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Multiyear flux datasets are needed to build predictive understanding 17	
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Abstract  19	
  

Forests dominate the global carbon cycle, but their role in methane (CH4) 20	
  

biogeochemistry remains uncertain. We analyzed whole-ecosystem CH4 fluxes from two 21	
  

years, obtained over a lowland evergreen forest in Maine, USA. Gross primary 22	
  

productivity (GPP) provided the strongest correlation with the CH4 flux in both years, 23	
  

with an additional significant effect of soil moisture in the second, drier, year. This forest 24	
  

was a neutral to net source of CH4 in 2011 and a small net sink in 2012. Inter-annual 25	
  

variability in the summer hydrologic cycle apparently shifts the ecosystem from being a 26	
  

net source to a sink for CH4. The small magnitude of the CH4 fluxes and observed control 27	
  

or CH4 fluxes by forest productivity and summer precipitation provide novel insight into 28	
  

the CH4 cycle in this globally important forest ecosystem.  29	
  

Introduction 30	
  

Global forests remove CO2 from the atmosphere at a rate of ~2.4 Pg C per year [Pan et 31	
  

al., 2011]. The role of forests in methane (CH4) cycling, however, has not been well 32	
  

constrained, in part because of difficulties in assessing CH4 fluxes at the landscape scale. 33	
  

Most of what is known about forest CH4 fluxes is derived from chamber measurements at 34	
  

the level of the soil surface, which show that many forest soils are net consumers of 35	
  

atmospheric CH4 [Megonigal and Guenther, 2008]. Globally, CH4-consuming bacteria in 36	
  

terrestrial soils are believed to account for approximately 5% of total CH4 oxidation, the 37	
  

second largest sink of atmospheric CH4 while anaerobic (saturated) soils are strong 38	
  

sources of CH4 [Forster et al., 2007]. The division between what constitutes a CH4 39	
  

producing vs consuming soil is murky with upland soils demonstrated to emit CH4 under 40	
  



certain circumstances [Savage et al., 1997; Whalen et al., 1991; Yavitt et al., 1995; Yavitt 41	
  

et al., 1990] and localized (often discrete) soil flux measurements are difficult to scale up 42	
  

due to their high spatial and temporal variability.  43	
  

Forests with high water tables and organic-rich soils, such as many boreal forests, 44	
  

provide an especially complex picture with dry and wet soil conditions intermixed due to 45	
  

small-scale topographic variability. Such forests have the most potential to produce and 46	
  

emit significant quantities of CH4. In addition, direct interaction of trees with forest CH4 47	
  

emissions have also been posited, either aerobically [Keppler et al., 2006], through 48	
  

internal anaerobic rot [Covey et al., 2012], or with the trees acting as conduits for soil-49	
  

produced CH4 dissolved in the transpiration stream [Nisbet et al., 2009; Pangala et al., 50	
  

2013]. Determining what controls the magnitude and seasonality of forest CH4 fluxes 51	
  

above the canopy will define the roles of forest soils and trees in the global CH4 cycle.  52	
  

Recent improvements in fast-response CH4 analyzers have made it possible to measure 53	
  

ecosystem-scale CH4 fluxes by eddy covariance [Peltola, 2011; Smeets et al., 2009; 54	
  

Wang et al., 2013]. Here we present and analyze the first multi-year eddy covariance time 55	
  

series of CH4 fluxes from a forested ecosystem. The results show that the site was a 56	
  

neutral to small net source of CH4 during 2011 but a net sink during 2012. Importantly, 57	
  

no strong CH4 sources, either from the soils or trees, are indicated by this study.  The 58	
  

strongest correlate for the 4-day averaged CH4 flux dynamics was GPP during both years, 59	
  

with soil moisture accounting for significant variance during dry periods. Our results 60	
  

suggest that multi-year studies will be critical to developing model structures capable of 61	
  

reproducing net fluxes and predicting changes in future CH4 fluxes from forested 62	
  

ecosystems.   63	
  



Methods 64	
  

Site Description 65	
  

Research was conducted at the Howland Forest AmeriFlux site located about 35 miles 66	
  

north of Bangor, Maine, USA (45°15’ N, 68°44’ W, 60 m asl) on forestland owned by 67	
  

the Northeast Wilderness Trust. Howland Forest is a boreal-temperate transition forest, 68	
  

with stands dominated by red spruce (Picea rubens Sarg.) and eastern hemlock (Tsuga 69	
  

canadensis (L.) Carr.) with lesser quantities of other conifers and hardwoods. The soils 70	
  

have never been cultivated and the upland soils are classified as Skerry fine sandy loam, 71	
  

