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Forest Fire Monitoring Using Multiple Small Unmanned Air
Vehicles

David W. Casbeer Sai-Ming Li
Randal W. Beard Raman K. Mehra

Timothy W. McLain Scientific Systems Company, Inc.
Brigham Young University

Abstract— Frequent and detailed updates of the develop-
ment of a forest fire are essential for effective and safe fire
fighting. Since a forest fire is typically inaccessible by ground
vehicles due to mountainous terrain, small Unmanned Air
Vehicles (UAVs) are emerging as a promising solution to
the problem of monitoring large forest fires. In this paper
we present an effective path planning algorithm for a UAV
utilizing infrared images that are collected on-board in real-
time. In order to demonstrate the effectiveness of our path
planning algorithm in realistic scenarios, we implemented
the forest fire propagation model EMBYR to simulate the
time evolution of a typical forest fire. We also introduce a
new cooperative control mission concept where multiple Low-
Altitude, Short-Endurance (LASE) UAVs are used for fire
monitoring. By simultaneously deploying multiple UAVs, the
effectiveness of the mission in terms of information update
rate can be improved dramatically.

I. I NTRODUCTION

Forest fires cause billions of dollars in damage to property
and the environment every year. To combat forest fires effec-
tively, their early detection and continuous tracking is vital.
With the help of advanced image processing techniques,
many methods have been developed to detect a forest fire in
remote regions using satellite images [1], [2]. Such images
are typically taken by low earth orbiting satellites with an
orbital period of about ten hours, and with a resolution that
is only sufficient for fire detection. However, fire fighters
need frequent and high-quality information updates of a
fire’s development in order to conduct an effective and
safe fire fighting mission. Because forest fire monitoring
is a difficult task, fire fighters often have to enter a fire
region with little knowledge of how and where the fire is
propagating, placing their lives at risk. For these reasons,
there is an urgent need to develop more effective fire
monitoring technologies.

Low-altitude, short-endurance (LASE) UAVs are ex-
pected to be a key technology for closing the fire monitoring
gap. Flying at low altitude, these UAVs can capture high
resolution imagery and broadcast frequent updates to fire
crews. NASA is actively pursuing this possibility with
ongoing research projects aimed at tracking the growth
of fires using LASE UAVs [3]. However, a number of
challenges have to be solved before LASE UAVs can be
used for fire monitoring. First, with the fire growing and
changing directions, UAVs need to be able to plan their path
using limited real-time information. Second, LASE UAVs
typically cannot carry enough fuel to endure a long fire

fighting mission, which means the UAV needs to have the
intelligence to know when to return to base for refueling.
Furthermore, for large forest fires, the information update
rate may still be too low if only a single LASE UAV is
employed.

In this paper we present an effective path planning
algorithm for UAVs tasked to monitor a forest fire. In
order to demonstrate the effectiveness of our path planning
algorithm in realistic scenarios, we implemented the forest
fire propagation model EMBYR in Simulink to generate
the time-evolution of a typical forest fire. Then we use this
model to verify our path planning algorithm in a simulated
forest fire scenario. We also introduce a new cooperative
control mission concept utilizing multiple LASE UAVs to
monitor the perimeter of the fire. By deploying multiple
UAVs at the same time, the effectiveness of the mission in
terms of the information update rate can improve dramati-
cally. On the other hand, new problems such as determining
how to coordinate the paths of the UAVs to cover the most
critical spots, when and which UAV should be taken down
for refueling, and how to measure the performance of the
entire fleet of UAVs, must be addressed.

The paper is organized as follows: The fire monitoring
problem is described in SectionII , followed by a descrip-
tion the fire simulation model in SectionIII . SectionIV
describes the fire perimeter tracking algorithm used, with
simulation results. SectionV describes our cooperative
control approach using a simplified scenario where the fire
is assumed to be of circular shape. Finally, SectionVI
concludes the paper with comments on future work.

