than 1% of the impostor trials are with-

drawn (trials with the top scores are withdrawn). It is more 

interesting that the authors also show that the main part of this 

phenomenon is corrected when an inverse scoring is applied on 

the problematic tests (inverse scoring means that the speaker 

model is trained on the test file and scored against the enroll-

ment file). This result demonstrates the suitability of the GMM-

based approach with careful use of the training material.

ERRORS IN CALIBRATION

Calibration [29], [1] is another significant issue that provokes cau-

tion when using automatic speaker recognition systems. Although 

a system may exhibit a low error rate, as indicated by its DET 

curve, it may be subject to different levels of variation in the actual 

score produced. The use of statistically significant similar tests can 

actually mask this issue. If the researcher has enough data from a 

single collection method, then 

the score of an automatic system 

can be observed and corrected 

for calibration errors. In some 

uses of automatic speaker recog-

nition, this process may be 

appropriate, but in many foren-

sic situations where the collec-

tion process is mismatched from enrollment to verification, good 

calibration may be difficult to achieve.

The speaker recognition community has taken significant 

steps to mitigate these issues. Compensation in classifier 

 features (e.g., cepstral mean subtraction), model parameters 

(FA and NAP), and score normalization (T-norm, Z-norm) 

have all contributed to systems that have more predictable 

score distributions and, thus, can be calibrated. Significant 

work still remains, as evidenced by recent NIST evaluations. 

The cross-microphone task in NIST-SRE 2008 postevaluation 

showed that good error rates could be achieved, but calibra-

tion of systems varied dramatically as different cross-micro-

phone types were examined. For example, for the same 

calibration technique and system of the Massachusetts 

Institute of Technology (MIT) Lincoln Laboratory (LL), in 

one cross-microphone case, a 5% relative error between the 

minimum and actual DCF was observed; 

in another case, a 160% change was 

observed. In both of these cases, the 

EER was below 2%. This observation 

demonstrates that calibration across 

significantly different conditions is still 

an area of research and affects the prac-

tical use of automatic speaker recogni-

tion systems.

SPEAKER SPECIFIC 

INFORMATION: A DOUBT FACTOR

All the previous progress has been based 

on an underlying hypothesis: error rates 

are the criterion for evaluating both per-

formance and progress in the speaker rec-

ognition field. In [25], the authors tried to 

show that this is not the only criterion, 

depending on the targeted  scenario. They 

proposed to artificially transform the voic-

es of the impostors to cheat a speaker 

recognition system (i.e., after the transfor-

mation, the system should recognize an 

impostor voice as coming from a targeted 

speaker). As the objective is to cheat a sys-

tem and not a human expert, the only 

constraint at the human perception level 

is that the voice should remain natural. In 

this case,  the transformation is 

done acoustically, frame by frame, and 

works only on the filter parameters of the 
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[FIG2] Influence of a small subset of impostor trials on system performance (NIST-SRE’06, 
1conv-1conv, all trial, female subset, GMM-FA system).

THE GAUSSIAN MIXTURE MODEL 
UNIVERSAL BACKGROUND MODEL 
APPROACH IS THE DOMINANT ONE 

IN TEXT-INDEPENDENT 
SPEAKER RECOGNITION.
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classical source-filter model. 

The targeted speaker is known 

by the transformation system 

from an external (not included 

in the test protocol) extract of 

his or her voice and the target-

ed approach, GMM-UBM here. 

As the cepstral GMM-UBM sys-

tem is used by all the methods presented in this article, it is rea-

sonable to generalize the results of this experiment to all these 

presented systems. The experimental validation done in [25] is 

presented in Table 6.

This transparent transformation technique introduces a signif-

icant factor into the speaker recognition system, as the false accep-

tance rate increases from less than 1% without the transformation 

to about 50% when the transformation is used.

These results give a new view to the impressive results 

observed recently in the speaker recognition field: have we really 

made drastic progress in speaker recognition? If it is possible to 

transform the voice of an impostor, with inaudible artificial modi-

fications, and disrupt a speaker recognition system to such a great 

extent, is the information used by the system that user-specific?