Aquic Haplorthods. Peats have formed in the poorly drained positions dominated by 72	
  

sphagnum. Fernandez et al. [1993], and Hollinger et al. [1999; 2004] have previously 73	
  

described the climate, soils, and vegetation at the site. 74	
  

Flux measurements  75	
  

Fluxes were measured at a height of 29 m with systems consisting of a model SAT-76	
  

211/3K 3-axis sonic anemometer (Applied Technologies Inc., Longmont, CO, USA) and 77	
  

a fast-response CH4/CO2/H2O cavity ring down spectrometer (model G1301-f in 2011 78	
  

and G2311-f in 2012; Picarro Inc., Santa Clara, CA) with data recorded at 5 Hz. The CO2 79	
  

flux measurements were also independently quantified with a co-deployed fast response 80	
  

CO2/H2O infrared gas analyzer (model Li-7200, Li-Cor Inc., Lincoln, NE, USA). In 2011, 81	
  

H2O concentrations measured with the Li-7200 were used for density correction of CO2 82	
  

and CH4 fluxes measured with the G1301-f because that instrument could not output all 83	
  

three concentrations simultaneously. Fluxes were calculated and filtered according to 84	
  

Hollinger et al. [1999; 2004]. In 2012, fluxes were calculated via the same equations and 85	
  

assumptions (600 s time constant running mean filter, double rotation, etc.) using 86	
  



commercially available software (EddyPro version 4, Li-Cor Inc., Lincoln, NE, USA). In 87	
  

both years, the CO2 fluxes were nearly identical between the Picarro and Licor analyzers 88	
  

(Fig S1). The sign convention used is that flux to the ecosystem is defined as negative. 89	
  

Further details on the filtering of the flux data are available in the SI. 90	
  

Environmental Data 91	
  

Profiles of soil temperature and soil moisture were measured hourly at 5, 10, 20, 50, and 92	
  

100 cm using Hydra probes (Stevens Water Monitoring Systems Inc., Beaverton, OR, 93	
  

USA) 20 near the base of the tower. Water table depth was measured using a 94	
  

barometrically compensated pressure transducer (model WL400, Global Water, Gold 95	
  

River, CA, USA) in a shallow well. Solar radiation (photosynthetic photon flux density, 96	
  

PPFD), air temperature, and precipitation were measured from the top of the flux tower 97	
  

as described previously [Hollinger et al., 2004]. We note that the measurement scale for 98	
  

the soil data differs from that of the flux data. 99	
  

Statistical Analyses 100	
  

The half-hourly CH4 flux data were low-pass filtered to give a set of mean fluxes, each 101	
  

representing a 4-day window. This was combined with Monte-Carlo resampling in order 102	
  

to obtain an estimate of the uncertainty on these mean fluxes. Details are available in the 103	
  

SI.  104	
  

We used an Artificial Neural Network (ANN) to characterize the climatic sensitivity of 105	
  

ecosystem-atmosphere CH4 exchange and to estimate annual CH4 budgets. This 106	
  

methodology choice is supported by a recent study showing the effectiveness of ANNs 107	
  

for gap-filling CH4 fluxes [Dengel et al., 2013]. An ANN is an inductive approach based 108	
  



on statistical multivariate modeling [Bishop, 1995; Rojas, 1996] by which one can map 109	
  

drivers directly onto observations [Moffat et al., 2010]. We used a feed-forward ANN 110	
  

with a sigmoid activation function trained with a back propagation algorithm. An 111	
  

ensemble of 100 ANNs was trained both on the hourly and running mean aggregated 112	
  

eddy-covariance CH4 fluxes independently. See SI for description of our 3-stage training 113	
  

process. 114	
  

Results  115	
  

Many variables including GPP, air temperature, PPFD, CO2 flux, and soil moisture and 116	
  

soil temperature at 10 and 20 cm were significantly correlated (Kendall rank correlation, 117	
  

p<<0.01) with the CH4 flux signal in both years, but any combination of these variables 118	
  

explains only a small fraction of the variation in the CH4 fluxes (multiple r2<0.05) at the 119	
  

30 minute time step. The neural network approach was able to explain a maximum of 8-120	
  

