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Forest management in southern China generates
short term extensive carbon sequestration
Xiaowei Tong1,2,13, Martin Brandt 2,13, Yuemin Yue1,3*, Philippe Ciais 4, Martin Rudbeck Jepsen2,

Josep Penuelas 5,6, Jean-Pierre Wigneron 7, Xiangming Xiao 8, Xiao-Peng Song 9, Stephanie Horion2,

Kjeld Rasmussen2, Sassan Saatchi10, Lei Fan 7, Kelin Wang1,3*, Bing Zhang11, Zhengchao Chen11,

Yuhang Wang 12, Xiaojun Li7 & Rasmus Fensholt 2

Land use policies have turned southern China into one of the most intensively managed

forest regions in the world, with actions maximizing forest cover on soils with marginal

agricultural potential while concurrently increasing livelihoods and mitigating climate change.

Based on satellite observations, here we show that diverse land use changes in southern

China have increased standing aboveground carbon stocks by 0.11 ± 0.05 Pg C y−1 during

2002–2017. Most of this regional carbon sink was contributed by newly established forests

(32%), while forests already existing contributed 24%. Forest growth in harvested forest

areas contributed 16% and non-forest areas contributed 28% to the carbon sink, while timber

harvest was tripled. Soil moisture declined significantly in 8% of the area. We demonstrate

that land management in southern China has been removing an amount of carbon equivalent

to 33% of regional fossil CO2 emissions during the last 6 years, but forest growth saturation,

land competition for food production and soil-water depletion challenge the longevity of this

carbon sink service.
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M
itigating climate change while securing livelihoods is a
major societal challenge in the twenty-first century.
Reducing emissions of CO2 from the combustion of fossil

fuels and deforestation, and developing land-based technologies to
sequester atmospheric CO2 are crucial to limit global warming1.
Current research indicates that vegetation growth and photo-
synthetic activity are increasing globally2,3, which translates into an
increased terrestrial biomass carbon sink and thereby contributes to
mitigate the growth rate of atmospheric CO2

4. Cropland and pas-
ture land may accumulate carbon in soils2,5, but the storage
potential is uncertain, whereas many studies indicate that adequate
forest management can enhance biomass carbon stocks6,7.

Forestation (reforestation and afforestation) sequesters carbon
in biomass, but the scalability of this land management option for
meeting ambitious warming limitation targets has been ques-
tioned due to the sheer amount of land area required1. Further,
forestation of arable land results into trade-offs with the local
food production7,8, and forests tend to have a high water use, so
that new plantations decrease soil moisture (SM) and renewable
freshwater resources9,10.

Moderate forest harvesting practices on forested farmlands can
generate carbon stocks and at the same time provide economic
output from timber products11. As such, expansion of managed
forests provides alternative income for farmers, and an increase in
the time-averaged standing carbon stock. Most of our current
knowledge of the impact of forest management on climate
change, however, is based on models and site-scale evidence, and
real-world empirical information about the performance of
diverse forest management strategies in relation to carbon storage
and SM at larger observational scale is needed12.

Southern China is an important case region in the sub-tropics,
as it hosts a large number of carbon-emitting economic activities
and because it experienced intensive land use changes, being now
among the most dynamic areas of managed forests in the
world13–17. Since 2000, government-funded efforts to combat
land degradation and fight poverty have been put in place18,19.
The main land use decisions have been to expand the forested
area and reduce agriculture on marginal sloping lands, and to
intensify crop cultivation on more fertile/less erodible soils.
Planted trees have generated income19 and woody vegetation
cover has greatly increased18,20. The results of this land use
transformation are relevant to other subtropical regions that are
experiencing fast tree-cover loss and continued expansion of
croplands in hill slopes21,22.

Management practices for forested land in southern China
include protection of existing (old-growth) forests, recovery of

deforested areas, afforestation of croplands for conservation
purpose, and development of industrial timber and paper pro-
duction19. These diverse actions produce contrasted forest types
with different carbon sequestration and storage potentials, which
are evaluated in this study. We apply a range of observational
data based on optical satellite imagery (including a full area
coverage of southern China at 2 m) and low-frequency passive
microwaves to identify different management strategies and
biomass carbon sinks from 2002 to 2017 (see Methods;
refs. 23–25). Low-frequency microwave data are also used to
evaluate SM trends during the period 2010–2017 (see Methods;
ref. 24). Results show that new forests are widespread over
southern China representing an extensive carbon sink and off-
setting an amount of carbon equivalent to one-third of the
regional fossil CO2 emissions, but possible soil water depletion
and the limited availability of arable land challenge the longevity
of the carbon sink service.

Results
Tree cover and CO2 emissions increased between 2002 and
2017. Forest cover has increased considerably at the expense of
bare ground and short vegetation (grassland and cropland) in
southern China (we studied eight provinces covering China’s
largest forests17,26) from an average tree cover of 21% in 1982 to
27% in 1999 and 38% in 2016 (+0.48% year−1)27 (Fig. 1a; Sup-
plementary Table 1). Most of the increase in tree cover and
decrease in bare ground/short vegetation occurred after the
implementation of forestation policies18 around the year 2000,
making this region the largest tropical area of tree cover increase
globally in recent time (Fig. 1b).