II. PROBLEM STATEMENT

Figure 1 shows the forest fire monitoring scenario con-
sidered in this paper. The orange pixels represent the areas
where fire is burning, while the area enclosed by them
represents the burnt area. A base station, represented by
the red truck in Figure1, sends out a UAV to monitor the
propagation of the fire. The objective for the UAV is to
image the perimeter of the fire, and to upload the location
of the fire perimeter (with associated imagery) to the base
station as frequently as possible.

The fire will spread in an unknown fashion, which means
the UAV cannot follow a pre-planned path. The UAV
is assumed to be equipped with an infrared camera that
captures images of a small region beneath it at regular
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Fig. 1. Fire monitoring scenario.

sampling instants, indicated by the blue rectangle in Fig-
ure 1. The UAV can use the infrared images collected for
navigational purposes. The UAV is also assumed to have
limited communication range, which means it cannot upload
data to the base station unless it is within range of the
station. Finally, the UAV is assumed to have limited flight
range, which implies that it must return to the base station
for refueling after flying for a certain amount of time.

To compare various fire monitoring algorithms, two sim-
ple performance metrics are used. Two perpendicular lines
crossing at the geometric center of the fire define four points
(C1, C2, C3, C4) around the periphery of the fire. The first
metric is the update frequency from each checkpoint. The
second metric is the time delay required to relay information
from each checkpoint to the ground station.

III. F ORESTFIRE PROPAGATION MODEL

According to [4] the three main types of models used
in computer simulation of forest fires are bond percolation,
cellular automata, and elliptical wave propagation.

Bond percolation is a probabilistic technique that divides
the terrain into a grid with each element of the grid
having defined properties such as moisture, elevation, and
fuel type. The fire will spread from one cell to the next
with a probability determined by these properties and the
direction and speed of the wind [4]. An instantiation of this
technique is the EMBYR (Ecological Model for Burning in
the Yellowstone Region) model [5], [6].

Similar to bond percolation, the cellular automata tech-
nique divides the region into a grid with each cell having
certain properties. But instead of spreading according to a
probability, the fire will spread according to the cell’s initial
state, the state of neighboring cells, and the predefined prop-
erties of the cell [4]. Two instantiations of this technique
are the DYNAFIRE [7] and FIREMAP [8] models.

The last method makes use of a continuous terrain and
is referred to as elliptical wave propagation. This method

divides the perimeter of the fire into equally spaced dis-
crete points [4]. According to Huygen’s principle, the fire
will spread elliptically away from each point [9]. Both
the WILDFIRE [10] and FARSITE [11] models use this
technique.

The EMBYR model [5], [6] was chosen for this study
because it is straightforward to implement and it produces
simulations that closely resemble the propagation of actual
forest fires.

A. The EMBYR Model

The EMBYR technique divides the landscape into a
lattice of cells, in which single or multiple fires may
be ignited. The fire propagates according to independent
stochastic events at every time step. The fire can spread in
a time step by two methods: diffusion from one cell to an
adjacent cell or by firebrands being thrown to distant cells.
The probability of spread as well as the rate of occurrence
for firebrands are a function of the strength and direction
of the wind and the combustibility of fuel types due to fuel
moisture content.

1) Diffusive spread:The fire will spread from one cell to
any of eight adjacent unburned cells with probabilityI [5],
[6], (0 ≤ I ≤ 1) in a given time step. It was found in [5]
that forI ≤ 0.6 the probability of diffusion does not need to
be adjusted for diagonal neighbors because of the increased
distance.

2) Wind and Slope Effects:Both the effects of wind [5]
and elevation [12] on the probability of diffusive spread
I are modeled using a binomial distribution. The parameters
bwj or bsj represent the bias value for wind and slope (ele-
vation change) respectively. The bias value is determined by
the direction of either wind or slope. The new probability
of fire spread is found byij = 1 − (1 − I)bxj , where the
subscriptx is used to indicate either wind or slope. The
bias valuebwj is found for wind as shown in Figure2. The
bias value is adjusted in the direction of wind as well as
the two adjacent directions.
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Fig. 2. With the direction of the wind indicated at the top of the
figure, the wind bias is determined by the relative weight indicated
in the figure where WS0 represents zero wind and WS2 represents
strong wind conditions.