10% of the total variability in the data for each year (Fig S3) using a combination of 121	
  

environmental drivers (GPP, air temperature, wind direction, wind speed, relative 122	
  

humidity, soil moisture, soil temperature, and water table depth). The individual driver 123	
  

with the highest explanatory power in the ANN was air temperature in 2011 and GPP in 124	
  

2012. These low correlations emerge because of the large random errors (noise) in the 125	
  

measurement, which argues for the use of statistical approaches for time averaging of the 126	
  

data to reduce uncertainties and permit elucidation of the trends. 127	
  

Averaging the fluxes by time of day, we observed more CH4 efflux during the daytime 128	
  

and more CH4 consumption at night. This pattern was only present during summer 129	
  

months (Fig S4). We used a wavelet coherence analysis as an alternate approach for 130	
  

examining the significance of this diurnal structure. Using this analysis we found 131	
  



coherent periodic behavior in both the CH4 and GPP signals at the 18-28 hour time scale 132	
  

over the summer and early fall seasons, although the time periods when this relationship 133	
  

was significant were intermittent. The coherence between the CH4 flux and GPP signals 134	
  

was stronger than between CH4 flux and air temperature. Due in part to the intermittent 135	
  

nature of the coherence, it was not possible to determine whether CH4 flux lagged GPP, 136	
  

which could potentially indicate a causal relationship. 137	
  

The use of 4-day mean fluxes elucidated the seasonal pattern in the CH4 flux data. CH4 138	
  

fluxes were mostly positive during the summer months, trending negative in the late 139	
  

summer or fall, then remaining consistently negative through the winter months (Fig 1). 140	
  

By comparison, the CO2 fluxes (here processed as GPP) showed the opposite pattern with 141	
  

the highest rates of CO2 uptake during the midsummer, followed by decreasing uptake 142	
  

through the fall into the winter.  143	
  

The spring and summer precipitation patterns differed between 2011 and 2012. While the 144	
  

total annual precipitation measured at the tower was lower in 2011 (870 mm) than in 145	
  

2012 (940 mm), the precipitation during July and August was much greater during 2011 146	
  

than 2012 (224 vs 76 mm). This precipitation change led to a large difference in 147	
  

summer/fall soil moisture between the years (Fig 1). Historical precipitation data 148	
  

(http://www.ncdc.noaa.gov/cdo-web/) from Millinocket station (located ~50 km north of 149	
  

Howland forest) for July and August for 1970-2010 gives a mean (± 1sd) precipitation of 150	
  

200 ± 73 mm for those months combined. In 2011 Millinocket recorded July-August 151	
  

precipitation of 282 mm during 2011, compared with 127 mm for 2012, indicating that 152	
  

2011 was wetter than the 40-yr average whereas 2012 was drier than average.  153	
  



Using a wide selection of variables (air temperature, soil temperature, soil moisture, wind 154	
  

direction, water table depth, relative humidity, and wind speed) the ANN produced a 155	
  

model explaining nearly 65% and 90% of the variability in the 4-day CH4 fluxes during 156	
  

2011 and 2012. However, to reduce the redundancy due to correlations between many of 157	
  

these drivers, we forced the ANN to use GPP and then tested for the additional 158	
  

explanatory power (if any) attained by each remaining driver (Fig 2, S5). GPP was 159	
  

chosen because it was the individual variable with the highest explanatory power in both 160	
  

years. The importance of each driver using this reduced approach is shown in Fig 2. We 161	
  

observe that, in 2011 and 2012 respectively, variation in GPP accounted for 60% and 162	
  

50% of the variability in the 4-day CH4 fluxes. Including soil moisture increases the 163	
  

explanatory power of the model by >10% during 2012 (the drier year) but has negligible 164	
  

influence in 2011 (the wetter year). Therefore, a model using only GPP and 10-cm soil 165	
  

moisture was able to explain ~ 60 and 70% of the variability in 4-d mean CH4 fluxes for 166	
  

2011 and 2012. All other drivers provide negligible improvement to the model fit. This 167	
  

order of importance of drivers was supported by separate linear regression analysis 168	
  

(Table S1). 169	
  

Despite the fact that the principal environmental drivers were the same in both years, 170	
  

models derived from the 2011 fluxes did a poor job predicting CH4 fluxes in 2012, and 171	
  

vice versa (Fig. S6). We also trained the model on the 4-day means from both years 172	
  

together and while the ANN produced a model that explained 40% of the variability in all 173	
  

the data this represented a substantial decrease in goodness-of-fit compared to modeling 174	
  

each year individually. 175	
  



We estimated the annual CH4 budgets for 2011 and 2012 for Howland forest in two 176	
  

ways; using either the ANN or a linear model combined with Monte Carlo resampling. 177	
  