Fossil fuel carbon (C) emissions from the eight provinces of
southern China amounted to 0.21 Pg C in 1997 and increased to
0.63 Pg C in 2012 where after they stabilized28 (Fig. 1c). The
carbon sequestration in aboveground vegetation was estimated
using moderate resolution imaging spectroradiometer (MODIS)
and SM and ocean salinity (SMOS) low-frequency passive
microwave data (see Methods; refs. 23–25). We used a static
benchmark map of aboveground biomass to train a machine
learning algorithm applied on annual MODIS imagery to
estimate changes of aboveground carbon density from 2002 to
201723, the period in which extensive forest management has
taken place in the region. Aboveground biomass retrieved from
SMOS-passive microwave observations were calibrated by a set of
benchmark maps, which25 was used as an independent evaluation
of changes in carbon density calculated from MODIS optical data
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after the year 2010. The SMOS instrument is able to sense the
entire vegetation layer without saturation in densely vegetated
areas. The MODIS estimate of the carbon sink was 0.11 (±0.05
temporal uncertainty quantified as root mean square error
(RMSE) between MODIS and SMOS) Pg C year−1 (0.61 ±
0.2 Mg C ha−1 year−1) for 2002 to 2017, which represents an
amount of carbon equivalent to 20% of the regional annual fossil
CO2 emissions from 2002 to 2015, or 33% of the emissions after
2012, a year after which the emissions have stagnated (Fig. 1c). A
single drought year, however, can offset this annual mitigation of
emissions, as for example in 2011, where the ratio of carbon sink
via forest growth to fossil CO2 emissions dropped close to zero.

SMOS low-frequency passive microwave data (available since
2010 at a resolution of 25 × 25 km2) showed a high agreement of
aboveground carbon changes with the MODIS estimates, both
spatially (r= 0.7) and temporally (r= 0.9) (Fig. 2a, b). The spatial
distribution of SM trends derived from SMOS observations (fully
independent of the biomass estimations, due to the multi-angular
and dual polarization of the sensor) is different from trends in the
aboveground biomass C sink during 2010–2017 (Fig. 2c, d). The
SMOS SM data showed an overall decrease, while rainfall29 and
biomass C density increased (Fig. 2c). Statistically significant (p <
0.05) decreases in SM were found in 8% of the area (n= 172 grids
with 25 × 25 km2); however, the SMOS-based C density trends

were predominantly positive in these areas (Fig. 2e, f). A hotspot
of decreased SM was found in Guangxi, which is known for
extensive Eucalyptus sp. plantations30. Here, the example shown
in Fig. 2g points towards a large-scale harvest (followed by
regrowth) in 2013.

To further study the impact of different management types on
C sinks, we stratified land and forest management over the whole
region into eight different types (Table 1), including dense/
minimally managed forest, persistent non-forest, areas with fast/
slow forest gains, deforested areas and two intensities of forest
rotation (Table 1; Supplementary Figs. 1–6). The classification is
based on mapping of the duration, magnitude and direction of
human-induced disturbances (Supplementary Fig. 7) from annual
forest probability time-series data (2002–2017, 500 × 500 m2

resolution), trained and compared with a full area coverage of
2-m GF-1 satellite imagery. The association of the different land
use types with carbon sequestration is shown in Fig. 3, and the
spatial distributions are shown in Fig. 4a, b (close-ups are shown
in Supplementary Figs. 5, 6). Due to their coarse spatial resolution
(25 × 25 km2), biomass carbon change data from SMOS could not
be downscaled into the different land use types, but they were
used as independent check of the spatially detailed MODIS-based
estimates at 500 m resolution. Similarly, SM trends were assessed
at 25 km resolution.
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Dense forests and persistent forests. Dense forests are protected
remnants of natural forests or dense secondary unharvested
forests with a dense tree cover and no disturbances (line 1 in
Table 1). Dense forests covered only 8.8% of the region, but
stored 20.5% of the total aboveground C stocks (1.71 Pg C) in the
beginning of the study period (2002) due to their high C density
(105Mg C ha−1 from 2002 to 2017). C dynamics in dense forests
remained small during 2002–2017, and contributed 4% (0.005 Pg
C year−1) to the region’s net C uptake, which removed 0.9% of
the annual fossil CO2 emissions (Fig. 3a–c).

Persistent forests (20.5% of the area) are less dense forests with
minor disturbances, but no major harvests during the observation
period (line 2 in Table 1). This land use type stored 2.76 Pg C
(33%) in 2002 (mean C density of 75Mg C ha−1) and showed a
substantial stock increase (0.023 Pg C year−1) from 2002 to 2017
(Fig. 3a), contributing 20% to the region’s C sequestration,
equivalent to 4.2% of the provincial CO2 emissions (Fig. 3c).

Persistent non-forest land. Persistent non-forests are typically
farmland or grassland, and include small forest patches and fruit
trees (line 3 in Table 1). Non-forests covered 43.8% of the region
and contained 1.61 Pg C (in 2002), despite a mean C density
of 22Mg C ha−1. From 2002 to 2017, the C uptake was
0.032 Pg C year−1, caused by the large area occupied (Fig. 3a, b).
Net changes in C contributed 28% to the region’s C sequestration,
storing 5.2% of the annual CO2 emissions (Fig. 3c).

