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Crown canopy is a significant regulator of forest, affecting microclimate, soil conditions and having an undeniable role 

in a forest ecosystem. Among the different materials and approaches that have been used for the estimation of crown 

canopy, satellite based methods are among the most successful methods regarding cost-saving efforts and different 

kinds of options for measuring the crown canopy. Different types of satellite sensors can result in different outputs 

due to their various spectral and spatial resolution, even when using the same methodologies. The aim of this review 

is to assess different remote sensing methods for forest crown canopy density assessment.
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Recently, measuring the crown canopy of a for-
est has been part of the inventory schedule. �e 
tree crown size determines, among others, carbon 
sequestration, shading, filtering of fine air particu-
lates, risk of wind-breaking and tree growth. �e 
dependence of the crown size on resource supply, 
species and tree age complicates an accurate evalu-
ation of the space requirement of a tree, its size-
dependent functions and services in forested areas. 
Two important factors that affect measuring the 
crown canopy are: definition of crown canopy and 
the technique used to estimate the crown canopy 
(K et al. 2006).

�ere are three different methods for measur-
ing or estimating the crown canopy in a forest: (i) 
ground measurement at the study area (S 
1953; R et al. 2005; K et al. 
2006), (ii) statistical approaches, if the information 
such as basal area or DBH and number of stems is 
available, (iii) remote sensing data like aerial photo-

graphs (P 2001; C 2003), satellite 
data (I et al. 1989; G 1999) or laser 
scanner data (N et al. 2004). From among 
these the satellite based models are the most com-
mon approach for measuring the crown canopy 
and they can be divided into two main categories.

Remote sensing methods

In these methods, mainly different kinds of al-
gorithms or enhancement functions are applied 
to a satellite image in order to resolve more clear 
bands like: soil, atmosphere or vegetation indica-
tors, texture analysis, tasselled cap transformation, 
etc. Slicing, image arithmetic (B et al. 2004; 
M et al. 2007), segmentation and multi-
spectral image classification (W 1990; S, 
U 2001) are the most common approaches in 
this category. Although supervised classification is 
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the most complete one, there are some disadvan-
tages of this approach. Requirement for training 
area establishment for estimation is one of those 
impediments. Training area establishment is time 
consuming, difficult to fulfil and sometimes it can-
not give right or enough information.

Biophysical response modelling

�e International Tropical Timber Organization 
developed a new method to solve the problems of 
remote sensing methods. �e advantage of this ap-
proach is that it does not need any training samples 
during the process of so called forest canopy den-
sity (FCD) mapping model known as Rikimaru’s 
approach. �e FCD mapping model uses the crown 
canopy density as an important factor for assessing 
the crown status.

�e main purpose of this paper is to review dif-
ferent approaches to estimation and classification 
of crown canopy density as well as the possibility of 
remote sensing methods for providing the needed 
material.

Description of the individual methods

Main bands and analysed spectral data. Re-
mote sensing has been widely used with vary-
ing degrees of success to quantify spatially forest 
structure characteristics such as crown cover, tree 
density, tree diameter, basal area, tree height, tree 
age, biomass, and leaf area index. Nowadays using 
a wide range of software with different enhance-
ment options makes an opportunity for researchers 
to detect and clarify their interest variables easier. 
Image contrast enhancement, linear principle com-
ponent analysis and tasselled cap transformations 
and texture analysis are some of the common pro-
cessing methods for image enhancement in remote 
sensing software such as PCI Geomatica, ERDAS,  
IDRISI, etc. Pixel based (the most common ap-
proach) (S et al. 1996) and object based ap-
proaches (S 2003) have been used for the 
classification of crown canopy in related researches.

�e development of robust object based meth-
ods suitable for medium to high resolution satellite 
imagery provides a valid alternative to “traditional” 
pixel based methods (B et al. 2004; B et 
al. 2004). �e object oriented classification involves 
segmenting an image into objects (groups of pix-
els). �ere are two main methods for object based 
approaches:

(1)  Direct method such as (i) region growing tech-
nique – can be employed to a group of adjacent 
pixels with similar spectral values into individual 
objects (G et al. 2006), (ii) edge detection 
technique – can be used to identify discontinui-
ties (object boundaries or edges) throughout the 
image, these boundaries can be used to build poly-
gons for the object based classification (C, 
W et al. 2006);

(2)  Indirect method: here, the imagery is supplemen-
ted with another spatial data, often digital vector 
map data. �e objects characterised by the vector 
polygons are assigned land cover values derived 
from the imagery.