Using the linear modeling approach (Fig S7) we estimate net efflux (mean ± 1sd) of 7 ± 178	
  

4.6 mmol m-2 yr-1 for 2011 and consumption -18 ± 2.7 mmol m-2 yr-1 for 2012. Using the 179	
  

ANN, annual fluxes were 6 ±11 mmol m-2 yr-1 for 2011, and -9 ± 3.7 mmol m-2 yr-1 for 180	
  

2012 (Fig 2). Larger uncertainties were contributed by the first few months of the year 181	
  

due to the absence of measurements to constrain the model during these periods.  This 182	
  

increase in variance was particularly large in the ANN because of its inherently nonlinear 183	
  

structure. Both approaches indicated that the annual CH4 flux in 2011 was small but 184	
  

likely positive while the forest was a net consumer of CH4 in 2012.  185	
  

Discussion 186	
  

The lowland evergreen forest studied was an intermittent source of CH4 to the 187	
  

atmosphere, showing efflux from July through October during 2011, and from June 188	
  

through July 2012 while recording net uptake for the remainder of each year (Fig 1). 189	
  

Using an artificial neural network (ANN), we found that a combination of GPP and 10-190	
  

cm soil moisture was able to explain 60 and 70% of the variability in 4-d mean CH4 191	
  

emissions for 2011 and 2012 individually (Fig 2), while use of all the drivers resulted in a 192	
  

model explaining nearly 90% of the variability during 2012 (the maximum explainable 193	
  

variance in 2011 is just above 60%). Additionally, a diurnal cycle was present in the CH4 194	
  

flux signal during the summer and fall that was consistent with that observed in GPP. The 195	
  

ANN, supported by linear modeling, consistently found GPP to be a stronger correlate of 196	
  

the 4-day mean CH4 fluxes than air temperature.  197	
  



Gross primary production is highly correlated with a wide variety of other environmental 198	
  

parameters, such as air temperature, PPFD, and soil temperature, and it could be argued 199	
  

that GPP is driving CH4 emissions only indirectly through cross-correlations. The a priori 200	
  

assumption would be that CH4 fluxes are controlled by soil moisture [Adamsen and King, 201	
  

1993; Castro et al., 1994; Castro et al., 1995] due to the dependence of both CH4 202	
  

oxidation and CH4 production on soil diffusivity (through O2 availability) with 203	
  

temperature being a secondary controlling variable [Castro et al., 1995] due to the 204	
  

positive influence of temperatures on reaction rates (positive Q10 values). However, both 205	
  

the neural network and linear modeling approaches found GPP to be the stronger 206	
  

predictor of CH4 emissions when treating each year individually, or together, with soil 207	
  

moisture only important during 2012.  208	
  

There are several mechanistic reasons why changes in GPP may lead to changes in CH4 209	
  

emissions. First, CH4 production rates have been linked to photosynthesis through root 210	
  

exudation in some wetlands [King and Reeburgh, 2002]. Carbon isotope studies have 211	
  

shown that most CH4 released from wetlands is derived from “new carbon” rather than 212	
  

from dissolved soil organic matter [Chanton et al., 1995] . In a rice paddy, wavelet 213	
  

coherence analysis found the diurnal cycle in CH4 emissions to be driven by GPP [Hatala 214	
  

et al., 2012]. However, trees may also be influencing the seasonal and diurnal cycle if 215	
  

dissolved CH4 is emitted through transpired soil water [Nisbet et al., 2009], such that 216	
  

GPP could be more proxy than mechanism. It is more difficult to directly connect CH4 217	
  

oxidation and GPP, although microbial priming could link these processes. In this case, 218	
  

carbon leakage from the roots of trees and other plants increases total microbial activity; 219	
  

because many CH4 oxidizing bacteria are capable of consuming a wide variety of 220	
  



methylated substrates their population dynamics could respond to overall soil carbon 221	
  

degradation rates, leading to higher rates of CH4 oxidation linked to increased soil 222	
  

respiration activity. We interpret these results as indicating a significant role for GPP in 223	
  

influencing CH4 flux, both in its high frequency and low frequency variability although 224	
  

we acknowledge that the mechanism is not yet clear. 225	
  

The role of soil moisture in forest CH4 flux may involve a threshold: once volumetric soil 226	
  