Recovering forest and afforestation areas. If an area changed
from non-forest to forest, the velocity (the ratio of magnitude to
duration) of the change determined the type of forestation (lines 4
and 5 in Table 1). The recovery type is associated with a slow
increase in forest cover, likely caused by natural regeneration or
planted slow-growing species, and covered 5.4% of the area. In
contrast, the afforestation type was associated with a rapid
increase in forest area and cover, suggesting plantations of fast-
growing species (7.4% of the area). Recovery and afforestation did
not include large-scale harvesting, but often included forestation
of former agricultural land (Fig. 4c).

The C stocks of these two types of forestation land use were
low in 2002 (recovery: 0.37 Pg C; afforestation 0.48 Pg C) (Fig. 3a),
but increased rapidly from 2002 to 2017 (recovery: 0.016 Pg C
year−1; afforestation: 0.021 Pg C year−1) (Fig. 3a, b), and
contributed 14% (recovery) and 18% (afforestation) to the
region’s C sequestration, thus storing on average 7.5% of the
annual industrial CO2 emissions (Fig. 3c).

Forest extraction. We identified three forest land use types
involving timber extraction at large scales (lines 6, 7 and 8 in
Table 1). The intensity of both the forest removal and replanting
defines each type. Conventional (short-)rotation forestry involves
clear-cutting of mature stands and subsequent regrowth (i.e.,
dynamic changes between forest and non-forest) and occurred in

Table 1 Types of land use and land use change in southern China.

Type Management Tree plantation/
harvest intensitya

Tree cover
(%)b

Forest loss
(%)b

Mean C density
(Mg C ha−1)c

Net C sink (Pg C year−1)/
% contributionc

1 Dense forest Persistent, often protected old
forests

Very low/very low 56 ± 14 2.8 ± 7 105 ± 11 0.005/4%

2 Forest Persistent, semi-managed Low/low 44 ± 16 3 ± 8 75 ± 16 0.023/20%
3 Non-forest Persistent, for example, farmland,

sugarcane and fruit trees
Low/low 14 ± 12 0.7 ± 3.4 22 ± 16 0.032/28%

4 Recovery Non-forest to forest (slow) Medium/none 28 ± 15 0.5 ± 2.5 47 ± 12 0.016/14%
5 Afforestation Non-forest to forest (fast) Very high/very low 27 ± 14 0.8 ± 3.3 44 ± 12 0.021/18%
6 Deforestation Forest to non-forest None/very high 40 ± 16 12 ± 17 64 ± 13 −0.00007/−0.06%
7 Rotation Medium-scale forestry, changes

between forest and non-forest
High/high 32 ± 16 4 ± 10 53 ± 11 0.017/15%

8 RotationL Large-scale forestry, low recovery Low/very high 37 ± 15 9 ± 15 61 ± 11 0.0008/0.8%

Dense forest, forest and non-forest are land use types with minor disturbances. The other types include land that experienced changes between forest and non-forest. The percentage of tree cover in

each land use type (±standard deviation) is from a Landsat-based tree-cover map in 201026. Forest loss is also derived from26 and represents the average forest loss per 500-m grid (±standard

deviation) from 2000 to 2017. Mean C density and net C sequestration are from our MODIS-based estimates from 2002 to 2017 (±RMSE from calibration biomass data as measure for spatial

uncertainty, Supplementary Table 3). See Supplementary Figs. 1–6 for illustrations and Supplementary Table 2 for more details
aSee Supplementary Fig. 7
bTaken from ref. 26

cMODIS estimates 2002–2017 (see Methods)
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10.6% of the area. Harvesting in rotation areas occurred at a
rather small spatial scale. Areas that experienced larger-scale
harvesting without adequate regrowth were termed rotationL
(1.9% of the area). Forest removal without any regrowth during
2002–2017 was defined as deforestation (1.6% of the area). The C
stocks of rotation, rotationL and deforestation areas were 0.99,
0.22 and 0.2 Pg C in 2002, respectively, with a positive net balance
in rotation and rotationL areas (0.017 and 0.0009 Pg C year−1,
respectively) and a negative net balance in deforestation areas
(−0.0001 Pg C year−1) between 2002–2017 (Fig. 3a). It has to be
noted that the C sink here is calculated from forest growth
without considering the full life cycle of extracted wood. It also
ignores changes in litter, coarse woody debris and soil carbon.
These three land use types with forest extraction make a con-
tribution of 15%, 0.8% and –0.06% to the regional C sequestration
and represent an amount of carbon sequestered equivalent to
2.7 % of regional fossil CO2 emissions in rotation areas, whereas

rotationL and deforestation areas acted as a C source (Fig. 3c)
from 2002 to 2015.

Forestry statistics at province level showed that on average
0.008 Pg C were harvested for timber production each year, which
amounts to 46% of the average annual net changes (0.017 Pg year−1)
from rotation areas (Fig. 4f). Before 2009, the harvest was higher
than the net C sequestration, which however reversed in the later
years. Timber harvest accounted for 0.004 Pg C in 2003 and 0.012 Pg
C in 2017.