Also, some researchers (T 1979; H et 
al. 2001) used the main bands of satellites (Landsat 7 
ETM+) for the classification of crown canopy.

Moreover, there are different image classification 
procedures used for different purposes by various 
researchers (E, H 1979; T 1979; 
B 1983; L, W 1998; L et al. 2002; 
O, B 2002; D, S 2003; P, 
M 2003).

�ese techniques are distinguished in two main 
ways: (i) unsupervised classification which re-
quires no training data (G 1996; S-
 1997; M 2003; H et 
al. 2004), (ii) supervised classification including 
maximum likelihood (B 1983; L, P 
1992; Y et al. 1994; C et al. 2005), minimum 
distance to mean (H et al. 1997), Maha-
lanobis, Fisher classifier, parallelepiped (H et 
al. 1993) and Bayesian formulation based classi-
fication (S-S et al. 1994) (Fig. 1). 
�ese algorithms were used by different studies 
such as R N (1997), A (2001), and 
H et al. (2004). Recently, non-parametric 
algorithms are widely used for the classification of 
forest attributes like crown canopy. Some of those 
data mining classifier algorithms have been com-
monly used in recent studies such as:
(i)  k-Nearest neighbour (k-NN) method is one of 

the simplest and most popular data-mining al-
gorithms used for classification and regression. 
k-NN is widely used for the estimation of forest 
description using various topographic and re-
mote-sensing data (B 2001, 2002). In 
k-NN implementations, three factors should be 
determined including the number of k, the type 
of distance measure and weights for the nearest 
neighbours;

(ii)  Support vector machine classification: this al-
gorithm is suitable for both classification and 
regression techniques based on the statistical  
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learning theory (W 2008). Generally, 
support vector machine (SVM) focuses on the 
boundary between classes and maps the input 
space created by independent variables using a 
non-linear transformation according to a kernel 
function. Liner, polynomial radial basis function 
(RBF) and sigmoid are the most commonly used 
kernel types. �e RBF is the most popular kernel, 
which is used in SVMs (C, M 2007; 
D et al. 2007). According to our literature 
review, SVM has been used for forest classification 
(Z, M et al. 2008; O et al. 2010). 
In his work, S et al. (2016) found out the 
SVM among various non-parametric techniques 
to be the best classifier with very close results to 
other classifiers among them (k-NN and random 
forest);

(iii)  Random forest (RF) is a new algorithm to the 
field of data mining, designed to produce accurate 
predictions that do not overfit the data (B 
2002). RF can also be used for regression-type 
problems (to predict a continuous dependent 
variable) and classification problems (to predict a 
categorical dependent variable). Implementation 
of RF depends on the regularization of decision 
tree and stopping parameters. �e decision tree 
model parameters include the maximum number 
of trees that must be grown in the forest and the 
number of variables (k predictor or independent 

variables in each node for predicting dependent 
values) that are randomly selected in each node. 
Alternatively, choosing a small number of pre-
dictor variables may downgrade the prediction 
performance, because this can exclude variables 
that may account for most of the variability and 
trends in the data (StatSoft, Inc. 2010). �e sto-
pping parameters or control parameters are used 
to stop running the algorithm when satisfactory 
results have been achieved (S et al. 2012). 
In some studies such as G et al. (2008) and 
S et al. (2012), the RF has been used for 
the prediction of forest attributes.

Vegetation indicators. Vegetation indicators are 
based on the spectral reflection of plants (red and 
near infra-red range). �ere are three categories for 
vegetation indicators (Table 1):
(i)  Mean vegetation indices: almost most of these 

indicators have been used for measuring the 
frequency of plants and biological characteri-
stics of crown cover. �ese indicators just use 
red and infra-red bands. Normalized difference 
vegetation index (NDVI) (R et al. 1973), 
ratio vegetation index (also known as the simple 
ratio) (B, MV 1968), green normalized 
difference vegetation index (B, 
N 1993) and green difference vegetation 
index (S et al. 2006) are some of the most 
common indicators in this category;

Fig. 1. �e main stages of image classification in different methods using different reference data

PCA – principal component analysis
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(ii)  Atmospherically resilient vegetation indices: 
these indicators use the blue or green bands 
besides the red and infra-red bands in order to 
solve the dependence of vegetation indices on 
atmospheric effects. Global environmental mo-
nitoring index (P, V 1992), green 
atmospherically resilient index (G et al. 
2002), vegetation index green (G et al. 
2002), and vegetation atmospherically resilient 
index green (G et al. 2002) are some of 
these indices; 