moisture exceeds some level (here ~0.1WFV), there are sufficient anoxic pore spaces to 227	
  

support CH4 production near the surface and correlations become weak, while below this 228	
  

threshold, soil moisture is an important factor controlling the balance between CH4 229	
  

production and CH4 oxidation. It is also possible that the lower correlations are a result of 230	
  

spatial variability in soil moisture over the tower footprint related to the small-scale 231	
  

topography that was not captured by this study. However, the trends of drying and 232	
  

wetting, also observed in the precipitation data, would be expected to be felt to some 233	
  

degree throughout the landscape. Overall, we found soil moisture had a smaller overall 234	
  

influence than GPP but remains important under drier conditions.  235	
  

Despite the high correlations of a model using GPP and soil moisture to the data in each 236	
  

year, the explanatory power of these models diminished almost to zero when applied to 237	
  

data on which the model was not trained (Fig S6). Similar challenges have been observed 238	
  

with modeling CH4 fluxes [Mastepanov et al., 2012; Moore et al., 2011; Treat et al., 239	
  

2007], as well as CO2 fluxes [Richardson et al., 2007] from a variety of environments. 240	
  

Net CH4 emission is the result of two processes acting in opposition – CH4 production 241	
  

and CH4 oxidation, and it appears that a correlative model based on emissions may lack 242	
  

the appropriate structure needed to extrapolate fluxes over longer timescales, despite 243	
  



success over shorter timescales. Achieving an appropriate model structure and 244	
  

complexity is necessary for improving the CH4 components of larger earth-system 245	
  

models and predicting natural CH4 emissions from forests under changing environmental 246	
  

conditions. Multiple years of flux measurements under a range of conditions will be 247	
  

needed to accurately characterize the climatic and physiological dependence of forest 248	
  

CH4 fluxes. Experimental methods combining ecosystem-scale flux measurements, soil 249	
  

chamber flux measurements, and soil-gas profiles may also provide needed insight into 250	
  

the mechanistic controls driving both the sign and magnitude of CH4 flux.  251	
  

In the context of the overall climate impact of greenhouse gas fluxes at this site, the CH4 252	
  

fluxes are small contributors (see SI) relative to the total CO2 uptake. This contrasts with 253	
  

other ecosystems, such as boreal wetlands where the climate impact of CH4 fluxes can be 254	
  

larger than the climate benefit of their CO2 uptake [Whiting and Chanton, 2001].  255	
  

Conclusions 256	
  

We provide the first multi-year set of CH4 fluxes measured by eddy-covariance over a 257	
  

forested ecosystem. Multi-year data sets of CH4 fluxes capturing a wide variety of 258	
  

environmental conditions are critical to developing model structures that are capable of 259	
  

adequately predicting future CH4 fluxes. GPP provided the strongest correlation with the 260	
  

calculated 4-day mean CH4 fluxes during each year. Including soil moisture as a driver 261	
  

for CH4 production improved the fit of the model only during 2012, which had a drier 262	
  

than average summer. Despite the potential for CH4 efflux from this temporate-boreal 263	
  

transition site, our observations suggest that neither the soils nor trees are large sources of 264	
  

CH4 from the forest to the atmosphere.	
   This study finds evidence for a link between GPP 265	
  



and CH4 flux, and a small sink/source transition controlled by summer hydrologic 266	
  

conditions. 267	
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Figure Legends 364	
  

Figure 1: The 4-day running mean CH4 fluxes (open circles) with 4-day mean GPP (grey 365	
  

stars) and volumetric soil moisture at 10 cm (black squares). Data from 2011 is shown in 366	
  

the top panel against data from 2012 in the lower panel. The dotted black line highlights 367	
  

the line of 0 flux, above which the forest is a net source of CH4 to the atmosphere and 368	
  

below which the forest is a net sink for CH4. 369	
  

Figure 2:  Results from the ANN for both years, with the top panels indicating the 370	
  

importance of various environmental drivers contributing to the model. Each 371	
  

environmental driver is shown separately with the black portion of the column indicating 372	
  

the additional predictive power this driver gives the model when combined with GPP (the 373	
  

grey portion of the column). The horizontal dotted lines indicate the maximum attainable 374	
  

predictive capacity if all drivers are used simultaneously.  The bottom panels show the 375	
  

ANN modeled fluxes for the entire year (black lines) ± 1 sd (vertical bars). 376	
  


