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Abstract: Forest ecosystems in an ecotone and their dynamics to climate change are growing ecological

and environmental concerns. Phenology is one of the most critical biological indicators of climate

change impacts on forest dynamics. In this study, we estimated and visualized the spatiotemporal

patterns of forest phenology from 2001 to 2017 in the Qinling Mountains (QMs) based on the enhanced

vegetation index (EVI) from MODerate-resolution Imaging Spectroradiometer (MODIS). We further

analyzed this data to reveal the impacts of climate change and topography on the start of the growing

season (SOS), end of the growing season (EOS), and the length of growing season (LOS). Our results

showed that forest phenology metrics were very sensitive to changes in elevation, with a 2.4 days

delayed SOS, 1.4 days advanced EOS, and 3.8 days shortened LOS for every 100 m increase in

altitude. During the study period, on average, SOS advanced by 0.13 days year−1, EOS was delayed

by 0.22 days year−1, and LOS increased by 0.35 day year−1. The phenological advanced and delayed

speed across different elevation is not consistent. The speed of elevation-induced advanced SOS

increased slightly with elevation, and the speed of elevation-induced delayed EOS shift reached a

maximum value of 1500 m from 2001 to 2017. The sensitivity of SOS and EOS to preseason temperature

displays that an increase of 1 ◦C in the regionally averaged preseason temperature would advance

the average SOS by 1.23 days and delay the average EOS by 0.72 days, respectively. This study

improved our understanding of the recent variability of forest phenology in mountain ecotones and

explored the correlation between forest phenology and climate variables in the context of the ongoing

climate warming.

Keywords: climate change; forest phenology; geographic transition zone; topographic effects

1. Introduction

Research on phenology focuses on the phases of recurring biological life cycles, how these cycles

are influenced by biotic and abiotic drivers and the interrelations among the same or different species [1].

Forests 2019, 10, 1007; doi:10.3390/f10111007 www.mdpi.com/journal/forests

http://www.mdpi.com/journal/forests
http://www.mdpi.com
https://orcid.org/0000-0003-0106-6709
https://orcid.org/0000-0002-6962-8838
https://orcid.org/0000-0001-7783-1644
https://orcid.org/0000-0002-6287-5553
https://orcid.org/0000-0003-4030-4976
http://www.mdpi.com/1999-4907/10/11/1007?type=check_update&version=1
http://dx.doi.org/10.3390/f10111007
http://www.mdpi.com/journal/forests


Forests 2019, 10, 1007 2 of 24

Forest phenology is one of the most reliable biological indicators for evaluating the impacts of global

warming in temperate and boreal zones because of its high sensitivity to climate change [2]. In turn,

variations in forest phenology strongly affect the fitness and distribution of temperate and boreal

forests [3] and, thus, the interspecific interactions among plants [4], ecosystem structure and function

by varying the length of growing season [5,6], terrestrial ecosystem water and carbon balances [7,8],

and climate system energy balances [9]. However, the processes underlying forest phenology are

still unclear and need further research as they are essential to enhance the understanding of forest

ecosystems and their responses to climate change.

Global warming has become an undeniable fact in recent years, changing the timings of plant

flowering, leaf-out, growth stages, and leaf senescence over the past few decades [10]. Extensive research

primarily focused on the start of the growing season (SOS) and found an earlier SOS in high latitudes and

high altitudes based on the ground observations, satellite remote sensing, and model simulations [11–17].

However, the SOS trend diverges significantly among previous studies [18–20]. Due to the complexity

and perplexity of vegetation phenological processes during autumn, studies on the processes of

the end of the growing season (EOS) and its associated control factors have not received sufficient

attention [21,22]. As the final phase of the plants’ seasonal cycle, EOS serves as an important

occasion to recycle nutrients from senescing leaves to other plant tissues to sustain their growth in the

following spring [23,24]. The EOS was recognized to be as important as the SOS in influencing the

interannual variability of the carbon balance by controlling the length of the photosynthetically active

period [10,25,26]. Therefore, combining the SOS, EOS, and length of the growing season (LOS) for

vegetation and its associated environmental factors will improve our understanding of the response of

vegetation to climate change.

Temperature is a primary climatic factor regulating the SOS and EOS in temperate and boreal

forests. Recent studies have indicated that spring warming directly regulates the SOS, and the winter

chilling requirement for dormancy release indirectly regulates the SOS [13]. Warming during summer

and autumn can significantly delay the EOS [27], but the response of EOS to warming differed among

species [28]. The warming trends also affect the time of phenology; for example, many studies show

that phenology trends are significantly faster pre-1990 than post-2000 [19,20,29,30]. The EOS has a

different temperature sensitivity compared with SOS; for example, the EOS response to temperature is

larger than that of SOS [27]. Precipitation has also been found to be a primary driving factor affecting

the SOS and EOS in a complex manner in temperate and boreal forests [11,12,31–34]. For example,

Fu et al. [12] found that winter precipitation has a positive correlation with the heat requirement

for SOS at northern middle and high latitudes. Precipitation also has a considerable impact on the

EOS, particularly for arid and semi-arid regions [31]. Therefore, understanding the response of forest

phenology to climate change is valuable. However, the processes underlying the forest phenology,

which may differ among regions and ecosystems due to their associated climatic factors and the

complex response of spring and autumn phenology to climate change in the mountains, are still not

fully understood.

Mountain forests typically cover a concentrated and abundant vertical band spectrum of

biological climates, providing important ecological service functions in maintaining biological diversity,

regulating regional climate, and conserving water [35]. The elevational gradients can be treated

as space-for-time substitutions to evaluate the influences of climate change on forest ecosystems.

