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Introduction: Anthropic disturbances are driving unprecedented changes in forest

ecosystem functions and biogeochemical processes, hindering the forests’

benefits to society. Litter decomposition is one of the most critical processes

that regulate forests’ carbon and nutrient cycling. However, how forest

degradation affects litter decomposition and elemental dynamics requires

further examination. The main objective of this study was to evaluate the effect

of forest degradation on the production and decomposition of litter and C,N, and P

dynamics in a temperate forest in south-central Chile.

Methods: Litter traps and litter bags were installed in three Long Term Research

Forest Plots (LTER) representing different conservation states: mature, secondary,

and degraded Nothofagus forests.

Results and Discussion: The total litter input varied between 3.5 to 1.1 Mg ha–1

year–1 in the mature and degraded forests, respectively. We found the highest

lignin and nutrient levels in the degraded forest and the lowest in themature forest.

In the mature forest, 44% of the initial litter was decomposed, while in the

degraded forest it only reached 7%. Decomposing litter showed the lowest C:N

and C:P ratios in the mature forest most of the year. The balance between inputs

and outputs yielded a more substantial litter accumulation in the mature forests.

Conclusion: Our results strongly suggest that anthropogenic degradation

altered litter quality and nutrient dynamics while decreasing litter production

and decomposition.
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1 Introduction

Loss and degradation of forests are driving unprecedented

changes in biodiversity and ecosystem functioning (1). A critical

soil process is litter decomposition, which, together with litterfall,

represents one of the most important pathways for the flow of

nutrients in forests and soil fertility (2). Litter nutrient dynamics

are closely related to the litter decomposition rate, which directly

determines the nutritional status of the ecosystem (3). For this reason,

research on litter decomposition has become a relevant aspect of the

study of forest functioning (4). However, the effect of anthropogenic

disturbance on these processes in natural forests has been poorly

studied (5).

Litter decomposition rates depend on the interaction of three

major factors: climatic conditions, litter quality, and soil organisms

(6). Climate has been considered the main factor on a global scale as it

directly affects decomposition rates through temperature and

humidity (7). On a smaller scale, decomposition rates are strongly

influenced by litter quality. Higher litter quality (i.e., high N, P), high

N:P ratio, and low lignin concentrations and C:N led to a higher

decomposition rate and mineralization (8–10). Soil organisms, such

as bacteria, fungi, and fauna, mediate litter decomposition by

degrading complex compounds such as lignin and cellulose.

However, their contribution to decomposition at a local scale

depends on their composition and abundance, which vary with

litter quality and microclimate (1, 11).

Forest degradation due to human activities, like logging, livestock

grazing, and fire, can directly or indirectly alter the composition and

structure of forests (12). For example, a decrease in tree basal area, an

increase in canopy opening, a change in species composition, and loss

of species have been documented in degraded forests (1). These can

modify the environmental conditions and litter quality due to the

changes in species composition and traits (13). Since litter

decomposition and dynamics are related to humidity and

temperature, they can be affected by forest management and

disturbances (14). Despite its relevance, the effect of anthropogenic

disturbance on these processes in natural forests has been poorly

studied. Studies have demonstrated that changes in microclimatic

conditions associated with canopy openness have led to an increase in

soil temperature and changes in humidity (15). In particular, it has

been shown that higher temperatures and lower soil moisture in

tropical secondary forests can lead to slower decomposition

compared to primary forests (16). Similarly, other studies in

disturbed tropical forests have reported a decrease in litter

decomposition due to reduced biological activity in these forests (1,

13). However, the responses of decomposition rates and nutrient

dynamics have proven to be challenging to predict, as decomposition

rates have been reported to increase, decrease, or even remain

unchanged in different forest ecosystem types across the world (5,

14, 15).

The Nothofagus forests of South America, which occupy from 37°

S to around 55°S in Chile and Argentina (17), are a relevant

component of the Andean landscape as they grow in areas with

large-scale disturbances and at high altitudes that other species are

unable to colonize. TheNothofagus genus is an ecologically significant

group severely threatened by human activities that are endangering

many of its species (18). The These forests have been strongly
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degraded by selective logging of tree individuals (19) and cattle

grazing (12). These processes currently affect large extents of

Nothofagus forests (20, 21). The effect of forest degradation on litter

dynamics of Nothofagus forests is poorly understood. It has been

documented that the clearing of Nothofagus forests in the extreme

south of Chile can cause a decrease in litter production and an

increase in decomposition rates due to the rise of surface temperature

(15), while other studies report inconsistent trends in decomposition

rates (22). In addition, litter nutrient cycling in more septentrional

Nothofagus forests has been rarely evaluated as most studies have

focused on well-preserved evergreen rainforests or colder temperate

forests further south (~38°- 52° LS) or compared different litter

qualities (23).