Discussion
Within the past 20 years the subtropical and mountainous
landscapes in southern China have transitioned from traditional
agriculture towards managed forests mainly dedicated to the
production of wood products. Our study showed that newly
planted forests considerably increased C sequestration while more
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than tripling timber harvest. The forests that were already present
at the beginning of the study period contributed only marginally
to the observed large increase in C sequestration, while the
plantation of non-forest areas had the highest contribution.
Although unharvested forest plantations showed the highest C
uptake, harvested forests also had a strongly positive impact on C
stocks, as long as harvest was followed by forest regrowth.

A decline in SM in areas of intensive forestation and increased
C stocks has been shown by model simulations10, and the SMOS
satellite data indicate a similar development in several areas of
southern China. A possible reason is the increased water demand
of tree plantations and the associated increased evapotranspira-
tion. Although products on actual evapotranspiration do not
agree on the magnitude of increase for the study area (Supple-
mentary Fig. 8), the data support that forest plantations increase
evapotranspiration, while lowering the albedo and the land-
surface temperature31,32. However, while hotspot areas of
decreased SM were found to overlay extensive commercial tree
plantations (e.g., in Guangxi), statistically significant (p < 0.05)
decreases in SM were limited to small parts of the area. Moreover,
droughts (e.g., in 2011) may have increased the region’s evapo-
transpiration, with implications for the water use efficiency (gross
primary productivity/evapotranspiration), which was found to
decrease for southern China over the period 2000–201133. The
continued monitoring of both C stocks and SM dynamics is thus
essential to understand the impact of land use policies and
droughts on ecosystems. Here, our study demonstrated the
applicability of low-frequency passive microwaves as a tool ful-
filling these demands34,35.

While 30% of the region is covered by protected forests or
forests without major active management during the study per-
iod, 27% is actively managed as afforestation or from various
forest extractive uses. Those managed forests contributed 47% to
the region’s carbon sequestration, while generating income for the
local population through the marketing of wood, other timber
products and fruits19,36. About one-third of the area’s fossil CO2

emissions were stored by aboveground vegetation biomass
increase during the past 6 years, and based on this number, it can
be extrapolated that an additional forestation area of ~3 million
km2 would be required to reach net zero emissions (100%). This
is impossible, since only ~1 million km2 are currently non-
forested, of which 51% are farmlands37. Areas that were not
classified as forest also played an important role in our assess-
ment, as the general C uptake in non-forested areas was high.
However, the annual C turnover and losses in drought years were
considerable in non-forest areas (with only little impact on for-
ests), suggesting limited C sequestration abilities of these areas if
tree cover is not increased38–40.

The spatial extent of dense forests (largely old forests) was
small, yet our study showed that those forests were an important
and stable carbon stock that needs to be preserved. A total of
1.71 Pg C (20.5% of the total C stock) would be lost if all dense
forests in southern China were cut, corresponding to ~9 years of
fossil CO2 emissions. However, the limited capacity of dense
forests to store fossil fuel CO2 emissions highlights an inherent
dilemma of forest management in relation to mitigating climate
change; undisturbed forests maximize the standing C stock and
provide a permanent reduction of the atmospheric C content, but
once these forests reach a climax state, the net aboveground C
sequestration is low41,42. Managed forests store less C in the
standing biomass and have a smaller potential as permanent C
stock, but sequester substantial amounts of C annually18,42. To
evaluate the potential of managed forest for mitigating climate
change, two aspects are critical: first, the harvested areas should
be systematically replanted to sustain long-term carbon uptake,
and second, the subsequent use of harvested C should be

considered (life-cycle analysis). If the wood enters a short-life
product such as paper and swiftly progresses to decomposition or
combustion, the C sequestration in the forest is counterbalanced
at best or represents a C source when accounting for the C
emissions during processing of the wood43,44. If the wood is used
for construction or other long-term uses, the standing C stock is
extended for several decades45,46. Finally, using the biomass for
bioenergy production while ensuring regrowth following harvest
could also help mitigate climate change.

Uncertainties in the present study are mainly related to the
spatial resolution of the data sets and the benchmark maps
used to calibrate the carbon density maps. The resolution of 25 ×
25 km2 of the SMOS data is too coarse to distinguish different
types of land use. The resolution of 500 × 500m2 of the MODIS
data also represents mixtures of different processes, since neither
forest expansion/harvesting nor stand increments or degradation
usually cover the full extent of a MODIS grid cell. Frequent
changes between tree planting and harvesting at small scales pose
challenges for accurate classification, which tends to primarily
reflect major disturbances measurable at larger scales. Finally, C
dynamics estimated with optical data are restricted to the upper
green canopy layer, and cannot directly measure the non-green
wood part of the vegetation. Larger uncertainties are however
mainly found in tropical rainforests47 with a low spectral varia-
bility both in the spatial and temporal domain. This is less of an
issue in southern China, where the vegetation is less dense, and
rapid canopy changes occur, enabling our machine learning
model that translates MODIS optical data into biomass to be
trained by observations with a large dynamic range. Moreover, no
saturation was found in our carbon estimates (Supplementary
Fig. 10), and the relatively good agreement of our assessment
based on MODIS and high-resolution land cover data with
independent data sets on forest dynamics28,29 and biomass
(SMOS)27 provide confidence in our estimates (see Methods).