This fact does not challenge the interest of the work done in the 

speaker recognition area. It is clear that significant progress has 

taken place in the last decade, e.g., in the session mismatch area, 

which was and remains a key challenge for speaker recognition. 

COMMENTS

Nevertheless, this experiment, and others, shows that error 

rates might not be a sufficient criterion for evaluating both 

 performance and progress in the speaker recognition field, even 

if it is necessary.

The amount of available speech material for both training 

and testing phases is important for the forensic context, where, 

quite often, only short pieces of speech are available. This con-

straint is known to have a large impact on speaker recognition 

performance. This aspect is not highlighted by NIST-SRE eval-

uations, even if some tasks on short durations are proposed. In 

[34], the authors investigate the effect of short durations on a 

GMM-UBM baseline system and on a GSL-NAP system, using 

the ALIZE/SpkDet software. They show that the EER of the 

GMM-UBM increases about a factor if 3 when only the duration 

of both training and testing speech excerpts is 10 s (the most 

difficult situation). The authors remark also that the new and 

very efficient session mismatch normalization techniques (FA 

and NAP) are very sensitive to the speech 

duration factor. 

A DIFFERENT APPROACH TO 

SPEAKER RECOGNITION RESEARCH?

The aim of this article is to focus on the 

danger of using error rates as the only 

criterion for evaluating the state and the 

potential of speaker recognition research 

and technology. It is dangerous, both in 

terms of potential application 

and research orientation: there 

are aims other than the perfor-

mance, as measured currently. 

This problem is more critical 

in the forensic field than in the 

commercial area. Commercial 

applications usually involve a 

clear application scenario where the environment and the 

variability factors are fairly well defined, or, at least, under-

stood. In the forensic field, the environment and factors affect-

ing performance can vary tremendously, relative to the 

commercial arena.

The evolution of speaker recognition, with a focus on 

error-rate reduction, progressively concentrates the research 

community on the engineering area, with less interest in the 

theoretical and analytical areas, involving phoneticians, for 

example. Nevertheless, it seems reasonable to develop auto-

matic systems to aid in gaining a deeper understanding of the 

underlying phenomena. We propose the following solutions, 

which could extend knowledge in this field:

 1) Analyze the performance on the phonetic information 

present in both the training and testing recordings. This cor-

responds to an analytical analysis of results, in terms of pho-

netic or linguistic content,  to better understand which 

information is used by our systems. The use of artificial, well-

controlled stimuli could be included in this study, and a com-

parison between machines and human perception seems very 

interesting in this case.

 2) Work on more controlled data, possibly simulated data. It 

might be useful to start with a given natural or synthesized 

voice and to create various stimuli by working on each 

parameter, one by one (source parameters, filter parameters, 

prosody, vocalic triangle, formants, etc.). This work could 

include perceptual studies.

 3) Performance evaluation should integrate more variability 

factors, more heterogeneous factors, and more unknown fac-

tors  to allow a better generalization of the results. Doing that 

with real-world recorded data is certainly very costly, but using 

voice transformation and voice synthesis techniques open 

more practical solutions. Even if this solution is of great inter-

est, it remains true that the only scientifically strong solution 

is to increase the size of the evaluation corpora and protocols. 

 4) The evaluation is currently based on recordings involv-

ing hundred of speakers and on thousands of speaker 

IN THE FORENSIC FIELD, THE 
ENVIRONMENT AND FACTORS 

AFFECTING PERFORMANCE CAN VARY 
TREMENDOUSLY, RELATIVE TO THE 

COMMERCIAL ARENA.

[TABLE 6] EFFECT OF ARTIFACT-FREE IMPOSTOR VOICE TRANSFORMATION.