Hence, this study aims to assess the dynamics of litter

stoichiometry, production, decomposition, and mineralization of C,

N, and P in Nothofagus forests displaying different conservation

states. We hypothesize that degraded forests have a significantly

lower input of C, N, and P by litterfall, lower litter decomposition

rate, and mineralization than better-conserved forests.
2 Methods

2.1 Study area

The study area corresponded to the Ranchillo Alto estate, located

in the Andes foothills, 33 km away from the town of Yungay, Ñuble

Region (37°04’ S and 71°39’ W) (Figures 1A, B). It has a humid

temperate Mediterranean climate with an average annual rainfall of

3000 mm, with rains concentrated between May and September in the

autumn and winter seasons. The mean annual temperature is 13.5°C,

with July being the coldest month with a mean annual temperature of

3°C, and January is the warmest month with a mean of 22.5°C. The

area presents an extended season of low temperatures, frequent frosts,

snowfall, and the presence of snow for 3 to 5 months. The soils have

been described and correlated to the Yungay series Pachic

Melanudands (Andisols), formed from thick recent volcanic ashes

deposited over a glacio-fluvial material. These soils are very deep and

well-drained, with high organic matter content, dominant pseudo-

crystalline mineralogy, and a silty loam texture (24, 25).

Nothofagus temperate forests are documented to be the result of

large-scale natural disturbances, including volcanic eruptions,

landslides, and floods, and on small-scale disturbances, such as

windthrow (26, 27). When canopy gaps become large enough to

foster seedling development, shade-intolerant species such as

Nothofagus alpina (Poepp. & Endl.) Oerst. And Nothofagus

obliqua (Mirb.) Oerst. Can recruit and establish secondary forests

(28, 29).

The study plots are located at 1300-1400 m.a.s.l., with 10-20%

predominant western-facing slopes. The dominating tree species

corresponded to Nothofagus species, which formed nearly pure

stands (Table 1). Due to different regimes in human disturbances,

the three Nothofagus forests stands differed in terms of composition,

structure, and conservation states i) mature forest of N. dombeyi

(Mirb) Oerst., which represent a well-preserved forest form mainly by

trees 10 to 20 m tall and with a majority diameter at breast height

(DBH) between 16 to 52 cm, with individuals exceeding 100 cm DBH,
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and a composition of 97% perennial trees; ii) secondary forest of N.

alpina originated from selective logging for firewood, charcoal, and

timber since 1950, it has a composition of 48% evergreen and 52%

deciduous trees; and iii) degraded forest dominated by N. obliqua

altered by tree cutting, fire, cattle browsing, and grazing for

approximately 65 years, which is composed of 100% deciduous

trees (Figure 1C). Illegal intensive logging has occurred since the

1950s, affecting all Nothofagus forest stands, which can be verified by

the presence of stumps across the area (Table 1). However, the

degraded forest has experienced substantial felling of the largest

and healthy tree individuals, yielding a largely coetaneous N.

obliqua forest with a few smaller clusters of N. dombeyi trees.

Forest regeneration in the degraded site has been further limited by
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fire and continuous and non-systemic grazing (21, 30). In 2015, a

forest management plan began, gradually stalling illegal logging and

regulating cattle grazing in the area.
2.2 Sampling design

Long-Term Ecological Research (LTER) plots of 100 x 100 m were

established in each of the three forest stands. In each plot, we sampled

litterfall and litter decomposition, for which sub-sampling plots were

installed based on the GEM field manual (31) for intensive census

plots, which are explained in detail below.
TABLE 1 Characteristics of the study forest stands in the LTER plots: mature, secondary, and degraded forests. Yungay, Chile.