The bias due to elevation change is found bybsj =
2(s/smax). Wheres is the slope from the burning cell to the
neighboring cell, andsmax is the value ofs which the fire
diffusion probability is a maximum. According to Hargrove
[12] a good estimate issmax = 1 or a slope of 45 degrees.



3) Firebrands: Firebrands are carried by updrafts due
to the heat of the fire. The number of firebrands produced
by a cell depends on its fuel moisture class and fuel type.
The distance traveled by the firebrands increases with wind,
and the likelihood of the targeted cell igniting depends on
its fuel type and moisture class.

B. Simulated Fire Snapshots

The original EMBYR code is written in FORTRAN and
C and is available online [13]. The essential parts of the
model have been rewritten in MATLAB for this study. This
code was run 100 times and averaged to achieve the four
simulations shown. The landscapes are 400 cells wide each
with constant a moisture class and each cell’s fuel type
was generated randomly. In Figure3, the black regions
represent areas that have already burned, the yellow and
orange colored areas are currently on fire, and the outside
green colored regions are unburned.

We define the maximum speed of the UAVs to beVmax ,

30 mph = 13.4 m/sec. GivenVmax, it will take 8.7 min for
an UAV to travel 7 km. We also define a circle with a radius
of 100 cells to have a circumference of 7 km, which makes
one cell 11.1 m wide. To define the length of a time step
(Tstep), we let the maximum speed of the fire beVfmax = 10
mph = 4.47 m/sec. Because the fastest moving fire advances
at about 80 cells per time step each time step is found to
beTstep≈ 200 sec.

Figure 3 represents a fire on flat ground with no wind
with the fire starting in the center of the image. In theory
it would burn in the shape of a pure circle if there was a
uniform fuel type. It is burning outward from the original
ignition point at a rate of about 0.12 m/sec or 0.56 km/hr.

(a) t = 3800 sec (b) t = 9800 sec (c) t = 15800 sec

Fig. 3. Fire simulation on flat land with no wind. The black pixels
represent burned land, the orange and yellow pixels are areas currently on
fire, green represents unburned area.

In high wind situations the fire spread takes an elliptical
pattern as shown in Figure4 with the fastest front moving at
about 10 m/sec. Here the fire was ignited from the bottom
left.

(a) t = 2800sec (b) t = 6800sec (c) t = 10800sec

Fig. 4. Fire simulation of high wind conditions with an elevation gradient.
The The fire spreads in the direction of the wind.

These simulations are realistic enough to allow the study
of fire perimeter tracking schemes using single and multiple
UAVs.

IV. PATH PLANNING ALGORITHM

In this section, we consider the fire perimeter tracking
problem for one UAV. We assume each UAV is equipped
with an infrared camera and the on-board processing ability
to detect a fire edge in the image using either gradient
operators [14] or a thresholding method [15], [16] on the
most intense part of the fire. Further analysis of actual
infrared forest fire images is needed to identify a robust
method of detecting a forest fire’s perimeter, and is beyond
the scope of this paper.

There are four coordinate systems used in this paper. A
vector’s coordinate frame can be discerned from its sub-
script as follows: subscriptsi, v, b, andc denote respectively
the inertial, vehicle, body, and camera frames. If there is a
p present in the subscript this is to denote that this point is
the location of the UAV in the respective coordinate frame.

The following control algorithm relies on the UAV’s
current position, heading, and pixel coordinates belonging
to the fire edge. It is also assumed that the image processing
algorithm identifies which side of the edge is burning. In the
camera frame we define thex-axis to be forward looking,
with the y-axis out the right wing, andz-axis pointing out
the belly of the UAV with the origin at the center of the
image.

The camera has a view angle of 30 deg and is forward
looking in thexz-plane with respect to thez-axis by θc

degrees and produces a picture of sizeip × ip pixels. Here
ψ is the heading of the UAV, which is flying at a constant
altitude ofh in meters by means of an autopilot [17]. The
camera is kept at this angle with the use of pan and tilt
gimbal control [18], [19].