The numbers on C stock increases presented (0.11 Pg C year−1

for southern China) are considerably higher than previous esti-
mates, also considering that our numbers are only based on
aboveground vegetation biomass. For example, Fang et al.48 used
inventory data to estimate the C sink of forests in the entire China
at 0.075 Pg C year−1 for the 1980s and 1990s. Piao et al.38 found
the average terrestrial carbon sink of all China (excluding crop-
lands) to be 0.177 Pg C year−1 for the same period, of which 58%
can be attributed to vegetation biomass. The period of analyses of
above-mentioned studies ends, however, around 2003. Here we
showed that new forests, which were not present in 2003, con-
tributed with 47% to the region’s C sequestration. Moreover, non-
forested areas, commonly not considered as a sustainable C sink,
contributed further 28%, whereas only 24% of the C sink could be
attributed to forests, which were already present in 2003,
explaining the large differences to previous studies.

While the increase in C stocks over the period studied is sig-
nificant, in absolute terms as well as relative to the CO2 emissions
of the eight provinces, it is evident that further enhancement of
this sink in the future is unlikely. The sloping lands that offer the
best opportunity for new forest plantations replacing low pro-
ductivity croplands are now to a great extent already converted
and further increase in C storage will require improved man-
agement of currently planted areas to reach a higher C density.
Whether this may be seen as a viable option for the region is
determined by a range of biophysical, economic and political
factors. Further conversions from low to high C density forest
types are unlikely, unless economic incentives (e.g., in the form of
compensation payments, high market prices, or ‘Payments for
Environmental Services’) are provided. Thus, future sustainable
development will notably depend on the extent to which man-
agement strategies and economic factors will be able to combine
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substantial and increasing C stocks with a favourable economic
output. This requires a more refined analysis including different
rotation cycles, plantation types (that is species and harvest
purpose) and price/demand scenarios.

Although our study found a large increase in C sequestration of
which about half was caused by newly planted and managed
forests, our numbers also show that storing fossil CO2 emissions
from forest plantations alone is not a viable strategy for miti-
gating anthropogenic carbon emissions, due to the sheer amount
of land areas needed. It should be kept in mind, however, that a
substantial part of the industrial CO2 emissions in southern
China are caused by the production of goods that are not con-
sumed in this area, but are likely nationally and globally traded.
Additionally, large-scale forestation programmes can have an
adverse impact on the ecosystem by decreasing SM and thus
water availability for local organisms, showing that carbon
sequestration and economic benefits should not be the only
aspects considered when debating the sustainability of land and
forest management.

Methods
Overview. This study estimated dynamics in forested areas and C density at a scale
of 500 × 500m2 for 2002–2017 (see flowchart in Supplementary Fig. 9). We pro-
duced annual forest maps using MODIS, which were compared with independent
tree-cover data at scales of 30 m28 and 5.6 km27. We derived a typology of forest
continuity and dynamics from the annual forest maps. Since forest management in
this area is a very dynamic process, the typology requires annual maps at a rea-
sonable spatial scale, which is not provided by any publicly available product. As
analyses were conducted at a spatial scale of 0.25 km2, the land-surface types
inevitably included cases of multiple processes and the final classification was
determined by the majority of these processes within a grid cell, implying that the
data likely over- or underestimated the real areal extents, particularly for forest
dynamics. For example, an area of 500 × 500 m2 reported to belong to the affor-
estation type means that afforestation was the major process occurring in this grid
cell, but does not imply that trees had been planted on the entire area of 0.25 km².

MODIS satellite data. Daily BRDF (bidirectional reflectance distribution func-
tion) corrected MODIS imagery (MCD43A4 collection 6)49 from 2000 to 2017 was
the basis for this study. We used all seven bands. Cloud cover is severely impacting
the number of good quality observations from optical remote sensing sensors in
southern China, and we chose the annual median of daily MCD43A4 images to
retrieve an annual image. Due to the fact that even the annual median images were
not free of noise, we additionally applied a 3 years moving median window to the
annual time series, shortening the available period of data to 2002–2017. This
aggressive cleaning was necessary because all kind of noise would be mapped as
“clearcut” or other forest dynamic, which would alter our results (see later
sections).

Forest probability. We created annual forest/non-forest probability maps from
annual MODIS data. Here we used forest/non-forest training points manually
selected from ~10,000 GF-1 satellite images (pansharpened true-colour composites
at 2 × 2 m2 for 2013–2017) to train a Random Forest classifier (using the standard
setting of 500 trees) with MODIS MCD43A4 reflectance (seven bands) and a
Shuttle Radar Topography Mission (SRTM) digital elevation model for predicting
the annual forest probability. “Probability” is the standard output of a Random
Forest classification and shows how likely a pixel belongs to a certain class. If only
two classes are available (here forest and non-forest), the probability shows the
likeliness if a pixel belongs to the forest (1) or non-forest (0) class. A total of 110
forest and 323 non-forest training points were manually selected from the GF-1
images, supported by Google Earth. The manual selection of the points followed
strict rules: First, the areas should be clearly interpretable in the GF-1 imagery.
Second, the areas should be as spatially uniform as possible, that is, either a dense
forest or clearly no forest. Third, we used the 500 × 500 m2 grid from the MODIS
resolution to ensure that a minimum of nine pixels (the point was set in the centre
pixel) are covered by the class. Finally, the forest training points should mainly
represent dense forests that were stable during 2002–2017 (historical Google Earth
images were used when possible), so we used the average of all years as input for
the model for each of the seven bands, which further reduced noise and guaranteed
a stable model50. A three-fold cross-validation of the model (excluding random
subsets of the training data that were then predicted) was satisfactory (r= 0.93).
However, since the chosen points were rather homogeneous, we applied compar-
isons with independent forest cover maps to assess the quality of the forest
probability maps (see section Intercomparison of independent data sets). We
applied this model to the annual MODIS bands to generate annual probability
maps of the forest/non-forest classification. The probability ranged from 0 to 1 and

