
Forest Automata for Verification of Heap Manipulation�

Peter Habermehl1, Lukáš Holı́k2,4, Adam Rogalewicz2,
Jiřı́ Šimáček2,3, and Tomáš Vojnar2

1 LIAFA, Université Paris Diderot—Paris 7/CNRS, France
2 FIT, Brno University of Technology, Czech Republic

3 VERIMAG, UJF/CNRS/INPG, Gières, France
4 Uppsala University, Sweden

Abstract. We consider verification of programs manipulating dynamic linked
data structures such as various forms of singly and doubly-linked lists or trees.
We consider important properties for this kind of systems like no null-pointer
dereferences, absence of garbage, shape properties, etc. We develop a verifica-
tion method based on a novel use of tree automata to represent heap configura-
tions. A heap is split into several “separated” parts such that each of them can be
represented by a tree automaton. The automata can refer to each other allowing
the different parts of the heaps to mutually refer to their boundaries. Moreover,
we allow for a hierarchical representation of heaps by allowing alphabets of the
tree automata to contain other, nested tree automata. Program instructions can
be easily encoded as operations on our representation structure. This allows ver-
ification of programs based on a symbolic state-space exploration together with
refinable abstraction within the so-called abstract regular tree model checking.
A motivation for the approach is to combine advantages of automata-based ap-
proaches (higher generality and flexibility of the abstraction) with some advan-
tages of separation-logic-based approaches (efficiency). We have implemented
our approach and tested it successfully on multiple non-trivial case studies.

1 Introduction

We address verification of sequential programs with complex dynamic linked data
structures such as various forms of singly- and doubly-linked lists (SLL/DLL), possi-
bly cyclic, shared, hierarchical, and/or having different additional (head, tail, data, and
the like) pointers, as well as various forms of trees. We in particular consider C pointer
manipulation, but our approach can easily be applied to any other similar language.
We concentrate on safety properties of the considered programs which includes generic
properties like absence of null dereferences, double free operations, dealing with dan-
gling pointers, or memory leakage. Furthermore, to check various shape properties of
the involved data structures one can use testers, i.e., parts of code which, in case some
desired property is broken, lead the control flow to a designated error location.

� This work was supported by the Czech Science Foundation (projects P103/10/0306,
P201/09/P531, and 102/09/H042), the Czech Ministry of Education (projects COST OC10009
and MSM 0021630528), the Czech-French Barrande project 021023, the BUT FIT project
FIT-S-11-1, and the French ANR-09-SEGI project Veridyc .

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 424–440, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Forest Automata for Verification of Heap Manipulation 425

For the above purpose, we propose a novel approach of representing sets of heaps via
tree automata (TA). In our representation, a heap is split in a canonical way into several
tree components whose roots are the so-called cut-points. Cut-points are nodes pointed
to by program variables or having several incoming edges. The tree components can re-
fer to the roots of each other, and hence they are “separated” much like heaps described
by formulae joined by the separating conjunction in separation logic [15]. Using this
decomposition, sets of heaps with a bounded number of cut-points are then represented
by the so called forest automata (FA) that are basically tuples of TA accepting tuples of
trees whose leaves can refer back to the roots of the trees. Moreover, we allow alpha-
bets of FA to contain nested FA, leading to a hierarchical encoding of heaps, allowing
us to represent even sets of heaps with an unbounded number of cut-points (e.g., sets
of DLL). Intuitively, a nested FA can describe a part of a heap with a bounded number
of cut-points (e.g., a DLL segment), and by using such an automaton as an alphabet
symbol an unbounded number of times, heaps with an unbounded number of cut-points
are described. Finally, since FA are not closed under union, we work with sets of forest
automata, which are an analogy of disjunctive separation logic formulae.

As a nice theoretical feature of our representation, we show that inclusion of sets
of heaps represented by finite sets of non-nested FA (i.e., having a bounded number of
cut-points) is decidable. This covers sets of complex structures like SLL with head/tail
pointers. Moreover, we show how inclusion can be safely approximated for the case
of nested FA. Further, C program statements manipulating pointers can be easily en-
coded as operations modifying FA. Consequently, the symbolic verification framework
of abstract regular tree model checking [6,7], which comes with automatically refinable
abstractions, can be applied.

The proposed approach brings the principle of local heap manipulation (i.e., dealing
with separated parts of heaps) from separation logic into the world of automata. The
motivation is to combine some advantages of using automata and separation logic. Au-
tomata provide higher generality and flexibility of the abstraction (see also below) and
allow us to leverage the recent advances of efficient use of non-deterministic automata
[2,3]. As further discussed below, the use of separation allows for a further increase in
efficiency compared to a monolithic automata-based encoding proposed in [7].

We have implemented our approach in a prototype tool called Forester as a gcc plug-
in. In our current implementation, if nested FA are used, they are provided manually
(similar to the use of pre-defined inductive predicates common in works on separation
logic). However, we show that Forester can already successfully handle multiple inter-
esting case studies, proving the proposed approach to be very promising.

Related work. The area of verifying programs with dynamic linked data structures has
been a subject of intense research for quite some time. Many different approaches based
on logics, e.g., [13,16,15,4,10,14,19,18,8,12], automata [7,5,9], upward closed sets [1],
and other formalisms have been proposed. These approaches differ in their generality,
efficiency, and degree of automation. Due to space restrictions, we cannot discuss all
of them here. Therefore, we concentrate on a comparison with the two closest lines of
work, namely, the use of automata as described in [7] and the use of separation logic in
the works [4,18] linked with the Space Invader tool. In fact, as is clear from the above,
the approach we propose combines some features from these two lines of research.

426 P. Habermehl et al.

Compared to [4,18], our approach is more general in that it allows one to deal with
tree-like structures, too. We note that there are other works on separation logic, e.g.,
[14], that consider tree manipulation, but these are usually semi-automated only. An
exception is [10] which automatically handles even tree structures, but its mechanism
of synthesising inductive predicates seems quite dependent on the fact that the dynamic
linked data structures are built in a “nice” way conforming to the structure of the predi-
cate to be learnt (meaning, e.g., that lists are built by adding elements at the end only1).

Further, compared to [4,18], our approach comes with a more flexible abstraction.
We are not building on just using some inductive predicates, but we combine a use of
our nested FA with an automatically refinable abstraction on the TA that appear in our
representation. Thus our analysis can more easily adjust to various cases arising in the
programs being verified. An example is dealing with lists of lists where the sublists are
of length 0 or 1, which is a quite practical situation [17]. In such cases, the abstrac-
tion used in [4,18] can fail, leading to an infinite computation (e.g., when, by chance,
a list of regularly interleaved lists of length 0 or 1 appears) or generate false alarms
(when modified to abstract even pointer links of length 1 to a list segment). For us, such
a situation is easy to handle without any need to fine-tune the abstraction manually.