The environmental gradient of mountainous systems is unique, making it a sensitive indicator of climate

change, and has become a focus for current climate change research. Meanwhile, warming trends

may vary across the bioclimatic gradient, with stronger trends at higher latitudes and altitudes [36,37].

Therefore, biomes at high elevations are experiencing a more rapid change in temperature than

those at low elevations [36]. Recent studies have shown trends of earlier SOS and delayed EOS in

many mountain zones, including the Greater Khingan Mountains [38], the Changbai Mountains [39],

the Andes Mountains [40], and semi-arid mountain regions [41], indicating that rising temperature could

influence the phenological metrics. However, there is a lack of answers to whether the phenological
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advancement along different elevation gradients is uniform or diverse and how is the dynamics of

uniform or diverse.

Satellite-based information has been used for monitoring the spatial heterogeneity of land

surface phenology over recent decades and for discerning the spatiotemporal patterns of land surface

phenology responding to the effects of climatic change [13,42]. Recent studies have effectively

described the vegetation phenology using fine-resolution (<30 m), which can be achieved from fusing

spare fine-and frequency medium-resolution images [43], from multiple years into a single synthetic

year [44], and from optical HJ-1 satellites [45] and Sentinel-2 [46]. Although finer-resolution sensors

are more effective for capturing the heterogeneous land cover, such sensors usually need longer revisit

times with too few cloud-free images to effectively capture the seasonal changes in greenness [47].

According to the spatiotemporal resolutions and the length of time series, three satellite sensors,

namely, Moderate Resolution Imaging Spectroradiometer (MODIS), Système Pour I’Observation

de la Terre (SPOT), and Advanced Very High Resolution Radiometer (AVHRR), have often been

used to monitor vegetation phenology [16,34]. Vegetation indices (e.g., EVI, Enhanced Vegetation

Index; NDVI, Normalized Difference Vegetation Index) based on the spectral reflectance of vegetation

are well correlated with chlorophyll abundance, photosynthetically active biomass, and energy

absorption [48–50]. The EVI, which could avoid the problem of NDVI saturation in high vegetation

coverage areas and reduce the effects of atmospheric and soil background, has proven to be a robust

indicator of vegetation growth [51]. Therefore, a MODIS EVI dataset with a 500 m spatial resolution

and an 8-day temporal resolution was used in this study for retrieving the forest phenology in the

Qinling Mountains (QMs), China, taking into account the heterogeneity of the mountains and NDVI

saturation in areas of dense forest coverage.

The QMs are located in a typical and important ecological and geographical transition zone in

China. The transitional nature of the physical conditions, which is sensitive to external interference,

provides an ideal region for examining the climatic and altitudinal effects on forest phenology metrics

that is, hence, ideal for understanding the response of the regional forest ecosystems to ongoing global

warming. We hypothesize that (1) the recent climate change has altered the forest growing season

in the QMs, but the changes in SOS, EOS, and LOS along different elevation gradients are uneven;

(2) temperature and precipitation are the key driving factors for SOS and EOS in the QMs. In this study,

we investigated the relationships between topography, climate factors, and forest phenological metrics.

In particular, we aim to (i) quantify the spatial pattern and interannual variability of the forest SOS,

EOS, and LOS in the QMs from 2001 to 2017; (ii) evaluate the influence of elevation gradients on SOS,

EOS, and LOS on a spatiotemporal scale; and (iii) explore the relationships between climatic factors

(e.g., temperature, precipitation) and the spatiotemporal variations of forest phenology metrics.

2. Materials and Methods

2.1. Study Area

The QMs is located in central China (Figure 1a), and it features important geographical transitions

from a subtropical climate in the south to a warm-temperate climate in the north. The area contains a

set of important geographical boundaries, including a boundary between the north and south, a 0 ◦C

isotherm in January, an 800 mm isohyet, and an isoline of 2000 h of sunshine duration [52]. The annual

mean temperature is −1.5~16.3 ◦C from high to low altitudes (Figure 1b), the cumulative precipitation

is 452–1189 mm from north to south (Figure 1c), and the frost-free period is 200–250 days. The QMs

include Xiaolong Mountain in Gansu Province, Taibai Mountain and Hua Mountain in Shanxi Province,

and Xionger Mountain and Funiu Mountain in Henan Province (Figure 1). The mountains form the

divide between the Yangtze River and the Yellow River and are adjacent to the Han River in the south

and the Wei River in the north. Under the influence of topographical differentiation, different vegetation

types dominate at different elevations covering accordingly along the south and north slopes of the

QMs. The farming area is distributed from the elevation about 200 to 700 m, from 700 to 1300 m a
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deciduous broad-leaved forest belt grows, a deciduous oak forest belt grows above 1300 to about

2300 m, from 2300 to 2800 m a typical birch forest belt grows, a coniferous forest belt grows beyond

2800 to about 3200 m, and above 3200 m is the highest forest ecosystem of an alpine shrub-meadow

belt. Because of the significant climate differences between the south and north of the QMs, there is a

mildly different distributional spectrum of vegetation types [53].

 

 

Figure 1. Geographic location and topography of the study area (a), the spatial distribution of the

multiyear average temperature (b), and multiyear average precipitation (c).
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2.2. MODIS EVI Dataset

The study area falls in MODIS path 26/row 05 and path 27/row 05. At each path/row, MOD09A1

scenes acquired in an annual year, with a temporal resolution of 8 days and a spatial resolution of 500 m

from 2001 to 2017, were downloaded from the publicly available website of the USGS (United States

Geological Survey) EROS (Earth Resources Observation and Science) [54]. Based on the heterogeneity

of the Mountains, we selected the higher spatial resolution of 500 m with the maximum temporal

resolution of 8 days. The original EVI data were mosaicked and reprojected from a sinusoidal projection

to the Lambert Azimuthal Equal Area Projection. Each composite was clipped for the QMs area

using the MODIS Reprojection Tool (MRT), and then, sequentially, were stacked to generate the yearly

time-series dataset.

