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Abstract: Recurring forest fires disturb ecological balance, impact socio-economic harmony, and
raise global concern. This study implements multiple statistical and weighted modelling approaches
to identify forest fire susceptibility zones in Eastern India. Six models, namely, Frequency Ratio
(FR), Certainty Factor (CF), Natural Risk Factor (NRF), Bivariate statistical (Wi and Wf), Analytical
Hierarchy Process (AHP), and Logistic Regression (LR) were used in the study. Forest fire inven-
tory (2001 to 2018) mapping was done using forest fire points captured by the MODIS (Moderate
Resolution Imaging Spectroradiometer) sensor. Fire responsible components, namely, topography
(which has four variables), climate (5), biophysics (8) and disturbance (4) were used as inputs to
the modelling approaches. Multicollinearity analysis was carried out to examine the association
and remove the highly-correlated variables before performing the modeling. Validation of model
prediction levels was done using Area Under the Receiver Operating Characteristic Curve (ROC
curve-AUC) value. The results reveal that the areas with west and southwest orientations, and
moderate slope demarcate higher susceptibility to forest fire. High precipitation areas with lower
temperature but ample solar radiation increase their susceptibility to forest fire. Mixed deciduous
forest type with ample solar radiation, higher NDVI, lower NDWI and lower TWI values exhibits
higher susceptibility. Model validation shows that LR (with AUC = 0.809) outperforms other models
used in the study. To minimize the risk of fire and frame with proper management plans for the study
area, susceptibility mapping using satellite imageries, GIS technique, and modelling approaches is
highly recommended.

Keywords: forest fire susceptibility; spatial mapping; statistical modelling; prediction; validation

1. Introduction

Globally, fires are a recurring event in forests [1], resulting in global ecological im-
pact [2] and local to regional socio-economic challenges [3]. In addition, they are an
important agent for changing the pattern of forest composition and structure [4,5] and
environmental hazards resulting in negative impacts on atmosphere, infrastructure, and
human well-being [6–9]. In the Indian context, black carbon emissions from forest fires
alter the surface albedo and increase snow melt from the Himalayan mountains [10]. Forest
managers, climate modelers, policy makers, and the scientific community are interested in
forest fire susceptibility mapping [11] through an evidence-based approach to explain the
fatal consequences of fire [3] and future scenarios of fire prone environments [12]. Such
information is much needed in contemporary times, as it regulates negative consequences
on potentially affected groups and helps conservation and restoration activity [6,13]. This
supports the respective agencies in resource distribution, early warning systems, emer-
gency services, and forest management and planning [4]. Hence, the prediction of forest fire
susceptibility with better accuracy and enhancement of fire mitigation plans are a priority
in order to enhance sustainable development.
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This need has been brought about by the development of various prediction models,
which have focused on explaining spatio-temporal patterns that relate different components
(topography, climate, biophysics and disturbances) with ignition arson wildfires [12]. The
Geographical Information System (GIS) provides means to manipulate spatial information
on the components that contribute to forest fire occurrence for generations on the forest
fire susceptibility map [14]. Alcasena et al. [15] studied the optimization of prescribed
fire allocations (climate, fuel availability) for designing fire resilient ecosystems using a
geospatial database. Assessing forest fire hazard, susceptibility, and risk mapping are
feasible with the geospatial techniques used by such researchers as Pourghasemi et al.,
Adab et al., and Eugenio et al. [16–18], and as this can improve management plans [18],
minimize spread, and reduce the frequency of fire.

To study the complexity of forest fires, various modelling approaches have been
anticipated. Researchers classified fire models into three categories: (i) the physically-
based model, which necessitates detailed and highly accurate data for prediction of spatio-
temporal pattern of forest fire; (ii) the semi-empirical model that requires several laboratory
experiments; and (iii) empirical modelling that relies on the analysis of fire responsible
variables using statistical and data mining methods [19]. Empirical modelling is based on
the study of local environmental factors influencing forest fire ignition and spread and
explains the importance of each factor in the prediction of responsible variables. It provides
predictions of future fires and demarcates highly susceptible zones. Researchers support
the use of the statistical modelling approach in combination with GIS technology, which
covers vast forest areas and helps with the accessibility and handling of spatial data of
large regions [4,20]. Boubeta et al. [12] presented spatial patterns of forest fire modelling in
relation to biophysical and human variables using multiple regressions. Various approaches
used by researchers for the analysis of forest fire susceptibility mapping and probability
distribution are the evidential belief function model [8], the modified Analytical Hierarchy
Process (AHP), and the Mamdani fuzzy logic models [16], AHP [18], area level Poisson
mixed modelling [12], fuzzy AHP, the Dong model [6], and the regression model that
explains drivers of forest fires [10]. Modelling approaches used in the prediction of fire
hazards proved to produce better results in the delineation of forest fire prone locations
and the development of explicit hazard mitigation plans by taking advantage of remote
sensing and GIS techniques [8].

Fire igniting components change with the spatial and temporal extents of varying
regions. It is difficult to identify fire stimulating components, which make analysis of
behavior of fire a challenging task [2]. The factors intensifying large fires are increasing
temperature [21], accumulating fuel load [1,22], buildup fire conquest policies, lack of
management, rural flight and extensive afforestation [15]. In the recent times, forest fire
responsible environmental variables have been employed to develop susceptibility map.
Forest fire ignition and spread are affected by interaction of environmental variables grouped
under four main categories: topography, climate, vegetation cover, and human [6,8,9,23]. The
combination of the presence of an ignition source and ample circumstance for fire spread
ensue the probability of forest fire [12]. Rate and spread of forest fire changes with varying
topographic features like slope, aspect, and elevation [24]. Changing climatic variables,
i.e., insolation, less precipitation and long dry spell, contribute towards natural wildfire
and interventions of human activities increase frequency of forest fires and reach at an
alarming rate [4,5,25]. Increasing precipitation supports large biomass deposition, resulting
higher fuel load and thus provoking fire susceptibility [26]. Lower precipitation and higher
temperature reduce moisture content of fuel load and thus make it highly flammable but
fire susceptibility increases in the zone associated with continuous availability of forest
biomass [25]. Understanding the fire behavior and spread in the region needs a prior idea of
relationship between existing topography, vegetation characteristics and local climate [15].
Changes in the aforementioned factors are greatly influenced by human disturbances and
produce unintended consequences [20].
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Understanding the factors that influence the fire occurrence and its environmental and
socio-economic consequences is required for the sustainable management of forest in the
eastern India. Our study aims to utilize multiple statistical and weighted modelling ap-
proaches to identify forest fire susceptible zones by spatial clustering of fire incidences with
prevailing fire responsible variables. The main tasks of the study are: (i) preparation of fire
inventory map, (ii) enlisting fire responsible variables, and (iii) fire susceptibility mapping
using weighted or statistical modeling approach and validating prediction. The variables
are supposed to reveal the effect of natural conditions in the study area, importance in fire
occurrence assessment and susceptibility prediction [20]. Six different methods, namely,
Frequency ratio (FR), Certainty factor (CF), Natural risk factor (NRF), Wi method, Logistic
regression (LR) and Analytical hierarchy process (AHP) are used in the study to assess the
susceptibility of a forest patch. The study presents the ability of models to predict forest fire
susceptibility and importance of each variable classes. It demarcates variable class highly
responsible for forest fire occurrence. The findings of the study can be utilised in developing
early warning system, fire arrest resource designing, and task allocation for developing
plans to avert forest fires and implement controls for managing actual forest fires.