On the other hand, compared with the approach of [7], our newly proposed approach
is a bit less general (we cannot, e.g., handle structures such as trees with linked leaves2),
but on the other hand more scalable. The latter comes from the fact that the represen-
tation in [7] is monolithic, i.e., the whole heap is represented by one tree-like structure
whereas our new representation is not monolithic anymore. Therefore, the different
operations on the heap, e.g., corresponding to a symbolic execution of the verified pro-
gram, influence only small parts of the encoding (unlike in [7], where the transducers
used for this purpose are always operating on the entire automata). Also, the mono-
lithic encoding of [7], based on a fixed tree skeleton over which additional pointer links
were expressed using the so-called routing expressions, had problems with deletion of
elements inside data structures and with detection of memory leakage (which was in
theory possible, but it was so complex that it was never implemented).

2 From Heaps to Forests

In this section, we outline how sets of heaps can be represented by hierarchical forest
automata. These automata are tuples of tree automata which accept trees that may refer
to each other through the alphabet symbols. Furthermore their alphabet can contain
strictly hierarchically nested forest automata. For the purpose of the explanation, heaps
may be viewed as oriented graphs whose nodes correspond to allocated memory cells
and edges to pointer links between these cells. The nodes may be labelled by non-
pointer data stored in them (assumed to be from a finite data domain) and by program
variables pointing to the nodes. Edges may be labelled by the corresponding selectors.

In what follows, we are representing sets of garbage free heaps only, i.e., all mem-
ory cells are reachable from pointer variables by following pointer links. However,

1 We did not find an available implementation of [10], and so we could not try it out ourselves.
2 Unless a generalisation to FA nested not just strictly hierarchically, but in an arbitrary, possibly

cyclic way is considered, which is an interesting subject for future research.

Forest Automata for Verification of Heap Manipulation 427

x y

data
next

data
next

data
next

data
next

data
next

data
next

data next data

next

1

3

4

2
data

next

data
next

1

3

x

data
next

3

4

data
next

data
next

2
y

data
next

data
next

4

4

data
next

next

next

next

prev

prev

prev

next prev
DLL

next prev
DLL

next prev
DLL

(a) (b) (c) (d)

3

Fig. 1. (a) A heap graph with cut-points highlighted in red, (b) the canonical tree decomposition
of the heap with x ordered before y, (c) a part of a DLL, (d) a hierarchical encoding of the DLL

practically this is not a restriction since the emergence of garbage can be checked for
each program statement to be fired and if garbage arises, an error message can be issued
and the computation stopped or the garbage removed and the computation continued.

Now, note that each heap graph may be canonically decomposed into a tuple of
trees as follows. We first identify the cut-points, i.e. nodes that are either pointed to by
a program variable or that have several incoming edges. Then, we totally order program
variables and selectors. Next, cut-points are canonically numbered using a depth-first
traversal of the heap graph starting from nodes pointed to by program variables, taking
them in accordance with their order, and exploring the graph according to the order
of selectors. Finally, we split the heap graph into tree components rooted at particular
cut-points. These components contain all the nodes reachable from their root while not
passing through any cut-point, plus a copy of each reachable cut-point, labelled by its
number. The tree components are then canonically ordered according to the numbers of
their root cut-points. For an illustration of the decomposition, see Figure 1 (a) and (b).

Now, tuples of tree automata (TA), called forest automata (FA), accepting tuples of
trees whose leaves may refer to the root of any tree out of a given tuple, may be viewed
as representing a set of heaps as follows. We simply take a tree from the language of
each of the TA and obtain a heap by gluing the tree roots corresponding to cut-points
with the leaves referring to them.

Further, we consider in particular canonicity respecting forest automata (CFA). CFA
encode sets of heaps decomposed in a canonical way, i.e., such that if we take any tuple
of trees accepted by the given CFA, construct a heap from them, and then canonically
decompose it, we get the tuple of trees we started with. This means that in the chosen
tuple there is no tree with a root that does not correspond to a cut-point and that the trees
are ordered according to the depth-first traversal as described above. The canonicity re-
specting form allows us to test inclusion on the sets of heaps represented by CFA by
component-wise testing inclusion on the languages of the TA constituting the given CFA.

Note, however, that FA are not closed under union. Clearly, even if we consider FA
having the same number of components, uniting the TA component-wise may yield an
FA overapproximating the union of the sets of heaps represented by the original FA (cf.

428 P. Habermehl et al.

Section 3). Hence, we will have to represent unions of FA explicitly as sets of FA (SFA),
which is similar to dealing with disjunctions of separation logic formulae. However, as
we shall see, inclusion on the sets of heaps represented by SFA is still easily decidable.

The described encoding allows one to represent sets of heaps with a bounded num-
ber of cut-points. However, to handle many common dynamic data structures one needs
to represent sets of heaps with an unbounded number of cut-points. Indeed, in doubly-
linked lists (DLLs) for instance, every node is a cut-point. We solve this problem by
representing heaps in a hierarchical way. In particular, we collect sets of repeated sub-
graphs (called components) in the so-called boxes. Every occurrence of such compo-
nents can then be replaced by a single hyperedge labelled by the appropriate box3.
In this way, a set of heap graphs with an unbounded number of cut-points can be
transformed into a set of hierarchical heap hypergraphs with a bounded number of
cut-points at each level of the hierarchy. Figures 1 (c) and (d) illustrate how this ap-
proach can reduce DLLs into singly-linked lists (with a DLL segment used as a kind
of meta-selector). Sets of heap hypergraphs corresponding either to the top level of the
representation or to boxes of different levels can then be decomposed into (hyper)tree
components and represented using FA whose alphabet can contain nested FA.4 Intu-
itively, FA that appear in the alphabet of some superior FA play a role similar (but not
equal) to that of inductive predicates in separation logic.5

The question of deciding inclusion on sets of heaps represented by hierarchical FA
remains open. However, we propose a canonical decomposition of hierarchical hyper-
graphs allowing inclusion to be decided for sets of heap hypergraphs represented by
FA in the case when the nested FA labelling hyperedges are taken as atomic alphabet
symbols. Note that this decomposition is by far not the same as for non-hierarchical
heap graphs due to a need to deal with nodes that are not reachable on the top level,
but are reachable through edges hidden in some boxes. This result allows one to safely
approximate inclusion checking on hierarchically represented heaps, which appears to
work quite well in practice.

3 Hypergraphs and Their Representation

We now formalise the notion of hypergraphs and forest automata.

3.1 Hypergraphs

Given a set A and n ∈ N, let An denote the nth-Cartesian power of A and let A≤n =
⋃

0≤i≤n Ai. For an n-tuple a = (a1, . . . ,an) ∈ An, n ≥ 1, we let a.i = ai for any 1 ≤ i ≤ n.

3 We may obtain hyperedges here since we allow components to have a single designated input
node, but possibly several output nodes.

4 Since graphs are a special case of hypergraphs, in the following, we will work with hyper-
graphs only. Moreover, to simplify the definitions, we will work with hyperedge-labelled hy-
pergraphs only. Node labels mentioned above will be put at specially introduced nullary hy-
peredges leaving from the nodes whose label is to be represented.