2.3. Climate Data

The meteorological dataset used in this study included daily mean temperature and cumulative

precipitation from 2001 to 2017, which were downloaded from the China Meteorological Data Sharing

Service System (http://data.cma.cn/). To obtain reliable spatially distributed climate data, 57 stations

were selected covering not only the QMs but also the neighboring counties distributed throughout

the south of Shanxi province, the southeast of Gansu province, the north of Sichuan province,

the northwest of Hubei province, and the west of Henan province (Figure 1). The daily meteorological

observations for all the sites from 2001 to 2017 were used to obtain the monthly mean temperature

and cumulative precipitation. To analyze the correlation between the phenology metrics and the

climate data, the ANUSPLIN method [55], which measures topographical effects on spatial climate

interpolation [36], was used to interpolate and rasterize monthly climate data from the stations into

500 × 500 m grids to match the spatial resolution of EVI.

2.4. Auxiliary Data

To analyze the topographic effects of phenology metrics, we downloaded SRTM (Shuttle Radar

Topography Mission) DEM (digital elevation model) data, with a 90 m spatial resolution, from the

CGIAR (Consultative Group for International Agriculture Research) Consortium for Spatial Information

website (http://srtm.csi.cgiar.org/). Using the mean algorithm, the SRTM (90 m) imagery was resampled

into a new image with a cell size of 500 m to match the cell size of EVI. Elevation was also used as a

co-variable in the ANUSPLIN method.

To overcome the mosaic effect of MODIS land cover (MOD12Q1), we used Globeland30, which is

a global land cover at a 30 m resolution with good performance in classification accuracy [56,57].

Globeland30 was downloaded from a webpage (http://www.globallandcover.com/GLC30Download),

and it was then resampled to 500 m to match the aforementioned EVI data, using the majority method.

2.5. Phenology Metrics Extraction

The EVI time series are often hindered by the poor quality of the original datasets due to

various factors, for example, haze and cloud contamination and atmospheric absorption. To suppress

atmospheric effects, EVI was composited by the Maximum Value Compositing (MVC) algorithm.

Although MVC is surprisingly effective in reducing noise in EVI data, it cannot remove all the noise.

However, the seasonal forest canopy EVI data tend to change gradually from a seasonal perspective.

Thus, it is necessary to adopt a filter method to eliminate the negative influence, to interpolate

the missing value, and finally to construct new EVI time-series datasets before extracting seasonal

phenology metrics.

In general, the types of input data and desired results determine the choice of the smoothing

method. The HANTS (Harmonic ANalysis of Time Series) method, which can fully consider the plant

growth cycle and the dual characteristics of the data themselves, is an effective analysis approach.

This approach has been widely used to reconstruct the EVI time series and NDVI time series for the

http://data.cma.cn/
http://srtm.csi.cgiar.org/
http://www.globallandcover.com/GLC30Download
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past 20 years [58,59]. The HANTS algorithm is applied using an iterative way (for more detail on the

curve fitting, see Roerink, Menenti, and Verhoef [58]).

In our analysis of EVI from 2001 to 2017, the HANTS parameters (the definition of the parameters

can be found in Supplementary (Text1) were set as follows: (1) the number of frequency is 2, (2) the

suppression flag is low, (3) the invalid data are 0 for low threshold and 1 for high threshold, (4) the fit

error tolerance is 0.05, (5) the degree of over-determinedness is 5, and (6) the damping factor is 0.5.

The 8-day EVI data were interpolated to daily timesteps in order to capture the rapid changes in land

surface phenology. Then, the phenology metrics (SOS, EOS) were extracted based on the reconstructed

EVI time series (Figure S1). Regarding the extraction of phenology metrics, it is difficult to define

a single set of smoothing, and phenology metrics extraction methods can work with all different

ecosystems and across all different kinds of remotely sensed data [60,61]. In this study, we chose the

smoothing method of HANTS and the relative threshold method, which was successfully applied

to the QMs [52]. The dates of SOS or EOS were defined, using the relative threshold method, as the

times at which EVI values increased (SOS) or decreased (EOS) to a certain proportion of the seasonal

amplitude, in the left or the right edge of the annual curve of EVI [34,62]. The LOS is equal to the

difference between the EOS and the SOS. Such threshold values were determined according to the

lowest absolute error between the leaf-out and leaf senescence dates measured in situ by the National

Geographic Resource Science Data Center, National Science and Technology Infrastructure of China,

National Earth System Science Data Sharing Infrastructure (http://gre.geodata.cn), and the remotely

sensed phenology metrics (Figure S2). Ultimately, 30% of the amplitude was used to extract the dates

of SOS and EOS, respectively, at both sides of the annual curve for each pixel.

2.6. Trend Analysis of the Phenology Metrics

We computed the mean annual EVI profile. Then, we analyzed the spatiotemporal variation

trends of phenology metrics (SOS, EOS, and LOS), from 2001 to 2017, by means of a linear regression

method. The linear trends (slope and p-value) are calculated based on pixel-by-pixel between the

phenology metrics and years sequence. The slope is calculated as:

slope =
n×
∑n

i=1 j× P j −

(

∑n
i=1 j
)(

∑n
i=1 P j

)

n×
∑n

i=1 j2 −
(

∑n
i=1 j
)2

(1)

where slope represents the temporal trend of the changes of land surface phenology, n = 17 is the total

years of the monitoring period, and Pj (j = 1, 2, and 3) is the phenology metric (SOS, EOS, or LOS).