(iii)  Soil-adjusted vegetation indices: by using one 
parameter called L these indicators try to dec-
rease the soil effect on NDVI index. �e L factor 
is an adjustment parameter, the amount of this 
factor for the area with low density 1, for the area 
with intermediate density 0.5 (the most common 
amount) and for the area with high crown cover 
0 is considered. Soil-adjusted vegetation index 
(H 1988), modified soil-adjusted vegetation 
spectral index (MSAVI2) as it is described in Eq. 
19 in Q et al. (1994), transformed soil-adjusted 
vegetation index, the median soil line values of 
which reported in B and G (1991) 
are a = 1.2 and b = 0.04, and green soil-adjusted 
vegetation index (S et al. 2006) are some 
indicators from this category. 

Different studies arrived at different indices as the 
best vegetation index based on the density of their 
case study. Sensitivity of indicators to the amount 
of crown canopy and soil or gap area percentage 

can cause different results in different studies. For 
example NDVI and MSAVI2 in the area with lower 
or without crown canopy density have higher ac-
curacy (A et al. 2009).

Biophysical response modelling (FCD model).  
FCD is used as an important variable for the char-
acteristics of forest status. FCD is based on the 
growth component and it can illustrate the degree 
of degradation (R et al. 1999). FCD mod-
el shows the growth phenomena of forests, which 
is quantitative analysis. The degree of forest den-
sity is expressed in percentages: i.e. 10, 20, 30, 40% 
and so on.

Also, this model makes it possible to monitor 
changes in the forest crown canopy density over 
time. �is method also makes it possible to moni-
tor the transformation of forest conditions over 
time and it can assess the progress of reforestation 
activities.

Based on four different indicators, FCD can cal-
culate the percentage of canopy density for each 
pixel. �ese indices are: (i) advanced vegetation 
index (AVI), (ii) bare soil index (BI), (iii) canopy 
shadow index or scaled shadow index (SSI), (iv) 
thermal index (TI) (R et al. 2002; G-
 et al. 2016) (Table 2). �e principle of this 
method is shown in Fig. 2. �ere are direct and 
indirect relationships between forest canopy and 
FCD components (Table 3).

In this method like in other approaches, first of 
all the geometric accuracy and spectral quality of 

Table 1. Categories of vegetation indices

Vegetation index category Indices Explanation

Mean

NDVI (NIR – red)/(NIR + red)
RVI NIR/red

GDVI NIR – green
GNDVI (NIR – green)/(NIR + green)

Atmospherically resilient

GEMI ή × (1 – 0.25 × ή) – [(red – 0.125)/(1 – red)]
GARI NIR – [green – (blue – red)]/NIR × [green – (blue – red)]

VIg (green – red)/(green + red)
VARIg (green – red)/(green + red – blue)

Soil-adjusted

SAVI [(NIR – red)/(NIR + red + L)] × (1 + L)
MSAVI2 [2 × NIR + 1 – √(2 × NIR + 1)2 – 8 × (NIR – red)]/2

GSAVI [(NIR – green)/(NIR + green + L)] × (1 + L)
TSAVI [a × (NIR – a × red – b)]/[a × NIR + red – (a × b) + X × (1 + a2)]

NDVI – normalized difference vegetation index, RVI – ratio vegetation index, GDVI – green difference vegetation index, 

GNDVI – green normalized difference vegetation index, GEMI – global environmental monitoring index, GARI – green 

atmospherically resilient index, VIg – vegetation index green, VARIg – vegetation atmospherically resilient index green, 

SAVI – soil-adjusted vegetation index, MSAVI2 – modified soil-adjusted vegetation spectral index, GSAVI – green soil-

adjusted vegetation index, TSAVI – transformed soil-adjusted vegetation index, NIR – near infra-red band, ή = (2 × (NIR2 –  

red2) + 1.5 × NIR + 0.5 × red)/(NIR + red + 0.5), L = 0.5, a – the slope of the soil line, b – the intercept of the soil line,  

X – adjustment factor
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images must be checked. �en all the bands (ex-
cept the thermal band) must be normalized by us-
ing Eqs 1 and 2:

 
 

 
   

1 2 1 2

1 2 2 2

Y Y Y Y
A

X X M S M S

 
 

   
 (1)

where:
A – linear transformation,
Y1 – maximum value of standardized value,
Y2 – minimum value of standardized value,
X1 = M – 2S,
X2 = M + 2S,
M – mean of values,
S – standard deviation.