5 For instance, we use a nested FA encoding a DLL segment of length 1, not of length 1 or
more as in separation logic: the repetition of the segment is encoded in the structure of the
top-level FA.

Forest Automata for Verification of Heap Manipulation 429

We call a set A ranked if there is a function # : A → N. The value #(a) is called the rank
of a ∈ A. We call #(A) = max({#(a) | a ∈ A}) the maximum rank of an element in the
given set. For any n ≥ 0, we denote by An the set of all elements of rank n from A.

Given a finite ranked set Γ called a hyperedge alphabet, a Γ-labelled oriented hy-
pergraph with designated input and output ports—denoted simply as a hypergraph if
no confusion may arise—is a tuple G = (V,E, I,O) where V is a finite set of vertices,
E ⊆ V × Γ ×V≤#(Γ) is a set of hyperedges such that ∀(v,a,v) ∈ E : v ∈ V #(a), and
I,O ⊆V are sets of input and output ports, respectively6. We assume that there is a total
ordering 	p⊆ P×P on the set P = I∪O of all ports of G. The sets I, O of input/output
ports may be empty in which case we may drop them from the hypergraph. For symbols
a ∈ Γ with #(a) = 0, we write (v,a) ∈ E to denote that (v,a,()) ∈ E .

Given a hyperedge e = (v,a,(v1, . . . ,vn)) ∈ E of a hypergraph G = (V,E, I,O), v is
the source of e and v1, . . . ,vn are a-successors of v in G. An (oriented) path in G is
a sequence 〈v0,a1, v1, . . . ,an,vn〉, n ≥ 0, where for all 1 ≤ i ≤ n, vi is an ai-successor
of vi−1 in G. G is called deterministic iff ∀(v,a,v),(v,a′,v′) ∈ E: a = a′ =⇒ v = v′.
A hypergraph G is well-connected if each node v ∈ V is reachable through some path
from some input port of G. Figure 1 (a) shows a (hyper)graph with two input ports
corresponding to the two variables. Edges are labelled by selectors data and next.

3.2 A Forest Representation of Hypergraphs

A Γ-labelled hypergraph T = (V,E) without input and output ports is an unordered,
oriented Γ-labelled tree (denoted simply as a tree below) iff (1) it has a single node with
no incoming hyperedge (called the root of T , denoted root(T)), (2) all other nodes of T
are reachable from root(T) via some path, and (3) each node has at most one incoming
hyperedge. Nodes with no successors are called leaves.

Given a finite ranked hyperedge alphabet Γ such that Γ∩N = /0, we call a tuple F =
(T1, . . . ,Tn, I,O), n ≥ 1, an ordered Γ-labelled forest with designated input and output
ports (or just a forest) iff (1) for every i ∈ {1, . . . ,n}, Ti = (Vi,Ei) is a Γ∪{1, . . . ,n}-
labelled tree where ∀i ∈ {1, . . . ,n}, #(i) = 0 and a vertex v with (v, i) ∈ E is not a source
of any other edge (hence it is a leaf), (2) ∀1 ≤ i1 < i2 ≤ n : Vi1 ∩Vi2 = /0, and (3) I,O ⊆
{1, . . . ,n} denote the input and output ports, respectively.

We call the sources of edges labelled by {1, . . . ,n} root references and denote by
rr(Ti) the set of all root references in Ti, i.e., rr(Ti) = {v∈Vi | (v,k)∈ Ei,k ∈ {1, . . . ,n}}
for each i ∈ {1, . . . ,n}. A forest F = (T1, . . . ,Tn, IF ,OF), n ≥ 1, represents the hyper-
graph ⊗F that is obtained by first uniting the trees T1, . . . ,Tn and then removing every
root reference v ∈Vi, 1 ≤ i ≤ n, and redirecting the hyperedges leading to v to the root
of Tk where (v,k) ∈ Ei. Formally, ⊗F = (V,E, I,O) where:

– V =
⋃n

i=1 Vi \ rr(Ti), E =
⋃n

i=1{(v,a,v′) | a ∈ Γ ∧∃(v,a,v) ∈ Ei ∀1 ≤ j ≤ #(a) :
if ∃(v. j,k) ∈ Ei with k ∈ {1, . . . ,n}, then v′. j = root(Tk), else v′. j = v. j},

– I = {root(Ti) | i ∈ IF}, O = {root(Ti) | i ∈ OF},
– the ordering of the set of ports P = I∪O is defined by : ∀i, j ∈ (IF ∪OF) : root(Ti)	p

root(Tj) ⇐⇒ i ≤ j.

6 Intuitively, in hypergraphs representing heaps, input ports correspond to nodes pointed to by
program variables or to input nodes of components, and output ports correspond to output
nodes of components.

430 P. Habermehl et al.

Figure 1 (b) shows a forest decomposition of the graph of Figure 1 (a). It is decom-
posed into four trees which have designated roots which are referred to in the trees. The
decomposition respects the ordering of the two ports corresponding to the variables.

3.3 Minimal and Canonical Forests

We call a forest F = (T1, . . . ,Tn, IF ,OF) representing the well-connected hypergraph
G = (V,E, I,O) = ⊗F minimal iff the roots of the trees T1, . . . ,Tn correspond to the
cut-points of G which are those nodes that are either ports or that have more than one
incoming hyperedge in G. A minimal forest representation of a hypergraph is unique up
to permutations of T1, . . . ,Tn. In order to get a canonical forest representation of a well-
connected deterministic hypergraph G = (V,E, I,O), we need to canonically order the
trees in its minimal forest representation. We do this as follows: First, we assume the
set of hyperedge labels Γ to be totally ordered via some ordering	Γ. Then, a depth-first
traversal (DFT) on G is performed starting with the DFT stack containing the set I ∪O
in the given order 	p, the smallest node being on top of the stack. We now call a forest
representation F = (T1, . . . ,Tn, IF ,OF) of G canonical iff it is minimal and the trees
T1, . . . ,Tn appear in F in the following order: First, the trees whose roots correspond
to ports appear in the order given by 	p, and then the rest of the trees appears in the
same order in which their roots are visited in the described DFT of G. A canonical
representation is obtained this way since we consider G to be deterministic. Clearly the
forest of Figure 1 (b) is a canonical representation of the graph of Figure 1 (a).

3.4 Forest Automata

We now define forest automata as tuples of tree automata encoding sets of forests and
hence sets of hypergraphs. To be able to use classical tree automata, we will need to
work with trees that are ordered, node-labelled, with the node labels being ranked.

Ordered Trees. Let ε denote the empty sequence. An ordered tree t over a ranked al-
phabet Σ is a partial mapping t : N

∗ → Σ satisfying the following conditions: (1) dom(t)
is a finite, prefix-closed subset of N

∗, and (2) for each p ∈ dom(t), if #(t(p)) = n ≥ 0,
then {i | pi ∈ dom(t)}= {1, . . . ,n}. Each sequence p ∈ dom(t) is called a node of t. For
a node p, the ith child of p is the node pi, and the ith subtree of p is the tree t ′ such that
t ′(p′) = t(pip′) for all p′ ∈ N

∗. A leaf of t is a node p with no children, i.e., there is no
i ∈ N with pi ∈ dom(t). Let T(Σ) be the set of all ordered trees over Σ.

