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Abstract: Accurate estimation of forest height is crucial for the estimation of forest aboveground biomass
and monitoring of forest resources. Remote sensing technology makes it achievable to produce high-
resolution forest height maps in large geographical areas. In this study, we produced a 25 m spatial
resolution wall-to-wall forest height map in Baoding city, north China. We evaluated the effects of three
factors on forest height estimation utilizing four types of remote sensing data (Sentinel-1, Sentinel-2,
ALOS PALSAR-2, and SRTM DEM) with the National Forest Resources Continuous Inventory (NFCI)
data, three feature selection methods (stepwise regression analysis (SR), recursive feature elimination
(RFE), and Boruta), and six machine learning algorithms (k-nearest neighbor (k-NN), support vector
machine regression (SVR), random forest (RF), gradient boosting decision tree (GBDT), extreme gradient
boosting (XGBoost), and categorical boosting (CatBoost)). ANOVA was adopted to quantify the effects of
three factors, including data source, feature selection method, and modeling algorithm, on forest height
estimation. The results showed that all three factors had a significant influence. The combination of
multiple sensor data improved the estimation accuracy. Boruta’s overall performance was better than SR
and RFE, and XGBoost outperformed the other five machine learning algorithms. The variables selected
based on Boruta, including Sentinel-1, Sentinel-2, and topography metrics, combined with the XGBoost
algorithm, provided the optimal model (R2 = 0.67, RMSE = 2.2 m). Then, we applied the best model to
create the forest height map. There were several discrepancies between the generated forest height map
and the existing map product, and the values with large differences between the two maps were mostly
distributed in the steep areas with high slope values. Overall, we proposed a methodological framework
for quantifying the importance of data source, feature selection method, and machine learning algorithm
in forest height estimation, and it was proved to be effective in estimating forest height by using freely
accessible multi-source data, advanced feature selection method, and machine learning algorithm.

Keywords: forest height; multi-source data; feature selection; machine learning algorithm

1. Introduction

Forest is an important part of terrestrial ecosystems and plays a vital role in maintain-
ing the global ecological balance, promoting global biological evolution and community
succession [1–3]. As an important part of the structure parameters of the forest, forest
height is not only an essential indicator for the quantitative estimation of forest biomass
and terrestrial carbon circulation but also important auxiliary information for evaluating
forest resources and establishing earth system models [4,5]. Traditional forest height estima-
tion mainly depends on the means of manual field surveys. Although the ground survey
method has high accuracy, it is timing and force-consuming, and it is difficult to achieve
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large-range and long-span forest height estimation and dynamic change monitoring [6].
The increasingly developed remote sensing technology has the advantages of multi-time
phase, multi-scale, multi-sensor, and rapid macro monitoring. It has become an important
way to estimate forest height by constructing empirical models combining remote sensing
data and ground-measured data [7].

At present, the most recent advancement in remote sensing technology advocates
producing forest height maps of large geographical areas with high resolution. Multispec-
tral data [8–10], Light Detection and Ranging (LiDAR) [11–14], Synthetic Aperture Radar
(SAR) [15,16], and other remote sensing data [17] were widely applied. LiDAR data are
often regarded as the best remote sensing data source for forest structure parameters due
to its direct ability to detect forest vertical structures; however, terrestrial laser scanning
(TLS) and airborne laser scanning (ALS) are typically limited by high application costs [18],
and it is difficult to generate wall-to-wall forest height maps in large areas due to the
sparse measurements in the space of satellite LiDAR [19] Compared to lidar data, optical
data are more susceptible to the influence of weather conditions and has issues such as
limited sensitivity and low saturation in dense vegetation areas, SAR data are susceptible
to terrain and speckle noise, and there is a problem of backscatter signal saturation in
high vegetation coverage areas as well as optical data. Nevertheless, the backscattering
coefficient of SAR and the rich spectral information of the optical data can also reflect the
information about the structure and function of the forest [20,21]. Most importantly, optical
data and SAR data can be obtained frequently, continuously, and at a low cost from various
spaceborne platforms. In the past few years, numerous studies have shown that spectral
reflectance, vegetation index, and spatial texture information extracted from Sentinel-2
images, backscattering coefficients, indices, and texture features calculated from Sentinel-1
C-band, ALOS-2 PALSAR-2 L-band images, and topographic metrics were effective in
estimating forest canopy height and other forest parameters [22–26].

As mentioned above, there are many potential feature variables when estimating forest
height using multi-source remote sensing data. High-dimensional feature variables will
increase the computational load, data noise, and interference, and the problem of complex
collinearity between variables will cause the redundancy of variables, which will affect
the efficiency and accuracy of modeling [27,28]; therefore, the correct and efficient feature
selection phase is an essential step for forest height estimation. However, because of the
diverse characteristics of the sensor data and the complex biophysical environment in the
forestry areas, the different feature selection methods correspond to different data structures
and features, what effect of feature selection method on forest height estimation, and how
to determine the best feature selection method is still poorly understood [27]. Stepwise
regression analysis is the most commonly used variable selection approach in forest parameter
investigations and related studies have reported positive outcomes [29–31]. In addition, the
Boruta and recursive feature elimination are both well-established wrapper methods, which
have been widely applied in the study of forestry research in recent years [32–35]. Several
studies have been conducted to examine the impact of different feature selection strategies
in predicting forest characteristics [36,37]. Nevertheless, to our knowledge, there is rarely
research conducted to examine the impact of feature selection methods for different remote
sensing data sources when estimating forest height.

Another key factor of forest height estimation is the regression algorithm. Currently,
regression models used to estimate forest height can be divided into two categories: para-
metric and non-parametric algorithms. In the parametric model, there are quantitative
mathematical expressions between the independent and dependent variables, which are
intuitive and simple to understand. Multiple linear regression, stepwise regression, and
partial least squares regression are common parametric models; however, the parameter
model needs to meet the premise that the relationships between dependent and indepen-
dent variables have clear model structures, while the relationship between forest height
and remote sensing factors is typically quite complex, which limits the application of
parametric models [27]. Compared with parametric algorithms, non-parametric algorithms
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based on data mining, machine learning, and other mathematical theory and methods,
through the way of data-driven achieving complex nonlinear relationship prediction, are
widely used in forest height estimation, including k-nearest neighbor (k-NN), support
vector machine regression (SVR) and random forest (RF) [38–42]. Moreover, some decision-
tree-based ensemble algorithms, such as gradient boosting decision tree (GBDT), extreme
gradient boosting (XGBoost), and categorical boosting (CatBoost), have performed well in
the estimation of forest aboveground biomass [43,44]; however, these algorithms are rarely
employed to estimate forest height, and their efficacy has yet to be evaluated.

In summary, to address the gaps mentioned above, we proposed a methodological
framework for forest height estimation and mapping using multi-source remote sensing
data (Sentinel-2, Sentinel-1, ALOS PALSAR-2, SRTM DEM), three feature selection methods
(SR, RFE, Boruta) and six machine learning algorithms (k-NN, SVR, RF, GBDT, XGBoost,
and CatBoost) in Baoding city, north China. The purposes of this study are as follows:

(1) To examine the influence of feature selection methods of different remote sensing
data sources on forest height estimation, and to explore the optimal feature selection
method;

(2) To evaluate the performance of machine learning algorithms based on different
feature selection methods in forest tree height estimation;

(3) To generate a forest height distribution map of 25 m spatial resolution in Baoding
city, and to analyze the important factors in forest height estimation.