The research gaps addressed in this study are the lack of comprehensive study on mul-
tiple statistical and weighted modelling approaches and analysis of forest fire susceptibility
in Eastern India. Although there exist previous studies that attempted to address this issue,
none of them has used all possible multiple statistical and weighted modelling approaches
to determine the susceptibility zones. This makes the current study novel as it offers a
more comprehensive and accurate approach to identify areas that are at high risk for forest
fires. The novelty of this work lies in its focus on addressing a real-world environmental
problem through applied research. By identifying the susceptibility zones, the study aims
to provide practical solutions for minimizing the risk of forest fires, protecting ecosystem
functionality and services, improving management strategies for better land use planning
in the area. This approach is unique as it is not just focused on advancing the theoretical
understanding of the issue, but also provides practical solutions that can be implemented to
mitigate the impacts of forest fires on the environment and local communities. Overall, the
novelty and research gap addressed by this study make it an important contribution to the
field of environmental management and conservation for wellbeing of human society. The
results of the study will provide valuable insights into the factors that contribute to forest
fire susceptibility in Eastern India and inform strategies for reducing the risk of future fires.

2. Material and Methods
2.1. Study Area

The state of Odisha in the Eastern India was chosen; it has a surface area of 155,707 sq-kms
(about 4.87 percent of total geographical area of India), located between the parallels of
17◦49′ North and 22◦34′ North latitudes and meridians of 81◦27′ East and 87◦29′ East
longitudes. Along the eastern extent, it has a coastline stretch of 485 km from Balasore to
Ganjam districts. The climatic condition changes throughout the year with temperature
varying between 10 ◦C and 35 ◦C (the highest during April-May) and an average annual
rainfall is about 1500 mm. It has a rich tropical forest cover dominating with deciduous
type. According to India State of Forest Report [27], Odisha is the fourth largest state in
India having forest cover of 5.81 million hectares (37.69 percent of the state geographical
area) and the highest forest cover is found within 0–500 m altitudinal zone. Based on the
Champion and Seth [28] classification of the Forest Types of India, forests in Odisha are
categorized into four Forest Type Groups comprising of 19 Forest Types [27]. Dominant
forest tree species are Shorea robusta, Anogeissus latifolia, Terminalia tomentosa, Madhuca
latifolia, and Schleichera trijuga.

About 24.53 percent of the total forest cover of the study area is identified as highly
prone to forest fire [27]. The maximum number of forest fire points were recognized in the
state during 2020–2021 season (the highest in the Kandhamanl District). Wildfires in some
forest patches of Odisha are a frequent problem showing increasing level of harshness.
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The distribution of forest fire incidences captured through Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor from 2001 to 2020 used in this study are shown in Figure 1.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 24 
 

 

forest tree species are Shorea robusta, Anogeissus latifolia, Terminalia tomentosa, Madhuca lati-
folia, and Schleichera trijuga. 

About 24.53 percent of the total forest cover of the study area is identified as highly 
prone to forest fire [27]. The maximum number of forest fire points were recognized in the 
state during 2020–2021 season (the highest in the Kandhamanl District). Wildfires in some 
forest patches of Odisha are a frequent problem showing increasing level of harshness. 
The distribution of forest fire incidences captured through Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor from 2001 to 2020 used in this study are shown in 
Figure 1. 

 
Figure 1. Study site showing forest cover and mapping forest fire inventory. 

The methodology followed in the study to produce the forest fire susceptibility map 
is shown in Figure 2. It comprises of seven steps, (i) identify the fire locations (2001–2020) 
and prepare the fire inventory map, (ii) select the forest fire responsible variables and 
multicollinearity analysis, (iii) classify variable layers, (iv) perform weighted and statisti-
cal modeling (Frequency Ratio—FR, Certainty Factor—CF, Bivariate—Wi and Wf, Natu-
ral Risk Factor—NRF, Analytical Hierarchy Process—AHP, and Logistic Regression—
LR), (v) assess variable class highly responsible for forest fire, (vi) provide forest fire sus-
ceptibility map for the study site and classify from Very High to Very Low susceptibility 
class, and (vii) validate models susceptibility prediction through Receiver Operator Char-
acteristic—Area Under Curve (ROC-AUC). Computational process was carried in MS-Ex-
cel, R Studio, and SPSS Statistics 19, whereas ArcGIS 10.7.1 was used for producing sus-
ceptibility maps. 

Figure 1. Study site showing forest cover and mapping forest fire inventory.

The methodology followed in the study to produce the forest fire susceptibility map is
shown in Figure 2. It comprises of seven steps, (i) identify the fire locations (2001–2020)
and prepare the fire inventory map, (ii) select the forest fire responsible variables and
multicollinearity analysis, (iii) classify variable layers, (iv) perform weighted and statistical
modeling (Frequency Ratio—FR, Certainty Factor—CF, Bivariate—Wi and Wf, Natural Risk
Factor—NRF, Analytical Hierarchy Process—AHP, and Logistic Regression—LR), (v) assess
variable class highly responsible for forest fire, (vi) provide forest fire susceptibility map for
the study site and classify from Very High to Very Low susceptibility class, and (vii) validate
models susceptibility prediction through Receiver Operator Characteristic—Area Under
Curve (ROC-AUC). Computational process was carried in MS-Excel, R Studio, and SPSS
Statistics 19, whereas ArcGIS 10.7.1 was used for producing susceptibility maps.
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2.2. Preparation of Forest Fire Inventory Map

Forest fire susceptibility prediction depends on analysis of historical forest fire loca-
tions and responsible variables leading to forest fire, which necessities preparation of fire
inventory map. In this study, forest fire inventory mapping was prepared in ArcGIS from
forest fire location database (MODIS sensor) provided in Forest Fire Alerts system 3.0 of the
Forest Survey of India (FSI). Forest fire points were randomly split into the ratio of 70:30 as
training and testing sets, respectively. Training set was used as input to models for forest
fire susceptibility mapping, while accuracy assessment was done from testing set.

