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Summary: Over the last several decades, forensic
examiners of impression evidence have come under
scrutiny in the courtroom due to analysis methods
that rely heavily on subjective morphological
comparisons. Currently, there is no universally
accepted system that generates numerical data to
independently corroborate visual comparisons. Our
research attempts to develop such a system for tool
mark evidence, proposing a methodology that
objectively evaluates the association of striated tool
marks with the tools that generated them. In our
study, 58 primer shear marks on 9mm cartridge
cases, fired from four Glock model 19 pistols, were
collected using high-resolution white light confocal
microscopy. The resulting three-dimensional surface
topographies were filtered to extract all ‘‘waviness
surfaces’’—the essential ‘‘line’’ information that fire-
arm and tool mark examiners view under a
microscope. Extracted waviness profiles were pro-
cessed with principal component analysis (PCA) for
dimension reduction. Support vector machines
(SVM) were used to make the profile-gun associa-
tions, and conformal prediction theory (CPT) for

establishing confidence levels. At the 95% confidence
level, CPT coupled with PCA-SVM yielded an em-
pirical error rate of 3.5%. Complementary, boot-
strap-based computations for estimated error rates
were 0%, indicating that the error rate for the algo-
rithmic procedure is likely to remain low on larger
data sets. Finally, suggestions are made for practical
courtroom application of CPT for assigning levels of
confidence to SVM identifications of tool marks re-
corded with confocal microscopy. SCANNING 33:
1–7, 2011. r 2011 Wiley Periodicals, Inc.
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Introduction

Impression evidence is a broad category of phy-
sical evidence that is commonly found at crime
scenes. It occurs when an object’s morphology cre-
ates a 2- or 3-D imprint onto the surface of a softer
substance (Petraco, 2011). Examples of impression
evidence include: fingerprints, shoeprints, tire
tracks, tool marks (impression and striation) found
on bullets and cartridge cases. Although impression
evidence has been used successfully for decades, it
has come under attack in recent years due to the
lack of a well-articulated scientific basis (Daubert,
’93; Nichols, 2007).
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The features found on tool mark impression evi-
dence, that are used by forensic examiners to make
‘‘comparative examinations’’ and ‘‘matches,’’ are
categorized into class, subclass, and individual char-
acteristics—with class characteristics (i.e., size, shape,
brand, model) being the most inclusive and individual
characteristics (i.e., the combination of nicks, dents,
slashes, etc. being imparted by manufacturing meth-
ods or that accumulate with an object’s use) being—in
theory—unique. Considering the exclusive nature of
each category, and the power of discrimination when
all categories are considered together, it is believed
‘‘ythat no two tools can leave tool marks that are
alike’’ (Thompson and Wyant, 2003).

To conclude that two objects have a high like-
lihood of being a match, the examiner states that the
‘‘quantity and quality’’ of the features was such
as to provide a properly drawn conclusion. The
Association of Firearm and Toolmark Examiners
(AFTE) have set the standards for firearm and tool
mark examination. Their theory of tool mark
identification (AFTE, ’98; Moran, 2002), ‘‘yen-
ables opinions of common origin to be made when
unique surface contours of two tool marks are in
sufficient agreement.’’ Sufficient agreement, they
clarify, ‘‘yis related to significant duplication of
random tool marks by correspondence of pattern or
combination of patterns of surface contours.’’

One can also view tool mark impressions as
mathematical patterns composed of features.
Numerical classification methods (Duda et al., 2001;
Shawe-Taylor and Cristianini, 2004; Theodoridis
and Koutroumbas, 2006) become useful then
because they have the potential of assigning objective
quantitative measures to statements like ‘‘sufficient
agreement.’’ The ultimate goal of our research is to
develop standard operating procedures for the
application of 3D surface metrology and machine
learning to tool mark analysis that can be used by the
forensic tool mark examiner community.

Biasotti is recognized as having performed the
first major empirically based statistical study con-
cerning the comparison of impression patterns
(Biasotti, ’59). Using a comparison microscope, the
study recorded the number of matching striations
between bullets fired from the same gun and bullets
fired from different guns. Biasotti found that while
the percentage of matching striations between these
two sets of bullets could overlap, runs of 3–4
consecutive matching striations were very rare for
bullets fired from different guns. Through the 1990s
and early 2000s, Geradts et al. published database
systems and algorithms for tool mark and firearms
comparison which involved turning a microphoto-
graphic 2D image into a feature vector, and then
applying a similarity metric to gauge similarity
between patterns (Geradts et al., ’94, ’95, 2001;

Geradts and Keijzer, ’96). The same operating
principal is used by the commercial Integrated Bal-
listics Identification Heritage System (Forensic
Technology WAI Inc., 2001).