Given these definitions the UAV will be be able to view
the ground (assuming flat land)Df meters forward andDr

meters in reverse, where

Df = h tan(15 deg− θc) (1)

Dr = h tan(15 deg+ θc) . (2)

Letting the center of the image be the origin, the projected
location of the UAV in the image is determined to be

xpc =

[

xpc

ypc

]

=

[

−
ip

2 + Dr

k
0

]

, (3)



wherek = Dr+Dr

ip
is a scaling factor with units of m/pixel.

We can transform a pointxc in the camera frame toxi

in the inertial frame by,

xi = Rb→vk(xc − xpc) + xpi , (4)

whereRb→v is a rotation matrix given by,

Rb→v = R
−1
v→b =

[

cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

]−1

(5)

and xpi is the UAV’s position in the inertial coordinate
frame.

We next describe the path planning algorithm. We assume
that image processing stage passes along an image of the
fire’s edge points along with a label telling us which side
of the perimeter is on fire. It is important that we have this
second piece of information since folds in the perimeter and
sharp edges would cause problems.

The first step is to approximate the fire edge by a straight
line. This will help smooth the path of the UAV if there are
lakes, rivers, or boulder fields that cause gaps in the fire
edge as well as help with noise in the image. We note as
a reminder that in the camera frame the y axis is aligned
horizontally and the x axis is vertical. Thus the parameters
for the straight linexc = ayc + b are determined by the
Least Square estimate:

[

a
b

]

= (Y⊤

c Yc)
−1

Y
⊤

c Xc (6)

where the first column of the matrixYc consists of they
coordinates of the perimeter pixels and the second column
is ones.Xc is a vector ofx coordinates of fire edge pixels.
If the matrix (Y⊤

c Yc)
−1 has a large condition number

(i.e., the line is almost parallel to the x-axis), we find
the line by averaging they values, giving the equation
yc = 1

N sum(Yc), where the function sum(·) is simply the
element-wise summation of the vector.

The essence of our path planning algorithm is to place
waypoints along the desired path based on the approximated
fire perimeter, and let the autopilot determine the control
required to reach the waypoints. At every time instant, a
waypoint is placed ahead of the UAV at a fixed distance
from the straight line that approximates the fire perimeter.
More precisely, let direction parameterdp = −1 if the UAV
is to follow a counterclockwise path, anddp = 1 if the path
is clockwise. Letθ = tan−1(|a|), which is the absolute
angle of inclination of the approximated fire perimeter. If
θ ≤ 45 deg we will refer to the fire as being above or below
the line. Similarly, forθ > 45 deg, the fire will be referred
to as being to the left or to the right (in the camera frame)
of the line. If the fire is below or to the right of the line
we will assign direction parameterdf = 1, otherwise we
will assigndf = −1. The variablesdf anddp are used to
determine the direction to move the next waypoint.

The next waypoint is determined according to thetaθ.
This waypoint is then converted from the camera frame to
the inertial frame so the autopilot can determine a good

path to the waypoint. Whenθ ≤ 45◦ the next waypoint
[xdc, ydc]

⊤ is:
[

xdc

ydc

]

=

[

aydc + b+ dfdx

ypc + dfdpdy

]

(7)

wheredy is measured as the distance along they axis from
the current plane’s location and the next waypoint (i.e.,
dy = |ypc −ydc|). dx is the distance from the approximated
fire perimeter to the next waypoint measured along the
x axis. Visually the effects ofdf , dp, dy, and dx can be
seen in Figure5. Here the plane is flying counterclockwise
thus dp = −1 and since the fire is above the perimeter
approximationdf = −1. From equation7 we see the next
waypoint will move in the positive y direction from the
plane’s location sincedfdp = 1 and the waypoint will
be located below the fire perimeter approximation because
df = −1. In simulations, we have useddy = 9 pixels and
dx = 13.5 pixels.