2. Materials and Methods
2.1. Study Area

The study area is located in Baoding city in the Midwest of Hebei province, China
(38◦14–39◦57′N, 113◦45–116◦19′E), covering an area of about 2,211,200 hectares (Figure 1). It
is situated near the eastern foot of the northern Taihang Mountains and on the western part
of the Jizhong plain. The terrain is inclined from northwest to Southeast. The landforms in
the west are mountainous, which are composed of mountains and hills; the landforms in the
east region belonging to the North China Plain are flat. Baoding is in the warm temperate
continental monsoon climate zone, with an annual average temperature of 12.7 ◦C and
2511 h of sunshine per year, accounting for 56% of total sunshine hours. The annual frost-
free period is about 165–210 days. The period from June to August each year is a period of
intensive precipitation, and the average annual precipitation duration is 68 days with an
average precipitation of 489.9 mm. The forestry area of Baoding is nearly 590,000 hectares,
accounting for approximately 28% of the administrative area of the city, and the forest stock
of the whole city reaches 13.7 million cubic meters. Forest types mainly include coniferous
forest, broadleaf forest, and mixed conifer-broad-leaf forest. Among them, coniferous trees
are mainly Chinese pine (Pinus tabulaeformis) and oriental arborvitae (Platycladus orientalis);
Broadleaf trees mainly include populus tremula (Populus davidana), Mongolian oak (Quercus
mongolica), white birch (Betula platydiana), and acacia (Robinia pseudoacacia).

2.2. Methodological Framework of This Study

In this study, we proposed a methodological framework utilizing different feature
selection methods and machine learning algorithms to establish forest height estimation
models based on multi-source satellite data in the forest regions of Baoding city, north
China. Our methodological framework consists of four primary components (Figure 2):
(1) data preparation and preprocessing, (2) feature variables selection, (3) model building
and assessment, and (4) forest height mapping and important factors analysis.

2.3. Data Source and Preprocessing
2.3.1. Field Data Collection

The field data utilized in this study is the ninth National Forest Resources Continuous
Inventory (NFCI) data of Hebei Province. The field survey was conducted in November
2016. The sample plots were systematically arranged at an interval of 4 km × 4 km along a
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vertical and horizontal coordinate system. The sample plot was a square plot with a side
length of 25.82 m, and each sample plot area was about 0.067 ha.
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Figure 2. Flowchart of the proposed methodology for estimating forest height in Baoding city using
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sensing data.
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Each tree with a diameter at breast height (DBH) higher than 5 cm had its DBH,
tree height, and crown height measured, as well as the land use, dominant tree species,
tree species composition, average DBH, and average tree height were recorded. There
were 1210 sample plots in Baoding city, and 128 sample plots were finally collected after
removing the sample plots of non-forest land and inadequate information. The average tree
height of the forest sample plot ranged from 3.00 m to 24.50 m, and the average, median,
and standard deviation (std) were 8.57 m, 7.30 m, and 3.89 m, respectively. Among the
128 sample plots, 91 sample plots (70%) were randomly selected for training, and the
remaining 37 sample plots (30%) were used as the validation data set for the machine
learning model (Table 1).

Table 1. The statistics of forest height in training, testing, and total sample datasets.

Dataset Sample
Size Min (m) Max (m) Mean (m) Median

(m) Std (m)

Training 91 3.00 24.50 8.57 7.50 3.92
Validation 37 3.20 18.40 8.58 7.20 3.87

Total 128 3.00 24.50 8.57 7.30 3.89

2.3.2. Sentinel-2 Multispectral Imagery and Preprocessing

The multispectral images used in this study were Sentinel-2 satellite images from
the European Space Agency (ESA). The multispectral imager instrument carried by the
Sentinel-2 satellite has the advantages of high spatial resolution, excellent multispectral
imaging capacity, wide wing, and short revisit cycle, which can be used to monitor the
distribution and health of forests. The Sentinel-2 satellite image incorporates 13 bands,
with spatial resolutions of 10 m for bands 2–4 and 8 (blue: 490 nm, green: 560 nm, red:
665 nm, and NIR: 842 nm), 20 m for bands 5–7, 8A, 11, and 12 ((red edge 1: 705 nm, red
edge 2: 740 nm, red edge 3: 783 nm, narrow NIR: 865 nm, SWIR1: 1610 nm, and SWIR2:
2190 nm), and 60 m for the other three bands (coastal aerosol: 443 nm, water vapor: 940
nm, and SWIR cirrus: 1375 nm). The bands with spatial resolutions of 10 m and 20 m were
employed in this study.

In order to match the time of sample plot data collection, we downloaded seven
Sentinel-2 Level-1C images covering the study area with less than 10% cloud from the
United States Geological Service’s Earth Explorer (USGS) (https://earthexplorer.usgs.gov/
(accessed on 24 March 2022)) which were obtained in the growing season in August 2016.
Since the Sentinel-2 Level-1C image is the top atmospheric reflectance image, we used the
atmospheric correction processor (version 2.5.5, European Space Agency, Paris, France) of
Sentinel Application Platform (SNAP) software (version 8.0, ESA, Paris, France) to acquire
the Level-2A products, the bottom-of-atmosphere-corrected reflectance images. To match
the field plot sizes, we resampled the preprocessed Sentinel-2 images to 25 m pixel sizes.
Then, mosaicking and clipping were completed to cover the study area.

2.3.3. Synthetic Aperture Radar (SAR) Data and Preprocessing

We used synthetic aperture radar data from two different data sources, including the
Sentinel-1 C-band imagery and ALOS-2 PALSAR-2 yearly mosaic imagery.

Sentinel-1 is composed of two polar-orbiting satellites, and the revisit period of a
single satellite is 12 days. A total of 10 sentinel-1 ground range detected (GRD) images
with good quality from October 2016 were obtained from the Google earth engine (GEE)
cloud computing platform. We acquired the dual-polarization (VV and VH) images in
Interferometric Wide swath (IW) mode with an ascending orbital pass. These images
in GEE were already processed by the ESA Sentinel-1 toolbox, including thermal noise
removal, radiometric correction, terrain correction, and conversion of the backscattering
coefficient to decibels [45]. Here, we further processed them according to the framework
proposed by Mullissa et al. in 2021 [46], including border noise correction, refined Lee filter
for speckle filtering, and radiometric terrain normalization.

https://earthexplorer.usgs.gov/
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Due to the fact that PALSAR- 2 images in Baoding city were not free, the L-band SAR
imagery had not been applied for this study; however, the Japan Aerospace Exploration
Agency (JAXA) provides the 25 m spatial resolution ALOS/PALSAR yearly mosaic, which
is produced by mosaicking SAR images measured by PALSAR-2 available each year [47].
We obtained the mosaic data in the year 2016 from GEE in this study. This SAR imagery was
already ortho-rectificatied by using the 90 m SRTM Digital Elevation Model. The data were
stored as 16-bit digital numbers (DN), which were converted to gamma naught values (γ0)
in decibel unit (dB) using the following equation: γ0 = 10log10(DN2) − 83.0 dB. All of the
SAR images were resampled to the same pixel sizes to ensure consistency with other data.

2.3.4. Topographic and Ancillary Data

The digital elevation model (DEM) reflects the abundant terrain information of the
mountain region and provides great assistance to forest height estimation [23]. In this
study, we used the Shuttle Radar Topography Mission (SRTM) V3 product, which was
provided by NASA JPL at a resolution of approximately 30 m. Furthermore, we applied
the FROM-GLC 2017 (Finer Resolution Observation and Monitoring of Global Land Cover
at30-m resolution, 2017v1) product to define the forest regions of the study area [48].