Negative slopes indicate advanced SOS and EOS and shorter LOS, while positive slopes indicate delayed

SOS and EOS and longer LOS. Thirdly, we further investigated how these spatially heterogeneous

trends of the altitudinal gradient influenced the phenology metrics (SOS, EOS, and LOS) and tried to

examine the differences in phenological responses along with elevation effects.

2.7. Determination of the Preseason of Forest Phenology

The temperatures in the preceding months are known to control the timing of spring leaf-out [15]

and leaf senescence [21]. To define the length of the preseason whose mean temperature and

accumulated precipitation had the most influence on SOS (or EOS), we analyzed the correlation

coefficients between SOS (or EOS) and mean temperature and accumulated precipitation during 0,

1, 2, . . . n months before the multiyear averaged SOS (or EOS) using Spearman’s rank correlation

coefficients. The preseason for mean temperature was defined by the highest absolute correlation

coefficient between mean temperature and the multiyear averaged SOS (or EOS) [13,15,21]. We obtained

the length of the preseason for precipitation in the same way but replacing the mean temperature

with accumulated precipitation. The length of the preseason for SOS (or EOS) was defined as Lsos or

(Leos). After that, we applied a temporal partial correlation analysis between the SOS (or EOS) and

preseason mean temperature (accumulated precipitation), controlling for corresponding accumulated

http://gre.geodata.cn
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precipitation (mean temperature) during 2001–2017. The preseason of SOS is generally from the

preceding November to the multiyear mean date of SOS [15], and the preseason of EOS is generally

from June to the multiyear mean date of EOS [21,63].

2.8. Analysis of the Climate Change Impact on Phenology

Partial correlation analyses were used to reveal the relationship between each dependent and

independent variable, excluding the confounding effects of other variables [49,64]. In this study,

the pixel-based approach was used to analyze the partial correlation of forest phenology metrics

and climatic factors (e.g., mean temperature, cumulated precipitation) in the preseason before each

phenology metric. Considering the cumulative effect of climatic factors on SOS (or EOS), we obtained

the largest significant partial correlation coefficient between the SOS (or EOS) and the temperature in

n-month, after controlling the remaining corresponding EOS (or SOS) and precipitation. For instance,

if the n-month temperature had the highest correlation with SOS (or EOS), the cumulative effect of

temperature on SOS (or EOS) for this pixel would be treated as n months. In other words, at each pixel,

the continuous n months before SOS (or EOS) (comprising the SOS (or EOS) appearing month) are the

most important hints to trigger SOS (or EOS). We obtained the cumulative effect of precipitation on

SOS (or EOS) in the same way but replacing the mean temperature with accumulated precipitation.

The partial correlations between SOS (or EOS) and the preseason mean temperatures and cumulative

precipitations were assessed at a 95% confidence level during 2001–2017. The statistical significance of

the partial correlation coefficient was evaluated by using the Student’s t-test.

3. Results

3.1. Spatial Patterns of Phenology Metrics (SOS, EOS, LOS)

The spatial patterns of the forest phenology metrics, which are averaged from multiyear phenology

data from 2001 to 2017, in the QMs are shown in Figure 2. With increasing altitude, the SOS, EOS,

and LOS were gradually postponed, advanced, and shortened, respectively, which was in conformance

with the regional hydrothermal conditions. The SOS was generally between the 81st and 120th Julian

days, using a 10% to 90% percentile (Figure 2a). Owing to the high altitudes in the west of the QMs,

the SOS began later, and in the eastern part, the SOS started earlier because of the lower altitude.

The central QMs have the largest elevation differences, so the span of the SOS is larger. The EOS

showed the opposite trend compared with the SOS and is shown in Figure 2b. Contrary to the SOS,

the EOS ends earlier in the west of the QMs because of the higher altitudes. The eastern part of

the QMs has relatively lower elevations, with later EOS. The central QMs have the largest elevation

differences, so the span of EOS is also larger. The dates for the EOS mainly range from the 260th to

310th Julian days, using a 10% to 90% percentile. The LOS is determined by both the SOS and the EOS.

Regions with earlier SOS averaged dates and later EOS averaged dates featured longer LOS results

(Figure 2c), which are usually associated with low altitudes. The LOS ranged from 150 to 230 days

across the study area, using a 10% to 90% percentile.

The SOS and EOS were getting later and earlier with increasing elevation, respectively; as a

consequence, the LOS became shorter with elevation (Figure 3). The SOS was delayed by 2.4 days per

100 m increase in elevation, whereas the EOS was advanced by 1.4 days, and the LOS was shortened by

3.8 days. The changes in phenology along elevation gradients were statistically significant. However,

the EOS remained stable at altitudes above 2200 m above sea level (a.s.l)., and the shortening of LOS

slowed down due to the stability of EOS above 2200 m a.s.l.
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Figure 2. Spatial patterns of phenology metrics, including the start of the growing season start of

growing season (SOS) (a), the end of the growing season end of growing season (EOS) (b), and the

length of the growing season length of growing season (LOS) (c), across the Qinling Mountains (QMs)

during 2001–2017.
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Figure 3. Relationship between elevation and mean SOS (a), EOS (b), and LOS (c) for forests in the QMs

from 2001 to 2017. SOS, EOS, and LOS are the abbreviations for the start of the growing season, the end

of the growing season, and the length of the growing season, respectively. Warm color represents high

point density.