Fig. 5. θ ≤ 45◦. UAV is flying counterclockwise, with the fire above
the fire edge. Next waypoint is shown as[xdc, ydc]

⊤.

Whenθ > 45◦ the next waypoint is:
[

xdc

ydc

]

=

[

xpc + dfdpdx

(xdc − b)/a− dfdy

]

. (8)

In Figure6 the plane is flying clockwise yeildingdp = 1.
The fire is found on the right of the fire edge approximation
making df = 1. The next waypoint moves a positive
distance ofdx along thex axis sincedf = dp = 1 in
equation8 and becausedf = 1 is subtracted, the waypoint
is moved to the left of the fire edge bydy . For simulations,
dx = 9 pixels anddy = 13.5 pixels.

V. FIRE MONITORING USING MULTIPLE-UAV S

The problem addressed in this section will be the develop-
ment of a centralized scheme in which a number of UAV’s
cooperate to pass information concerning a burning fire to a
base station, as frequently as possible, with minimum delay.
A brief discussion of a decentralized solution will then be
given. The UAVs are assumed to have a communication



Fig. 6. |a| > 45◦. UAV is flying clockwise, with the fire burning to the
right the fire edge. Next waypoint is shown.

radius of 3 to 5 km which could be significantly reduced in
mountainous regions where these UAVs will be used. The
region enveloped by the forest fire is much larger, in the
neighborhood of 1000 acres or greater, which is equivalent
to a circle with a circumference of at least 7 km.

Before proceeding, a few definitions are needed. To
simplify the problem for study, the fire is assumed to be
a spreading circle with radiusR. We will be using the fire
center as the origin of an inertial coordinate frame (i.e.,X
is north,Y is east, andZ points into the ground). There
is a single base station located atpb = [xb yb]

⊤ where the
data needs to be delivered. There are an even number of
UAVs, N of which are labeled with odd numbers and the
remainingN UAVs are labeled with even numbers. They
are traveling at a constant velocityVm and are assumed to
have the ability to follow the edge of the fire using a vision
guidance system.

Since the fire perimeter is moving, it is important that
the UAVs can track the edge of the fire autonomously.
This allows the explicit path along the fire perimeter to
be eliminated from the coordination effort. For example,
rendezvous points on the fire edge for the exchange of
data do not need to be specified, the rendezvous angles (θi,
i = 1, . . . , 2N ) with respect to the center of the fire can be
used. In this paper, we will measureθi counterclockwise
with respect to east, where the subscripti has been used to
distinguish between different rendezvous angles for other
sets of UAVs. The UAVs will then follow the fire perimeter
until they reachθi.

Due to the communication constraint it is evident that the
UAVs must either individually deliver the data collected
to the base station or pass the data to another UAV that
subsequently transmits this information to the base station.
The data is considered delivered when the UAV passes the
line segment connecting the origin and the base station or
whenθpi = θb whereθb is the angle of the base station and
θpi is the angle of UAVi both measured counterclockwise
with respect to East.

To measure the performance of the fire monitoring al-
gorithm, we assign four checkpoints at equidistant points
along the perimeter of the fire (c1 (East) to c4 (South)
in Figure 7). The base station will be located at c1 or
θb = 0. Information about each checkpoint is acquired
when a UAV passes over this location and information is
exchanged when two UAVs are at the same location on the
fire perimeter. Two metrics will be monitored: the update
frequency for each checkpoint and the maximum delay
to relay information to the groundstation for any of the
checkpoints. Three cases will be analyzed: single UAV, two
UAVs, and greater than two UAVs.

Fig. 7. c1 is East while c2 is North

A. Case 1: Single UAV

This is the trivial case where the best way to monitor the
fire is to follow the perimeter in a single direction. It will
take

T =
2πR

Vm
(9)

seconds to cover the entire fire perimeter once. Hence the
update frequency for all checkpoints at the base station is
1/T Hz.