2.3. Forest Fire Responsible Variables

Database layers of 22 forest fire responsible variables were selected from literature
review [10,16,17,29–31]. Selected variables used in the study are mentioned in Figure 2.
Selection of appropriate responsible variables for forest fire susceptibility modelling is an
important issue as it influence model prediction value [32]. Responsible variables include
both which promote and inhibit fire, together to define the probability of forest fire in a
specified spatio-temporal extent. Prior studies do not mention any fixed set of variables
to be used for modelling purpose [33], whereas broadly includes topography, climate,
biophysical and disturbance as components [32].

Topographic variables were obtained from the Digital Elevation Model (DEM) us-
ing Advances Spaceborne Thermal Emission and Reflection Radiometer Global Digital
Elevation Map (ASTER GDEM) of 1 arc-second resolution accessed on 15 April 2022
(https://www.earthdata.nasa.gov). From DEM data slope, aspect and Topographic wet-
ness index (TWI) were computed using ArcGIS tools.

Climate layers were prepared from database provided by WorldClim Version-2 of 30
arc-seconds resolution. It comprises of a zip file with 12 Geotiff (.tif) files, representing each
month (January as 1 to December as 12). The climate components included precipitation,
temperature, solar radiation, vapor pressure, and wind speed variables in the present study.

Biophysical factors comprise of Normalized Difference Vegetation Index (NDVI),
Normalized Difference Water Index (NDWI), Gross Primary Productivity (GPP), Leaf Area

https://www.earthdata.nasa.gov
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Index (LAI), Land Surface Temperature (LST), Potential Evapotranspiration (PET), and
Aridity Index. They also make up the variables to be used for modelling approach. Landsat-
8 sensor data of 1 arc-second resolution was used to define vegetation type of the study site
where as data of NDVI, NDWI, LAI, LST, and GPP were collected from MODIS sensor. PET
and Aridity Index (AI) data were downloaded from Consortium for Spatial Information
(CGIAR-CSI) of 30 arc-seconds

Database variables comprised under disturbance like distance from road, distance
from rail, distance from water bodies, and distance from settlement were obtained from
Open Street Map (OSM), while Euclidean distance was computed in ArcGIS.

2.4. Multicollinearity

Multicollinearity statistics is computed to analyze the correlation between fire respon-
sible variables [7,33] and to avoid collinearity within them [20]. Multi-collinearity is a
phenomenon to predict a variable with a high degree of accuracy than other variables in
the multiple regression model [20]. To quantify the severity of multicollinearity within
the variables, Variance Inflation Factor (VIF) and Tolerance (TOL) were used. Although
many authors adopt a tight threshold of VIF value 2 or 5, frequent rule of thumb for severe
multicollinearity is employed with a threshold of 10, over which variables are considered
multicollinear and eliminated from further analysis [33]. However, there are no standards
for the interpretation of VIF. TOL value less than 0.1 specifies significant multicollinearity
between responsible variables [34]. In this study TOL and VIF values of the variables were
estimated and are given in Table 1. The highest VIF and the lowest tolerance value were
8.3 and 0.12, respectively. Therefore, to derive no multi-collinearity between responsible
variables, water vapor pressure, GPP, PET, and AI were eliminated due to higher VIF value.

Table 1. Multicollinearity statistics computed for responsible variables.

Variables
Collinearity Statistics

Variables
Collinearity Statistics

VIF TOL VIF TOL

Elevation 2.57 0.39 LAI 1.14 0.88
Slope 1.85 0.54 LST day 1.59 0.63

Aspect 1.02 0.98 LST night 1.18 0.84

TWI 1.34 0.74 Distance from
water bodies 1.23 0.81

Mean temperature 8.30 0.12 Distance from rail 1.23 0.81
Precipitation 1.75 0.57 Distance from road 1.38 0.72

Solar radiation 2.33 0.43 Distance from
settlement 1.29 0.77

Wind speed 1.25 0.80 Forest type 1.68 0.60
NDVI 6.63 0.15 NDWI 5.33 0.19

The variable layers for all the above-mentioned variables enlisted in Table 1 are shown
below (Figure 3). The layers were reclassified into five classes manually on the basis of
distribution of pixel and past fire incidences within the study sites explained in Table 2.
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Table 2. Selected variables class distribution details.

Variables Classes Distribution

Elevation (Figure 3a) <300, 300–600, 600–900, 900–1200, and >1200 (in m)

Aspect (Figure 3b) Flat, North and Northeast (N + NE), Northwest (NW), West and Southwest (W + SW),
and South, Southeast and East (S + SE + E)

Slope angle (Figure 3c) <5, 5–10, 10–20, 20–30, and >30 (in ◦)
Precipitation (Figure 3d) <110, 110–120, 120–130, 130–150, and >150 (in mm)
Temperature (Figure 3e) <29, 29–30, 30–31, 31–33, and >33 (in ◦C)

Solar radiation (Figure 3f) <18,000, 18,000–18,500, 18,500–19,000, 19,000–20,000, and >20,000 (in kJm−2day−1)
Wind speed (Figure 3g) <1.4, 1.4–1.5, 1.5–1.7, 1.7–2.0, and >2.0 (in ms−1)

LST day (Figure 3h) <300, 300–305, 305–310, 310–315, and >315 (in K)
LST night (Figure 3i) <270, 270–275, 275–285, 285–295, and >295 (in K)

Land cover type (Figure 3j) Mixed deciduous, Semi-evergreen, Plantation, Barren, and Water bodies
LAI (Figure 3k) <1, 1–2, 2–4, 4–7, and >7

NDVI (Figure 3l) <0, 0–0.3, 0.3–0.5, 0.5–0.7, and >0.7
NDWI (Figure 3m) <−0.1, −0.1–0, 0–0.1, 0.1–0.3, and >0.3

TWI (Figure 3n) <6, 6–6.5, 6.5–7.5, 7.5–10, and >10
Distance from road (Figure 3o) <1, 1–3, 3–10, 10–20, and >20 (in km)
Distance from rail (Figure 3p) <1, 1–5, 5–10, 10–20, and >20 (in km)

Distance from water bodies (Figure 3q) <0.5, 0.5–2.5, 2.5–7.5, 7.5–15, and >15 (in km)
Distance from settlement (Figure 3r) <5, 5–10, 10–20, 20–30, >30 (in km)

2.5. Model Description
2.5.1. Frequency Ratio (FR)

The FR method is an empirical approach as it does not depend on statistical dis-
tribution [33,34]. It displays correlation between past incident locations and variables
contributing occurrence of hazard in the area on the basis of association between them [35].
FR is explained as ratio of the area where forest fire occurred in the total study area. It is
calculated as the probability between occurrences and absences of forest fire within variable
classes. The FR value for each class within the variables were calculated (Table 3) and final
values were summed up to generate the Forest Fire Susceptibility Index (FFSI). The value
equal to 1 indicates as average value while the value <1 is considered as lower correlation,
whereas value >1 means higher correlation [33,35].