2.4. Feature Variable Extraction

Based on the remote sensing data sources mentioned above, a total of 153 feature
variables were extracted in this study (Table 2). For Sentinel-2 data, we extracted 10
multispectral variables from the average surface reflectance of 10 multispectral bands with
spatial resolutions of 10 m and 20 m. Then, 20 vegetation indices derived from Sentinel-2
data, which were widely used in previous forest studies, were calculated [49–51]. Moreover,
the texture features of 10 multispectral bands, including mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation, were calculated by using
the gray level co-occurrence matrix (GLCM) with a 3 × 3 window. Finally, a total of
110 feature variables derived from Sentinel-2 data were obtained. As to SAR data, we
extracted VH and VV backscattering coefficients from Sentinel-1 imagery and HH and HV
backscattering coefficients from ALOS PALSAR-2 yearly mosaic, respectively. After that,
the ratio and normalized polarized difference of VH, VV, and HV, HH were calculated as
candidate variables, respectively. GLCM was also used to compute the texture features of
VH, VV, HH, and HV backscattering coefficients by using a 3 × 3 window. Finally, 40 SAR
feature variables were obtained. In addition, we extracted elevation, slope, and aspect from
the DEM image as terrain factors. To analyze the impact of different data sources on forest
height estimation, five combination scenarios were designed in this study (Table 3).

2.5. Feature Variable Selection

In this study, we employed stepwise regression analysis, recursive feature elimination,
and Boruta methods to select and analyze feature variables from five combination scenarios,
with all field measurements serving as a reference.

2.5.1. Stepwise Regression Analysis

In the past few decades, stepwise regression analysis (SR) has been widely used for
feature selection for forest parameters estimation studies [22,52–54]. The basic principle of
stepwise regression is to successively add the most contributing predictor variables in order.
After adding each new variable, all variables that no longer improve the model fit were
removed. The program will stop running until no variables are selected or dropped [31]. In
our research, we screened the best subset of variables by iterative both-direction stepwise
regression based on the Akaike information criterion (AIC) and ensured the p-values of all
the selected variables were significant (p < 0.05) [55]. This procedure was performed in R
4.2.0 using the “MASS” package [56].



Remote Sens. 2022, 14, 4434 7 of 27

Table 2. Summary of the metrics extracted from multi-source data used in this study.

Source Feature Variables Description

Sentinel-2
multispectral

data

Multispectral bands
(10)

b2 Blue, 490 nm
b3 Green, 560 nm
b4 Red, 665 nm
b5 Red edge, 705 nm
b6 Red edge, 749 nm
b7 Red edge, 783 nm
b8 Near-infrared, 842 nm

b8a Near-infrared, 865 nm
b11 Short-wave infrared, 1610 nm
b12 Short-wave infrared, 2190 nm

Vegetation indices
(20)

SAVI Soil adjusted vegetation index, 1.5 × (B8−B4)/(B8 + B4 + 0.5)
NDVI Normalized difference vegetation index, (B8 − B4)/(B8 + B4)

MSAVI2 Second modified soil adjusted vegetation index, 0.5 × [2 × (B8 + 1) − sqrt[(2 × B8 + 1) × (2 × B8 + 1) – 8 × (B8 − B4)]]
RVI Ratio vegetation index, B8/B4
PVI Perpendicular vegetation index, sin(a) × B8 − cos(a) × B4(a = 45◦)
IPVI Infrared percentage vegetation index, B8/(B8 + B4)

WDVI Weighted difference vegetation index, B8 − 0.5 × B4
TNDVI Transformed normalized difference vegetation index, sqrt[(B8 − B4)/(B8 + B4) + 0.5]
GNDVI Green normalized difference vegetation index, (B8 − B3)/(B8 + B3)

CI Color index, (B4 − B3)/(B4 + B3)
ARVI Atmospherically resistant vegetation index, (B8 – 2 × B4 + B2)/(B8 + 2 × B4 − B2)

MCARI Modified chlorophyll absorption ratio index, [(B5 − B4) − 0.2 × B5 − B3)] × (B5 − B4)
MTCI Meris terrestrial chlorophyll index, (B6 − B5)/(B5 − B4)
EVI Enhanced vegetation index, 2.5 × [(B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 + 1)]
EVI2 Enhanced vegetation index2, 2.5 × [(B8 − B4)/(B8 + 2.4 × B4 + 1)]

NDVIre1 Normalized Difference Vegetation Index red-edge1,(B8 − B5)/(B8 + B5)
NDVIre2 Normalized Difference Vegetation Index red-edge1, (B8cB6)/(B8 + B6)
mNDVI Modified normalized difference vegetation index, (B8 − B4)/(B8 + B4 − 2 × B2)

mNDVIre Modified red edge normalized difference vegetation index, (B8 − B5)/(B8 + B5 − 2 × B2)
NDII normalized difference infrared index, (B8 − B11)/(B8 + B11)
SAVI Soil adjusted vegetation index, 1.5 × (B8 − B4/(B8 + B4 + 0.5)
NDVI Normalized difference vegetation index, (B8 − B4)/(B8 + B4)

MSAVI2 Second modified soil adjusted vegetation index, 0.5× [2× (B8 + 1)− sqrt[(2× B8 + 1)× (2× B8 + 1)− 8× (B8− B4)]]
RVI Ratio vegetation index, B8/B4
PVI Perpendicular vegetation index, sin(a) × B8 − cos(a) × B4, (a = 45◦)
IPVI Infrared percentage vegetation index, B8/(B8 + B4)
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Table 2. Cont.

Source Feature Variables Description

Texture
(80)

b2/b3/b4/b5/b6/b7/b8/b8a/b11/b12_con Contrast
b2/b3/b4/b5/b6/b7/b8/b8a/b11/b12_corr Correlation
b2/b3/b4/b5/b6/b7/b8/b8a/b11/b12_dis Dissimilarity
b2/b3/b4/b5/b6/b7/b8/b8a/b11/b12_ent Entropy

b2/b3/b4/b5/b6/b7/b8/b8a/b11/b12_hom Homogeneity
b2/b3/b4/b5/b6/b7/b8/b8a/b11/b12_mean Mean

b2/b3/b4/b5/b6/b7/b8/b8a/b11/b12_sm Angular second moment
b2/b3/b4/b5/b6/b7/b8/b8a/b11/b12_var Variance

Sentinel-1
and

PALSAR-2
mosaic

Polarization
(8)

VV Vertical transmit-vertical channel backscattering coefficients, dB
VH Vertical transmit-horizontal channel backscattering coefficients, dB
HH Horizontal transmit- horizontal channel backscattering coefficients, dB
HV Horizontal transmit-vertical channel backscattering coefficients, dB

V/H VV/VH
s1npdi (VV − VH)/(VV + VH)
H/V HH/HV

p2npdi (HH − HV)/(HH + HV)

Texture
(32)

VV/VH/HH/HV_con Contrast
VV/VH/HH/HV_corr Correlation
VV/VH/HH/HV_dis Dissimilarity
VV/VH/HH/HV_ent Entropy

VV/VH/HH/HV_hom Homogeneity
VV/VH/HH/HV_mean Mean

VV/VH/HH/HV_sm Angular second moment
VV/VH/HH/HV_var Variance

SRTM DEM (3)
elevation elevation

slope slope
aspect aspect
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Table 3. Different scenarios of feature variable combinations for forest height modeling.

Scenario ID Variable Combination Short Name

1 Sentinel-2 s2

2 Sentinel-2, SRTM DEM s2to

3 Senitnel-1, Sentinel-2,
PALSAR-2 mosaic s1s2p2

4 Sentinel-1, PALSAR-2 mosaic,
SRTM DEM s1p2to

5
Sentinel-1, Sentinel-2,

PALSAR-2 mosaic, SRTM
DEM

s1s2p2to

2.5.2. Recursive Feature Elimination

Recursive feature elimination (RFE) is a wrapper-based feature-ranking algorithm
for determining the best feature subset [57]. It is essentially a process that repeatedly
builds a model until an optimal subset of features is selected. Based on the screening
results, the features with the smallest coefficients are deleted first, and the procedure is
repeated in the remaining set of features until all features are traversed by the algorithm [58].
During the process of selection, the root mean square error and standard deviation error
of 10-fold cross-validation were used to determine the feature variable subset. Although
many feature selection methods fusing RFE and other algorithms were proposed, previous
research emphasized that RFE combined with random forest could provide unbiased and
stable results and improve accuracy [59]; therefore, we used the “rfe()” function of the
“caret” package in R 4.2.0 to realize the procedure with the method “Repeatedcv”, repeat
“10”, and the function “random forests (rfFuncs)”.