For all checkpoints, the maximum delay of information
for the UAV is equal toT , as the UAV reaches each of them
only once each cycle. The maximum delay of information
for the base station, which is located at checkpoint 1, is
also equal to 7T /4 for c2 (assuming the UAV travels in the
counter-clockwise direction).

B. Case 2: Two UAVs

In this case, the optimal strategy is to have the two UAVs
start from opposite ends of the fire, and travel in opposite
directions. When they meet, they can either continue in
the same direction, or synchronize their data and reverse
direction. Both strategies yield the same performance in this
case. However, in the next case whereN > 1, the latter
strategy proves more efficient. Hence we will consider this
strategy here as well.



Fig. 8 shows the angular positions of the two UAVs
versus time. In this simulation we chooseVm such that
T = 12 sec. Since the UAVs turn around whenever they
meet, each UAV only covers half of the circle (UAV 1
covers (−π

2 ,
π
2 ), while UAV 2 covers (π2 ,

3π
2 ). We will label

the two rendezvous angles byp1rv = π
2 and p2rv = 3π

2 .
The rendezvous times at these two points are,

t1rv = (2k + 1)T + to

t2rv = 2kT + to, k = 0, 1, 2, . . .

whereto, the initial rendezvous time is set to 3 sec.

Fig. 8. Two UAV angular position

Fig. 9. Two UAV data delay from checkpoints: top left (c1), top right
(c2), bottom left(c3), bottom right (c4). The solid line is the amount of
time since UAV 1 has been updated with data from that checkpoint, while
the dashed line is the amount of time delay since the base station has been
updated.

Fig. 9 shows the amount of time passed since the base
station and UAV 1 were last updated with the data from
the corresponding checkpoint. Notice that except for check-
point 1, which coincides with the base station, the data’s

delay at the base station for all the checkpoints is always
greater than or equal to the delay for UAV 1. This is because
UAV 1 obtains updates of the other checkpoints through
UAV 2 from time to time. However, until UAV 1 returns to
c1, the base station will not have any updates.

As can be seen, the maximum delay (15 sec) of data for
the base station occurs from checkpoints 2 and 4. Ironically,
the maximum delay for checkpoint 3, which is the farthest
from the base station, is smaller (12 sec). The update
frequencies for data on checkpoints 1 and 3 has doubled
to 2/T Hz compared to the single UAV case, while those
for checkpoints 2 and 4 remain at 1/T Hz.

C. Case 3:2N UAVs,N > 1

In this case, the optimal strategy is to start at equidistant
points around the perimeter of the fire. Alternate UAVs are
assigned to two groups (odd or even). The two groups travel
in opposite directions until meeting at rendezvous angles
pirv = (2i+1)π

2N , i = 0, . . . , 2N−1. When UAVs meet, they
turn around and travel in the opposite direction. Notice that
odd subscripted rendezvous ideally occur simultaneously,as
well as the even:

tiorv = (2k + 1)T + to

tierv = 2kT + to, k = 0, 1, 2, . . .

whereio indicates odd values in the rangei = [0, . . . , 2N−
1] and ie indicates even values in the same range. In this
exampleto = 1.5 sec.

Fig. 10 shows the angular position of the UAVs against
time when four UAVs are used to track the fire perimeter.
The trajectories are similar to those in the two UAV case
except the portion of fire covered by each UAV is halved.
Figure 11 shows the delay of data from each checkpoint
on both UAV 1 and the base station. The frequencies of
update for checkpoints 1 and 3 are both 4/T Hz, while
those for checkpoints 2 and 4 are 2/T Hz. The maximum
delay for checkpoint 3 is 9 sec, or 3T /4 sec at the base
station, which is a significant improvement from the two-
UAV case. Maximum delays for other checkpoints are also
shorter in this case.

Figure12 shows the delay of data from each checkpoint
for both UAV 1 and the base station when eight UAVs are
deployed. The frequencies of update for checkpoints 1 and
3 are both 8/T Hz, while those for checkpoints 2 and 4
are 4/T Hz. The maximum delay for checkpoint 3 is 7.5
sec, or 5T /8 sec at the base station, which is a significant
improvement over the two-UAV case.