FFSI = Fr1 + Fr2 + Fr3 + . . . . . . + Frn (1)

where Fr is the rating of each variable range.
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Table 3. Classification of variables and weights computed to generate forest fire susceptibility map.

Sl No Parameter Classes Firepoint % Firepoint No. of Pixel % Pixel FR NRF W CF Wi Wf AHP

1 Elevation <300 6641 21.054 10,081,077 13.843 1.521 1.053 1 0.343 0.419 100 0.058

300–600 10,432 33.072 38,030,875 52.222 0.633 1.654 1 −0.367 −0.457 0.236 λmax = 5.306

600–900 11,819 37.469 20,178,724 27.708 1.352 1.873 1 0.261 0.302 0.536 CI = 0.076

900–1200 2506 7.945 4,306,390 5.913 1.344 0.397 0 0.256 0.295 0.134

>1200 145 0.460 228,998 0.314 1.462 0.023 0 0.316 0.380 0.035 CR = 0.069

2 Aspect Flat 14 0.044 2,333,606 12.644 0.004 0.002 0 −0.996 −5.652 1 0.041 λmax = 5.283

N + NE 7497 23.768 4,208,371 22.802 1.042 1.188 1 0.041 0.041 0.051

NW 12,336 39.109 6,098,469 33.044 1.184 1.955 1 0.155 0.169 0.292 CI = 0.071

W + SW 7797 24.719 3,837,835 20.795 1.189 1.236 1 0.159 0.173 0.498

S + SE + E 3899 12.361 1,977,539 10.715 1.154 0.618 0 0.133 0.143 0.117 CR = 0.064

3 Slope <5 5649 17.909 8,043,419 42.239 0.424 0.895 0 −0.576 −0.858 89.792 0.060 λmax = 5.198

5–10 6889 21.840 4,270,390 22.425 0.974 1.092 1 −0.027 −0.026 0.125

10–20 10,413 33.012 2,605,392 13.682 2.413 1.651 1 0.587 0.881 0.309 CI = 0.049

20–30 6656 21.101 1,137,790 5.975 3.532 1.055 1 0.718 1.262 0.469

>30 1936 6.138 2,985,836 15.680 0.391 0.307 0 −0.609 −0.938 0.037 CR = 0.045

4 Temperature <29 13,965 44.273 22,878 12.611 3.511 2.214 2 0.866 1.256 52.125 0.519 λmax = 5.175

29–30 6125 19.418 16,332 9.002 2.157 0.971 0 0.649 0.769 0.143

30–31 5399 17.116 35,584 19.614 0.873 0.856 0 −0.150 −0.136 0.068 CI = 0.044

31–33 5919 18.765 93,268 51.410 0.365 0.938 0 −0.678 −1.008 0.033

>33 135 0.428 13,357 7.363 0.058 0.021 0 −0.951 −2.845 0.237 CR = 0.039

5 Precipitation <110 1889 5.989 14,886 8.205 0.730 0.299 0 −0.309 −0.315 92.462 0.034 λmax = 5.119

110–120 14,210 45.050 78,272 43.144 1.044 2.252 2 0.051 0.043 0.285

120–130 9387 29.759 60,623 33.416 0.891 1.488 1 −0.129 −0.116 0.134 CI = 0.029

130–150 4952 15.699 24,548 13.531 1.160 0.785 0 0.167 0.149 0.078

>150 1105 3.503 3090 1.703 2.057 0.175 0 0.622 0.721 0.468 CR = 0.027
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Table 3. Cont.

Sl No Parameter Classes Firepoint % Firepoint No. of Pixel % Pixel FR NRF W CF Wi Wf AHP

6 Solar radiation <18,000 1907 6.046 24,140 13.306 0.454 0.302 0 −0.592 −0.789 51.319 0.038 λmax = 5.283

18,000–18,500 2956 9.371 42,806 23.595 0.397 0.469 0 −0.648 −0.923 0.073

18,500–19,000 7127 22.595 40,741 22.457 1.006 1.130 1 0.007 0.006 0.409 CI = 0.071

19,000–20,000 19,263 61.069 70,150 38.667 1.579 3.053 2 0.444 0.457 0.367

>20,000 290 0.919 3582 1.974 0.466 0.046 0 −0.581 −0.764 0.114 CR = 0.064

7 Wind speed <1.4 3352 10.627 19,992 11.020 0.964 0.531 0 −0.043 −0.036 31.962 0.513 λmax = 5.102

1.4–1.5 14,461 45.845 53,611 29.551 1.551 2.292 2 0.430 0.439 0.238

1.5–1.7 12,821 40.646 84,344 46.491 0.874 2.032 2 −0.148 −0.134 0.151 CI = 0.025

1.7–2 729 2.311 12,134 6.688 0.346 0.116 0 −0.696 −1.063 0.061

>2 180 0.571 11,338 6.250 0.091 0.029 0 −0.923 −2.394 0.037 CR = 0.023

8 LSTday <300 543 1.721 8791 7.926 0.217 0.086 0 −0.834 −1.527 46.849 0.036 λmax = 5.332

300–305 1698 5.383 5460 4.923 1.094 0.269 0 0.119 0.089 0.529

305–310 23,617 74.872 52,544 47.374 1.580 3.744 2 0.513 0.458 0.229 CI = 0.083

310–315 5549 17.592 43,323 39.061 0.450 0.880 0 −0.630 −0.798 0.129

>315 136 0.431 794 0.716 0.602 0.022 0 −0.480 −0.507 0.077 CR = 0.075

9 LSTnight <270 10 0.032 1052 0.948 0.033 0.002 0 −0.976 −3.398 20.668 0.035 λmax = 5.257

270–275 998 3.164 4605 4.152 0.762 0.158 0 −0.304 −0.272 0.061

275–285 2432 7.710 14,873 13.410 0.575 0.386 0 −0.508 −0.553 0.140 CI = 0.064

285–295 8512 26.985 20,885 18.830 1.433 1.349 1 0.422 0.360 0.283

>295 19,591 62.109 69,497 62.660 0.991 3.105 2 −0.012 −0.009 0.480 CR = 0.058

10 Land cover type Mixed deciduous 24,355 77.212 9,822,1091 66.037 1.169 3.861 2 0.145 0.156 35.210 0.262 λmax = 5.175

Semi-evergreen 298 0.945 11,330,787 7.618 0.124 0.047 0 −0.876 −2.087 0.060

Plantation 2567 8.138 12,459,729 8.377 0.971 0.407 0 −0.029 −0.029 0.139 CI = 0.044

Barren 3525 11.175 15,165,589 10.196 1.096 0.559 0 0.088 0.092 0.500

Riverine 798 2.530 11,560,215 7.772 0.326 0.126 0 −0.675 −1.122 0.038 CR = 0.039

11 LAI <1 7704 24.424 455,128 65.010 0.376 1.221 1 −0.635 −0.979 32.024 0.243 λmax = 5.195

1–2 22,791 72.254 214,892 30.695 2.354 3.613 2 0.602 0.856 0.523

2–4 759 2.406 7061 1.009 2.386 0.120 0 0.608 0.870 0.066 CI = 0.049

4–7 273 0.865 6733 0.962 0.900 0.043 0 −0.104 −0.105 0.127

>7 16 0.051 16,277 2.325 0.022 0.003 0 −0.979 −3.825 0.041 CR = 0.044
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Table 3. Cont.