2.5.3. Boruta

The Boruta algorithm is a wrapper built around the random forest classification algo-
rithm implemented in the R package “randomForest”. Its core idea is to construct shadow
features by shuffling the original real features and aggregate the original features and
shadow features as the feature matrix for training, and then, with the feature importance
score of shadow features as a reference, the feature set related to the dependent variable is
selected from the original real features. The Boruta algorithm consists of the following steps:
First, to create the shadow attributes by shuffling the values of the original object feature
and splice the shuffled features with the original real features to form a new feature matrix.
Next, use the new feature matrix as input and run the random forest classifier and compute
the Z scores of the real feature and shadow feature. Thirdly, to find the maximum Z score
among shadow attributes (MZSA), features that were significantly greater than MZSA
were labeled as “important”, significantly smaller than MSZA as “unimportant”, and were
permanently removed from the feature set. Lastly, to repeat the process until all the features
were classified as “important" or "unimportant”. This procedure was performed in R 4.2.0
using the Boruta packages [60].

2.6. Machine Learning Algorithms

In this study, we employed k-nearest neighbor (k-NN), support vector machine regres-
sion (SVR), random forest (RF), gradient boosting decision tree (GBDT), extreme gradient
boosting (XGBoost), and categorical boosting (CatBoost) machine learning algorithms to
model with the training data serving as the input.

2.6.1. K-Nearest Neighbor

The k-nearest neighbor (k-NN) algorithm is a simple and efficient non-parametric
method, which can effectively avoid the collinearity problem of the independent variables.
It applies to remote sensing data parameter estimation with non-normal distribution
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and unknown density function and is widely used in forestry investigations around the
world [61,62]. The core idea of this algorithm is to take a point in the feature space as the
reference object, record the attribute values of the k nearest sample points from the point,
and calculate the average value of its inverse distance weight to get the predicted value of
this object.

2.6.2. Support Vector Machine Regression

The support vector machine algorithm was proposed based on the VC dimension
theory and the structural risk minimization principle [63]. It was initially applied for
classification in forest applications, and recently also showed reliable advantages in forest
parameter retrieving [64,65]. The basic idea of SVR is to map the features of training data
to a high-dimensional feature space by defining a kernel function and finding an optimal
hyperplane of linear regression in this feature space to fit the eigenvalues. In the case of
limited sample information and high dimensions of feature variables, it can minimize the
sampling error and has good generalization ability.

2.6.3. Random Forest

Random forest (RF) is a modified ensemble machine learning algorithm based on
decision trees proposed in 2001 [66]. Numerous studies have demonstrated that RF can
accurately estimate forest metrics [22,67–69]. RF constructs a series of regression trees, each
of which is generated by randomly repeated sampling bootstrap training samples that can
be put back, which makes some data may be used many times, while other data may not be
used. Usually, 70% of the training samples are selected as the modeling samples, and the
remaining 30% samples are used to evaluate the sample prediction error, which is called
out-of-bag error (OOB error). At the same time, it randomly selects variables at the nodes
of each tree. The procedure stops running when the trees without pruning grow to the
maximum scale, and the final prediction accuracy takes the average weight of all prediction
regression trees. Because of its random characteristic, this method can enhance the stability
of the model, improve the prediction accuracy, and increase the robustness of the model
itself to noise or overfitting phenomena to a certain extent.

2.6.4. Gradient Boosting Decision Tree

Gradient boosting decision tree (GBDT) is an integrated decision tree algorithm based
on the iterative ideas of gradient boosting first proposed by Friedman [70]. It first generates
a weak learner (usually a CART regression tree model), obtaining the residual of the input
after training, and then trains the next learner based on the residual generated by the
previous round of learners, iteratively. In the process of each iteration, each learner aims to
minimize the loss function, that is, to make the loss function always reduce the residual
along the descending direction of the gradient. Finally, the final prediction result is obtained
by accumulating the results of all weak learners. GBDT is very robust to outliers due to
the use of some robust loss functions, and in the case of relatively little tuning time, the
prediction accuracy can also be relatively high. Although GBDT is very popular in the field
of machine learning, it is rarely applied in the study of forest parameter estimation [43,71].

2.6.5. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is an improved GBDT algorithm proposed
by Chen et al. in the Kaggle machine learning competition [72]. Compared with GBDT,
XGBoost has the following advantages: (1) Regular terms are added to the objective function
to control the complexity of the model and prevent the learned model from overfitting.
(2) The second-order Taylor expansion is used for the objective function, which makes the
definition of the objective function more accurate and easier to find the optimal solution;
(3) XGBoost builds all possible subtrees from top to bottom first and then prunes from
bottom to top in reverse. In this way, it is not easy to fall into the local optimal solution.
(4) XGBoost supports parallel processing. It sorts the data in advance before training
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and then saves it as a block structure. This structure is used repeatedly in subsequent
iterations, which greatly reduces the amount of calculation. Due to the advantages of
XGBoost, such as sparse data processing ability, greatly increasing algorithm speed, and
reducing computational memory in large-scale data training, it has recently attracted a lot
of attention. There were also some studies using XGBoost to estimate forest parameters
and achieved good results [43,73–75].

2.6.6. Categorical Boosting

Categorical boosting (CatBoost), as the name suggests, consists of categorical and
boosting, which is a novel gradient boosting algorithm implemented with oblivious trees
as the base learner proposed by Dorogush et al. [76]. On the one hand, CatBoost builds
fully symmetric trees. In each step, the leaves of the previous tree are split using the same
conditions. The feature segmentation pair with the lowest loss was selected and used for
nodes at all levels. This balanced tree structure facilitates an efficient CPU implementation
and reduces the prediction time. On the other hand, CatBoost uses the concept of rank-
lifting to train models on a subset of the data while computing the residuals on another
subset, thus preventing target leakage and overfitting. Compared with other algorithms
in the boosting family, CatBoost can automatically process discrete feature data, which is
suitable for regression problems with multiple input features and regression data containing
noisy samples. The model has stronger robustness and generalization performance and
performs better in algorithm accuracy. Although CatBoost outperformed other machine
learning algorithms in other fields [77,78], the effectiveness of this algorithm for forest
height estimation remains to be confirmed.

2.6.7. Tuning the Hyperparameters for the Machine Learning Algorithms

When estimating the forest height, the hyperparameters of the machine learning algo-
rithms can greatly affect the results of the model predictions; therefore, the hyperparameters
must be optimized for each algorithm before doing any further examination or comparison
using these algorithms. In this study, we utilized grid search technology to automatically
perform hyperparameter tuning. Six machine algorithms were hyperparameter tuned
based on the lowest model RMSE achieved by the 10-fold cross-validation techniques
repeated 5 times on the training dataset. This procedure was performed in R 4.2.0 using
the “caret” packages. Detailed information about the key tuning hyperparameters and
corresponding tuning parameters configurations for each algorithm were presented in
Table 4.

2.7. Model Evaluation

In our research, we randomly divided the plot data into two sets: training dataset
(70%) and validation dataset (30%). The training set was used to train and develop the
models, while the validation set did not participate in the model-building process and
was instead used to evaluate model performance. The best model was developed based
on the training set after hyperparameter tuning, and model performance metrics were
produced based on the validation set. The determination coefficient (R2, Equation (1)),
root mean square error (RMSE, Equation (2)), and relative root mean square error (rRMSE,
Equation (3)) were employed to evaluate the performance of different models. The higher
the R2 is, the lower the RMSE and rRMSE are, which means that the higher the prediction
accuracy is, the better the estimation result is.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(2)
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rRMSE =
RMSE

y
× 100% (3)

where n is the total number of sample plots, ŷi is the predicted value, yi is the field
measurement value and y is the mean of the field measurement value.