Characteristics Mature forest Secondary forest Degraded forest

Conservation status Well preserved Altered Degraded

Composition1 N. dombeyi (97%) and N. obliqua (3%) N. dombeyi (48%) and N. alpina (52%) N. obliqua (100%)

Density (tree/ha) 572 610 136

Basal area (m²/ha) 58.6 55.7 25.8

Tree stumps (N/ha) 26 84 18

Openness canopy (%) 10% 11% 52%

Leaf Area Index2 3.2 (0.06) 0.9 (0.02) 0.5 (0.04)

Soil temperature2 (°C) 6.9 (0.3) 7.1 (0.2) 9.9 (0.4)

Soil moisture2 (%) 22.9 (6.5) 21.9 (2.5) 15.8 (0.9)
1In parentheses is the percentage of dominance of each species
2In parentheses is the standard deviation.
A C

B

FIGURE 1

Map of Chile (A). Location of the study area in central Chile (B) (black point). The red line shows the boundary of the Ranchillo Alto estate, and the red
squares delineate the location of the Long-Term Research Forest (LTER) plots (C). Image source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/
Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.
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2.3 Sampling of litter biomass

Twenty-five 20x20 m subplots were delimited in each LTER plot

(Supplementary Figure 1). In each subsampling plot, a 1x1 m litter

collection trap was placed in April 2018 (75 total traps). The

collection was carried out monthly from December 2018 until

December 2019. The collection of samples during July 2019 was

suspended due to adverse climatic conditions that impeded fieldwork

(i.e., snowfall). The biomass collected in each trap was stored in

hermetic bags. The content was transferred to paper bags and placed

on a convection stove at 65°C for 48 to 72 hours until a constant

weight was reached. Subsequently, the dry weight of each sample

was determined.
2.4 Sampling of litter decomposition bags

Sixteen 25x25 m subplots were established in each LTER plot.

Twelve correlatively numbered decomposition bags were placed at the

center of each subplot (576 total bags) (32). Recently fallen litter was

collected directly from the forest floor in each LTER plot during April

and May 2018. The litter was dried at 65°C to constant weight, and a

homogeneous sample was generated per plot. An aliquot of

approximately 10 ± 1 g was removed and placed in 20x20 cm 1 mm

mesh bags. The bags were installed in November 2018 between the litter

layer and the mineral soil, simulating natural litter decomposition

processes. The litter bag collection started in December 2018, after

which a bag of each subplot was collected monthly for a year. Each bag

was independently stored in airtight bags until delivery to the

laboratory, where the material was dried at 65°C until constant

weight. Posteriorly, the decomposition rate (k) was determined with

the exponential model described by Olson (33) using Eq. (1).

k   =  
−ln(x1=x0)

t
(1)

Where X0 are initial and X1 final litter weight in a time t (33).
2.5 Remaining Litter stock

The remaining litter stock was calculated by subtracting the total

annual decomposed litter to the annual input due to litterfall. The

decomposed annual litter was calculated by multiplying the

percentage of decomposed litter at the end of the study year by

the annual input of litter. The remaining litter stock should

approximate the total amount of litter remaining on the forest floor

in each forest plot after a year.
2.6 Carbon, nutrient, and litter
quality analysis

The carbon and nutrient content of the fallen litter and litter of

decomposition bags was determined. An aliquot of the sampled

material from each bag was taken at each sampling date and

combined into a composite sample for each plot. These were pre-

grounded in a chipper to 2mm and then pulverized in an 8000M
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Mixer/Mill® steel pearl mill from SPEX SamplePrep. Posteriorly 2.00

± 0.1 mg of each sample in tin capsules were weighed in a Sartorius

model ME36S microbalance (Sartorius AG, Germany). The total C

and nitrogen (N) contents were determined by the Dumas-TCD dry

combustion method (SERCON® Limited, UK). Total phosphorus (P)

was determined by the calcination method for plant tissue described

by Sadzawka et al. (34). With these results, we calculated C:N, C:P,

and N:P on a mass basis for litterfall and decomposing litter. The

lignin concentration was determined following the methodology used

by Mendonça et al. (35). For this, extractables were removed with

ethanol/toluene; then hydrolysis was carried out with 72% H2SO4 in a

water bath at 30°C for 1 hour. The acid was then diluted to 3% with

water, and the mixture was autoclaved for one hour at 121°C. The

residual material was cooled and filtered, and the solids dried to

constant weight at 105°C and determined as insoluble lignin. Soluble

lignin was determined by measuring the absorbance of the solution at

205 nm (35).

Fourier-transform infrared (FTIR) band indices were calculated

as a complementary measure to characterize litter quality. Index I (Eq.