indicated the likeliness that an area showed characteristics similar to those of the
forest training points, implying that temporally increasing forest probability
represented the growth of forests50. Likewise, a decrease in forest probability was
linked with harvesting. The assumption that forest probability was associated with
the fraction of a grid covered by forest was evaluated with independent data (see
below).

Types of land use. We applied Landsat-based Detection of Trends in Disturbance
and Recovery (LandTrendr) to the maps of annual forest probability to identify the
types of land uses51. We used similar settings as suggested by refs. 52,50 because of
comparable data sources and time periods. We set the significance threshold for the
model fitting to 0.05 and the maximum number of trajectory segments to six. The
LandTrendr algorithm is used for partitioning of the annual data into fitted seg-
ments. A segment ends if a major disturbance is detected. The outputs of the
algorithm are the number and duration of the segments, and the magnitude of the
disturbances. We found no evidence of natural causes of the disturbances to forest
probability (only 7% of the disturbances were detected in 2009–2011, when the
most severe drought of the past century occurred), suggesting that the disturbances
were due to human management. We used the LandTrendr output data to calculate
two indices: managed forest increase and managed forest decrease (i.e., forest
increases/decreases caused by human management), by dividing the magnitudes of
the strongest positive/negative changes by the durations of the changes (Supple-
mentary Fig. 7). The indices ranged from 0 to 1, with high/low values implying
rapid and strong/slow and weak changes. A high value in the managed forest
increase map was thus interpreted as large-scale plantations of fast-growing trees,
and a high value in the managed forest decrease map was interpreted as a clearcut.
The indices were classified into several intervals: 0–0.2 (very low), 0.2–0.4 (low),
0.4–0.6 (intermediate), >0.6 (high).

We subsequently used the maps of annual (2002–2017) forest probability to
derive nine classes of forest dynamics. The forest classes included (1) dense forests
(forest probability ≥0.8), (2) forests (≥0.5) and (3) non-forest (<0.5). The threshold
number for dense forests is based on Wang et al. 50, who used field observations to
identify old forests (above 0.8). Random Forest commonly uses a probability
threshold of 0.5 to distinguish if a pixel belongs to a class or not. We used this
threshold to define if an area belongs to the forest (probability above 0.5) or non-
forest type. The classes dense forest, forest and non-forest were assigned if the
probability scores remained within these intervals during the full period; if not, the
type of forest dynamic was determined by the threshold between forest and non-
forest (0.5). Class (4) represents forest increases changing from <0.5 in 2002 to >0.5
in 2017 without negative disturbances, and class (5) represents the same but with
disturbances. Class (6) represents forest decreases when an area changed from >0.5
in 2002 to <0.5 in 2017 without positive disturbances (e.g., regrowth), and class (7)
represents the same but with disturbances. Class (8) represents an area fluctuating
between forest and non-forest, but remaining non-forest (2002 compared to 2017),
and class (9) represents the same but for remaining forest.