3.2. Interannual Variability and Trends of Phenology Metrics at Different Altitudes

At the regional scale, the average SOS, EOS, and LOS displayed advanced by 0.13 days year−1,

delayed by 0.22 days year−1, or extended by 0.35 days year−1 from 2001 to 2017 (Figure 4). Figure 5

further illustrates the spatial distributions of the interannual variability of phenology metrics in

the QMs from 2001 to 2017, which depicts a large spatial difference. The variation trend of SOS is

negative 66.9% for the whole forest land in the study area and is concentrated on −0.18 days each year,

denoting that most of the regions underwent an earlier SOS (Figure 5a,d). The advanced SOS is mainly

located at a middle-high altitude of the QMs (Figure 5b,e). The delayed EOS is focused on 0.17 days

each year, and the distribution of EOS is a flat peak. Overall, 72.2% of the entire region presented

a lengthened growing season, which is caused by both the earlier SOS and later EOS (Figure 5c,f).

The flatness or sharpness between the LOS and EOS is similar, and the spatial pattern of LOS is also

similar to that of EOS in most of the area. According to the slopes in Figure 4, it seems EOS contributed

64% in lengthening the growing season. Therefore, a later EOS was the more significant factor in

lengthening the growing season. Furthermore, we further probed how the altitude gradient influenced

the differences in phenological variation and found that the inter-annual changes of SOS, EOS, and LOS

showed different patterns across altitudinal gradients (Figure 6). The advanced trend in the SOS

date showed a slight decrease with increasing elevation. The delayed trend in the EOS date was first

increasing and then decreasing, and the peak area was about 1500 m. The changes in the trend of LOS

corresponded well with the EOS.
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Figure 4. Interannual changes in the mean of the regional-scale SOS (a), EOS (b), and LOS (c). Standard

deviation (SD) is indicated by error bars. The red line is the linear fitted line, and the gray section is the

confidence level at 95%.

 

 

Figure 5. Cont.
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Figure 5. Spatial patterns of the linear trends in SOS (a), EOS (b), and LOS (c) and statistics of the entire

linear trends in SOS (d), EOS (e), and LOS (f), from 2001 to 2017 in the QMs. The red, green, and blue

lines in (d–f) are the 0, mode and mean values of the trends of SOS, EOS, and LOS, respectively.
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Figure 6. Interannual changes in SOS (a), EOS (b), and LOS (c) across altitudinal gradients from 2001

to 2017. Warm color represents high point density.

3.3. Climate Impacts on Forest Phenology

Figure S3 shows that the spatial distribution of the lengths of the SOS and EOS preseason

correspond to temperature and precipitation across altitudinal gradients. In terms of the total

percentages at each month, we observed that the preseason length of SOS (EOS) to the preseason

mean temperature was almost located in month 0 and 1, which is the mean temperature of the current

month and the previous month for leaf-out (leaf-off) has the greatest impact of forest leaf-out and

leaf-off. However, from the perspective of effects for precipitation, the preseason length of SOS and

EOS are evenly distributed throughout the previous six months and have a strong relationship with

the different lengths of accumulative precipitation.

The spatial patterns of the trends of preseason temperature and precipitation for SOS and EOS

during 2001–2017 are shown in Figure S4. The preseason temperature for SOS shows an increasing

trend in high latitudes in the middle and west of the QMs and in the west of the QMs. The preseason

precipitation for SOS shows an increasing trend in the middle and west of the QMs and mainly displays

a decreasing trend in the east of the QMs. The preseason temperature for EOS exhibits an increasing

trend in the entire QMs, except the southwestern region. The preseason precipitation for EOS shows a

non-uniform distribution and displays decreasing trends in the north and west areas.

The patterns of the partial correlation between SOS and the preseason mean temperature exhibited

an inconsistent spatial distribution. Figure 7a and Table 1 show that spring SOS in the QMs were

negatively correlated with temperature during Lsos across 73.2% of the QMs, and 13.2% areas,

which mainly distributed in north of QMs, show significant (p < 0.05) negative correlation with the

preseason mean temperature, i.e., increased spring temperature resulted in the advancement of SOS.

The spatial distribution of the negative correlations between SOS and Leos-averaged temperatures

mainly located in the north and east regions of QMs. Negative and positive partial correlations between

preseason precipitation and SOS dominated about 60.5% and 39.5% of the QMs, and about 7.1% and

1.9% of them were significant (p < 0.05), respectively (Figure 7b, Table 1), indicating that increased

precipitation resulted in the delayed of SOS, and increasing temperature and precipitation is the main
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factor to contribute to the advanced SOS. The positive correlations between preseason precipitation

and SOS were largely sited in the middle-west high altitudes of the QMs.

Table 1. Proportions of partial correlation coefficients between the SOS (EOS) and mean temperatures

and accumulated precipitations during Lsos, i.e., length of the preseason for SOS (or Leos, i.e., length

of the preseason for EOS) for significantly positive correlations (R < 0.4974), not significantly positive

correlations (R > 0.4974), not significantly negative correlations (R < −0.4974), and significantly negative

correlations (R < −0.4974). Values of R = ± 0.4974 correspond to p-values of 0.05, according to the

two-tailed Student’s t-tests.