2) have been used to indicate differences in the degree of

decomposition. In this study, we used it to show the degree of

aromaticity of the litter material (i.e., aromatic versus aliphatic

bonds). Similarly, Index II (Eq. 3) was used as a proxy for organic

matter recalcitrance (36). These indices are based on the intensities of

the FTIR bands representing various functional groups, which are

detailed below:

Index   I =
Aromatic   functional   groups   area   (bands   1650 + 920)

Aliphatic   functional   groups   area   (bands   2924 + 2850 + 1470)

(2)

Index   II =
 C − functional   groups   area   (bands   2924 + 2850 + 1650 + 1470 + 920)

O − functional   groups   area   (bands   3400 + 1080)

(3)

According to Veum et al. (37), Index I is the ratio of aromatic

C=C (bands 1650 and 920) to aliphatic and CH (bands 2924, 2850,

and 1470) functional groups; this index has been shown to increase

with the degree of soil organic matter decomposition. Index II

represents relative recalcitrance as the ratio between C (bands 2924,

2850, 1650,1470 and 920) and O (bands 3400 and 1080) functional

groups, which is higher in more recalcitrant organic matter (37). For

this analysis, original litter samples used for the litter bags were

ground in a chipper at 2 mm, milled, and analyzed in an FT-IR

Spectrometer (Thermo Scientific, Nicole iS5) with attenuated total

reflectance (ATR) and automatic baseline correction. Spectra were

obtained in triplicates, each based on the mean of 64 scans at 4000–

400 cm-1 with a resolution of 4 cm-1. Based on the spectrum’s

prominent peaks and shoulders, seven bands representing organic

functional groups were identified, and the indices I and II were

calculated. Peaks were selected, and absorbance intensity was

measured after background removal using Essential FTIR (v3.50.205).
2.7 Data analysis

Litterfall mass was compared between forest stands and through

time by a non-parametric Kruskal-Wallis test, as normality was not
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met according to Shapiro-Wilk tests. If the Kruskal-Wallis test

indicated at least one significant difference between groups,

Wilcoxon signed-rank tests were used. The same approach was

used to compare the mass of C, N, and P, for which the

“RSTATIX” R (38) and the “CAR” R (39) packages were used.

Indices I and II and initial concentrations of C, N, and P were

compared using Welch’s T-tests because the data met the normality

assumptions but not homoscedasticity.

The decomposition rate (k) was transformed to 1/k, fulfilling the

normality and homogeneity assumption. An ANOVA was performed

to identify significant differences in the k-mean values between forest

types. Because significant effects of forest stands were found, a Tukey’s

test was carried out. The remaining litter mass was compared with a

Kruskal-Wallis test because the homogeneity assumption was met,

but not normality. If this indicated at least one significant difference

between groups, Wilcoxon rank-sum post hoc tests were performed, a

non-parametric alternative to two-sample t-tests. All the statistical

and graphic analyses were executed in R version 3.2.1 (40). Averages

and standard error were reported in all the analyses, and p< 0.05 were

considered significant.
3 Results

The initial concentration of N and P in the litter differed between

forest stands, from lowest to highest: mature forest, secondary forest,

and degraded forest. At the same time, the degraded forest had a

significantly lower concentration of C and the highest concentration

of lignin. Lignin was the lowest in the secondary forest (Table 2). The

Index I was lower in the litter of both the mature and degraded forests,

and highest in the secondary forest, indicating greater aromaticity of

litter in the secondary forest. On the other hand, the Index II was

higher in the mature and degraded forests, suggesting greater

potential recalcitrance of the material compared to the litter of the

secondary forest, which is consistent with its lowest lignin and total C

contents (Table 2).

The annual litterfall ranged from 1.2 Mg ha−¹ year−¹ in the

degraded forest to 3.8 Mg ha−¹ year−¹ in the mature forest (Table 3).
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Mature and secondary forests had a significantly higher litterfall than

the degraded forest (p< 0.05). The three forest plots followed the same

pattern of litterfall across the year, increasing during the autumn

(Figure 2A) and with a minimum during the summer and

spring months.

The C:N ratio of litterfall varied throughout the year and between

forest plots, from lowest to highest: degraded forest, secondary forest,

and mature forest (between March and August) (Figure 2B). The

litterfall C:P and N:P ratios followed a similar tendency for all forest

plots over time, with a considerable increase in spring between

September and December (Figures 2C, D). The mature forest

showed a sharper increment in C:P and N:P in spring than the

other forest types; however, litterfall production during this period

abruptly declined.