Finally, a grid cell is characterized by three values determining the final land use
type: (a) the strongest managed forest increase, (b) the strongest managed forest
decrease and (c) the forest dynamic (nine possibilities, previous paragraph). The
combination of these three values determined the final type of land use of an area.
We also determined the number and duration of the segments for each possible
combination to include the velocity and duration of tree growth before harvest to
potentially gain insight into the type of tree species (slow- and fast-growing species)
(Supplementary Table 2). The final eight types (Table 1; Supplementary Table 2;
Supplementary Figs. 2–6) included: (1) dense forests (probability always ≥0.8, no
major disturbances), (2) persistent forests (probability always ≥0.5, no major
disturbances) and (3) persistent non-forests (probability always <0.5, no major
disturbances), which are continuous types with no major human forest
management (managed forest index values <0.4) and long-lasting segments
(a segment is a period without disturbance). These three types do not exclude
planting and harvesting in forest/non-forest areas, but these activities were minor.
(4) The recovery class implies a low but positive development in the managed
forest index (i.e., no major disturbance, a slow forest increase, no decrease, long-
lasting segments) and changes from non-forest to forest. These areas typically had
greatly reduced human disturbance throughout the period of analysis that allowed
the tree cover to gradually increase. This type does not exclude either tree planting
or harvesting in a given grid cell, but the majority of cells had slow and steady
increases in tree cover without disturbance. (5) Afforestation represents tree
plantations of medium- to fast-growing species and changed rapidly from non-
forest to forest. No major decreases were detected (low managed forest index).
(6) Deforestation represents areas changed from forest to non-forest, with all
segments being negative. (7) Rotation represents areas with frequent changes from
non-forest to forest (and vice versa), without the requirement of a particular type as
starting and ending years. This type mainly represents the rotation of planting and
harvesting activities, which could vary in velocity and magnitude. The average
duration of a segment in this type was 4.6 ± 1.3 year−1, indicating the typical
growing cycle of a forest patch53. (8) RotationL represents fast and rapid decreases
in forest probability and changes from forest to non-forest, characterizing areas
with large-scale harvesting. The difference between the types of rotationL and
deforestation is that segments of positive slopes can occur in rotationL areas;
however, regrowth does not reach the state of forest (probability <0.5).
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Carbon density. We used a static unpublished global benchmark map of C density
of woody vegetation for 2015 to study forest carbon changes in China54,55. The
map was constructed using three types of data: (1) more than 8 million waveforms
from the Geoscience Laser Altimeter System (GLAS) onboard ICESat-1 (Ice, Cloud
and land Elevation Satellite) that reflect the vertical structure of forest and woody
vegetation using a semi-systematic sampling approach, (2) a large number of
ground data from national inventory and research biomass plots to develop models
for converting the GLAS lidar data to C density for different forest types globally
and (3) satellite imagery from Landsat, ALOS Phased Array L-band Synthetic
Aperture Radar data for 2015, and land elevation data from SRTM. Using GLAS-
predicted biomass as the dependent variable, satellite imagery as independent
variables and a Bayesian maximum entropy algorithm54,56, C density and its
uncertainty were predicted and were mapped globally at 1-ha spatial grid cells. The
machine learning algorithm uses 8 million GLAS derived C density as training data
to predict the probability of each pixel falling into a range of C density. The
probability maps are then combined to calculate the mean and variance of C
density for each pixel54. Details of the prediction algorithm and comparisons with
other machine learning approaches have been discussed in earlier publications56.
The map is an improvement over earlier pan-tropical maps by including recent and
advanced remote sensing data, and new models that include variations of wood
density of trees across tropical regions.

The uncertainty of the map at each grid cell included uncertainty associated
with C density models and spatial correlation54,57. Although, the previous maps
were criticized for dense tropical forests due to use of optical satellite data and the
impact of the wood density variations58, dense rainforests are not present in our
study region and no saturation between our data and the benchmark map was
observe. While normalized difference vegetation index (NDVI) clearly saturates
over forests (Supplementary Fig. 10), satellite imagery from higher-resolution radar
sensors provide improved sensitivity to forest structure and biomass across
regenerating and lower C density forests across the study region.

The C density map was used to train a model of gradient boosted decision trees
with MODIS (MCD43A4 7 bands; NDII, EVI2, MCD43A3 shortwave albedo) and
an SRTM elevation model, following23. Model training, prediction and validation
were done only using data covering the study area. We used 50% of the available
pixels (n= 286,824) to train the model, and the remaining 50% were used for
validation. The quality of the model was generally high (r= 0.86, slope= 0.74,
RMSE= 11Mg C ha−1), and the C density of the original map could be
reproduced (estimates and spatial uncertainty for each class are presented in
Supplementary Table 3) without saturation over forests (Supplementary Fig. 10).
The model was applied to the data sets for each year to derive maps of annual
C density. The dynamics were compared with low-frequency passive microwave
satellite data (next section), which also includes an estimation of the temporal
uncertainties.

Intercomparison of independent data sets. Since no field data on land use types
was available, we conducted a visual comparison between the classification and the
full areal coverage of GF-1 satellite imagery at a resolution of 2 m (~10,000 images;
see Supplementary Figs. 2–4). However, no statistics could be derived from this
comparison, thereby requiring additional result comparisons to be taken based on
independent data sets. The first step was a comparison with the Landsat-based tree-
cover map26 for 2010, available at a resolution of 30 m (Supplementary Fig. 1). The
map was aggregated to 500 m to show the average tree cover of a 500 m pixel from
our analysis. The agreement between the aggregated tree-cover map and our forest
probability map was very high (r= 0.88, n= 8,796,179), confirming that our
probability maps capture well the average tree cover per grid cell.

We then used the annual long-term data set from ref. 27 for 1982–2016 to
provide an overview of the long-term dynamics and to compare with our
classification of forest dynamics (Supplementary Fig. 1). The data set is based on
long-term data record advanced very high-resolution radiometer (AVHRR)
imagery and contains the fractions of tree cover, short vegetation and bare ground
at a resolution of 0.05°. The average tree cover (2001–2016) spatially agreed well
with our forest probability map (aggregated to 0.05° and averaged over the same
period) (r= 0.81, n= 111,954), confirming that our probability maps could also
indicate the fraction of a given grid cell with forests (the higher the probability, the
higher the forested fraction). A change in the probability could thus reflect a
fractional increase of forest cover within the grid cell. We then compared the
temporal dynamics of the tree-cover maps with our classification for the
overlapping period (2002–2016). The slopes (increase in forest cover per year) for
the forest types (dense forest, forest) (+0.60% year−1), non-forest (non-forest)
(+0.30% year−1) and forest increase (+0.75% year−1) (afforestation and recovery)
clearly differed (Supplementary Table 1). The forest types (dense forest, forest) had
high fractions of forest cover in 1999 (44%) before start of the MODIS time series
(as used here). The fraction of forest cover for the forest-increase types started at
26% in 1999, but increased to 41% in 2016. The forest cover for the non-forest type
was 14% in 1999 and remained at 21% in 2016.