With the advent of confocal and interferometric
microscopy for engineering applications, acquisition
of an entire 3D tool mark surface can be obtained
(Whitehouse, 2004). DeKinder et al. was the first to
publish results involving automated bullet compar-
isons using 3D confocal laser scanning (DeKinder
and Bonfanti, ’99; DeKinder et al., 2004). They
found that while the data acquisition phase was
slow, comparisons could be made by taking the
trace of the correlation matrix; they did not report
the use of other similarity metrics. Banno et al. was
another group to demonstrate the ability to capture
and compare 3D topographies of fired bullets using a
confocal microscope (Banno, 2004). Sakarya et al.
recently published a ‘‘low cost’’ method which they
claimed could quickly acquire 3D surface topo-
graphies of cases using a digital camera and the
photometric stereo method (Sakarya et al., 2008).
Bachrach had published some information on a sys-
tem he designed called SCICLOPS for the compar-
ison of 3D surface topographies of bullets (Bachrach,
2002). This technology seemed to be the operating
principal for BulletTRAX-3D from Forensic Tech-
nologies (Bachrach, 2006). A 2006 NIST study was
able to get reproducible 2D surface signatures
recorded from bullets with two different types of
confocal microscopes and a coordinate measuring
machine; the signature differences were, also, quan-
tified using a standard cross-correlation function
(CCF) from signal processing (Song et al., 2006).

Chumbley et al. used both a stylus instrument
and an optical surface metrology instrument (the
operating principal was unclear but seemed to be a
variant of white light confocal) to create a database
of screwdriver striation profiles. The group gener-
ated profiles from 50 consecutively manufactured
standard screwdriver tips held at three different
angles. Employing the t-statistic as a similarity
measure, they found that profiles could generally be
identified 95% of the time—though trained AFTE
members were able to beat this algorithm.
Unfortunately, we could not make a distinction
between which data sets were used in their analysis
(i.e., stylus, optical profilometer or some combina-
tion thereof) (Chumbley et al., 2010). Recently Xie,
Blunt, Jiang et al. reported that a stylus instrument
for roundness measurements could be used for both
bullet impressions and the inside of gun barrels (Xie
et al., 2009). No optical metrology methods, how-
ever, have demonstrated the ability to scan the inside
of cylindrical objects as narrow as a gun barrel.

Bachrach, Koons et al. recently published a study
detailing a white light confocal microscopy based
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system on tool marks. Their system not only re-
corded 3D tool mark impressions for visual com-
parison and storage, it also, under controlled
conditions, could compute estimated identification
error rates (Bachrach et al., 2010). They scanned
striation patterns made by screwdrivers and pliers in
lead and aluminum. After registering, normalizing,
and computing the mean profiles—called ‘‘sig-
natures’’ by the authors—a Euclidian-like ‘‘relative
distance’’ metric was applied to gauge similarities
between queried mean profiles in their database.
The authors found very low estimated error rates
when they used univariate empirical distributions of
the similarity scores between known matching
striation patterns and known nonmatching striation
patterns. Interestingly, they found their estimated
error rates depended strongly on the impression
media (Bachrach et al., 2010).

With a similar confocal system, a group at NIST
developed methodology to automatically select
effective areas for comparison on pristine fired
bullets (Chu et al., 2010). Mean profiles of the 3D
striation patterns were also used as input for
numerical comparisons. A maximal weighted sum of
correlation scores on each land engraved area was
used as the similarity metric between bullets in their
database. The NIST system produced performance
rates better than an unnamed ‘‘widely used’’ com-
mercial system (Chu et al., 2010).

Forensic firearm examiners will typically use a
comparison microscope to visually align demarcated
distances between the peaks and valleys of the two
striation marks to make a judgment on source origin.
In our study, we used high-resolution white light
confocal microscopy to scan primer shear topo-
graphies on 9mm cartridge cases, fired from four dif-
ferent Glock 19s. Gun-to-gun variation was recognized
by utilizing multivariate statistical analysis and com-
putational pattern recognition (i.e., machine learning).

First, principal component analysis (PCA) was
used to obtain more manageably sized ‘‘synthetic’’
features while still containing most of the topo-
graphical information found in the original mean
profiles. Next, support vector machine (SVM)
algorithms and conformal prediction theory (CPT)
were applied to build a supervised learning model
for the classification of each profile to a particular
firearm with a stated level of confidence. Both PCA
and SVM methods were chosen because they were
relatively free of assumptions on the statistical data
on which they were used, and had been extensively
applied in many industries requiring robust statis-
tical discrimination systems. Furthermore, they had
a long peer-reviewed history in the scientific litera-
ture, and produced testable (i.e., falsifiable) predic-
tions—important issues in a case subject to the
Daubert standard (Daubert, ’93).