The amounts of litter C, N, and P inputs varied throughout the

year and between forest plots (Figure 2E–G respectively). Annually,

the total amount of C in the litter went between 528.1 and 1739.7 kg

ha−¹ year−¹ for degraded and mature forests, respectively. Similarly,

the quantity of N ranged from 10.3 kg ha−¹ year−¹ in the degraded

forest to 26.2 in mature forest, and P from 0.37 kg ha−¹ year−¹ in the

degraded forest to 0.97 in the mature forest (Table 3). The mean

annual amount of C, N, and P contributed by the mature forest was

significantly higher than the other forest stands (p< 0.05).

After one year, the remaining litter mass was 56% for the mature

forest, 65% for the secondary forest, and 93% for the degraded forest.

The decomposition constant (k) was significantly higher in the

mature forest, followed by the secondary, which was also

considerably higher than k in the degraded forest (p< 0.05). In the

same way, the mass of remaining litter differed substantially between

the forest conservation states (Table 4). Regarding temporal variation,

the highest decomposition rates were observed in the first month after

installation and in the last month, both corresponding to December,

and varied significantly between forest plots (Figure 3A). In the case

of secondary forest, a high decomposition rate was also observed in

September (spring).

Decomposing litter total C decreased significantly over time in all

forest plots, but this trend was more consistent in the mature and

secondary forests. In the degraded forest, total litter C tended to
TABLE 2 The initial concentration of litter C, N, P, lignin and Index I and II in mature, secondary, and degraded Nothofagus forests LTER plots.

Forest type C (%) N (%) P (%) Lignin (%) Index I Index II

Mature forest 48.8 ± 0.5a 0.85 ± 0.00a 0.031 ± 0.0a 42.6 ± 0.9a 0.59 ± 0.04a 1.88 ± 0.31a

Secondary forest 49.1 ± 0.4a 0.93 ± 0.01b 0.034 ± 0.0b 40.7 ± 0.9b 0.86 ± 0.05b 0.98 ± 0.05b

Degraded forest 45.6 ± 0.1b 0.98 ± 0.00c 0.037 ± 0.0c 45.4 ± 0.5c 0.54 ± 0.08a 1.79 ± 0.38a
fr
Different letters indicate significant differences (p< 0.05).
TABLE 3 Mean annual litterfall (Mg ha−¹ year−¹) and C, N and P (kg ha−¹) in mature, secondary, and degraded Nothofagus forests LTER plots from
December 2018 to December 2019.

Forest type Biomass (Mg ha−¹ year−¹) C (kg ha−¹) N (kg ha−¹) P (kg ha−¹)

Mature forest 3.78 ± 0.32a 1739.7 ± 153.8a 26.2 ± 2.3a 0.97 ± 0.08a

Secondary forest 2.77 ± 0.28b 1146.9 ± 130.9b 19.1 ± 2.2b 0.67 ± 0.07b

Degraded forest 1.22 ± 0.17c 528.1 ± 76.1c 10.3 ± 1.5c 0.37 ± 0.06c
Different letters indicate significant differences (p<0.05).
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increase from May to November (Figure 3B). N presented an initial

net accumulation in mature forest, which decreased towards the end

of the year (Figure 3C). The secondary forest showed a slight decrease
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in N content. In contrast, in the degraded foresmount amount of N

remained relatively constant between the beginning and the end of

the study period. P increased substantially in the mature forest after

the first month and stayed steady until the spring, when it dropped

significantly until the end of the experiment (Figure 3D). On the

contrary, litter P in the secondary and degraded forests dropped

during the first month and then gradually increased until the spring

when it fell significantly.

The C:N on the decomposing litter was lower for the mature

forest, intermediate for the degraded forest, and higher for the

secondary forest (Figure 3E). There was a substantial decrease in

the C:N ratio in the mature forest after the first month. Conversely, C:

N ratios in the secondary forest increase abruptly after the first month

and then gradually decrease until the end of the experiment (except
A

B D

E F G

C

FIGURE 2

Litter biomass (A), molar C:N (B), C:P (C) and N:P (D) stoichiometric ratios, and Carbthe (E), Nitrogen (F) and Phosphorous (G) average inputs from
December 2018 to December 2019 in mature (dark blue), secondary (light blue), and degraded (red) Nothofagus forests LTER plots. For (A, E, F, G) the
error bars represent the standard deviation. For A significant differences within each month are shown with an asterisk.
TABLE 4 Mean decomposition rate and remaining mass (%) after 390 days
of decomposition in mature, secondary, and degraded Nothofagus forests
LTER plots.