Table 4. Tuning hyperparameters and corresponding configurations for each algorithm.

Algorithm Hyperparameter Description Hyperparameter
Configurations

k-NN k the number of neighbors
considered.

(1–10)
at intervals of 1

SVR
C the cost of constraints violation (1–10)

at intervals of 1

gamma the parameter needed for all
kernels except linear

(0–0.2)
at intervals of 0.01

RF
mtry the number of predictor variables

randomly sampled at each split
(1–10)

at intervals of 1

ntree the number of trees (100–1000)
at intervals of 100

GBDT

ntree the number of trees (100–1000)
at intervals of 100

maxdepth the depth of the tree (1–10)
at intervals of 1

shrinkage the learning rate (0.01–0.1)
at intervals of 0.01

min terminal node the minimum samples required in a terminal node. (1–10)
at intervals of 1

XGBoost

max_depth the depth of the tree (1–10)
at intervals of 1

eta the learning rate (0.01–0.1)
at intervals of 0.01

gamma minimum loss reduction of the tree (0–1)
at intervals of 0.1

colsample_bytree the number of predictor variables
supplied to a tree

(0–1)
at intervals of 0.1

min_child_weight minimum number of instances (1–10)
at intervals of 1

subsample the number of observations
supplied to a tree

(0–1)
at intervals of 0.1

CatBoost

depth the depth of the tree

learning_rate the learning rate (0.01–0.1)
at intervals of 0.01

l2_leaf_reg the coefficient at the L2 regularization term of the cost
function

(1–10)
at intervals of 1

rsm the percentage of features to use at each split selection (0–1)
at intervals of 0.1

2.8. ANOVA Analysis

To assess the impact of different impact factors, including data sources, feature se-
lection methods, and modeling algorithms on forest height estimation, we applied the
analysis of variance (ANOVA) to quantify the impact of each factor and to identify critical
factors in forest height estimation. This procedure was performed in R 4.2.0.

2.9. Forest Height Mapping and Product Evaluation

First, the forest/non-forest mask generated from the FROM-GLC 2017 product was
used to obtain the forest distribution map of the study area. Then, the optimal model was
used for the wall-to-wall mapping of the forest height in Baoding city in 2016. After that,
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the forest height map derived from this study was compared with the existing global forest
canopy height map product (RMSE = 6.6 m, R2 = 0.62), which was generated by integrating
GEDI and Landsat data by Potapov et al. [40].

3. Results
3.1. Feature Variable Selected for Forest Height Modeling

In five different scenarios, three feature variable selection methods, stepwise regres-
sion analysis, recursive feature elimination, and Boruta were compared for forest height
modeling. The results of feature variable selection for different scenarios and different
methods are shown in Table 5. We could see that in each different scenario, the selected
feature variables based on different methods were unique. For example, in the “s1s2p2”
scenario, the feature variables of stepwise regression selected were mainly the texture
features of Sentinel-2 and PALSAR-2, whereas the main features chosen by RFE and Boruta
included spectral band reflectance, vegetation index, and texture features of Sentinel-2
and Sentinel-1. In the “s1p2to” scenario, the SAR feature variable screened by Boruta was
derived from Sentinel-1. However, this situation was just the opposite when screening
variables based on SR and RFE, the selected SAR variables were from PALSAR-2, and the
number of selected variables from PALSAR-2 acquired by SR and RFE was quite different.

Table 5. Five scenarios of feature variable selection result for forest height modeling.

Scenario
Name

Feature Selection
Method

Number of Selected
Variables Name of Selected Variables

s2

Stepwise regression
analysis 9 b11, NDVIre2, b2_hom, b3_ent, b3_var, b4_ent, b4_var,

b5_hom, b11_mean;
Recursive feature

elimination 10 b2, b4, b5, CI, b2_con, b2_corr, b2_hom, b2_dis, b4_ent,
b4_sm;

Boruta 16 b2, b3, b4, b5, CI, b2_con, b2_corr, b2_dis, b2_hom, b3_mean,
b4_dis, b4_ent, b4_hom, b4_mean, b4_sm, b12_mean;

s2to

Stepwise regression
analysis 14

b3, NDVIre2, b2_corr, b2_sm, b3_mean, b4_ent, b4_sm,
b5_mean, b8_dis, b8_var, b11_var, b12_corr, b12_var,

elevation;
Recursive feature

elimination 10 b2, b5, CI, b2_con, b2_corr, b2_dis, b2_hom, b4_ent,
elevation, slope;

Boruta 18
b2, b4, b5, CI, NDVI, b2_con, b2_corr, b2_dis, b2_hom,

b3_mean, b4_ent, b4_hom, b4_mean, b4_sm, b4_var, b5_ent,
elevation, slope;

s1s2p2

Stepwise regression
analysis 8 NDVIre2, b2_hom, b4_ent, b5_sm, VV_dis, HH_con,

HH_mean, HV_var;
Recursive feature

elimination 12 b2, b4, b5, b2_corr, CI, b2_con, b2_dis, b2_hom, b4_ent,
VH_con, VH_dis, VH_hom;

Boruta 21
b2, b4, b5, ARVI, CI, NDVI, b2_con, b2_corr, b2_dis,

b2_hom, b2_mean, b2_sm, b3_mean, b4_ent, b4_hom,
b4_sm, b4_var, b5_mean, VH_con, VH_dis, VH_hom;

s1p2to

Stepwise regression
analysis 6 HH_mean, HV_con, HV_ent, HV_sm, HV_var, elevation;

Recursive feature
elimination 3 HH_con, elevation, slope;

Boruta 3 VV_var, elevation, slope;

s1s2p2to

Stepwise regression
analysis 15

NDVIre2, b2_corr, b3_ent, b3_var, b4_ent, b8_var, b11_var,
b12_corr, b12_sm, VH_sm, HH_mean, HH_sm, HV_con,

HV_var, slope;
Recursive feature

elimination 14 b2, b4, b5, CI, b2_con, b2_corr, b2_dis, b2_hom, b4_ent,
VH_con, VH_dis, VH_hom, elevation, slope;

Boruta 23
b2, b3, b4, b5, ARVI, CI, NDVI, NDVIre1, RVI, TNDVI,

b2_con, b2_corr, b2_dis, b2_hom, b4_ent, b4_hom, b4_sm,
b4_var, b5_mean, b12_mean, VH_con, elevation, slope.
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Furthermore, it should be noted that in the scenarios containing terrain factors, almost
the feature selection methods chose elevation and slope. In the scenarios which contained
variables derived from Sentinel-2, these variables, including b2_ hom, b4_ ent, and CI were
selected frequently. In the scenarios with radar-derived variables, the selected variables
were different based on different methods. SR was more inclined to choose the feature
variables derived from PALSAR-2, Boruta was more inclined to choose Sentinel-1, while
RFE depended on specific data scenarios, and in most cases, it is preferred to choose
Sentinel-1.

3.2. Forest Height Modeling Results

We applied three statistical metrics (R2, RMSE, rRMSE) to evaluate the height models
built from different variable scenarios by using the reserved 30% field plot data (Table 6).

Table 6. Performance of forest height estimation models in the validation datasets.