BASELINE 
SYSTEM

BASELINE SYSTEM + 
ARTIFICIAL IMPOSTOR 
VOICE TRANSFORMATION

EER (%) 8.54 35.41
minDCF (3100) 3.58 9.41
FALSE ACCEPTANCE (%) 0.88 49.72
FALSE REJECT (%) 27.45 27.45

This experiment is done on NIST-SRE’06, 1conv-1conv, all trials, male only.
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 recognition tests. Changing 

the size factor, to have 

thousands of speakers, hun-

dred thousands of tests, and 

hundreds of mixed condi-

tions, is the best way to 

achieve a strong, unques-

tionable evaluation of per-

formance and progress.

 5) Although current systems achieve good results, they also 

show some surprises, like some impostor tests that obtain 

very high scores (higher than the mean of target speaker 

tests). The number of such tests is very small, about one 

hundred for a NIST evaluation, but this number is relative 

given the small size of the evaluation. Giving higher impor-

tance to isolated and unusual results could constitute an 

easy and interesting way to change the focus of speaker rec-

ognition research.

 6) As mentioned in the previous point, the current systems 

work very well, in general, but not in all the operational envi-

ronments. Our main paradigm is based on statistical model-

ing and analysis, so it is usually difficult to detect these 

problems because they are, by nature, rare. An alternative is 

to work more on the nature of the information present in dif-

ferent recordings,  to predict if one recording corresponds or 

not to the underlying hypothesis linked to a specific speaker 

recognition approach.

CONCLUSIONS

Looking at the different points highlighted in this article, we 

affirm that forensic applications of speaker recognition should 

still be taken under a necessary need for caution. Disseminating 

this message remains one of the most important responsibilities 

of speaker recognition researchers.

ACKNOWLEDGMENT

This work is sponsored, in part, by the Department of Homeland 

Security under Air Force Contract FA8721-05-C-0002. Opinions, 

interpretations, conclusions, and recommendations are those of 

the authors and are not necessarily endorsed by the United 

States Government. 

AUTHORS

Joseph P. Campbell (j.campbell@ieee.org) received a B.S.E.E. 

degree from Rensselaer Polytechnic Institute in 1979, an 

M.S.E.E. degree from Johns Hopkins University (JHU) in 1986, 

and a Ph.D. degree from Oklahoma State University in 1992. He 

is currently senior staff at MIT-LL in the Information Systems 

Technology Group, where he conducts speech-processing 

research and specializes in speaker recognition and biometrics. 

Before joining MIT-LL, he served 22 years at the National 

Security Agency. He chaired the Biometric Consortium from 

1994 to 1998, taught JHU’s graduate course Speech Processing 

from 1991 to 2001, and coedited DSP Journal from 1998 

to 2005. He is a cochair of the International Speech 

Communication Association’s 

S p e a k e r  a n d  L a n g u a g e 

Character izat ion Special 

Interest Group as well as a 

member of  the National 

Academy of Sciences’ Whither 

Biometrics? Committee. He 

serves on the IEEE Kilby Medal 

Committee and is vice presi-

dent of Technical Activities of the IEEE Biometrics Council. Dr. 

Campbell is a member of Sigma Xi, the International Speech 

Communication Association, the Boston Audio Society, and the 

Acoustical Society of America.  He is a Fellow of the IEEE.

Wade Shen (swade@ll.mit.edu) is currently with MIT 

Lincoln Laboratory. He received his master’s degree in com-

puter science from the University of Maryland, College Park in 

1997, and his bachelor’s degree in electrical engineering and 

computer science from the University of California, Berkeley 

in 1994. His current areas of research involve machine trans-

lation and machine translation evaluation, speech, speaker, 

and language recognition for small-scale and embedded appli-

cations, named-entity extraction, and prosodic modeling. 

Prior to joining Lincoln Laboratory in 2003, Shen helped 

found and served as Chief Technology Officer for Vocentric 

Corporation, a company specializing in speech technologies 

for small devices.

William M. Campbell (wcampbell@ll.mit.edu) is a technical 

staff member in the Information Systems Technology group at 

Massachusetts Institute of Technology (MIT) Lincoln Laboratory. 

He received his Ph.D. in applied mathematics from Cornell 

University in 1995. Prior to joining MIT Lincoln Laboratory, he 

worked at Motorola on biometrics, speech interfaces, wearable 

computing, and digital communications. His current research 

interests include machine learning, speech processing, and 

social network analysis. 