For an 	Γ-ordered hyperedge alphabet Γ, it is easy to convert Γ-labelled trees into
node-labelled ordered trees and back (up to isomorphism). We label a node of an or-
dered tree by the set of labels of the hyperedges leading from the corresponding node
in the original tree, and we order the successors of the node w.r.t. the hyperedge labels
through which they are reachable (while always keeping tuples of nodes reachable via
the same hyperedge together). The rank of the new node label is then given by the sum
of the original hyperedge labels embedded into it. Below, we use the notion ΣΓ to denote
the ranked node alphabet obtained from Γ as described above (w.r.t. a total ordering 	Γ
that we will from now on assume to be always associated with Γ) and ot(T) to denote
the ordered tree obtained from a Γ-labelled tree T . For a formal description, see [11].

Forest Automata for Verification of Heap Manipulation 431

Tree Automata. A (finite, non-deterministic, bottom-up) tree automaton (abbreviated
as TA in the following) is a quadruple A = (Q,Σ,Δ,F) where Q is a finite set of states,
F ⊆ Q is a set of final states, Σ is a ranked alphabet, and Δ is a set of transition rules.
Each transition rule is a triple of the form ((q1, . . . ,qn), f ,q) where n≥ 0, q1, . . . ,qn,q∈
Q, f ∈ Σ, and #(f) = n. We use (q1, . . . ,qn)

f−→ q to denote that ((q1, . . . ,qn), f ,q) ∈ Δ.
In the special case where n = 0, we speak about the so called leaf rules, which we

sometimes abbreviate as
f−→ q.

A run of A over a tree t ∈ T(Σ) is a mapping π : dom(t)→ Q such that, for each node

p∈ dom(t) where q = π(p), if qi = π(pi) for 1≤ i≤ n, then Δ has a rule (q1, . . . ,qn)
t(p)−→

q. We write t
π=⇒ q to denote that π is a run of A over t such that π(ε) = q. We use

t =⇒ q to denote that t
π=⇒ q for some run π. The language of a state q is defined by

L(q) = {t | t =⇒ q}, and the language of A is defined by L(A) =
⋃

q∈F L(q).

Forest Automata. Let Γ be a ranked hyperedge alphabet ordered by 	Γ. We call an
n-tuple F = (A1, . . . ,An, I,O), n ≥ 1, a forest automaton with designated input/output
ports (called also FA) over Γ iff for all 1 ≤ i ≤ n, Ai = (Qi,Σ,Δi,Fi) is a TA with Σ =
ΣΓ∪{1,...,n} where ∀1≤ i≤ n : #(i) = 0. The sets I,O⊆{1, . . . ,n} are sets of input/output
ports, respectively. F defines the forest language LF(F) = {(T1, . . . ,Tn, I,O) | (∀1 ≤
i ≤ n : ot(Ti) ∈ L(Ai)) ∧ (∀1 ≤ i < j ≤ n : Ti = (Vi,Ei) ∧ Tj = (Vj,E j) =⇒ Vi∩Vj =
/0)}. The hypergraph language of F is then the set L(F) = {⊗F | F ∈ LF(F)}. An FA
F respects canonicity iff each forest F ∈ LF(F) is a canonical representation of some
well-connected hypergraph, namely, the hypergraph G =⊗F . We abbreviate canonicity
respecting FA as CFA. It is easy to see that comparing sets of hypergraphs represented
by CFA can be done component-wise as described in the below lemma.

Lemma 1. Let F1 = (A1
1 , . . . ,A1

n1
, I1,O1) and F2 = (A2

1 , . . . ,A2
n2

, I2,O2) be two CFA.
Then, L(F1) ⊆ L(F2) iff (1) n1 = n2, (2) I1 = I2, (3) O1 = O2, and (4) ∀1 ≤ i ≤
n : L(A1

i) ⊆ L(A2
i).

Sets of Forest Automata. The class of languages of forest automata is not closed under
union. The reason is that a forest language of an FA is the Cartesian product of the lan-
guages of all its components and that not every union of Cartesian products may be ex-
pressed as a single Cartesian product. For instance, consider two CFA F = (A ,B , I,O)
and F ′ = (A ′,B ′, I,O) such that LF(F) = {(a,b, I,O)} and LF(F ′) = {(c,d, I,O)}
where a,b,c,d are distinct trees. The forest language of the FA (A ∪A ′,B ∪B ′, I,O) is
{(x,y, I,O) | (x,y) ∈ {a,c}×{b,d}}) and thus there is no CFA with the hypergraph lan-
guage equal to L(F)∪L(F ′). Therefore, we will work with finite sets of (canonicity-
respecting) forest automata, S(C)FA for short, where the language L(S) of a finite set
S of FA is defined as the union of the languages of its elements.

Note that any FA can be transformed (split) into an SCFA whose CFA represent
hypergraphs having a different interconnection of the cut-points (see [11] for details).

Testing Inclusion on SFA. The problem of checking inclusion on SFA, this is, checking
whether L(S) ⊆ L(S′) where S,S′ are SFA, can be reduced to a problem of checking
inclusion on tree automata. We may w.l.o.g. assume that S and S′ are SCFA.

432 P. Habermehl et al.

For an FA F = (A1, . . . ,An, I,O) where Ai = (Σ,Qi,Δi,Fi) for each 1 ≤ i ≤ n, we de-
fine the TA AF = (Σ∪{�I,O

n },Q,Δ,{qtop}) where �I,O
n �∈ Σ is a symbol with #(�I,O

n) =
n, qtop �∈ ⋃n

i=1 Qi, Q =
⋃n

i=1 Qi ∪{qtop}, and Δ =
⋃n

i=1 Δi ∪Δtop. The set Δtop contains
the rule �I,O

n (q1, . . . ,qn) → qtop for each (q1, . . . ,qn) ∈ F1 × ·· · ×Fn. Intuitively, AF

accepts the trees where n-tuples of ordered trees representing hypergraphs from L(A)
are topped by a designated root node labelled by �I,O

n . It is now easy to see that the
following lemma holds (in the lemma, “∪” stands for the usual tree automata union).

Lemma 2. For two SCFA S and S′, L(S)⊆L(S′) ⇐⇒ L(
⋃

F ∈S
AF)⊆L(

⋃

F ′∈S′ AF ′
).

4 Hierarchical Hypergraphs

We inductively define hierarchical hypergraphs as hypergraphs with hyperedges possi-
bly labelled by hierarchical hypergraphs of a lower level. Let Γ be a ranked alphabet.

4.1 Hierarchical Hypergraphs, Components, and Boxes

A Γ-labelled (hierarchical) hypergraph of level 0 is any Γ-labelled hypergraph. For
j ∈ N, a hypergraph of level j + 1 is defined as a hypergraph over the alphabet Γ∪B j.