Data
Scenario

Regression
Method

Feature Selection Method

SR RFE Boruta

R2 RMSE
(m)

rRMSE
(%) R2 RMSE

(m)
rRMSE

(%) R2 RMSE
(m)

rRMSE
(%)

s2 k-NN 0.43 2.9 33.53 0.40 3.0 34.56 0.48 2.8 32.11
s2 SVR 0.33 3.1 36.27 0.31 3.2 37.10 0.28 3.2 37.71
s2 RF 0.49 2.7 31.75 0.55 2.6 29.80 0.52 2.7 30.95
s2 GBDT 0.49 2.7 31.66 0.53 2.6 30.49 0.52 2.6 30.73
s2 XgBoost 0.55 2.6 29.91 0.56 2.5 29.66 0.57 2.5 29.10
s2 CatBoost 0.45 2.8 32.98 0.50 2.7 31.41 0.49 2.7 31.66

s1s2p2 k-NN 0.08 3.7 42.58 0.35 3.1 35.96 0.38 3.0 35.02
s1s2p2 SVR 0.33 3.2 37.72 0.27 3.3 37.94 0.39 3.0 34.82
s1s2p2 RF 0.48 2.8 32.17 0.46 2.8 32.83 0.47 2.8 32.36
s1s2p2 GBDT 0.52 2.7 30.90 0.44 2.9 33.34 0.42 2.9 33.80
s1s2p2 XgBoost 0.46 2.8 32.75 0.46 2.8 32.80 0.47 2.8 32.52
s1s2p2 CatBoost 0.48 2.8 32.14 0.44 2.9 33.42 0.46 2.8 32.65

s2to k-NN 0.34 3.1 36.24 0.34 3.1 36.18 0.35 3.1 35.75
s2to SVR 0.33 3.1 36.51 0.50 2.7 31.51 0.32 3.2 36.77
s2to RF 0.51 2.7 31.02 0.57 2.5 29.18 0.56 2.5 29.44
s2to GBDT 0.53 2.6 30.54 0.60 2.4 27.98 0.58 2.5 28.73
s2to XgBoost 0.53 2.6 30.47 0.63 2.3 27.25 0.59 2.4 28.45
s2to CatBoost 0.53 2.6 30.45 0.59 2.5 28.58 0.56 2.5 29.55

s1p2to k-NN 0.31 3.2 36.98 0.21 3.4 39.61 0.27 3.3 38.10
s1p2to SVR 0.09 3.6 42.35 0.13 3.6 41.47 0.13 3.6 41.63
s1p2to RF 0.10 3.6 42.34 0.28 3.2 37.89 0.15 3.5 41.08
s1p2to GBDT 0.18 3.5 40.22 0.33 3.1 36.35 0.19 3.4 40.03
s1p2to XgBoost 0.23 3.3 39.05 0.37 3.0 35.38 0.24 3.3 38.92
s1p2to CatBoost 0.24 3.3 38.88 0.31 3.2 36.91 0.19 3.4 40.00

s1s2p2to k-NN 0.17 3.5 40.59 0.37 3.0 35.32 0.44 2.9 33.31
s1s2p2to SVR 0.12 3.6 41.80 0.43 2.9 33.51 0.53 2.6 30.44
s1s2p2to RF 0.36 3.1 35.62 0.50 2.7 31.49 0.55 2.6 29.75
s1s2p2to GBDT 0.42 2.9 33.77 0.59 2.4 28.44 0.62 2.4 27.56
s1s2p2to XgBoost 0.40 3.0 34.49 0.60 2.4 28.18 0.67 2.2 25.57
s1s2p2to CatBoost 0.35 3.1 35.87 0.56 2.5 29.66 0.55 2.6 29.98

For five different data scenarios, the optimal models of five data scenarios were from
different feature selection methods. In the scenario “s2” and “s1s2p2to”, the models based
on Boruta and XGBoost provided the best performance. In the scenario “s2to” and “s1p2to”,
the models based RFE and XGBoost outperformed others. In the scenario “s1s2p2”, the
model based on SR and GBDT was the best. Furthermore, we found that the difference
in the performance between the scenario “s2”, “s1s2p2”, “s2to”, “s1s2p2to” was not very
obvious, while the scenarios combining optical and topography variables such as the “s2to”
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and “s1s2p2to” scenario further improved modeling accuracy overall. Compared with the
other four scenarios, the scenario “s1s2p2”, which contained radar and topography feature
variables, provided much poorer modeling results.

Interestingly, on the basis of optical variables modeling alone, adding radar-derived
variables marginally lowered the modeling accuracy of forest height, while adding topog-
raphy variables improved the modeling accuracy in most situations. For instance, when
combining Boruta and RF for modeling, R2 increased by 8.95% and RMSE decreased by
4.89% after adding topography variables, while R2 decreased by 8.69% and RMSE increased
by 4.55% after adding radar variables. When topography variables and radar variables
were both added to the optical variables dataset, the modeling results were connected
to the technique of feature selection. While selecting feature variables based on SR, the
modeling accuracy exhibited an apparent downward trend, regardless of the algorithm
utilized; however, the modeling effect was improved when RFE and Boruta were used to
screen feature variables, with R2 increased from 0.31–0.56 to 0.37–0.60 based on RFE, R2

increased from 0.28–0.57 to 0.44–0.67 based on Boruta.
Figure 3 shows the broken-line graph based on three different feature selection meth-

ods, five different data combinations, and six modeling methods (R2 on the left and RMSE
on the right). For the three different feature selection methods, the modeling performance
of Boruta-based and RFE-based approaches was superior to SR. The R2 and RMSE of
SR-based ranged from 0.08 to 0.55, 2.6 to 3.7, respectively, while RFE-based R2 varied from
0.13 to 0.63, RMSE from 2.3 to 3.6, with Boruta-based R2 varying from 0.13 to 0.67, RMSE
from 2.2 to 3.6.

For six different modeling methods, it could be seen that when the data source and the
method of feature variables selection were consistent, the tree-based ensemble algorithms
were always superior to k-NN (with R2 varying from 0.08 to 0.48, RMSE varying from 2.8
to 3.7) and SVR (with R2 varying from 0.09 to 0.53, RMSE varying from 2.6 to 3.6). Among
the four ensemble machine learning algorithms, RF (with R2 varying from 0.10 to 0.57,
RMSE varying from 2.5 to 3.6), GBDT (with R2 varying from 0.18 to 0.62, RMSE varying
from 2.4 to 3.4), XGBoost (with R2 varying from 0.23 to 0.67, RMSE varying from 2.2 to 3.3)
and CatBoost (with R2 varying from 0.19 to 0.59, RMSE varying from 2.5 to 3.4), XGBoost’s
overall performance was slightly better than the other three. Moreover, in all of the 90
established models, the XGBoost algorithm based on the Boruta feature selection technique
in the “s1s2p2to” scenario achieved the best modeling effect (R2 = 0.67, RMSE = 2.2 m).

3.3. Variable Importance Analysis

In order to further understand the importance of feature variables in the modeling
process, we ranked the importance of “s1s2p2to” scenarios containing all types of feature
variables based on the importance ranking method of XGBoost. Figure 4 displays the
importance ranking of feature variables based on three distinct feature selection methods.