Reva Schwartz (reva.schwartz@usss.dhs.gov) is current-

ly a national expert and forensic examiner at the Forensic 

Services Division of the United States Secret Service, where 

she serves as the expert in the conduct of research and analy-

sis in speech and signal processing, forensic speaker recogni-

tion, and the enhancement of audio recordings, and other 

forensic evidence. She also serves as project manager for fed-

erally funded research programs and provides expert advice 

and guidance within the agency and to other federal, state, 

local, and international law enforcement agencies concern-

ing speech processing and audio enhancement as investiga-

tive and intelligence techniques. She is a member of the 

American Academy of Forensic Sciences, International 

Association for Forensic Phonetics and Acoustics, Acoustical 

Society of America, and the Forensic Speech, Audio & 

Authentication Working Group of the European Network of 

Forensic Science Institutes. 

Jean-François Bonastre (jean-francois.bonastre @

univ- avignon.fr) obtained his Ph.D. degree in 1994, in 

Avignon, France, in automatic speaker identification using 

MULTIPLE FACTORS AFFECT THE 
PERFORMANCE OF AUTOMATIC 

SPEAKER RECOGNITION SYSTEMS, 
SOME DEPEND ON THE SPEAKERS AND 

OTHERS DO NOT, WHILE SOME FACTORS 
CAN BE DIFFICULT TO ISOLATE.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:07 from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE   [103]   MARCH 2009

phonetic-based knowledge. He then joined the LIA (University 

Avignon, France) as an associate professor and became full 

professor in 2008. As a member of the Natural Language 

Processing Group, he developed his research in speaker 

characterization and recognition using phonetic, statistic 

and prosodic information, while teaching and lecturing on 

various subjects covering computer science, speech process-

ing, audio signal classification and indexing, and biometry. 

From 2001 to 2004, he was the chairman of AFCP, the 

French-Speaking Speech Communication Association (cur-

rently a regional branch of ISCA). He was also the chair of the 

ISCA Speech and Language Character ization SIG for two years 

and he joined the board of ISCA in 2005. He has been vice 

president of ISCA since 2007. He is a member of the IEEE 

Speech and Language Technical Committee. He was also a 

member of the technical committee of several conferences 

(and area chair for Interspeech 2008). He is a Senior Member 

of the IEEE.

Driss Matrouf (driss.matrouf@univ-avignon.fr) obtained his 

Ph.D. degree in 1997 in noisy speech recognition, from Paris IX 

University. He then joined LIA (University Avignon, France), as 

an associate professor. His research interests include speech 

recognition, language recognition, and speaker recognition. His 

research interests are session and channel compensation for 

speech and speaker recognition. Parallel with his research activ-

ities, he teaches in the fields covering computer science, speech 

coding, and information theory. He is also responsible for the 

University of Avignon computer science bachelor program. He 

is a Member of the IEEE.

REFERENCES
[1] W. Campbell, K. Brady, J. Campbell, D. Reynolds, and R. Granville, “Under-
standing scores in forensic speaker recognition,” in Proc. IEEE Odyssey, ISCA 
Speaker Recognition Workshop, June 28–30, 2006, pp. 1–8.

[2] J.-F. Bonastre, F. Bimbot, L.-J. Boe, J. P. Campbell, D. A. Reynolds, and 
I. Magrin-Chagnolleau, “Person authentication by voice: A need for cau-
tion,” in Proc. Eurospeech, ISCA, Geneva, Switzerland, 1–4 Sept., 2003, 
pp. 33–36.

[3] R. H. Bolt, F. S. Cooper, D. M. Green, S. L. Hamlet, J. G. McKnight, J. M. 
Pickett, O. Tosi, B. D. Underwood, and D. L. Hogan, On the Theory and Practice 
of Voice Identification. Washington, D.C.: National Research Council, National 
Academy of Sciences, 1979.