To define the set B j , we first define a Γ-labelled component of level j as a hypergraph
C = (V,E, I,O) of level j which satisfies the requirement that |I| = 1 and I ∩O = /0.

Then, B j is the set of Γ-labelled boxes of level j where each box B ∈ B j is a set of
Γ-labelled components of level j which all have the same number of output ports. We
call this number the rank of B, require that Γ∩B j = /0 and call boxes over Γ that appear
as labels of hyperedges of a hierarchical hypergraph H over Γ nested boxes of H.

Semantics of hierarchical hypergraphs and boxes. We are going to define the seman-
tics of a hierarchical hypergraph H as a set of hypergraphs �H�. If H is of level 0,
then �H� = {H}. The semantics of a box B, denoted �B�, is the union of semantics
of its elements (i.e., it is a set of components of level 0). In the semantics of a hyper-
graph H = (V,E, I,O) of level j > 0, each hyperedge labelled by a box B ∈ B j−1 is
substituted in all possible ways by components from the semantics of B (as in ordinary
hyperedge replacement used in graph grammars). To define this formally, we use an
auxiliary operation plug. Let e = (v,a,v) ∈ E be a hyperedge with #(a) = k and let
C = (V ′,E ′, I′,O′) be a component of level j − 1 to be plugged into H instead of e.
Let (o1, . . . ,ok) be the set O′ ordered according to 	P. W.l.o.g., assume V ∩V ′ = /0.
For any w ∈ V ′, we define an auxiliary port matching function ρ(w) such that (1) if
w ∈ I′, ρ(w) = v, (2) if w = oi,1 ≤ i ≤ k, ρ(w) = v.i, and (3) ρ(w) = w otherwise.
We define plug(H,e,C) = (V ′′,E ′′, I,O) by setting V ′′ = V ∪ (V ′ \ (I′ ∪O′)) and E ′′ =
(E \ {e})∪{(v′′,a′,v′′) | ∃(v′,a′,v′) ∈ E ′ : ρ(v′) = v′′ ∧ ∀1 ≤ i ≤ k : ρ(v′.i) = v′′.i}.
Now, the semantics of a hypergraph H = (V,E, I,O) of level j is defined recursively as
follows: Let Plug(H) = {plug(H,e,C) | e = (v,B,v) ∈ E ∧ B ∈ B j−1 ∧ C ∈ �B�}. If
Plug(H) = /0, �H� = {H}, otherwise �H� =

⋃
H′∈Plug(H)�H ′�. Figure 1 (d) shows a hi-

erarchical hypergraph of level 1 whose semantics is the (hyper)graph of Figure 1 (c)
obtained using Plug. The only box used represents a DLL segment.

Forest Automata for Verification of Heap Manipulation 433

4.2 Hierarchical Forest Automata

To represent sets of deterministic hierarchical hypergraphs, we propose to use (hier-
archical) FA whose alphabet contains SFA representing the needed nested boxes. For
a hierarchical FA F , we will denote by LH(F) the set of hierarchical hypergraphs rep-
resented by it. Likewise, for a hierarchical SFA S, we let LH(S) =

⋃
F ∈S LH(F).

Let Γ be a finite ranked alphabet. Formally, an FA F over Γ of level 0 is an ordinary
FA over Γ, and we let LH(F) = L(F). For j ∈ N, F is an FA over Γ of level j + 1 iff
F is an ordinary FA over an alphabet Γ∪X where X is a finite set of SFA of level j
(called nested SFA of F) such that for every S ∈ X , LH(S) is a box over Γ of level j.
The rank #(S) of S equals the rank of the box LH(S).

For FA of level j + 1, LH(F) is defined as the set of hierarchical hypergraphs that
arise from the hypergraphs in L(F) by replacing SFA on their edges by the boxes
they represent. Formally, LH(F) is the set of hypergraphs of level j + 1 such that
(V,E, I,O)∈ LH(F) iff there is a hypergraph (V,E ′, I,O)∈ L(F) where E = {(v,a,v) |
(v,a,v) ∈ E ′ ∧a ∈ Γ}∪{(v,LH(S),v) | (v,S,v) ∈ E ′ ∧S ∈ X}.

Notice that a hierarchical SFA of any level has finitely many nested SFA of a lower
level only, and the number of levels if finite. Therefore, a hierarchical SFA is a finitely
representable object. Notice also that even though the maximum number of cut-points
of hypergraphs from LH(S) is fixed (SFA always accept hypergraphs with a fixed max-
imum number of cut-points), the number of cut-points of hypergraphs in �LH(S)� may
be unbounded. The reason is that hypergraphs from LH(S) may contain an unbounded
number of hyperedges labelled by boxes B such that hypergraphs from �B� contain cut-
points too. These cut-points then appear in hypergraphs from �LH(S)�, but they are not
visible at the level of hypergraphs from LH(S).

Hierarchical SFA are therefore finite representations of sets of hypergraphs with pos-
sibly unbounded numbers of cut-points.

4.3 Inclusion and Well-Connectedness on Hierarchical SFA

In this section, we aim at checking well-connectedness and inclusion of sets of hyper-
graphs represented by hierarchical FA. Since considering the full class of hierarchical
hypergraphs would unnecessarily complicate our task, we introduce restrictions of hier-
archical automata that rule out some rather artificial scenarios and that allow us to han-
dle the automata hierarchically (i.e., using some pre-computed information for nested
FA rather than having to unfold the entire hierarchy all the time). In particular, we en-
force that for a hierarchical hypergraph H, well-connectedness of hypergraphs in �H�
is equivalent to the so-called box-connectedness of H introduced below, and, further,
determinism of graphs from �H� is equivalent to determinism of H.7

Proper boxes and well-formed hypergraphs. Given a component C of level 0 over Γ,
we define its backward reachability set br(C) as the set of indices i for which there is

7 Notice that for a general hierarchical hypergraph H, well-connectedness of H is nor implied
neither implies well-connectedness of hypergraphs from �H�. This holds also for determinism.
The reason is that a component C in a nested box of H may interconnect its ports in an arbitrary
way. It may contain paths from output ports to both input and output ports, but it may be
missing paths from the input port to some of the output ports.

434 P. Habermehl et al.

a path from the i-th output port of C back to the input port of C. Given a box B over Γ,
we inductively define B to be proper iff all its nested boxes are proper, br(C1) = br(C2)
for any C1,C2 ∈ �B� (we use br(B) to denote br(C) for C ∈ �B�), and the following holds
for all components C ∈ �B�: (1) C is well-connected. (2) If there is a path from the i-th
to the j-th output port of C, i �= j, then i ∈ br(C).8 A hierarchical hypergraph H is called
well-formed if all its nested boxes are proper. In that case, the conditions above imply
that either all or no graphs from �H� are well-connected and that well-connectedness of
graphs in �H� may be judged based only on the knowledge of br(B) for each nested box
B of H, without a need to reason about the semantics of B (in particular, Condition 2
guarantees that we do not have to take into account paths that interconnect output ports
of B). This is formalised below.