Deforestation (and replanting) typically occurs at a fine spatial scale, so we
applied the Landsat-based forest-loss map from26 identifying forest losses from
2000 to 2014. We aggregated the 30-m forest-loss map to 500 m and compared the
average loss rate (per 500-m grid) with the land use types defined here. The forest
losses in the forest, non-forest and forest-increase (afforestation and recovery)

types were very low (Table 1), and only the rotation and deforestation types
showed substantial forest losses (Supplementary Fig. 11).

Finally, we compared the MODIS-derived maps of C density with the SMOS
L-VOD (L-band vegetation optical depth) data set (currently being the only
spatially explicit data set on dynamics of aboveground biomass C)24,25 as derived
from low-frequency passive microwaves. This data set is available at a resolution of
25 × 25 km2 for 2010–2017, and the conversion was done using both Saatchi’s and
Baccini’s biomass benchmark maps following25, and taking the average of both
calibrations. At the pixel level, the spatial correlation between the MODIS
C density and the L-VOD C density was satisfactory (r= 0.7). For temporal
comparisons, we averaged for each year both the MODIS C density and L-VOD
maps over the region and the temporal dynamics for both data sets agreed well
(r= 0.90), providing confidence in the dynamics of C density. The uncertainty in
the temporal dynamics was assessed by the RMSE between MODIS- and SMOS-
derived changes in C density. For an uncertainty assessment based on different
benchmark calibration maps, we refer to ref. 25. Due to the high resolution required
to distinguish different forest types, the temporal uncertainty could only be
provided for the study area as a whole, and the uncertainty of the different forest
types was limited to the spatial level. Here we calculated the RMSE between the
benchmark map used for calibration and the MODIS-derived C density maps for
each forest type.

The negative trend found in SMOS SM is contrasting other studies showing a
positive trend in SM this period24. However, whereas the SMOS satellite is able to
retrieve SM data in densely vegetated areas59, traditional SM products based on
high-frequency passive and active microwave data do not agree in China60 and
often fail in densely vegetated areas59. Model simulations and field measurements
instead confirm the negative trend in SM10.

CO2 emissions. The data set from ref. 28 contains fossil CO2 emissions for each
province for 1997–2015. We used the sectoral approach and converted CO2 to C by
dividing the value by 3.67.

Forestry data. The timber production data were collected from the Chinese
Forestry Statistical Yearbooks, including the timber volumes from 2002 to 2017 for
each province. We applied the accumulation method to estimate timber carbon
based on the volume of timber. The main species are pine, cedar and eucalyptus,
and we used the average wood basic density of these three species to calculate the
biomass of the timber production, which was then converted to carbon by mul-
tiplying the biomass with 0.5.

SMOS microwave data. L-VOD was used as independent data set to assess the
dynamics of C density, and SM was used to monitor the patterns of SM dynamics.
Both L-VOD and SM products were retrieved simultaneously from the SMOS
observations35. The use of multi-angular and dual-polarization SMOS observation
ensures that L-VOD and SM are independent of each other.

The SMOS L-VOD and SM data sets used here were produced using the SMOS-IC
algorithm (version 105) at a resolution of 25 × 25 km2 for 2010–201761–63. This
algorithm was selected here, as it does not rely on ancillary data such as modelled SM
and vegetation optical indices (such as LAI or NDVI), making the SMOS-IC product
more robust for applications monitoring both biomass carbon and SM dynamics62.

SMOS-IC data were processed as follows: first, scene flags were applied and
both the L-VOD and SM data for ascending (ASC) and descending (DESC) orbits
were filtered according to flags for strong topography, frozen soils (soil temperature
<273.5 K), urban areas and water bodies. We then applied a filter for the effects of
radio frequency interference (RFI) by excluding data with a TB-RMSE index higher
than 10 K. We further applied specific filtering to the L-VOD data: a moving
average smoothing (window size= 30 days) was applied on the filtered ASC and
DESC L-VOD time series. Outliers, corresponding to data lower (higher) than the
10th (90th) percentile of residues (defined here as the differences between raw
L-VOD data and smoothed L-VOD data) were excluded. To further filter out RFI
effects, the filtered ASC and DESC L-VOD data were combined into one L-VOD
data set by keeping only 30 observations with the lowest TB-RMSE values for
each year.

Data availability
MODIS MCD43 is available from Google Earth Engine. Tree-cover data from Landsat
can be downloaded at https://earthenginepartners.appspot.com/science-2013-global-
forest/download_v1.2.html. Tree cover from AVHRR (1982–2016) can be downloaded at
https://search.earthdata.nasa.gov. CO2 emission data can be downloaded from https://
www.nature.com/articles/sdata2017201. SMOS data are available from https://www.
catds.fr/. The C density map is available from S.S. The forest management classification
and carbon density maps will be made available upon acceptance of the manuscript.

Code availability
The LandTrendr code can be downloaded at http://emapr.ceoas.oregonstate.edu/tools.
html. The IDL version, which was used for this study, is available at https://github.com/
KennedyResearch/LandTrendr-2012. Random Forest was run in a GRASS GIS
environment with the r.randomforest package.
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