Sl No Parameter Classes Firepoint % Firepoint No. of Pixel % Pixel FR NRF W CF Wi Wf AHP

12 NDVI <0 0 0.000 2148 0.489 0.000 0.000 0 −1.000 0.000 55.701 0.035 λmax = 5.266

0–0.3 600 1.902 41,631 9.477 0.201 0.095 0 −0.811 −1.606 0.062

0.3–0.5 13,506 42.818 294,447 67.031 0.639 2.141 2 −0.379 −0.448 0.106 CI = 0.067

0.5–0.7 17,349 55.001 98,838 22.501 2.444 2.750 2 0.637 0.894 0.284

>0.7 88 0.279 2205 0.502 0.556 0.014 0 −0.861 −0.587 0.514 CR = 0.059

13 NDWI <−0.1 5197 16.476 160,255 36.477 0.452 0.824 0 −0.567 −0.795 82.438 0.060 λmax = 5.305

−0.1–0 14,963 47.437 185,886 42.312 1.121 2.372 2 0.116 0.114 0.321

0–0.1 9967 31.598 70,653 16.082 1.965 1.580 1 0.529 0.675 0.110 CI = 0.076

0.1–0.3 1416 4.489 22,255 5.066 0.886 0.224 0 −0.122 −0.121 0.477

>0.3 0 0.000 278 0.063 0.000 0.000 0 −1.000 0.000 0.032 CR = 0.069

14 TWI <6 15,921 50.474 5,108,265 21.454 2.353 2.524 2 0.576 0.856 61.947 0.497 λmax = 5.138

6–6.5 4849 15.373 3,062,640 12.863 1.195 0.769 0 0.163 0.178 0.254

6.5–7.5 5582 17.696 4,175,465 17.537 1.009 0.885 0 0.009 0.009 0.155 CI = 0.034

7.5–10 4205 13.331 3,180,920 13.360 0.998 0.667 0 −0.002 −0.002 0.060

>10 986 3.126 8,282,846 34.787 0.090 0.156 0 −0.910 −2.410 0.034 CR = 0.031

15
Distance from

road <1 5145 16.311 6,006,263 26.090 0.625 0.816 0 −0.375 −0.470 71.739 0.510 λmax = 5.237

1–3 8058 25.546 5,112,878 22.209 1.150 1.277 1 0.131 0.140 0.264

3–10 14,036 44.498 4,520,205 19.635 2.266 2.225 2 0.560 0.818 0.130 CI = 0.059

10–20 4089 12.963 7,150,172 31.059 0.417 0.648 0 −0.583 −0.874 0.064

>20 215 0.682 231,630 1.006 0.677 0.034 0 −0.323 −0.389 0.033 CR = 0.053

16
Distance from

rail <1 426 1.351 6,494,457 29.225 0.046 0.068 0 −0.954 −3.075 35.398 0.510 λmax = 5.237

1–5 1895 6.008 2,219,039 9.986 0.602 0.300 0 −0.399 −0.508 0.264

5–10 3018 9.568 2,391,306 10.761 0.889 0.478 0 −0.111 −0.117 0.130 CI = 0.059

10–20 5612 17.792 3,824,770 17.211 1.034 0.890 0 0.033 0.033 0.064

>20 20,592 65.282 7,292,978 32.818 1.989 3.264 2 0.498 0.688 0.033 CR = 0.053
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Table 3. Cont.

Sl No Parameter Classes Firepoint % Firepoint No. of Pixel % Pixel FR NRF W CF Wi Wf AHP

17
Distance from
water bodies <0.5 1534 4.863 1,812,501 8.558 0.568 0.243 0 −0.432 −0.565 61.319 0.036 λmax = 5.265

0.5–2.5 6138 19.459 4,745,758 22.409 0.868 0.973 0 −0.132 −0.141 0.102

2.5–7.5 13,935 44.178 6,303,685 29.765 1.484 2.209 2 0.327 0.395 0.268 CI = 0.066

7.5–15 8557 27.128 2,982,205 14.082 1.926 1.356 1 0.482 0.656 0.538

>15 1379 4.372 5,333,884 25.186 0.174 0.219 0 −0.827 −1.751 0.056 CR = 0.059

18
Distance from

settlement <5 4674 14.818 3,985,083 15.709 0.943 0.741 0 −0.057 −0.058 52.717 0.510 λmax = 5.237

5–10 8770 27.803 5,615,606 22.136 1.256 1.390 1 0.204 0.228 0.264

10–20 14,964 47.440 5,777,885 22.776 2.083 2.372 2 0.521 0.734 0.130 CI = 0.059

20–30 2840 9.004 8,963,108 35.332 0.255 0.450 0 −0.745 −1.367 0.064

>30 295 0.935 1,026,536 4.047 0.231 0.047 0 −0.769 −1.465 0.033 CR = 0.053
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2.5.2. Certainty Factor (CF)

The CF method is a probability function approach, applied to determine spatial
relationship between fire points in the study site with each variable [36]. It was originally
applied by Shortliffe et al. [37] and later modified by Heckerman [38], calculated for each
class of all variables is as follows:

CFia =
{

ppia −ppf/ppia(1 − ppf), if ppia ≥ ppf
ppia − ppf/ppf(1 − ppia), if ppia < ppf

(2)

where CFia is the Certainty factor of certain class i of variable a; ppia is the conditional
probability of having number of forest fire occurring in a class i of variable a; and ppf is the
prior probability of having the total number of forest fire occurring in the study area.