Box-connectedness. Let H = (V,E, I,O) be a well-formed hierarchical hypergraph over
Γ with a set X of nested boxes. We define the backward reachability graph of H as the
hypergraph Hbr = (V,E ∪Ebr, I,O) over Γ∪X ∪Xbr where Xbr = {(B, i) | B ∈ X ∧ i ∈
br(B)} and Ebr = {(vi,(B, i),(v)) | B∈ X ∧(v,B,(v1, . . . ,vn))∈E∧ i∈ br(B)}. Then we
say that H is box-connected iff Hbr is well-connected. The below lemma clearly holds.

Lemma 3. If H is a well-formed hierarchical hypergraph, then the hypergraphs from
�H� are well-connected iff H is box-connected. Moreover, if hypergraphs from �H� are
deterministic, then both H and Hbr are deterministic hypergraphs.

We straightforwardly extend the above notions to hypergraphs with hyperedges labelled
by hierarchical SFA, treating these SFA-labels as if they were the boxes they represent.
Particularly, we call a hierarchical SFA S proper iff it represents a proper box, we let
br(S) = br(�LH(S)�), and for a hypergraph H over Γ∪Y where Y is a set of proper
SFA, its backward reachability hypergraph Hbr is defined based on br in the same way
as backward reachability hypergraph of a hierarchical hypergraph above (just instead of
boxes, we deal with their SFA representations). We also say that H is box-connected iff
Hbr is well-connected.

Given an FA F over Γ with proper nested SFA, we can check well-connectedness
of graphs from �LH(F)� as follows: (1) for each nested SFA S of F , we compute
(and cache for further use) the value br(S), and (2) using this value, we check box-
connectedness of graphs in L(F) without a need of reasoning about the inner structure
of the nested SFA. In [11], we describe how this computation may be done by inspecting
rules of the component TA of F . Properness of nested SFA may be checked on the level
of TA too as also described [11].

Checking inclusion on hierarchical automata over Γ with nested boxes from X , i.e.,
given two hierarchical FA F and F ′, checking whether �LH(F)�⊆ �LH(F ′)�, is a hard
problem, even under the assumption that nested SFA of F and F ′ are proper. We have
not even answered the question of its decidability yet. In this paper, we choose a prag-
matic approach and give only a semialgorithm that is efficient and works well in prac-
tical cases. The idea is simple. Since the implications L(F) ⊆ L(F ′) =⇒ LH(F) ⊆
LH(F ′) =⇒ �LH(F)� ⊆ �LH(F ′)� obviously hold, we may safely approximate the

8 Notice that this definition is correct since boxes of level 0 have no nested boxes, and the
recursion stops at them.

Forest Automata for Verification of Heap Manipulation 435

solution of the inclusion problem by deciding whether L(F)⊆ L(F ′) (i.e., we abstract
away the semantics of nested SFA of F and F ′ and treat them as ordinary labels).

From now on, assume that our hierarchical FA represent only deterministic well-
connected hypergraphs, i.e., that �LH(F)� and �LH(F ′)� contain only well-connected
deterministic hypergraphs. Note that this assumption is in particular fulfilled for hierar-
chical FA representing garbage-free heaps.

We cannot directly use the results on inclusion checking of Section 3.4, based on
a canonical forest representation and canonicity respecting FA, since they rely on well-
connectedness of hypergraphs from L(F) and L(F ′), which is now not necessarily the
case. However, by Lemma 3, every graph H from L(F) or L(F ′) is box-connected
and both H and Hbr are deterministic. As we show below, these properties are still suf-
ficient to define a canonical forest representation of H, which in turn yields a canonicity
respecting form of hierarchical FA.

Canonicity respecting hierarchical FA. Let Y be a set of proper SFA over Γ. We aim
at a canonical forest representation F = (T1, . . . ,Tn, I,O) of a Γ∪Y -labelled hypergraph
H = ⊕F which is box-connected and such that both H and Hbr are deterministic. By
extending the approach used in Section 3.4, this will be achieved via an unambiguous
definition of the root-points of H, i.e., the nodes of H that correspond to the roots of the
trees T1, . . . ,Tn, and their ordering.

The root-points of H are defined as follows. First, every cut-point (port or a node
with more than one incoming edge) is a root-point of Type 1. Then, every node with
no incoming edge is a root-point of Type 2. Root-points of Type 2 are entry points of
parts of H that are not reachable from root-points of Type 1 (they are only backward
reachable). However, not every such part of H has a unique entry point which is a root-
point of Type 2. Instead, there might be a simple loop such that there are no edges
leading into the loop from outside. To cover a part of H that is reachable from such
a loop, we have to choose exactly one node of the loop to be a root-point. To choose
one of them unambiguously, we define a total ordering 	H on nodes of H and choose
the smallest node wrt. this ordering to be a root-point of Type 3. After unambiguously
determining all root-points of H, we may order them according to 	H and we are done.

A suitable total ordering 	H on V can be defined taking an advantage of the fact that
Hbr is well-connected and deterministic. Therefore, it is obviously possible to define
	H as the order in which the nodes are visited by a deterministic depth-first traversal
that starts at input ports. The details on how this may be algorithmically done on the
structure of forest automata may be found in [11].

We say that a hierarchical FA F over Γ with proper nested SFA and such that hyper-
graphs from �LH(F)� are deterministic and well-connected respects canonicity iff each
forest F ∈ LF(F) is a canonical representation of the hypergraph ⊗F . We abbreviate
canonicity respecting hierarchical FA as hierarchical CFA. Analogically as for ordi-
nary CFA, respecting canonicity allows us to compare languages of hierarchical CFA
component-wise as described in the below lemma.

Lemma 4. Let F1 = (A1
1 , . . . ,A1

n1
, I1,O1) and F2 = (A2

1 , . . . ,A2
n2

, I2,O2) be two hier-
archical CFA. Then, L(F1) ⊆ L(F2) iff (1) n1 = n2, (2) I1 = I2, (3) O1 = O2, and
(4) ∀1 ≤ i ≤ n : L(A1

i) ⊆ L(A2
i).

436 P. Habermehl et al.

Lemma 4 allows us to safely approximate inclusion of the sets of hypergraphs encoded
by hierarchical FA (i.e., to safely approximate the test �LH(F)�⊆ �LH(F ′)� for hierar-
chical FA F , F ′). This turns out to be sufficient for all our case studies (cf. Section 6).
Moreover, the described inclusion checking is precise at least in some cases as discussed
in [11]. A generalization of the result to sets of hierarchical CFA can be obtained as for
ordinary SFA. Hierarchical FA that do not respect canonicity may be algorithmically
split into several hierarchical CFA, similarly as ordinary CFA (see [11]).