Materials and Methods

Confocal Microscopy

Primer shear marks (striation patterns) from 58
9 mm cartridge cases, fired from four Glock model
19 pistols (Glock 19s), were recorded with a Zeiss
CSM-700 white light confocal microscope using a
50� objective (0.95 NA). Figure 1 shows an ex-
ample of an entire head stamp and primer area. The
corresponding breech face shear mark is displayed
in Figure 2.

Surface Preprocessing

All surface preprocessing was performed with
Mountains 5.1 Premium metrological analysis soft-
ware (Digital Surf, 2010). The recorded striation

Fig 1. Primer shear. Striation pattern produced by shearing
action of breech face of Glock 19 against the cartridge case
primer.

Fig 2. Confocal image of breech face shear striation pattern.
Image acquired with 50� objective (0.95 NA).
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patterns required form removal of a second or third
order polynomial. An example of this is shown in
Figure 3 with a recorded striation pattern before
and after form removal. The resulting detrended
striation patterns were filtered into roughness
and waviness components using an areal cubic
spline filter (ISO/TS 16610-22 standard) and
lxc 5 lyc 5 0.08 mm cut-off values (International
Standards Organization, 2006).

The mean profiles of each surface for the
roughness and waviness components were then
computed. For striation patterns where the ‘‘lines’’
run vertically down the surface in the y-direction,
there was a high redundancy of information found
(cf. Fig. 4). Thus, mean profiles were used because
they provide good overall summaries while having
file sizes that were manageable. It is current stan-
dard practice to use the mean profile as input into
the statistical discrimination algorithms instead of
the entire surface (Bachrach, 2002; Faden et al.,
2007; Vorburger et al., 2007; Bachrach et al., 2010;
Chu et al., 2010; Chumbley et al., 2010). Next, of the
roughness and waviness components, we used only
the recorded surfaces of the waviness component.
From the profile plots in Figure 5, it was clear that
almost all the ‘‘line structure’’—the striation marks
one would view under a comparison microscope—
was contained in the waviness surface.

The waviness component of each mean profile
was loaded into the R statistical program for further
processing (R Core Development Team, 2009).
Because each profile did not begin and end at the
same points, the mean waviness profiles required
alignment (i.e. registration) in order to be processed
as maximally similar feature vectors in R. To register

Fig 3. Unprocessed and processed (form removed) primer
shear striation pattern from Glock ]3, cartridge case 2.

Fig 4. Form removed primer shear from Glock ]3, cartridge
case 2 viewed from above. The dimensions of the surface are
2.1 mm� 250 mm but scaled to appear square for display
purposes. Note the prominent striation pattern running from
the top to the bottom of the figure.

Fig 5. Mean total profile, mean waviness profile and mean roughness profile from the detrended breech face shear striation
pattern of Glock ]3, cartridge case 2.
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the profiles, the CCF between two profiles was
computed to find the shift that yielded maximum
similarity. First, the mean profiles within a collec-
tion of cartridge cases fired from the same gun were
registered. To do this, the longest profile of the
group was chosen as a reference; the remaining
profiles were then maximally aligned with respect to
it via the shift that yielded the maximum of the
CCF. Next, the mean profiles between guns
were aligned. This was done by first computing a
group-grand-mean-profile (GGMP) for each of the
within-group aligned profile sets. The GGMP were
then registered with respect to each other within a
user defined ‘‘uncertainty window.’’ The reason an
uncertainty window was required for between-group
registration was that no well-defined reference land
mark was apparent in all primer shear surfaces. An
ideal landmark would have been the left (or right)
edge of the primer shear patterns. Unfortunately
this landmark was very jagged and sometimes not so
apparent. Instead, knowing that all primer shear
exemplars were cropped out from the total recorded
surface, 300 mm 1/�100 mm from the left edge area,
the GGMP were aligned within this 1/�100 mm
window. The shift parameters produced by the re-
gistration of group-grand-means were used to shift
all the mean profiles of the groups in blocks. That is,
each group of mean profiles was shifted by the
amount required to register the GGMP.

Statistical Processing of Registered Waviness Profiles

Principal component analysis

PCA is a multivariate procedure that is used to
reduce the dimensionality of a data set to a new
data set of ‘‘derived variables’’ which account for
successively decreasing amounts of variance
(Jolliffe, 2004). The variance order of the new
variables provides guidance for the reduction of the
data’s dimensionality while retaining an adequate
representation. The native R PCA routine prcomp
was used in this study to reduce the 4233-column
data set down to three dimensions (3D for graphical
representation) and six dimensions (6D, 95% var-
iance retained representation).