Forest type Decomposition rate Remaining mass (%)

Mature forest 0.00149 ± 0.00008a 56.62 ± 1.9a

Secondary forest 0.00112 ± 0.00010b 65.40 ± 2.6b

Degraded forest 0.00018 ± 0.00003c 93.23 ± 1.1c
Different letters indicate significant differences (p< 0.05).
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for a substantial drop observed in March). Meanwhile, the values of

the degraded forest were relatively constant between the start and the

end of the experiment. The C:P and N:P ratios followed a similar

trend over the evaluated period, with a differential increment in

spring and summer among forest plots (Figures 3F, G).

Finally, the total balance between all inputs of litter and

decomposition outputs indicates that the remnant stock of litter is

2.14 Mg ha-1 in mature forest, which represents 56.6% of litter inputs;

1.81 Mg ha-1 in secondary forest, equivalent to 65.3% of litter inputs;

and 1.14 Mg ha-1 in the degraded forest, equivalent to 93.4% of litter

inputs (Table 5).
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4 Discussion

Our results support the hypothesis that a degraded forest has a

lower nutrient input due to a lower litterfall and decomposition rate.

However, contrary to our expectations, the chemical quality of the

litter (i.e., nutrient stoichiometry) did not help explain this behavior.

Nutrient contents were higher in the degraded forest than in the

mature and secondary forest. Although this higher nutrient content

did not lead to higher litter decomposition rates, probably due to its

higher lignin concentration and the adverse abiotic conditions for

decomposition to proceed, especially lower soil moisture (1, 13).
A

B D

E F G

C

FIGURE 3

Remaining litter biomass (A), mass of Carbon (B), Nitrogen (C) and Phosphorus (D), and molathe:N (E), C:P (F) and N:P (G) stoichiometric ratios during
litter decomposition from December 2018 to December 2019 in mature (dark blue), secondary (light blue), and degraded (red) Nothofagus forests LTER
plots. For (A–D) the error bars represent the standard deviation.
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4.1 Litter production and
C:N:P stoichiometry

The annual litterfall in forest types was within the observed range

(1.0 to 5.8 Mg ha-1 yr-1) for Nothofagus forests of central and southern

Chile (22, 41), but it was slightly lower than the range observed in

temperate forests in other regions (4.7 to 6.0 Mg ha-1 yr-1) (42). In the

case of the degraded forest, it presented values of litterfall similar to

those reported for managed Nothofagus forests (41). Litterfall in the

degraded forest was lower than in mature and secondary forests,

which coincides with its low basal area, high canopy opening, and low

LAI (43, 44). This reduced litter production can decrease carbon and

nutrient inputs to the soil, limiting plant growth and regeneration on

degraded sites (45–47).

Litter C:N, C:P, and N:P ratios were high in all forest plots

compared to those reported for leaf litter from other temperate

forests on a global scale (48). As expected, the stoichiometric

relations varied over the year. An increment was observed in the C:

N ratio from autumn to winter, coinciding with the season of higher

litterfall. The lower N concentration during these months may reflect

preferential reabsorption of this element by vegetation (49), which

contributes to internal recycling and conservative use of this nutrient

(50, 51). On the other hand, the N:P and C:P ratios increased from

spring to summer, suggesting a preferential relocation of phosphorus,

which was particularly high in the mature forest. This contrasts with

Caldentey et al. (41), who found a decrease in the concentration of P

in the litter in autumn and winter. The difference between forest types

may be due to the dominance of N. dombeyi in mature forests, a

perennial species that has a longer leaf life span and a low N and P

concentration. The observed temporal trends suggest higher recycling

and more conservative nutrient use strategies in the mature forest

(51, 52).

The litter C, N, and P inputs strongly depended on the quantity of

litter produced, being higher in autumn for N and P in all forest plots

(Figures 2E, F, G). The annual amount of nutrients provided by the

litter was lower than that indicated by other studies in temperate

forests of central-southern Chile, which report values between 44 to

69 kg ha-1 year-1 for N and 2.6 to 3.6 kg ha-1 year-1 for P (22). This

difference could be due to the lower density of trees in the present

study compared to that obtained by Staelens et al. (22), lower N and P

soil availability (P-fixing andosol and low atmospheric N inputs), and

the difference in species composition. It has been documented that

temperate ecosystems tend to have low levels of N and P due to the

low atmospheric and weathering inputs and hydrologic losses of
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dissolved organic P and N, all of which result in low nutrient

concentrations in soils (53). Likewise, low N mass in the degraded

forest may be due to episodic N losses associated with fires and

removal from logging, grazing, and other local disturbances (54). The

total C, N, and P mass contributed by the mature forest confirm that

litter in these well-preserved forests is a more substantial C and

nutrient reservoir. The greater availability and active internal cycling

of these elements in mature forests sustain forest productivity and

regeneration, supporting other critical ecosystem processes.
4.2 Litter decomposition and
nutrient dynamics