[4] R. H. Bolt, F. S. Cooper, E. E. David, Jr., P. B. Denes, J. M. Pickett, and K. N. 
Stevens, “Speaker identification by speech spectrograms: A scientists’ view of its 
reliability for legal purposes,” J. Acoust. Soc. Amer., vol. 47, no. 2, pp. 597–612, 
1970.

[5] J. F. Nolan, The Phonetic Bases of Speaker Recognition. Cambridge, MA: 
Cambridge Univ. Press, 1983.

[6] L. J. Boë, “Forensic voice identification in France,” Speech Commun., vol. 31, 
no. 2–3, pp. 205–224, June 2000.

[7] L. G. Kersta, “Voiceprint identification,” Nature, vol. 196, no. 4861, pp. 1253–
1257, 1962. 

[8] D. A. Reynolds, W. D. Andrews, J. P. Campbell, J. Navrátil, B. Peskin, A. 
 Adami, Q. Jin, D. Klusácek, J. S. Abramson, R. Mihaescu, J. J. Godfrey, D. A. 
Jones, and B. Xiang, “The SuperSID project: Exploiting high-level information 
for high-accuracy speaker recognition,” in Proc. IEEE Int. Conf. Acoustics, 
Speech, and Signal Processing, Hong Kong, 2003, pp. 784–787.

[9] D. A. Reynolds, “An overview of automatic speaker recognition technology,” 
in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Orlando, FL, 
2002, pp. 300–304.

[10] A. Martin and M. Przybocki. The NIST speaker recognition evaluation series, 
National Institute of Standards and Technology’s Web site [Online]. Available: 
http://www.nist.gov/speech/tests/sre 

[11] P. Kenny and P. Demouchel, “Eigenvoices modeling with sparse training data,” 
IEEE Trans. Speech Audio Process., vol. 13, no. 3, pp. 345–354, 2005. 

[12] W. Campbell, D. Sturim, D. Reynolds, and A. Solomonoff, “SVM-based 
speaker verification using a GMM supervector kernel and NAP variability com-
pensation,” in Proc. Int. Conf. Acoustics, Speech, and Signal Processing, 2006, 
pp. I-97–I-100. 

[13] F. Bimbot, J.-F. Bonastre, C. Fredouille, G. Gravier, I. Magrin-Chagnolleau, 
S. Meignier, T. Merlin, J. Ortega-García, D. Petrovksa-Delacrétaz, and D. A. Reyn-
olds, “A tutorial on text-independent speaker verification,” EURASIP J. Appl. Signal 
Process., vol. 4, pp. 430–451, 2004. 

[14] J.-F. Bonastre, N. Scheffer, D. Matrouf, C. Fredouille, A. Larcher, A. Preti, 
G. Pouchoulin, N. Evans, B. Fauve, and J. Mason, “Alize/spkdet: A state-of-the-
art open source software for speaker recognition,” in Proc. IEEE Odyssey, ISCA 
Speaker Recognition Workshop, 2008. 

[15] B. G. B. Fauve , D. Matrouf, N. Scheffer, J.-F. Bonastre, and J. S. D. Mason, 
“State-of-the-art performance in text-independent speaker verification through 
open-source software,” IEEE Trans. Audio, Speech and Language Processing, vol. 
15, no. 7, pp. 1960–1968, Sept. 2007.

[16] W. M. Campbell, D. Sturim, and D. A. Reynolds, “Support vector machines 
using GMM supervectors for speaker verification,” IEEE Signal Process. Lett., vol. 
13, May 2006, pp. 308–311.

[17] D. Reynolds, “Channel robust speaker verification via feature mapping,” in 
Proc. Int. Conf. Acoustics, Speech, and Signal Processing, 2003, pp. II-53–II-56. 

[18] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker verifica-
tion,” in Proc. IEEE Odyssey, ISCA Speaker Recognition Workshop, 2001, pp. 
213–218. 

[19] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, “Score normalization for 
text-independent speaker verification systems,” Dig. Signal Process., vol. 10, no. 
1–3, pp. 42–54, 2000. 