Support vector machines for supervised tool mark identification

At present, small sample sizes are inevitable for
many statistical studies of 3D tool mark surfaces.
Statistical learning theory and its practical applica-
tion, the SVM, was developed in response to the
need for a reliable statistically based identification
of object class within small sample studies (Vapnik,
’98). SVMs look to determine efficient decision

rules in the absence of any knowledge of prob-
ability densities by determining maximum margins
of separation (Vapnik, ’98; Theodoridis and
Koutroumbas, 2006). This procedure produces an
algorithm that determines linear decision-making
rules for identification, while seeking large margins
for error. In this study, a linear kernel was used with
the one vs. one SVM algorithm, implemented
through the R package kernlab (Karatzoglou et al.,
2004). The SVM penalty parameter C was set to 10.
Finally, estimated error rates on larger sample sizes
were computed through 10,000 bootstrap resam-
pling iterations of the data set (Efron, ’83; Efron
and Tibshirani, ’93).

Conformal prediction and confidence intervals for identification

Recently, a method which gives confidence levels
to unknown pattern identification, as well as control
over error rates, has emerged from the study of al-
gorithmic randomness (Vovk et al., 2005). This
method, called conformal prediction, can be applied
to any statistical pattern comparison algorithm and
may hold a great deal of potential if applied to tool
mark analysis.

The output conformal prediction regions are
generalizations of confidence intervals known from
textbook hypothesis testing. The Neyman–Pearson
interpretation of (1�a)� 100% confidence interval,
constructed from a random sample of given sample
size and extended to CPT, is that the output con-
fidence intervals will contain the true I.D.
(1�a)� 100% of the time (90–92, 98). The value a is
the level of significance and is typically chosen to be
5% (i.e., 95% confidence). Note that the output I.D.
confidence intervals can contain multiple I.D.s for
the striation pattern’s identity (Vovk et al., 2005). In
such cases, the identity assignment (i.e. the predic-
tion region) at the (1�a)� 100% confidence level is
ambiguous. Although multi-label output is not
wholly uninformative, the prediction region will
contain only one label at the 5% level of sig-
nificance. This means that the conformal prediction
algorithm has produced a prediction region with
only one label and a confidence level of at least
95%. The program for performing CPT with SVM
was written using R.

Results and Discussion

Figure 6 shows the data from all profiles reduced
to the first three PCs (i.e., 3D PCA, 87% variance
retained). Consistent with the theory that no two
tools produce the same marks, the samples are seen
tightly clustered within each gun and well separated
between guns. The first six PCs contained 95% of
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the data set’s total variance, a typical variance
benchmark used to decide how many PCs to retain
(Jolliffe, 2004).

Using SVM to identify which gun generated a
striation pattern (i.e., the striation patterns I.D.),
the (refined) bootstrap estimated error rate was
found to be 0% with 10,000 resampling iterations.
The slightly more conservative 0.632 bootstrap es-
timated error rate was also found to be 0%. These
error rates are likely a bit optimistic as our database
size is still relatively small.

The 6D PCA-reduced data set was partitioned
into random 50%-training 50%-testing for SVM-
CPT classification at the 95% level of confidence.
The CPT computation was run in ‘‘on-line’’ mode
meaning that, immediately after the SVM-CPT
predicts the I.D. of a test striation pattern, the data
and true I.D. of this test sample are used to update
the training set. The on-line mode of CPT guaran-
tees a 5% error rate in the long run at the 95% level
of confidence (Vovk et al., 2005). The empirical
error rate on the test set was found to be 3.5%,
which is slightly lower than the theoretical long run
error rate of 5%. Such a difference is to be expected,
as the test set size was relatively small.

This leads us to a procedural suggestion for em-
ploying CPT with SVM in a courtroom setting. In
such a setting, results of any metrological-statistical
computational scheme are of paramount importance.
The database of tool marks to be compared should
be, at the minimum, large enough to allow resam-
pling. The empirical error rates for each resampling
iteration could then be collected and used with
bootstrap-based hypothesis testing. This would give

the court assurance that the empirical error rates
produced by the (inevitably finite) data set are within
statistical fluctuation of the CPT long run guaranteed
error rate.

Conclusion

This study outlines an objective method to as-
sociate primer shear striation patterns found on
cartridge cases with the guns that generated them.
Three-dimensional confocal microscopy, surface
metrology, and multivariate statistical methods lie
at the heart of our approach. Though the sample size
was small, one can see how a surface metrological–
statistical scheme could provide an investigative aid to
firearm and tool mark examiners.

The specific statistical methods employed in this
study were selected for their generality and low
reliance on distributional assumptions of the under-
lying data. Bootstrap-based identification error rate
estimates using SVMs for discrimination, were low.
Using CPT at the 95% level of confidence, the
empirical identification error rates were observed to
be slightly higher that the long run (large data set)
gaurantee if 5%. This is likely due to the relatively
small sample of firearms used. Work is underway in
our laboratory to significantly increase the size of our
surface database in order to further test the approach
described in this paper. Also, the procedures detailed
in this study should be equally applicable to any set
of striation marks made by other tools.
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