The initial concentrations of N, and P in the degraded forest litter

(Table 2) suggest that this site has a better nutritional quality than the

secondary and mature forests. This may be due to the fact that the

degraded forest is mostly composed of deciduous species

composition, which has been shown to have a higher nutrient

content compared to the litter of perennial species (55). The latter

result is also consistent with previous studies in tropical forests that

have shown an increase in litter quality along disturbance gradients

(56). This is explained by the recruitment of fast-growing species with

economic litter traits, which could lead to rapid decomposition rates

(57). However, the higher nutrient concentration in the degraded

forest did not yield higher decomposition rates. In fact, we found that

litter from mature and secondary forest composed of a mix of

deciduous and evergreen species decomposed faster than deciduous

litter from degraded forest. In addition, the FTIR-derived indices I

and II suggest similar aromaticity and recalcitrance levels between the

litter of the mature and degraded forests. Thus, the decomposition

rates are likely controlled by factors different than nutrient

concentration. Our results suggest that high lignin concentrations

in degraded forest litter, together with environmental factors (i.e.,

higher soil temperature and limited surface moisture) could lead to

reduced decomposition rates, as other authors have suggested (58).

Recent studies have also shown a deceleration of litter decomposition

and lignin degradation in cleared forests with heightened direct solar

radiation (59).

Moreover, the reduced decomposition in the degraded forest

could also be due to the lower litter diversity compared to the

mature and secondary forests (60), which had a greater mix of

species. Synergistic effects on decomposition have been documented

when litter species of different quality are mixed, which could

accelerate the rate of decomposition in these forests (61). Some

mechanisms that explain this effect are the interaction between the

microbiomes associated with each litter type, the complementary

effects of soil fauna and decomposing organisms, and the

improvement in microclimatic conditions during decomposition

(60), mechanisms that could be absent in the degraded forest.

The remaining mass agrees with previous studies in temperate

Nothofagus forests, except for the degraded forest, which displayed a

much larger remaining mass of 93%. This result differs from earlier

studies in Nothofagus forests, which found increased decomposition

rates in disturbed forests associated with higher temperature and

humidity (15, 41). In our study, the degraded forest had a higher

temperature but lower soil moisture, which could affect the
TABLE 5 Litter inputs, decomposition outputs, and remaining stock (Mg
ha-1) between December 2018 and December 2019 in mature, secondary,
and degraded Nothofagus forests LTER plots.

Forest
type

Inputs (Mg
ha-1)

Outputs (Mg
ha-1)

Stock remaining
(Mg ha-1)

Mature
forest 3.78 1.64 2.14

Secondary
forest 2.77 0.96 1.81

Degraded
forest 1.22 0.08 1.14
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decomposition process. However, our results are consistent with

studies that also report a reduction in litter decomposition after

clear-cutting or thinning, associated with a decrease in soil

moisture and its biological activity (14, 62). Similarly, a reduction

in decomposition rates has been observed in degraded tropical forests

exhibits as the intensity of disturbances increases (13).

An earlier study conducted on the same study plots showed that

bacterial and fungal soil communities differed at the genus level

between forest types (30). Likewise, these authors reported a change

in the structure of the microbial community in the most degraded

forests, which could affect litter decomposition. Furthermore, other

authors have reported reduced microbial activity after logging (63).

The harsher conditions for microbes may have also reduced the

activity of soil mesofauna. Due to the importance of these organisms

for the decomposition of organic matter, particularly in the

degradation of lignin (58, 64), reduced faunal activity can also

explain the low decomposition rates found in the degraded forest

(13). We also observed a noticeable reduction in understory coverage

and plant composition, which could explain a reduction in litter

decomposition driven by a decrease in mesofauna activity (65).

However, this is an aspect that needs to be further studied.

The accumulation of N in all forest types, followed by short

nutrient release periods, coincides with Staelens et al. (22), who

reported the same trends for other deciduous species. The initial

immobilization has been reported in different parts of the world for

temperate and boreal climates (66, 67). The accumulation of N at the

beginning of decomposition cycle may be due to microbial

immobilization under low N availability (68). This explains the

high accumulation of N and the lower C:N ratio in mature forests,

which presented the lowest initial content of this element. Despite the

higher litter quality (higher N content) in the degraded forest, it

tended to accumulate more N than in the secondary forest. This N

enrichment could result from external inputs from grazing livestock

in the degraded forest area (69).