According to the feature selection method of Boruta and RFE, the terrain-related fac-
tors slope and elevation, vegetation index “CI” and band reflectance “b2” and “b4” had
relatively high importance, accounting for approximately 40% and 60% of all the selected
variables, respectively. Although there were many optical texture feature variables selected,
the importance of a single feature was inferior to other features. In addition, although the
radar variables selected by these two methods were very few, their significance cannot be
completely ignored. Compared with Boruta and RFE, the variables selected by SR were
quite different, band reflectance was not chosen, but the optical texture features and the
variables derived from PALSAR-2 not considered by Boruta and RFE were taken into ac-
count. Thus, it could be seen that different feature selection methods chose different feature
variables, and the importance of variables also varies according to different techniques.
When using Boruta and RFE, optical variables and terrain variables were more crucial,
while the importance of radar variables increased based on SR compared with Boruta
and RFE.
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3.4. Forest Height Mapping and Comparison to Existing Product

Based on the modeling results, we combined the feature variables of the scenario
“s1s2p2to” selected by Boruta and XGBoost algorithm to produce the forest height wall-
to-wall map over Baoding city. According to our forest height map, the value of the
forest height in Baoding city was 7.64 ± 1.70 m and ranged from 2.97 m to 17.91 m. We
compared our results with the previously released product published by Potapov et al. [40],
hereinafter called the “Pota”. According to “Pota”, the forest height in Baoding city was
9.15 ± 3.62 m and ranged from 3.00 m to 29.00 m (Table 7). Despite the minimum value of
the two forest height products being almost identical, the average and maximum values of
the “Pota” were much higher than in this study. Moreover, there were notable discrepancies
in the distribution of forest height from the two maps of forest height in Baoding city
(Figure 5). First, the tree height values of this study were primarily concentrated in the
range of 6–8 m, with a normal distribution trend on both sides, whereas the tree height
values of “Pota” were mainly distributed in the range of 7–10 m. Second, the higher values
of forest height in this study were mainly distributed in the mountainous areas in the north
of Baoding city, while according to “Pota”, tall trees were dispersed in both north and west
of Baoding. In order to explore the factors that caused the difference between the two maps,
we generated a map of forest height differences between these two maps in Baoding city
(Figure 6); the average value of the forest height difference was 3.25 m and ranged from 0 to
23.00 m. We found that large differences existed in the mountainous areas in the northern



Remote Sens. 2022, 14, 4434 17 of 27

and midwest areas of Baoding city. From the slope distribution map (Figure 6), it could
be seen that the areas with big differences were mountainous areas with large slopes and
steep terrain. Further counting the difference values above the average difference value
in the distribution of different slope levels, we found that the high difference values were
primarily distributed in the areas with a slope above 15◦, accounting for more than 80% of
the total number of high difference values (Figure 7).
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Table 7. Comparison of estimated forest heights over Baoding city.

Product Nominal
Year

Data
Source

Nominal
Resolution

Algorithm Forest Height (m)

Min. Max. Mean. Std.

Map of Potapov 2019
Landsat,

GEDI,
SRTM

30 m Regression
tree 3.00 29.00 9.15 3.62

Map of this study 2016
Sentinel-1,
Sentinel-2,

SRTM
25 m XGBoost 2.97 17.91 7.64 1.70
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4. Discussion
4.1. Performance of Multi-Source Satellite Metrics for Forest Height Estimation

Our study used multi-source satellite data to estimate the forest height of Baoding
City. First of all, from the different scenarios of various variable combinations, the variable
combination of optical sensor and radar sensor was not always superior to a single optical
sensor, which was consistent with the previous research findings when Li et al. applied
Landsat 8 and Sentinel-1A data to estimate forest aboveground biomass [75]; however, at the
same time, our study results also demonstrated that the performance of the combination of
optical, radar, and terrain variables was slightly better than that of a single sensor. Secondly,
according to the variables selected by three different feature selection methods and the
importance ranking results, optical variables had higher potential than radar variables
in estimating forest height, which was supported by Huang et al. [22]. Previous studies
have shown that the variables derived from Sentinel-1 and PALSAR-2 were valuable and
common predictors for forest height estimation [79,80]; however, in this study, their role
was auxiliary, and the accuracy improvement of forest height estimation was not obvious.
There were two potential causes to explain this phenomenon. The first was because
the C-band SAR has limited penetration of the forest, and is vulnerable to topographic
factors in mountainous areas. The second was that the used PALSAR-2 data did not
contain the real image at the time of field data collection, but the mosaic image in 2016.
The inconsistency between the ground data and the image may result in being not very
inaccurate. Furthermore, terrain factors such as elevation were discovered to present good
performance in estimating forest height, which was compatible with the earlier research
conducted by Xi et al. [81]. Because SRTM employed an InSAR instrument, the vegetation
contribution is not totally separated from the ground elevation, so the elevation may include
part of the vegetation height information.

4.2. Performance of Different Feature Variable Selection Methods

We explored three different techniques to select feature variables. Table 5 showed that
there were certain disparities in quantity and selected variables for different methods. In
particular, the variables screened by SR were quite different from those selected by the
other two methods. This might be related to the fundamentals of the three approaches. SR
is based on AIC information statistics to delete or add variables accomplished by selecting
the smallest AIC information statistics. It is worth noting that since the AIC tended to
select more parameters than required when using small or medium samples, we mitigated
the limitations of the method by removing certain non-essential variables by making the
p-value of all selected variables significant (p < 0.05) [55]. RFE and Boruta are methods
around the core idea of random forest, so the selected variables had a certain degree of
similarity. Table 8 summarizes statistical data for different variable selection methods.
From the mean values shown in the table, the effect of RFE and Boruta was significantly
better than SR and the average value of RFE was slightly better than Boruta; however, the
calculation time of executing RFE algorithm in “caret” package was much longer than
that of Boruta, while its average accuracy improvement was very limited, and the optimal
modeling result was also based on Boruta; therefore, from the perspective of modeling
accuracy and time efficiency, we considered that Boruta was the best feature selection
method in this study. Agjee et al. [82] came to the same conclusion when they compared
RFE and Boruta to identify multitemporal hyperspectral data to detect the efficacy of the
biocontrol agent.

4.3. Performance of Different Machine Learning Algorithms

Among six machine learning algorithms, four tree-based ensemble algorithms pro-
vided better forest height estimation accuracy than the other algorithms, and XGBoost was
superior to the other three ensemble algorithms. This result was similar to the research
conducted by Arjasakusuma et al. [83] when comparing MARS, SVR extra trees (ET), and
extreme gradient boosting (XGB) with trees (XGbtree and XGBdart) and linear (XGBlin)



Remote Sens. 2022, 14, 4434 20 of 27

classifiers for modeling forest height from the combination of LiDAR and hyperspectral
data. Comparable conclusions were drawn in the studies of forest aboveground biomass
estimation. Pham et al. [43] combined genetic algorithm (GA) and XGBoost to achieve
optimal mangrove AGB estimation than the other four ML algorithms (RF, SRM, GBRT, and
CatBoost); Li et al. [74] combined China’s national forest inventory, Landsat-8 data, and LR,
RF, and XGBoost algorithms to establish AGB models and found that the XGBoost model
significantly improved the estimation accuracy and reduced the problem of overestimation
and underestimation to a certain extent.

Table 8. Average running time and statistical of R2, RMSE, and rRMSE for different variable selection
methods.

Method
R2 RMSE rRMSE Average

Running
Time (s)Min. Max. Mean. Std. Min. Max. Mean. Std. Min. Max. Mean. Std.

SR 0.08 0.55 0.36 0.15 2.6 3.7 3.0 0.4 29.91 42.58 35.38 4.09 3.68
RFE 0.13 0.63 0.44 0.13 2.2 3.6 2.8 0.3 25.57 41.46 33.13 3.81 3343.77

Boruta 0.13 0.67 0.43 0.15 2.3 3.6 2.9 0.4 27.25 41.63 33.28 4.36 17.75

The reasons why the XGBoost model performed well included two aspects. First,
XGBoost is a flexible algorithm that can correct residual errors to generate a new tree based
on the previous trees. Second, the XGBoost model is an advanced gradient boosting system,
which improves the processing of regularization learning objectives and avoids overfitting;
however, it is worth noting that all the machine learning algorithms cannot entirely address
the problem of overestimation and underestimation of forest height. In the present study,
XGBoost achieved the optimal solution, but its potential in the face of various geographical
situations requires further investigation.