Correlation Lsos Leos

Temperature

Significantly Positive Correlation 1.6% 6.6%
Not Significantly Positive Correlation 25.2% 49.4%

Not Significantly Negative Correlation 60% 41.6%
Significantly Negative Correlation 13.2% 2.4%

Precipitation

Significantly Positive Correlation 1.9% 3.2%
Not Significantly Positive Correlation 37.6% 41.2%

Not Significantly Negative Correlation 53.4% 48.4%
Significantly Negative Correlation 7.1% 7.2%

 

−
−

 

Figure 7. Cont.
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Figure 7. Spatial patterns of partial correlation coefficients between the SOS (EOS) and preseason

mean temperature and accumulated precipitations in the QMs during 2001–2017: (a) partial correlation

coefficients between SOS and preseason mean temperatures, controlling for corresponding EOS

and accumulated precipitation; (b) partial correlation coefficients between the SOS and preseason

accumulated precipitation, controlling for corresponding EOS and mean temperature; (c) partial

correlation coefficients between EOS and preseason mean temperatures, controlling for corresponding

SOS and accumulated precipitation; (d) partial correlation coefficients between EOS and the preseason

accumulated precipitation, controlling for corresponding SOS and mean temperatures. The color-coded

values of ±0.6226, ±0.4974, ±0.4258, and ±0.3383 correspond to p-values of 0.01, 0.05, 0.10, and 0.20,

respectively, according to two-tailed Student’s t-tests.

On the contrary, the partial correlations for EOS mainly exhibited positive correlations with the

mean temperature and showed negative correlations with accumulative precipitation during Leos

(Figure 7c,d, and Table 1). A positive partial correlation between EOS and the preseason temperature

during Leos dominated about 56% of the study area, which was found in middle and west of the

QMs, and about 6.6% of the correlations were significant (p < 0.05), denoting that an increased

temperature during Leos delayed the EOS. Meanwhile, 44% area, which was positioned in the west

of the QMs, show a negative correlation with preseason temperature during Leos, and only 2.4%

of the correlations were significant (p < 0.05). We also found a negative partial correlation between

accumulative precipitation and EOS in 55.6% of the area, which is located in the mid-west area during

Leos, and only 7.2% of the correlations were significant (p < 0.05). The 44.4% area, which is situated in

the west and east of the QMs, showed a positive correlation between preseason precipitation and EOS,

and only the 3.3% area was significant (p < 0.05). These results suggest that increasing temperature

and precipitation have a countervailing effect on delayed EOS in the QMs.
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Figure 8 shows spatial patterns of the sensitivities of the SOS (EOS) to preseason mean temperature

and accumulated precipitations in the QMs during 2001–2017. The sensitivity of SOS to preseason

temperature displays that an increase of 1 ◦C in the regionally averaged preseason temperature

would advance the average SOS by 1.23 days. The 28.9% and 23.6% region shows the SOS sensitivity

to preseason temperature in the north and west areas ranged from −4 to −2 days ◦C−1 and −2 to

−1 days ◦C−1 (Figure 8a). Across the QMs, the sensitivity of SOS to preseason precipitation is not

obvious, and an increase of 1 mm will advance 0.03 days for SOS in the regionally level. There are

57.7% of pixels that show negative precipitation sensitivity values, and the sensitivity is ranged from

−0.01 to −0.15 days mm−1 in 48% of the pixels. Meanwhile, the positive sensitivity is ranged from

0 to 0.1 days mm−1 in 35% of the pixels, which occurred mostly in the high altitudes of the QMs.

The sensitivity of EOS to preseason temperature shows that an increase of 1 ◦C in regionally an

averaged preseason temperature would delay the average EOS by 0.72 days. There are about 51.3% of

the pixels showed positive temperature sensitivity values, the sensitivity is mainly concentrated from 1

to 2 days ◦C−1 in 15.1% of the pixels and from 0 to 1 days ◦C−1 in 13% of the pixels, which occurred

mostly in the western and middle part of the QMs. There are also 32.5% of pixels that showed negative

temperature sensitivity values, and the sensitivity ranged from −2 to −4 days ◦C−1 in 15.8% and

from −4 to −6 days ◦C−1 in 16.7%, which occurred mostly in the west of the QMs. Across the QMs,

the sensitivity of EOS to preseason precipitation is also not obvious, and an increase of 1 mm will

advance 0.002 days for EOS at the regional level. Although 52.2% of the pixels showed negative

precipitation sensitivity values, which ranged mostly from 0 to −0.1 days mm−1, and the precipitation

sensitivity value more than 0 days mm−1 in 47.8% of the pixels, which occurred mainly from 0 to

0.1 days mm−1.

 

− − −

− − −

− − −

−

− −

− − −

− − −

− −

− −
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Figure 8. Spatial patterns of the sensitivities of the SOS (EOS) to preseason mean temperature

and accumulated precipitations in the QMs during 2001–2017: (a) the sensitivities of the SOS to

preseason mean temperatures; (b) the sensitivities of the SOS to preseason accumulated precipitation;

(c) the sensitivities of the EOS to preseason mean temperatures; (d) the sensitivities of the EOS to

accumulated precipitation.

4. Discussion

4.1. Variations in Phenology

Understanding the forest phenological changes and variation trends is valuable for reducing

the negative impacts of climate change and utilizing its advantages. Recent studies have shown

advanced SOS, delayed EOS, and extended LOS at middle and high latitudes of the Northern

Hemisphere [10,19,20,30,32,65,66]. Zeng and Jeong et al. [20,30] also found that phenological trends

became slower during 2000–2008 compared to 1982–1999 and did not display strong significance.