 1 1Y AX AX Y     (2)

where:
Y – normalized data,
X – original value.

According to many researchers who used this 
method, alone or in comparison with other ap-
proaches, the FCD model can be a feasible and ac-
curate approach to the estimation of forest crown 
canopy density (Table 4).

Detection and separation of bare soil reflectance 
and plant reflection in a high density forest (more 
than 70%), no need of training samples during the 
crown cover density classification are the advan-
tages of FCD model. Also, according to B 
(2005), T (2006), M T et al. 
(2008), and P and B (2013) the 
low accuracy of classification in a low and middle 
density forest can be the disadvantage of FCD 
model.

It is worth mentioning that the elimination of 
individual pixels after classification by using a low 
pass filter (3 × 3 or 5 × 5) can increase the accuracy 
of classification – average increment 5% (B 
2005; P and B 2013).

Fig. 2. Methodological flow chart demonstrating different 
stages of the forest canopy density (FCD) model

AVI – advanced vegetation index, BI – bare soil index, 
SSI – scaled canopy shadow index, SI – canopy shadow 
index, TI – thermal index

Table 2. Indicators of forest canopy density model

Formula Explanation and practical uses

Advanced  
vegetation  
index (AVI)

   
1

3AVI 4 1 256 3 4 3B B B B     

�e use of power degree on NDVI enables AVI to be 
more sensitive to forest density and physiognomic 

vegetation indices.

Bare soil  
index (BI)

 
 
4 2 3

BI
4 2 3

B B B

B B B

 


 

It is the index prepared for analysing soils, in other 
words it can be used to identify the difference  

between agricultural and non-agricultural vegetation.

Canopy shadow  
index (SI)   SI 256 2 256 3B B  

Evaluates the different shadow patterns,  
based on the structure, age, species distribution etc., 

by affecting the spectral responses each time.

�ermal index –
Source of info is the thermal band of thematic  

mapper sensor (band 6).

B2 – green band, B3 – red band, B4 – near infra-red band, NDVI – normalized difference vegetation index

Table 3. Relationship between forest canopy and forest 
canopy density (FCD) parameters

Index High FCD Low FCD Grassland Bare land

AVI high mid high low

BI low low low high

SI high mid low low
TI low mid mid high

AVI – advanced vegetation index, BI – bare soil index,  

SI – canopy shadow index, TI – thermal index
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DISCUSSION

Main categories of classification

In this study we tried to show the different meth-
ods used for crown canopy assessment. All these 
methods can be divided into two main categories: 
pixel and object based approaches. �e principle 
of pixel based approaches is based on spectral data 
derived from pixel cells. As an alternative to the 
essentially pixel based analysis, the object based 
method attempts to identify groups of pixels that 
form discrete objects on the basis of characters 
that might include overall shape or texture as well 
as their spectral similarity. Object based methods 
avoid the need for the complete classification of the 
whole image, where one has specific interest in one 
component.

In fact, object oriented methods use segments 
that are regions specified by one or more yardsticks 
of homogeneity in one or more dimensions (H, 
C 2008). Using different dimensions like 
spatial dimensions (distances, neighbourhood, to-
pologies, etc.) is crucial to object oriented meth-
ods, making them the most popular methods in re-
cent times, as compared to the usage of pixel based 
methods (C et al. 2008).

Biophysical response modelling  

(FCD method)

Like all models, the FCD model has some ad-
vantages and some disadvantages. It is disability 
to achieve high accuracy in very dense areas and 

having to use pixel based principles are the biggest 
disadvantages of this method. On the other hand, 
modelling with high accuracy and no need of train-
ing area establishment (i.e. ground truth) are the 
most important criteria of FCD that can reduce the 
time and cost of modelling. So far, many studies 
have used this approach and almost all of them had 
acceptable results.

J and A (2004) used three sets 
of thematic mapper and enhanced thematic map-
per plus (ETM+) of 1991, 1998 and 2002. FCD 
from each data set was classified into 5 classes 
(class 1 – water and clouds, class 2 – no forest, 
class 3 – low forest, 5–40%, class 4 – middle for-
est, 41–70%, class 5 – dense forest, 71–100%). The 
result that came from using ETM+ 2002 was with 
overall accuracy of 83% and Kappa coefficient 
0.78. Finally they used the FCD results of images 
from the same season in 1991 and 1998 in order to 
prepare the change detection map for their study 
area.