4.4. Important Factors Analyze in Forest Height Estimation

Numerous factors can influence the accuracy of forest height estimation. In the
present study, we employed ANOVA analysis to evaluate the impact of data source, feature
selection method, regression algorithm, and their interaction on forest height estimation.
To better illustrate how each factor explained the total variance, we calculated the ratio of
the sum of squares of each factor to the total sum of squares (η2). According to the ANOVA
results (Table 9), the data source was the most influential factor, accounting for 47% of the
total variance of R2, 46% of RMSE and 46% of rRMSE. Then regression algorithm explained
24% of the total variance of R2, 25% of RMSE and 25% of rRMSE. The influence of the
feature selection method and the interaction between the three factors was relatively low,
altogether accounting for approximate 20% of the total variance in R2, RMSE, and rRMSE.
However, it is worth mentioning that the feature selection method, the interaction between
data source and feature selection method, and the interaction between data source and
regression algorithm also had a significant effect on the results of R2, RMSE, and rRMSE,
so these three factors, including data source, feature selection, and regression algorithm
could not be disregarded. In a word, it is necessary to take these three factors into account
in the estimation of forest height.

4.5. Map Product Comparison

Previous studies had shown that complex terrain increased uncertainty in forest height
estimation and the accuracy of forest height estimates decreased with increasing slope
values [84,85]. In rugged mountainous areas, the radar’s backscatter coefficients and optical
spectral reflectance information were susceptible to terrain, and the GEDI used in Potapov’s
study, whose signals were also skewed by the intricate topographical conditions within its
footprint. The combination of these effects led to the large difference in values between
Potapov’s map and our map, mainly in the areas with high slope values. Furthermore, the
result of our research showed an obvious underestimation of the high forest height value.
We explained this phenomenon by concentrating on two reasons. The first reason was
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that optical data mainly captured forest spectral information, with the SAR data of C/L-
Band limited ability to penetrate forest canopy, causing their signals to appear saturated.
Secondly, due to the small quantity values at the high altitude of our field plots, the high
values will be underestimated in the process of machine learning modeling. Potapov
reported oversampling of tall trees in their overall reference data set resulted in high values
that could be overestimated to some extent. This conclusion was also verified in our study
that the average and maximum tree height values in “Pota” were greater than field data.

Table 9. ANOVA results of the R2, RMSE, and rRMSE for three different factors.

Factor Df
R2 RMSE rRMSE

SumSq η2 Pr (>F) SumSq η2 Pr (>F) SumSq η2 Pr (>F)

Data source 4 0.90 0.47 <2.2 × 10−16 *** 5.30 0.46 2.571 × 10−07 *** 720.87 0.46 2.571 × 10−07 ***
Feature

selection
method

2 0.11 0.06 2.147 × 10−06 *** 0.70 0.06 <2.2 × 10−16 *** 95.02 0.06 <2.2 × 10−16 ***

Regression
algorithm 5 0.45 0.24 1.345 × 10−12 *** 2.86 0.25 4.992 × 10−14 *** 389.54 0.25 4.992 × 10−14 ***

Data source
Feature

selection
method

8 0.16 0.08 1.412 × 10−05 *** 1.00 0.09 1.860 × 10−06 *** 136.25 0.09 1.860 × 10−06 ***

Data source
Regression
algorithm

20 0.14 0.07 0.01107 * 0.85 0.07 0.003017 ** 115.79 0.07 0.003017 **

Feature
selection
method

Regression
algorithm

10 0.02 0.01 0.84356 0.09 0.01 0.826854 11.96 0.01 0.826854

Residuals 40 0.12 0.62 83.68

Signif. Codes: ‘***’: 0; ‘**’: 0.001; ‘*’: 0.01.

4.6. Recent Related Works Comparison

Compared with two recent studies which used both optical and radar variables for
forest tree height estimation, the similarity was that all three studies estimated forest height
by constructing an empirical model between forest height and multi-source remote sensing
information [22,23]. The difference was that Liu et al. [23] constructed a simple logarithmic
regression to estimate forest height based on the relationship between forest height and
the backscattering coefficients derived from Sentinel-1 data and the fraction of vegetation
cover derived from Sentinel-2 data with the results R2 = 0.53414 and RMSE = 2.9156 m,
while Huang et al. [22] and our study both extracted considerable feature variables and
employed different feature selection methods and regression algorithms to estimate forest
height. Huang et al. systematically evaluated the performance of different remote sensing
metrics, feature selection methods, and regression algorithms by dividing the extracted
feature variables into ten scenarios and using two types of variable selection methods and
three types of regression models; the best estimation was achieved by RF models with
R2 ranged from 0.47 to 0.52, RMSE ranged from 3.8 to 5.3 m, whereas in our study, we
utilized four types of remote sensing data, three feature selection methods, and six machine
learning algorithms and applied the ANOVA to quantify the importance of these factors
on forest height estimation; the variables selected based on Boruta including Sentinel-1,
Sentinel-2, and topography metrics, combined with the XGBoost algorithm provided the
optimal model (R2 = 0.67, RMSE = 2.2 m).

4.7. Limitations and Prospects

In this study, we found that all the models had the problem of high-value underesti-
mation. From the scatter plot (Figures A1–A3), we could see intuitively the predicted value
was below the center line when the tree height exceeded 15 m which meant that despite
using multi-sensor datasets to decrease estimation error, the model still underestimated at



Remote Sens. 2022, 14, 4434 22 of 27

higher tree heights. In light of this issue, we proposed the following potential improvement
directions. (1) Optical sensor such as Sentinel-2 used in this study has some issues, such
as poor sensitivity and easy saturation to dense vegetation information, and SAR data,
such as Sentinel-1 and PALSAR-2, are susceptible to topography and other factors, and
the backscattering information has the problem of signal saturation. As a result, lidar
data with direct detection capabilities of forest vertical structures can be combined with
optical and SAR data in future studies to increase the accuracy of regional forest height
estimation. (2) Previous studies showed modeling based on different forest types and
tree height levels can lessen the model’s dependence on training samples and improve
the modeling effect [81,86]. Due to a lack of sample plot data, we were unable to address
forest types or tree height levels to undertake to model respectively. In the future, with
sufficient plot data gathered, these strategies can be applied to minimize the uncertainty in
the modeling process. (3) Since most machine learning models are black-box models, they
are difficult to reflect the mechanism and process between forest parameters and remote
sensing information, and the interpretability for reality is weak. The improvement of the
generalizability and accuracy of forest parameter estimation by simply constructing empiri-
cal models is limited. Physical geography, bioclimatic and cultural conditions are proved to
be crucial for the estimation of forest parameters [67,84]; therefore, in subsequent studies,
zoning and stratification strategies or coupling remote sensing data and forest physiological
process models should be emphasized to estimate forest height and other parameters.

5. Conclusions

In this study, we produced a 25 m spatial resolution wall-to-wall map of the forest
height in Baoding, north China and assessed the impacts of three aspects on forest height
estimation utilizing Sentinel-1, Sentinel-2, PALSAR 2 mosaic, SRTM DEM, and the NFCI
data, three feature selection methods (SR, RFE, and Boruta), and six machine learning
algorithms (k-NN, SVM, RF, GBDT, XGBoost, and CatBoost). The results of ANOVA
analysis demonstrated that data source, feature selection method, and machine learning
algorithm significantly influenced the results of forest height estimation. The accuracy
with optical data alone was slightly lower than the combined data of multiple sensors, and
multi-source data could improve the estimation accuracy to a certain extent. Optical and
topographic indicators were proved to be more effective than that radar indicators. The
subset of features screened by RFE and Boruta varied greatly from SR, and the models
exhibited from the variables screened based on RFE and Boruta had better performance
compared with SR. Moreover, XGBoost outperformed the other five machine learning
algorithms. Ultimately, we obtained the optimal model (R2 = 0.67, RMSE = 2.2 m) based on
the combination of Sentinel-1, Sentinel-2, and topography data using Boruta and XGBoost
algorithms. The generated forest height map differed from the existing map product,
and the regions with large differences between the two maps were mostly distributed in
the steep areas with high slope values. Overall, our findings provided a solution for the
subsequent forest height mapping at larger scales (national or global) with high precision.
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