Comparing with the changes in phenology (SOS: −7.9, EOS: 3.7; LOS: 11.6 days/decade) in China’s

temperate vegetation [32] from 1982 to 1999, our results also show lower changes in phenology

(SOS: −1.3, EOS: 2.2; LOS: 3.5 days/decade). Meanwhile, our results also show that the advanced

magnitude of SOS is lower than the delayed magnitude of EOS, which is the opposite of what was

found by Piao et al. [32]. This observation is similar to the results of Wang et al. [66], which indicates

that the satellite-observed phenology change rates become slowed down during a global warming

hiatus between 1998 and 2012.

The change in elevation is a key factor influencing the phenology of vegetation in mountainous

environments [67,68]. Although our results indicate that elevation change was a significant factor

for variations in trends of the phenological metrics, the effect was not uniform for all elevations or



Forests 2019, 10, 1007 17 of 24

phenology metrics. First, the SOS was delayed by 2.4 days per 100 m with increasing altitude; the EOS

was integrally advanced by 1.4 days per 100 m but stayed stagnant above 2200 m. Meanwhile, the LOS

was shortened by 3.8 days per 100 m below 2200 m, and the rate of shortening became slower above

2200 m. Shen et al. [16] found a similar trend that the green-up date stayed stagnant above a certain

altitude in the Qinghai-Tibetan Plateau.

Second, as for spatial distribution, the amplitude of the advanced trend for SOS slightly

increased, and the amplitude of the delayed trend of EOS reached a maximum at 1500 m. Therefore,

the elevation-induced advanced trend of SOS declined slightly with increasing elevation, which was

illustrated by Vitasse et al. [17] and Vandvik et al. [69]. Furthermore, while previous studies

only reveal an elevation-induced SOS shift [17,69], our results also show the elevation-induced

EOS shift and an elevation-induced LOS shift. The declining elevation-induced phenological shift

will have important implications for the structure and function of mountain ecosystems, and the

actual impact of such ongoing change needs to continue to be studied in the future. In addition,

the advancement and delay of SOS and EOS coexisted at different altitudes. The elevation and aspect

of mountains can shift over very short distances, altering the local temperature patterns, imposing very

significant impacts on the timing of phenological events, and ultimately leading to heterogeneity [16].

Ding et al. [70] showed an obvious differentiation of trends in phenological changes along the gradient.

The results of Ding et al. [70] indicate that as the altitude rises, the amplitude of advancement for

SOS decreases from 2.4 days year−1 to 0.3 days year−1, the amplitude of delay for EOS decreases

gradually from 1.3 days year−1 to 0 days year−1, and the amplitude of lengthening for LOS decreases

from 3.4 days year−1 to 0.2 days year−1. The different amplitudes of phenological change could be

related to different data sources, temporal scales, and regional differences [38,59,62,70].

4.2. Relationships between Phenology Metrics and Climatic Factors

To reveal the variability of the phenology metrics (SOS, EOS, and LOS) in response to climatic

factors, partial correlation analyses were carried out with preseason climatic factors (including mean

temperature and cumulative precipitation). We found that a 0–2 month accumulated temperature

(spring temperature), which accounted for 73.2% of the entire study area, had the greatest impact

on the SOS, indicating that warming spring temperatures promoted the advancement of the SOS.

This finding agrees with the results reported in the literature [32,38,62]. Zhao et al. [62] analyzed

the relationship between temperature and SOS in the forest of northeast China and showed that

the spring temperature had the greatest positive impact on the SOS. Tang et al. [38] also reported

that the forest SOS is negatively correlated with mean spring temperature in the Greater Khingan

Mountain area. Crabbe et al. [71] showed that warmer spring temperatures at high latitudes in

Europe lead to a significantly earlier SOS in broad-leaf deciduous forest and mixed forest. Our study

found that the duration, in months, of temperatures correlated with EOS increased with altitude.

Growing degree days have a negative correlation with chilling accumulation [12]. Therefore, a longer

duration of cooling, in days, is required at high altitudes to initiate a delayed EOS. This finding is

consistent with other studies [71–73]. Crabbe et al. [71] showed that warmer temperatures in extreme

warm autumn events lead to significantly delayed EOS for needle leaf evergreen forest, broad-leaf

deciduous forests, and mixed forests. We also showed that the cumulative precipitation in different

months affected the EOS for the forests. Some studies have indicated that LOS has been prolonged

in recent years, a change that is more closely associated with temperature than with precipitation,

and that the different patterns between the phenological metrics and climate factors may be associated

with their growth environment [74]. Several studies have also proposed that a time-lagged and

cumulative effect exists between vegetation growth and climate changes [32,75–77]. Different lagged

and cumulated effects between the phenological metrics and climate factors have been noticed and

attributed to species, and locations, at diverse temporal and spatial scales [22]. Chmielewski and

Rotzer [78] found a significant negative relationship between the SOS and the mean temperature

of spring (February–April). Piao et al. [32] identified that the phenological metrics were correlated
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most significantly with the mean temperature during the previous 2–4 months. Our results indicated

that the absolute value of the correlation coefficient between the SOS and temperature was higher

in the preceding two months before SOS, implying that the cumulative temperature during the two

months before the SOS contributed significantly to the growth of forests. A similar pattern can also be

observed for the relationship between temperature and the EOS. The temperature of the preceding

two months before the EOS contributed significantly to the growth of forests. Regional differences in

temperature sensitivity may be derived from interactions among climatic factors [60]. Previous studies

indicate that temperature sensitivity can vary in space and time [13,79]. Our result showed that

the mean sensitivity of SOS to preseason temperature is −1.23 days ◦C−1, which is lower than the

temperate region (−2.5 days ◦C−1) [79]. Symmetric effects of daytime and nighttime warming also

have different sensitivity to phenology metrics, for example, an increase of 1 ◦C Tmin and Tmax in

spring would advance SOS 1.34 days and 0.64 days, respectively [80]. In contrast to the extensive

research efforts on the sensitivity of SOS, the sensitivity of EOS to temperature is more challenging

to understand [22,81]. Although there are about 0.72 days delay with 1 ◦C increasing, our result

showed a different sensitivity of EOS preseason temperature between the eastern and mid-west area.