5 The Verification Procedure Based on Forest Automata

We now briefly describe our verification procedure. As already said, we consider se-
quential, non-recursive C programs manipulating dynamic linked data structures via
program statements given below9. Each allocated cell may have several next pointer
selectors and contain data from some finite domain10 (below, Sel denotes the set of all
selectors and Data denotes the data domain). The cells may be pointed by program
variables (whose set is denoted as Var below).

Heap Representation. As discussed in Section 2, we encode a single heap configura-
tion as a deterministic (Sel∪Data∪Var)-labelled hypergraph with the ranking function
being such that #(x) = 1 ⇔ x ∈ Sel and #(x) = 0 ⇔ x ∈ Data∪Var, in which nodes
represent allocated memory cells, unary hyperedges (labelled by symbols from Sel)
represent selectors, and the nullary hyperedges (labelled by symbols from Data∪Var)
represent data values and program variables11. Input ports of the hypergraphs are nodes
pointed to by program variables. Null and undefined values are modelled as two spe-
cial nodes null and undef. We represent sets of heap configurations as hierarchical
(Sel∪Data∪Var)-labelled SCFA.

Symbolic Execution. The symbolic computation of reachable heap configurations is
done over a control flow graph (CFG) obtained from the source program. A control flow
action a applied to a hypergraph H (i.e., to a single configuration) returns a hypergraph
a(H) that is obtained from H as follows. Nondestructive actions x = y, x = y->s, or
x = null remove the x-label from its current position and label with it the node pointed
by y, the s-successor of that node, or the null node, respectively. The destructive action
x->s = y replaces the edge (vx,s,v) by the edge (vx,s,vy) where vx and vy are the
nodes pointed to by x and y, respectively. Further, malloc(x) moves the x-label to
a newly created node, free(x) removes the node pointed to by x (and links x and
all aliased variables with undef), and x->data= dnew replaces the edge (vx,dold) by
the edge (vx,dnew). Evaluating a guard g applied on H amounts to a simple test of
equality of nodes or equality of data fields of nodes. Dereferences of null and undef

9 Most C statements for pointer manipulation can be translated to these statements, including
most type casts and restricted pointer arithmetic.

10 No abstraction for such data is considered.
11 Below, to simplify the informal description, we say that a node is labelled by a variable instead

of saying that the variable labels a nullary hyperedge leaving from that node.

Forest Automata for Verification of Heap Manipulation 437

are of course detected (as an attempt to follow a non-existing hyperedge) and an error
is announced. Emergence of garbage is detected iff a(H) is not well-connected.12

We, however, compute not on single hypergraphs representing particular heaps but
on sets of them represented by hierarchical SCFA. For now, we assume the nested SCFA
used to be provided by the user. For a given control flow action (or guard) x and a hierar-
chical SCFA S, we need to symbolically compute an SCFA x(S) s.t. �LH(x(S))� equals
{x(H) | H ∈ �LH(S)�} if x is an action and {H ∈ �LH(S)� | x(H)} if x is a guard.

Derivation of the SCFA x(S) from S involves several steps. The first phase is ma-
terialisation, where we unfold nested SFA representing boxes that hide data values or
pointers referred to by x. We note that we are unfolding only SFA in the closest neigh-
bourhood of the involved pointer variables; thus, on the level of TA, we touch only
nested SFA adjacent to root-points. In the next phase, we introduce additional root-
points for every node referred to by x to the forest representation. Third, we perform the
actual update, which due to the previous step amounts to manipulation with root-points
only (see [11] for details). Last, we repeatedly fold (apply) boxes and normalise (trans-
form the obtained SFA into a canonicity respecting form) until no further box can be
applied, so that we end up with an SCFA. We note that like unfolding, folding is also
done only in the closest neighbourhood of root-points.

Unfolding is, loosely speaking, done by replacing a TA rule labelled by a nested SFA
by the nested SFA itself (plus the proper binding of states of the top-level SFA to ports
of the nested SFA). Folding is currently based on detecting isomorphism of a part of
the top-level SFA and a nested SFA. The part of the top-level SFA is then replaced by
a single rule labelled by the nested SFA. We note that this may be further improved by
using language inclusion instead of isomorphism of automata.

The Fixpoint Computation. The verification procedure performs a classical (forward)
control-flow fixpoint computation over the CFG, where flow values are hierarchical
SCFA that represent sets of possible heap configurations at particular program locations.
We start from the input location with the SCFA representing an empty heap with all
variables undefined. The join operator is the union of SCFA. With every edge from
a source location l labelled by x (an action or a guard), we associate the flow transfer
function fx. Function fx takes the flow value (SCFA) S at l as its input and (1) computes
the SCFA x(S), (2) applies abstraction to x(S), and returns the result.

Abstraction may be done by applying the general techniques described in [6] to the
individual TA inside FA. Particularly, the abstraction collapses states with similar lan-
guages (based on their languages up-to certain tree depth or using predicate languages).

To detect spurious counterexamples and to refine abstraction, we use a backward
run similarly as in [6]. This is possible since the steps of the symbolic execution may
be reversed, and it is also possible to compute almost precise intersections of hierar-
chical SFA. More precisely, given SCFA S1 and S2, we can compute an SCFA S such
that �LH(S)�⊆ �LH(S1)�∩�LH (S2)�. This underapproximation is safe since it can lead

12 Further, we note that we also handle a restricted pointer arithmetic. This is basically done by
indexing elements of Sel by integers to express that the target of a pointer is an address of
a memory cell plus or minus a certain offset. The formalism described in the paper may be
easily adapted to support this feature.

438 P. Habermehl et al.

Table 1. Experimental results

Example Forester Invader ARTMC Example Forester Invader ARTMC
SLL (delete) 0.04 0.1 0.5 SLL (reverse) 0.04 0.03
SLL (bubblesort) 0.12 Err SLL (insertsort) 0.09 0.1
SLL (mergesort) 0.12 Err SLL of CSLLs 0.11 T
SLL+head 0.04 0.06 SLL of 0/1 SLLs 0.13 T
SLLLinux 0.05 T DLL (insert) 0.07 0.08 0.4
DLL (reverse) 0.05 0.09 1.4 DLL (insertsort1) 0.35 0.18 1.4
DLL (insertsort2) 0.16 Err CDLL 0.04 0.09
DLL of CDLLs 0.32 T SLL of 2CDLLsLinux 0.11 T
tree 0.11 3 tree+stack 0.10
tree+parents 0.18 tree (DSW) 0.41 o.o.m.

neither to false positives nor to false negatives (it could only cause the computation not
to terminate). Moreover, for the SCFA that appear in the case studies in this paper, the
intersection we compute actually is precise. More details can be found in [11].

6 Implementation and Experimental Results

We have implemented the proposed approach in a prototype tool called Forester, having
the form of a gcc plug-in. The core of the tool is our own library of TA that uses the
recent technology for handling nondeterministic automata (particularly, methods for
reducing the size of TA and for testing language inclusion on them [2,3]). The fixpoint
computation is accelerated by the so-called finite height abstraction that is based on
collapsing states of TA that have the same languages up to certain depth [6].