Its value ranges between−1 and 1. The negative CF value directs least chance of forest
fire in the site, while the positive value indicates high susceptibility, and value near to 0
specify prior probability is equal to conditional probability [33]. Thus, site with zero CF
value indicates inadequate relationship between fire and responsible variables, making
difficult to infer certainty of fire in those forest patches [36]. After calculating the CF value
for each class of variable layer (Table 3), the layers were integrated using the rule of X:

X =

{ CFA + CFB − CFACFB CFA ,CFB ≥ 0
CFA + CFB

1 − min(|CFA|,|CFB|
CFA ,CFB opposite sign

CFA + CFB + CFACFB CFA ,CFB < 0

(3)

where CFA and CFB are CF values of A and B variable layers, respectively. The pairwise
addition was done until all responsible layers were summed up to produce final forest fire
susceptibility map.

2.5.3. Bivariate Statistical Method (Wi and Wf)

The statistical index (Wi) method [39], and the weighting factor (Wf) method [40]
was used to analyze occurrence of forest fire in the study site. Wi is based on statistical
correlation of fire inventory map with variable layers. The result provides density of fire
hazard in each variable class. The Wi value for each class was calculated using the formula
given by [39]:

Wi = ln
Density class
Density map

= ln

Nx

Cpix

TNx
TCpix

(4)

where Wi is the weight given to specified class, Density class is the forest fire density
within variable class, Density map is the forest fire density within study area, Nx is the fire
point within a specified variable class, Cpix is the number of pixels in certain variable class,
TNx is the total number of fire points in the study area, and TCpix is the total number of
pixels in the study area.

The Wi value for each variable class was calculated (Table 3). Finally, all variable
layers were overlaid to generate the fire susceptibility map. The weighting factor

(
Wf
)

was
computed for each variable map to eliminate consideration of equal effect of each variable
layer while using the statistical method in predicting Wi value, which may not be in natural
condition [35]. For calculating Wf, the Wi, value of each pixel was calculated, then pixels
within high fire susceptibility zones of each variable layer were summed. The outcomes
were distorted by employing the highest and the lowest layer values. Finally, the formula
shown below was used to calculate the weighting factor, which ranges from 1 to 100 for
each layer:

Wf =
(Total Wivalue) − (MinTotal Wivalue)

(MaxTotal Wivalue) − (MinTotal Wivalue)
× 100 (5)
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where Total Wivalue is the total Wi value of pixels within forest fire zone for each variable,
MinTotal Wivalue is the minimum total Wi value within selected layers, and MaxTotal Wivalue
is the maximum total Wi value within selected layers.

The Wf values of each variable layer were calculated (Table 3). To generate the final
susceptibility map from Wf method, Wf value of each layer was multiplied by Wi value of
each variable class.

2.5.4. Natural Risk Factor (NRF)

NRF is a problem-solving approach, which used the weighted method of analysis. The
weight (W) for each variable assigned using the ratio of proportion of fire occurrences in a
specified class and average occurrences in all classes [41]. The weights calculated in Table 3
were assigned to each pixel of the variable layers. The classes with proportion <1 have
weights 0, for proportion 1<–<2 is 1 and 2 for proportion >2. After assigning of weights to
pixels of each variable, a fire susceptibility map was generated by adding values of each
pixel [34].

2.5.5. Analytical Hierarchy Process (AHP)

AHP developed by Saatty [42], is a multi-criteria decision-making approach providing
technique for structuring and analyzing complex decisions. It makes the decision-making
process transparent and simpler to arrive at a preference from a set of alternatives through
pairwise comparison matrix of criteria [18]. The variable layers were categorized into
criteria and variable classes as set of alternatives. The relative importance value (1–9) to
each variable class for its contribution towards forest fire occurrence was assigned according
to expert opinion and literature. The score for each layer was computed from the relative
importance value assigned to each variable class through calculation of matrix eigenvalues.
To validate the pairwise decision matrix formed, consistency ratio (CR) was calculated
which should be less than 10% (0.1), computed by

CR = CI/RI (6)

where CI is consistency index, RI is the average of the resulting consistency index depend-
ing on the order of the matrix.

The CI was computed as followed

CI =
(λmax − n)

(n − 1)
(7)

where λmax is the largest or principal eigenvalue of the matrix and n is order of the matrix.

2.5.6. Logistic Regression (LR)

The LR model or logit model is a statistical method used to model binary dependent
variable, i.e., the function is in 0 or 1 [34,43]. It represents the multivariate regression
relationship between the given set of responsible variables required to predict fire occur-
rence [35]. It predicts occurrence or non-occurrence of fire on the basis of set of variables.
The variables used for analyzing forest fire in logistic regression may have continuous,
discrete or combination of both as data type and do not require normalization, makes it
better over linear regression [35]. The influence of each variable on occurrence of forest
fire was calculated independently and all the variables were assimilated to form a unique
equation [44,45].

Y = Logit(p )= ln(
p

1 − p
) (8)

Y = C0 + C1X1 + C2X2 +. . . . . . .+ CnXn (9)

where p is the probability that the dependent variable (Y) is 1, p
1 − p is the odd or fre-

quency ratio, C0 is the intercept, and C1, C2,. . . . . . . ,Cn are the coefficients that measure the
contributions of responsible variables (X1,X2,. . . . . . ,Xn) to the variations in Y.
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The spatial association between fire points and responsible variables was evaluated
using logistic regression in RStudio environment and the regression equation given below:

Y = 8.1177 + 0.00033 × Aspect − 0.00039 × Elevation − 0.09648 × LAI − 0.00665
× LST day − 0.01005 × LST night + 5.59162 × NDVI − 7.46542 × NDWI − 0.00868
× Precipitation − 0.0000042 × Distance from rail + 0.0000403 × Distance from road +
0.00000367 × Distance from settlement + 0.01231 × Slope angle + 0.00053 × Solar radiation
− 0.35696 × Temperature + 0.02653 × TWI − 0.00822 × Land cover type + 0.0000094 ×
Distance from water bodies − 1.67705 ×Wind speed

The regression equation represents aspect, NDVI, distance from road, distance from
settlement, slope angle, solar radiation, TWI, and distance from water bodies are positively
related to forest fire while elevation, LAI, LST day, LST night, NDWI, precipitation, distance
from rail, temperature, land cover type, and wind speed shows negative relation with forest
fire. NDVI shows a strong positive relation than other variables used towards forest fire
occurrence in the study area.

2.6. Validation and Accuracy Assessment

The next phase of the study includes validation of the six models used for forest fire
susceptibility mapping. The area under the receiver operating characteristic curve (ROC
curve-AUC value) was used to evaluate goodness-of-fit of the model in correct assessment
of occurrence and non-occurrence of forest fire at spatial scale [33,34,46]. It is an effective
technique for evaluation of model quality and offer an appealing approach to summarize
the precision of prediction accuracy [20]. AUC values range from 0.5 represents a random
prediction to 1 as better performance [8,46].