Precipitation has no obvious effects on SOS or EOS at the regional level. A significant interaction

between temperature and precipitation indicates the complex mechanisms of phenological responses

to climate change [82].

4.3. Uncertainty and Future Research Needs

Our results showed that the average SOS was mainly distributed between the 81th and 120th

Julian days, and the mean EOS was primarily between the 260th and 310th Julian days, which was

in line with the results of previous studies [26,65]. According to the phenology statistics of eight

representative woody plants, including Princess tree (Paulownia tomentosa), Babylon weeping willow

(Salix babylonica), Dwarf elm (Ulmus pumila), Paper mulberry (Broussonetia papyrifera), Chinese wild

peach (Prunus davidiana), and Black locust (Robinia pseudoacacia) in the northern edge of the Qingling

Mountains, from 1998 to 2008, He [83] showed that the leaves were completely unfolded on the 96.5th

Julian day of the year, and the total discoloration of the leaves was on the 308.8th Julian day of the

same year. Li and Liu [84] conducted a statistical survey based on phenological observations from 1986

to 2010 at Xi’an Botanical Garden and Qujiang Scenic Spot. Their results indicated that 37.7% of the

plants started leaf-out in March, 61.6% of the plants started leaf-out in April, 67.6% of the plants began

to color and defoliate in September, while 32.4% of the plants discolored in October. These conclusions

are consistent with the result of our study that 94.2% of trees’ SOS in the QMs occurred between the

81th and 120th Julian days, and 98% of trees’ EOS appeared between the 270th and 311th Julian days.

The spatial extent and time span shown by Wang, Xue, Quan and He [53] is almost consistent; therefore,

the spatial distribution of the SOS and EOS showed a similar pattern with our results. Our study

demonstrated that using a MODIS EVI time-series dataset to obtain the phenological metrics offered

acceptable reliability, and the results were comparable with the ground observation data and can be

used to reveal the forest phenological characteristics.

Differences in the models for smoothing the vegetation index and the model parameters resulted

in potential differences of uncertainty and bias among alternative phenology analyses [85]. Even with

the same model, different thresholds often lead to changes in phenology metrics. The uncertainty of

our research results is firstly associated with the reconstruction of remote sensing data by the HANTS

algorithm. When the time-series dataset is reconstructed, the acquired images are not as time-critical

as the Fast Fourier Transform (FFT) with equal time interval images. Differences in the time intervals

of time-series images and in the calibrations of model parameters affect the amounts or degrees

of uncertainty and bias in the results [38,86]. Therefore, ground-based phenological observations

should be incorporated into the threshold of phenological estimates to improve the accuracy of

phenological estimates in the future. This research expanded to an in-depth investigation of the

variation in phenological response to climate change. Phenology changes are strongly influenced by a
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combination of climate factors such as temperature, precipitation, and solar radiation, which typically

are significantly correlated with elevation.

The shortening of the growing season at low altitudes of the QMs may be related to mixed pixels

containing both forests and cultivated vegetation. This is because the cultivated vegetation in the

QMs is mainly planted in lowlands with gentle slopes and in reclamation zones of the low valley with

altitudes between 984 m a.s.l. and 1375 m a.s.l. [87]. The increases in temperature and heat resources to

the north of the QMs were found to be larger than those in the south [88]. It was also found that in

recent years, the boundaries between the semi-arid and humid areas, and between the warm temperate

zone and the subtropical zone, have shifted northward [89]. The question of how to quantify the

differentiated impact of climatic factors such as temperature, precipitation, and sunshine duration on

the phenology of the north side and south side of the QMs should be addressed independently in the

follow-up studies.

5. Conclusions

Based on the time series of the MODIS EVI dataset with 8-day and 500 m resolutions and climate

dataset, we estimated pixel-based SOS, EOS, and LOS and analyzed phenological change across

altitudinal gradients and the influence of the preseason temperature and precipitation across the QMs

in Central China, for the period 2001–2017. The results indicated that the SOS was more sensitive to

changes in elevations than the EOS. The SOS, EOS, and LOS were delayed, advanced, and shortened

by 2.4, 1.4, and 3.8 days per every 100 m increase in altitude, respectively. The EOS was found to be the

most significant factor in prolonging the growing season. The elevation-induced leaf-out shift declined

slightly from 2001 to 2017. The derived partial correlation coefficients between the phenological metrics

and the climatic factors indicated that the current and previous-month mean temperature had strong

impacts on SOS and EOS. Furthermore, the temperature was significantly correlated with variations in

SOS and EOS, an increase of 1 ◦C in the regionally averaged preseason temperature would advance

the average SOS by 1.23 days and delay the average EOS by 0.72 days. The precipitation was observed

to have no significant correlation with SOS and EOS, the sensitivity of SOS and EOS to the preseason

precipitation was not obvious across the QMs. This study provides valuable evidence to improve

our understanding of the complex impacts of climatic and elevational changes on the spatiotemporal

phenology variabilities and trends in the QMs, an important ecotone in China. Future studies are still

needed to investigate the phenology response of different species and boundary effects in the QMs.
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period corresponds to temperature and precipitation. Figure S4: Change trend of the preseason temperature and
precipitation for SOS and EOS.
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