C:P and N:P values indicated a period of initial immobilization

and high mineralization towards the end of this study. This initial

accumulation may be due to external sources, for example, the

precipitation and fall of new litter from the canopy (70) and also

livestock grazing (69). The content of P decreased drastically starting

in spring, which suggests more substantial mineralization of this

element and reabsorption after the rainy season. Seasonal patterns in

humidity and temperature that control microbial communities can

influence changes in stoichiometry (71). During the spring

(September) the conditions are more favorable for plant growth,

microbial and soil fauna dispersion, which stimulates the

mineralization of elements, especially P (72). This could explain the

increase in N:P and C:P ratios in the remaining litter.

As the decomposition progressed, there was a decreasing trend in

the C:N and C:P ratios until reaching values close to 37 - 51 and 700 -

900 (73). In our study, the C:N ratio decreased with decomposition,

reaching values close to those indicated; however, the C:P ratio

increased towards the end of the period, reaching values much

higher than those reported by these authors. This may be due to

high initial C:P values, which have led to high ratios during

decomposition (74). In addition, due to the low decomposition

rates found, a more extended study period may be necessary to

observe a convergence toward lower C:P ratios (75, 76).
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The difference in nutrient dynamics during litter decomposition

between forest conservation states may be due to the difference in

litter quality (5, 77). Different authors have found an initial

immobilization of N and P in low-quality litter and a more

significant release of these elements during the decomposition of

high-quality litter (72). In our study, we found a greater initial

immobilization of N and P in the mature forest, which presented

the lowest concentrations of these nutrients. However, despite the

higher quality of the litter in the degraded forest, it did not show a

greater nutrient release. On the other hand, it has been reported that

high concentrations of lignin in the litter can increase the initial

immobilization of N and P due to the formation of recalcitrant

substances (78). We found a high concentration of lignin in all

forest stands but the lowest in the secondary forest, which

coincidentally presented the lowest initial immobilization.
4.3 Remaining litter stock

The annual litter production was three times higher in the mature

forest and two times higher in the secondary than in the degraded

forest. After balancing inputs and outputs by decomposition, the

mature forest presents the highest accumulation of litter on the forest

floor. Due to its higher decomposition rate, we could also expect a

higher carbon influx into the mineral horizon and nutrient influx

through mineralization. Previous studies have found less litterfall and

nutrient influx in degraded Mediterranean, Temperate, and Tropical

forests, along with a depletion of ecosystem carbon stocks and

reduced soil nutrient availability. Both factors decrease the recycling

of nutrients and limit forest productivity, soil functionality, and the

provision of ecosystem services (3, 47, 79, 80).

The differences in litterfall, decomposition, and dynamics of C, N,

and P showed that forest degradation in these sites altered litter

production, litter quality, and the dynamics of C, N, and P

mineralization. Hampering these critical biogeochemical processes

limit soil fertility and thus the regenerative capacity, productivity, and

ecological complexity of these forests, making them less resilient to

ever-increasing biotic and abiotic disturbances driven by global

change (81).
5 Conclusions

Litter dynamics and nutrient cycling of Nothofagus forests vary

according to their conservation state. Forest degradation by human

disturbances results in different amounts of litterfall, decomposition

rates, and contrasting C, N, and P dynamics. Higher decomposition in

mature Nothofagus forests indicates faster nutrient cycling than in the

degraded forest. Furthermore, nutrient reabsorption in mature forests

suggests a more efficient internal cycle despite their lower litter

quality. On the contrary, low litterfall and low decomposition in

degraded forests indicate an altered ecological functioning, which can

reduce the availability and release of nutrients limiting ecosystem

productivity and regeneration, as well as hindering the provision of

key benefits such as carbon sequestration and nutrient cycling. These

findings support the importance of preserving mature forests to

maintain biogeochemical processes and, thus, the productivity and
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sustainability of terrestrial ecosystems. On the other hand, despite the

recognized importance of litter quality for litter decomposition, we

found that other factors may be co-limiting decomposition rates in

degraded forests, such as changes in microclimatic conditions, which

may also hinder decomposers activity. Highly dynamic C:N:P

stoichiometry of litterfall and litter emphasizes the need for long-

term monitoring of these parameters to fully understand the multi-

elemental cycling during decomposition and transformation of litter

into organic soil horizons.
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