In general, when2N UAVs are deployed, each UAV only
needs to cover an angle of2π/(2N ) along the perimeter.
For checkpoint 1, which coincides with the base station
and lies in the midpoint of the path of UAV 1, the time
between visits isT /2N . Hence the update frequency of
checkpoint 1 is2N /T Hz. For checkpoints 2 and 4, we
can expect the update frequencies to be half of that for
checkpoint 1 atN /T Hz, as UAV 1 gets updates from those
checkpoints only once instead of twice per cycle. Finally,



for checkpoint 3, since it lies directly across checkpoint 1
and UAVs from both sides of the fire can communicate its
updates to UAV 1, its update frequency is twice that of
checkpoints 2 and 4, at2N /T Hz.

Under the scheme described above, the data at each
checkpoint can be relayed to the base station in minimum
time, i.e., the time it takes for a UAV to travel from the
checkpoint to the base station. The maximum delay for each
checkpoint at the base station consist of two components:
(i) the time it takes for the data to travel between the check-
point and the base station; (ii) the time between updates for
that checkpoint at the base station. The first component for
checkpoints 2 and 4 areT /4, while that for checkpoint 1
is T /2. The second component for checkpoints 2 and 4 are
2×T/(2N) = T/N , as it takes UAV 1 two cycles to update
those checkpoints at the base station. For checkpoint 3, the
corresponding time isT/(2N). In summary, the maximum
delays for checkpoints 2 and 4 are

δ2,4 =
T

4
+
T

N
(10)

and that for checkpoint 3 is

δ3 =
T

2
+

T

2N
. (11)

This can be verified from Figures9 through12.

Fig. 10. Four UAV angular position

Notice, ifR, T , andto are known, the centralized solution
for UAV cooperative fire monitoring in the steady state is
known. Real fires will tend not to be circular due do wind,
elevation changes, and fuel availability as was shown in
sectionIII . Also, due to the concave nature of a forest fire
there might be multiple locations on the fire edge that yield
the same angle for a given fire center. Assuming the UAVs
can calculate distance traveled, we can measure the distance
(L) from the base station along the perimeter as our measure
instead of the angle. Here we would useL = 0, . . . , P
(whereP is the perimeter length) rather thanθ = 0, . . . , 2π.
This allows the explicit path to be decoupled from the
coordination effort.

Fig. 11. Four UAV data delay from checkpoints: top left (c1),top right
(c2), bottom left(c3), bottom right (c4). The solid line is the amount of
time since UAV 1 has been updated with data from that checkpoint, while
the dashed line is the amount of time delay since the base station has been
updated.

Fig. 12. Eight UAV data delay from checkpoints: top left (c1), top right
(c2), bottom left(c3), bottom right (c4). The solid line is the amount of
time since UAV 1 has been updated with data from that checkpoint, while
the dashed line is the amount of time delay since the base station has been
updated.

Once a pair of UAVs has met after traveling around the
circumference of the fire, the perimeter lengthP and time
of travel T (assuming constant velocity) will be known.
These values will then be constantly updated to each UAV
(with delays for each UAV similar to the examples above).
With the UAV locations specified (under the condition
that P is updated frequently enough for each plane), the
initial rendezvous time for the UAVs,to, could then be
determined using a cooperative timing [20] or consensus
based approach [21].



VI. CONCLUSIONS ANDFUTURE WORK

A vision based fire perimeter tracking algorithm has
been shown to work effectively on simulated forest fires.
This allows a UAV to follow the edge of a forest fire
autonomously to obtain images and data concerning the
spreading fire. It can be seen that by incorporating multiple
UAVs, updates to fire fighters concerning the location and
growth of a forest fire can be made more frequently and
with greater detail.

While the approach presented has promise, numerous
technical issues remain to be resolved including determi-
nation of the initial rendezvous time, dealing with fuel
contingencies and refueling, implementation with irregular
and growing fire shapes, and determining factors that allow
the perimeter length to be updated frequently enough.
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