3. Results

Forest fire location details were collected from Forest Fire Alerts system 3.0 of the FSI
and fire inventory map was prepared. The forest fire events showed a highly increasing
rate after 2005. The largest number of fire events were observed in 2017 and 2020 with
vast extent of forest patches burnt. March to May had the largest number of fire events
while the least fire events were observed in July and August. According to the India
Meteorological Department (IMD), Indian climatic season is classified into four seasons:
winter, pre-monsoon, monsoon and post-monsoon with the highest fire events of 38,994 in
pre-monsoon and the lowest in monsoon of 483.

Natural and anthropogenic causes lead to forest fire. Initiation and spread of fire
depend on different variables, which are required to be evaluated for appropriate mod-
elling approach and prediction, so 22 variables were selected from extensive literature.
Multicollinearity statistics was used to remove collinear layers using VIF and TOL value
(Table 1). Four variables: GPP (28.55), AI (21.51), water vapor pressure (12.63) and PET
(11.73), with values of VIF greater than 10 were not used for further modelling. Eleva-
tion, slope, aspect, temperature, precipitation, solar radiation, wind speed, NDVI, NDWI,
TWI, LST day, LST night, LAI, Land cover type, distance from road, distance from rail,
distance from settlement, and distance from water bodies were important variables used
for modelling analysis (Figure 3).

Based on weight calculated in Table 3 for elevation, area with <300 m obtained
FR = 1.521, and Wi = 0.419 had the greatest effect on fire occurrence while 600–900 m
elevation were predicted highly susceptible according to NRF = 1.873 and AHP = 0.536.
The CF model ranked higher elevation class (>1200 m) to be highly prone to forest fire occur-
rence. The models did not show any specific pattern of ranking variable class towards forest
fire susceptibility. However, elevation with W f = 100 indicates the importance of elevation
towards occurrence of forest fire. Aspect analysis shows area with West and South west
(W + SW) orientations are highly prone to forest fire with FR = 1.189, CF = 0.159, Wi = 0.173,
and AHP = 0.498. NRF calculated the highest weights for North-west (NW) orientation
is 1.955 followed by W + SW with NRF = 1.236. Slope angle with increasing slope fire
susceptibility increases but area with >30◦, steep slope, is negatively correlated with fire sus-
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ceptibility. Slope from 20◦ to 30◦ are calculated with highest weights: FR = 3.532, CF = 0.718,
Wi = 1.262, and AHP = 0.469. The LR model predicted that elevation is negatively related
while slope and aspect are positively related to forest fire occurrence. The climatic variables
including temperature, precipitation, solar radiation and wind speed do not define any
specific trend with the weights calculated, but the LR values show positive relationship
between solar radiation and negative with wind speed. The areas with temperature <29 ◦C,
the highest precipitation (>150 mm), solar radiation of 19,000–20,000 kJm−2day−1, and
moderate wind speed of 1.4–1.5 ms−1 show higher susceptibility to forest fire. Similarly,
LST day with moderate temperature class and LST night with the highest temperature
are predicted to be highly contributing to forest fire. Mixed deciduous type is predicted
to be highly susceptible to forest fire, followed by semi-evergreen and plantation patches.
The climate variables contribute to forest fire occurrence, but key determinants are veg-
etation [2] and topography [8]. LAI value with 1–2 shows higher susceptibility to forest
fire, possibly due to distribution of maximum forest patches within the class in the study
area. According to LR model, NDVI shows higher positive relationship with forest fire,
while NDWI has negative relationship and similar trend is observed through other five
models. Increasing NDVI indicates high susceptibility to forest fire, while inverse relation
is showed by NDWI. While TWI also shows an inverse relation with forest fire occurrence,
a lower TWI value has a higher chance of fire occurrence and vice-versa, but a positive
relationship is predicted according to LR model. Distance from road, rail and settlement
show higher forest fire susceptibility with higher Euclidean distance classes and lower for
lower distance. This is anticipated that the accessibility of fire-fighting equipment would
be related to these two factors since it is frequently transported to the scene by road or
rail [12,15]. As a forest patch loses moisture, the susceptibility to forest fire increases with
increasing distance from water sources. However, the results of the LR model show that
distance from a road, a settlement, and a body of water are all positively related, whereas
distance from a railroad is negatively related.

After calculation of the final weights for each variable layer, all the layers were summed
up to generate final susceptibility map from six models (Figure 4a–g). The susceptibility
maps were classified into five susceptibility classes (very low, low, moderate, high, and
very high) using Natural breaks (Jenks) classification scheme. Forest fire points recorded
by the MODIS sensor are similar to the distribution pattern of higher susceptibility classes.
Fire susceptibility map generated by FR method indicates 26.25%, 30.16%, 18.65%, 14.98%
and 9.97% of the total area with very low to very high susceptibility classes, respectively.
The CF model defines about 16.29% as very low, 31.29% low, 22.17% moderate, 16.84% high
and 13.41% with very high susceptibility. Trend of very low to very high susceptibility
classified in the map generated through NRF method is 12.95%, 25.91%, 25.65%, 19.92%
and 15.57% of the total area, respectively. The map produced using Wi method comprises
very low susceptibility of 1.83% of the total area, low (21.91%), moderate (34.46%), high
(23.04%) and very high (18.75%). According to the W f method about 13.72% area is under
very low, 29.4% low, 25.17% moderate, 18.49% high and 13.22% very high susceptibility.
About 17.18% area as very low, 28.76% low, 26.1% moderate, 17.8% high and 10.16% very
high are categorized according to AHP method. The LR method is able to explain that
14.97% of the total area is very highly susceptible, 29.43% high, 23.33% moderate, 19.7%
low and 12.57% with very low susceptibility. On an average around 25–35% of the study
area are marked under high to very high susceptibility, which prioritize the need of fire
management plan. The southern tip of Odisha lies in very high susceptibility, while coastal
zone and urbanized area are under the least susceptibility.
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The final phase of the study comprises of validation of models. According to the
defined methodology, prediction curve for each model was validated using AUC value.
Figure 5 shows ROC curve and AUC value of each model used in the study. LR model
showed the highest AUC value of 80% with better prediction value and conclude good fit
of model. While other models have AUC value more than 75% showing good fit of model
in prediction of forest fire susceptibility for the study area.
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4. Discussion

For effective fire risk management, it is crucial to provide a high-quality map of the
susceptibility of forest fires [11,47,48]. However, this effort is still challenging because of
how complicated and non-linear such events are. To get a trustworthy assessment of their
occurrence risk, using optimization approaches appears to be an intellectual problem [49].
This paper investigated the comparative effect of environmental variable classes on fire
zones with weighted modelling and how forest fire susceptible maps could be used for
fire management. Topography shows effect on fire by influencing vegetation, local cli-
mate, ignition pattern and accessibility to humans [8,50]. Topography indirectly affects
flammability in a forest [12,51], as it determines distribution of vegetation pattern and
composition, and influences climatic factors [33,52]. Slope acts as a key restricting factor
to ignition by limiting accessibility because anthropogenic fire occurs more frequently in
gentler slopes [12]. Topography explains a site condition with variables like elevation
range, angle of slope, land facing towards sun (aspect) and water retention ability by the
landscape [53,54].