A et al. (2008) tested the FCD model using 
a geometrically corrected image coming from In-
dian remote sensing satellite (IRS) imagery 2007 of 
an old growth forest of the north forest division of 
Iran. �e overall accuracy of the IRS images was 
84.4% and the Kappa coefficient was 0.783.

After geometric correction (RMSE = 0.5 pixel) 
of the images and spectral range normalization of 
the first five bands of Landsat 7, S-K-
 et al. (2012) calculated the four main indica-
tors of FCD using these indicators. �ey were able 
to create an advanced shadow index and vegetation 
density index maps. �ey used different numbers 
of classes (3, 4 and 6) to classify the FCD result. 

Table 4. Some researches on the forest canopy density model using different images

Satellite/sensors References Resolution (m)
Landsat (TM) R et al. (2002)

30

Landsat (TM, ETM+) J and A (2004)
Landsat (TM) N et al. (2003)
Landsat (GeoCover) H et al. (2004)
Landsat 7 ETM+ J et al. (2006)

IRS (LISS-III) A et al. (2008) 25

SPOT, ALI M and I (2012)

30

Landsat 7 (ETM+) P and B (2013)
Landsat 7 ETM+ S-K et al. (2012)
Landsat (TM) D et al. (2013)
Landsat (TM) B et al. (2014)
Landsat 5 (TM) – visible and NIR band G et al. (2016)

Landsat 5 (TM) – thermal band G et al. (2016) 120

TM – thematic mapper, ETM+ – enhanced thematic mapper plus, IRS – Indian remote sensing satellite, LISS-III – linear 

imaging self-scanning sensor 3, SPOT – Earth observation satellite, ALI – advanced land imager, NIR – near infra-red
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Because their study area was highly heterogeneous 
and dense, the results showed that the class 3 layer 
had the highest overall accuracy (62%) and Kappa 
coefficient 0.30.

M and I (2012) used an Earth ob-
servation SPOT 5 satellite (2.5 m) and advanced 
land imager ALI (30 m) for forest crown closure to 
calculate the forest crown canopy density in Ayubia 
National Park, Pakistan. A diverse variety of tree 
species like coniferous and broadleaved tree spe-
cies are present in this natural environment. Re-
sults showed that the crown canopy of the study 
area using SPOT imagery was between 20 and 65%, 
and 45–65% with reference to ALI imagery. It was 
also concluded that SPOT imagery gave better re-
sults because of the higher spatial resolution com-
pared to ALI imagery. On the other hand, SPOT 
was unable to detect the built up and landslide ar-
eas and gave them high values, whereas ALI imag-
ery, having a higher spectral resolution compared 
to SPOT data, was able to detect these areas and 
give them low values.

P and B (2013) conducted their 
study on Landsat ETM+ images in order to clas-
sify the crown canopy classes in the Shafarud Area 
of Guilan. First they prepared a forest density map 
which included different density classes (bare, 
5–25, 25–50, 52–75 and 75–100%). �ey used the 
four different indicators of FCD (AVI, BI, SSI, TI) 
in order to calculate the percentage of canopy den-
sity for each pixel. One thematic map came from 
an orthomosaic aerial photo and was used for the 
evaluation of FCD accuracy. Results of maximum 
likelihood classification showed that the FCD map 
results were close to ground reality (overall accu-
racy 71% and Kappa coefficient 0.61). Also, the ma-
trix of errors showed that the FCD method is not 
applicable to areas with high and medium density 
but it can provide high accuracy for dominant trees 
and area with low density (lower than 5%).

In overall, the spatial and spectral resolution of 
images acquired by different sensors brings several 
advantages to natural resource managers and aca-
demic researchers for the classification, monitor-
ing, and management of natural ecosystems. Some 
of the basic requirements for successful remote 
sensing-based monitoring can be listed briefly 
as follows: (i) availability of required digital data 
sources (i.e., imagery, maps, and any other forms 
of data, (ii) collecting up-to-date from the interest 
area, (iii) applying the image processing methodol-
ogy with respect to the specific characteristics of 
the study area, (iv) producing accurate and useful 
outputs (e.g., maps and statistics).

Selecting an appropriate method and material 
with respect to the study area status, aim of study 
and commercial acceptance can help the mangers 
and researchers to access easier to their purposes. 
In case of crown canopy classification, the crown 
density of the study area and the aim of the study 
have a significant role which can influence the total 
accuracy of canopy modelling.
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