[20] A. Solomonoff, M. W. Campbell, and I. Boardman, “Advances in channel 
compensation for SVM speaker recognition,” in Proc. IEEE Int. Conf. Acoustics, 
Speech, and Signal Processing, 2005, pp. 629–632.

[21] D. Matrouf,N, Schefferm B. Fauve, and J.-F. Gauvain, “A straightforward and 
efficient implementation of the factor analysis model for speaker verification,” in 
Proc. Interspeech, 2007. 

[22] C. Barras, S. Meignier, and J.-L. Gauvain, “Unsupervised online adapta-
tion for speaker verification over the telephone,” in Proc. IEEE Odyssey, ISCA 
Speaker Recognition Workshop, 2004, pp. 157–160. 

[23] D. Van Leeuwen, “Speaker adaptation in the NIST speaker recognition evalu-
ation 2004,” in Proc. Interspeech, 2005, pp. 1981–1984. 

[24] A. Preti, J.-F. Bonastre, F. Capman, and B. Ravera, “Confidence measure 
based unsupervised target model adaptation for speaker verification,” in Proc. 
Interspeech, 2007. 

[25] J.-F. Bonastre, D. Matrouf, and C. Fredouille, “Artificial impostor voice 
transformation effects on false acceptance rates,” in Proc. Interspeech, 2007, pp. 
2053–2056. 

[26] G. R. Doddington, W. Liggett, A. Martin, M. Przybocki, D. Reynolds, “Sheep, 
goats, lambs and wolves: A statistical analysis of speaker performance in the NIST 
1998 speaker recognition evaluation,” in Proc. Int. Conf. Spoken Language Pro-
cessing (ICSLP), 1998, pp. 1351–1354. 

[27] S. E. Mezaache, J.-F. Bonastre, and D. Matrouf, “Analysis of impostor tests 
with high scores in NIST-SRE context,” in Proc. Interspeech, 2008. 

[28] NIST. 2005 speaker recognition evaluation [Online]. Available: http://www.
nist.gov/speech/tests/sre/

[29] N. Brümmer and J. du Preez, “Application-independent evaluation of speak-
er detection,” Comput. Speech Lang., vol. 20, no. 2–3, pp. 230–275, 2006. [On-
line]. Available: http://www.informatik.uni-trier.de/%7Eley/db/journals/csl/
csl20.html#BrummerP06

[30] R. Schwartz, “Voiceprints in the United States—Why they won’t go away,” in 
Proc. Int. Association for Forensic Phonetics and Acoustics, Göteborg, Sweden, 
2006. 

[31] F. Nolan and T. Oh, “Identical twins, different voices,” Forensic Linguistics, 
vol. 3, no. 1, pp. 39–49, 1996. 

[32] M. A. Przybocki, A. F. Martin, and A. N. Le, “NIST speaker recognition eval-
uation chronicles, Part 2,” in Proc. IEEE Odyssey, ISCA Speaker Recognition 
Workshop, 28–30 June, 2006, pp. 1–6. [Online]. Available: http://ieeexplore.
ieee.org/stamp/stamp.jsp?arnumber=4013537

[33] M. A. Przybocki, A. F. Martin, and A. N. Le, “NIST speaker recognition 
evaluations utilizing the mixer corpora—2004, 2005, 2006,” IEEE Trans. Audio 
Speech Lang. Process., vol. 15, no. 7, pp. 1951–1959, Sept. 2007. [Online]. Avail-
able: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4291612

[34] B. Fauve, N. Evans, N. Pearson, J. F. Bonastre, and J. S. D. Mason, “Influ-
ence of task duration in text-independent speaker verification,” in Proc. Inter-
speech, Antwerp, Belgium, 2007, pp. 794–797. 

[35] P. Rose, Forensic Speaker Identification. London: Taylor & Francis, 2002.

[36] A. F. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, 
“The DET curve in assessment of detection performance,” in Proc. Eurospeech, 
Rhodes, Greece, 1997, pp. 1895–1898 [Online]. Available: http://www.nist.gov/
speech/publications/ [SP]

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:07 from IEEE Xplore.  Restrictions apply. 