Although our implementation is an early prototype, the results are encouraging with
regard to the generality of structures the tool can handle, precision of the generated
invariants as well as the running times. We tested the tool on sample programs with var-
ious types of lists (singly, doubly linked, cyclic, nested), trees, and their combinations.
Basic memory safety properties—in particular, absence of null and undefined pointer
dereferences, double free operations, and absence of garbage—were checked.

We have compared performance of our tool with the tool Space Invader [4] based
on separation logic and also with the tool ARTMC [7] based on abstract regular tree
model checking. The comparison with Space Invader was done against examples with
lists only since Invader does not handle trees. A higher flexibility of our automata ab-
straction manifests itself on several examples where Invader does not terminate. This is
particularly well visible at the test case with a list of sublists of lengths 0 or 1 (discussed
already in the introduction). Our technique handles this example smoothly (without any
need to add some special inductive predicates that could decrease the performance or
generate false alarms). The ARTMC tool can, in principle, handle more general struc-
tures than we can currently handle (such as trees with linked leaves). However, the
used representation of heap-configurations is much heavier which causes ARTMC not
to scale that well. (Since it is difficult to encode the input for ARTMC, we have tried
only some interesting cases.)

Table 1 summarises running times (in seconds) of the three tools on our case studies.
The value T means that the running time exceeded 30 minutes, o.o.m. means that the

Forest Automata for Verification of Heap Manipulation 439

tool ran out of memory, and the value Err stands for a failure of symbolic execution.
The names of experiments in the table contain the name of the data structure handled
by the program, which ranges over “SLL” for singly-linked lists, “DLL” for doubly
linked lists (the prefix “C” means cyclic), “tree” for binary trees, “tree+parents” for
trees with parent pointers. Nested variants of SLL are named as “SLL of” and the type
of the nested list. In particular, “SLL of 0/1 SLLs” stands for SLL of nested SLL of
length 0 or 1. “SLL+head” stands for a list where each element points to the head
of the list, “SLL of 2CDLLs” stands for SLL whose each node is a source of two
CDLLs. The flag “Linux” denotes the implementation of lists used in the Linux kernel
that uses a restricted pointer arithmetic which we can also handle. All experiments
start with a random creation and end with a disposal of the specified structure. An
indicated procedure (if any) is performed in between the creation and disposal phase. In
the experiment “tree+stack”, a randomly created tree is disposed using a stack in a top-
down manner such that we always dispose a root of a subtree and save its subtrees into
the stack. “DSW” stands for the Deutsch-Schorr-Waite tree traversal (the Lindstrom
variant). We have run our tests on a machine with Intel T9600 (2.8GHz) CPU and 4GiB
of RAM.

7 Conclusion

We have proposed hierarchically nested forest automata as a new means of encoding
sets of heap configurations when verifying programs with dynamic linked data struc-
tures. The proposal brings the principle of separation from separation logic into au-
tomata, allowing us to combine some advantages of automata (generality, less rigid
abstraction) with a better scalability stemming from local heap manipulation. We have
shown some interesting properties of our representation from the point of view of inclu-
sion checking. We have implemented the approach and tested it on multiple non-trivial
cases studies, demonstrating the approach to be really promising.

In the future, we would like to first improve the implementation of our tool Forester,
including support for predicate language abstraction within abstract regular tree model
checking [6] as well as implementation of automatic learning of nested FA. From a more
theoretical perspective, it is interesting to show whether inclusion checking is or is not
decidable for the full class of nested FA. Another interesting direction is then a possi-
bility of allowing truly recursive nesting of FA, which would allow us to handle very
general structures such as trees with linked leaves.

References

1. Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Rezine, A.: Monotonic Abstraction for
Programs with Dynamic Memory Heaps. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 341–354. Springer, Heidelberg (2008)

2. Abdulla, P.A., Bouajjani, A., Holı́k, L., Kaati, L., Vojnar, T.: Computing Simulations over
Tree Automata. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 93–108. Springer, Heidelberg (2008)

440 P. Habermehl et al.

3. Abdulla, P.A., Chen, Y.-F., Holı́k, L., Mayr, R., Vojnar, T.: When Simulation Meets An-
tichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174.
Springer, Heidelberg (2010)

4. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.: Shape
Analysis for Composite Data Structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

5. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with
Lists Are Counter Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 517–531. Springer, Heidelberg (2006)

6. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking. In: ENTCS, vol. 149(1), Elsevier, Amsterdam (2006)

7. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
pp. 52–70. Springer, Heidelberg (2006)

8. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional Shape Analysis by
Means of Bi-abduction. In: Proc. of POPL 2009. ACM Press, New York (2009)

9. Deshmukh, J.V., Emerson, E.A., Gupta, P.: Automatic Verification of Parameterized Data
Structures. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 27–41. Springer,
Heidelberg (2006)

10. Guo, B., Vachharajani, N., August, D.I.: Shape Analysis with Inductive Recursion Synthesis.
In: Proc. of PLDI 2007. ACM Press, New York (2007)

11. Habermehl, P., Holı́k, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest Automata for Verifi-
cation of Heap Manipulation. Technical Report FIT-TR-2011-01, FIT BUT, Czech Republic
(2011), http://www.fit.vutbr.cz/˜isimacek/pub/FIT-TR-2011-01.pdf

12. Madhusudan, P., Parlato, G., Qiu, X.: Decidable Logics Combining Heap Structures and
Data. In: Proc. of POPL 2011. ACM Press, New York (2011)

13. Møller, A., Schwartzbach, M.: The Pointer Assertion Logic Engine. In: Proc. of PLDI 2001.
ACM Press, New York (2001)

14. Nguyen, H.H., David, C., Qin, S.C., Chin, W.-N.: Automated Verification of Shape and Size
Properties Via Separation Logic. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS,
vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

15. Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In: Proc. of
LICS 2002. IEEE Computer Society Press, Los Alamitos (2002)

16. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric Shape Analysis via 3-valued Logic.
TOPLAS 24(3) (2002)

17. Yang, H., Lee, O., Calcagno, C., Distefano, D., O’Hearn, P.W.: On Scalable Shape Analysis.
Technical report RR-07-10, Queen Mary, University of London (2007)

18. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scal-
able Shape Analysis for Systems Code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

19. Zee, K., Kuncak, V., Rinard, M.: Full Functional Verification of Linked Data Structures. In:
Proc. of PLDI 2008. ACM Press, New York (2008)

http://www.fit.vutbr.cz/~isimacek/pub/FIT-TR-2011-01.pdf

	Forest Automata for Verification of Heap Manipulation
	Introduction
	From Heaps to Forests
	Hypergraphs and Their Representation
	Hypergraphs
	A Forest Representation of Hypergraphs
	Minimal and Canonical Forests
	Forest Automata

	Hierarchical Hypergraphs
	Hierarchical Hypergraphs, Components, and Boxes
	Hierarchical Forest Automata
	Inclusion and Well-Connectedness on Hierarchical SFA

	The Verification Procedure Based on Forest Automata
	Implementation and Experimental Results
	Conclusion
	References