Vegetation type is the most significant explaining ignition of forest fires [5]. Biophys-
ical component makes conditions suitable for forest fire occurrence. Positive feedback
mechanism between vegetation and fire spread and intensity make tropical forests prone
to degradation [10,55]. The NDVI describes forest health condition, which gives an idea of
fuel load distribution and its deposition [33]. Studies inferred biophysical factors like GPP,
NDWI, LAI, LST, PET, and AI also make up conditions favorable for wildfire [30,56,57].
The climate conditions with reduced rainfall and vapor pressure, increasing temperature,
humidity and solar radiation contribute towards the occurrence of forest fire. Climate
largely contributes to nature of wildfire and describes the need of changing fire manage-
ment practices with spatial and temporal variations, so that it is considered as a major
component of fire environment [23,58]. Climate directs fuel characterization like fuel load,
moisture content, degradation which regulate proneness of regional forest to fire [14,25].

With the above all supporting variables uncontrolled and careless human activities
further provoke chance of fire occurrence and major contributor towards susceptibility of
a site [14,59]. Anthropogenic interference regulates forest fire frequency and spread [3]
by providing ignition source and changing vegetation type, which may either limit or
promote forest fire [8]. It is vital to consider societal conditions in forest fire susceptibility
mapping. Spatial proximity to growing settlement specifies intensity of disturbances in
forest [60,61]. Construction activities like roads and railways increase accessibility leading
to higher probability of fire incidences [10], while presence of water bodies acts as a natural
suppressor of fire.
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In order to control risk and avoid fires in the research region, the susceptibility maps
can be utilised as a reference. They were created by using modelling approach and GIS
dataset. Six models were used in this study to investigate the geographical association
between fire responsible variables and fire events. Based on the distribution of pixels
and historical fire occurrences within the research locations, the variables were manually
categorized into five groups. According to the study, Wi shows that close to 42% of the
region is in the “high to very high susceptibility class,” while FR, CF, NRF, Wf, AHP, and LR
methods demarcate roughly 25–35% of the entire area. For anticipating unforeseen forest
fire occurrences, the LR model of susceptibility demonstrated great accuracy (80%). The
majority of the stretch with tropical deciduous forest having tribal dominating population,
found to be highly prone to forest fires.

It is critical to take necessary precautions to reduce the likelihood of this environmen-
tal catastrophe, since according to some local sources, human factors—such as tourists
and travellers—were mostly to blame for the recent fires. Abedi Gheshlaghi et al. and
Divya et al. [60,62] found that using several well-known land management techniques
like controlled burn approach in highly sensitive places can significantly lower the risk.
Another viable strategy for preventing future fires in the study area is use of various forest
fire early warning systems [22,63,64]. The Government of India has created the National
Action Plan on Forest Fires, 2018, to prevent forest fires by empowering communities that
border forests, and motivating them to collaborate with the State Forest Departments.

It is important to remember that using the models suggested in the current study
have their limits. Most significantly, the models may not be as accurate as they are in
the presence of significant changes in variable components since they were constructed
using geo-environmental data from a given time period (e.g., precipitation, LST). Such
circumstances require periodic updating of the produced susceptibility maps. Another
issue was the lack of information on the precise causes of the fires. It would have been
more intriguing to look into the causes of subsequent fire incidents. Furthermore, the
created models are very complicated as a result of the vast dimensions (i.e., 18 individual
parameters), which is represented by the lengthy computation time of the models (by
comparison). However, this flaw may be overcome by improving the input configuration,
which is a strong notion for further research.

Recommending Forest Fire Management

A complicated and hazardous environmental occurrence, forest fires or wildfires may
occur everywhere in the world as a result of both natural and manmade activities [65–67].
Due to high temperatures and pockets of deciduous forest, the month of February through
the month of May in India is particularly prone to forest fires [68]. Numerous studies have
shown that anthropogenic factors, such as gathering non-timber forest products, burning
farm waste, throwing burning cigarettes or bidis, starting campfires, cooking close-by
forests, and sparks from transformers, among others, play a significant role, especially in
tropical and subtropical regions of the world. The natural causes of forest fires, such as
lightning, rolling stones, rubbing of dry long trees, particularly bamboos, and rolling of dry
rocks, are the main causes of forest fires [69]. The focus of several pertinent management
strategies has been on preventing the environmental hazard or disaster. The government
should construct instruments that enable decision-making, like as monitoring stations,
patrol routes along forest buffers, firefighting equipment, fire distinguishing chemicals, etc.
Emergency services should be made available and ready by the forest department. The
government should implement strict laws and regulations to limit illegal animal hunting
and poaching, forbid campfires and picnics inside of forests, control Jhum or shifting
cultivation, especially in North East India, continuously monitor forest dwellers and people
who live near forests while collecting non-timber forest products, outlaw burning and
cooking near forests, forbid matchboxes and bidis in forests, and do not allow the use
of firearms or fireworks inside of forests. Governmental and non-governmental groups
should educate forest inhabitants, residents on the forest periphery, and visitors about
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environmental issues. The importance of wild animals, forest resources, and other things
should be made known to the public. The forest department should create artificial forests
or reforest the forest buffer and implement joint forest management (JFM) strategies, as
well as programs to increase the ability of forest residents and lessen their reliance on the
natural world. Similar to this, the government should support academic and scientific
applied research into forest fires in order to enhance the standard of living for those who
live in and around forests.

5. Conclusions

Forest fire susceptibility prediction using the statistical model is helpful to order
which areas of the study area are very high susceptible. In this research, modelling results
demarcate southern tip of the state lying in the Eastern Ghats region is more prone to fire.
This may be due to the predominance of forest cover in these regions providing ample
litter supply, in addition to elevation acts an important promoter of forest fires in these
areas. Fire responsible variables and post events were used for modelling and LR model
proved to be the best. It would help in understanding extreme ecological approaches,
aiding the monitoring of forest remnants of tropical forests. Modeling and mapping of
fire susceptibility analysis aid in monitoring hotspot proneness, enable robust control
with optimal resource utilization, effective and timely evaluation of associated danger,
and development of better fire-fighting strategies. Arson fire events could be reduced
with community participation in knowledge-driven programs and conservation activities.
Construction of a fire line and ongoing maintenance of it in high susceptibility area can
lessen conflagration during hotter and drier seasons.
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