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Abstract: Forest biomass plays an essential role in forest carbon reservoir studies, biodiversity
protection, forest management, and climate change mitigation actions. Synthetic Aperture Radar
(SAR), especially the polarimetric SAR with the capability of identifying different aspects of forest
structure, shows great potential in the accurate estimation of total and component forest above-
ground biomass (AGB), including stem, bark, branch, and leaf biomass. This study aims to fully
explore the potential of polarimetric parameters at the C- and L-bands to achieve high estimation
accuracy and improve the estimation of AGB saturation levels. In this study, the backscattering
coefficients at different polarimetric channels and polarimetric parameters extracted from Freeman2,
Yamaguchi3, H-A-Alpha, and Target Scattering Vector Model (TSVM) decomposition methods were
optimized by a random forest algorithm, first, and then inputted into linear regression models to
estimate the total forest AGB and biomass components of two test sites in China. The results showed
that polarimetric observations had great potential in total and component AGB estimation in the two
test sites; the best performances were for leaves at test site I, with R2 = 0.637 and RMSE = 1.27 t/hm2.
The estimation of biomass components at both test sites showed obvious saturation phenomenon
estimation according to their scatter plots. The results obtained at both test sites demonstrated the
potential of polarimetric parameters in total and component biomass estimation.

Keywords: total and component biomass; backscatter; polarimetric; SAR

1. Introduction

Forest biomass is an important indicator of the carbon sequestration capacity of
vegetation ecosystems and the energy charging process of forests [1]. The dynamics of
forest biomass has attracted a great deal of attention since it relates to the carbon cycle,
which may influence the global climate and environmental change [2]. Due to the difficulty
of collecting below-ground biomass and the fact that about 70% to 90% of forest biomass is
occupied by above-ground biomass (AGB), forest AGB is studied so as to inform decision
making in relation to forest ecosystem management and climate policies [3,4]. Owing to
the crucial role of forest biomass in monitoring the terrestrial carbon cycle, regional and
global forest AGB maps were developed in the past two decades [5–7]. However, forest
biomass is not only an important indicator of carbon sequestration capacity, it is also an
important index of forest harvest energy; thus, it also plays an important role in fully
analyzing and understanding the nature of ecosystems and economic growing procedures
for vegetation. However, distribution maps of total AGB need to be supplemented with
additional information about the distribution of AGB components, such as stem wood,
bark, branches, and foliage [8,9]. Further estimates of biomass components are essential for
forest ecosystem management, including timber supply and fire hazard prediction [9,10].

Synthetic Aperture Radar (SAR) instruments allow for continuous monitoring of and
deep penetration into forests, the electromagnetic energy they utilize being unaffected by
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cloud cover owing to its longer wavelength as compared to the energy used by optical
sensors. Early studies found significant correlations between SAR backscattering coeffi-
cients and forest AGB [11–15]. However, the interaction between forest AGB and SAR
backscattering coefficients depends on the frequency at which the SAR sensor operates, the
polarization of the microwaves, and the geometry of the forest structure. That is why some
previous studies also revealed saturation problems, especially for high-frequency SAR
data gathered in areas with high-level forest AGB [12]. The geometry partly determines
the scattering direction, scattering distribution, and scattering strength of forest structure
reflections [16]. Since forest backscatter is governed partly by forest structure geometry,
including tree boles, branches, and leaves, relating SAR backscatter coefficients to biomass
components, such as the biomass of tree stems, bark, branches, and needles or leaves, may
improve the previously established thresholds of saturation problems [13].

Several studies explored the relationships between SAR backscatter information at
different frequencies and polarizations with both above-ground components and total
biomass. Studies focused on different frequency polarimetric observations retrieving total
AGB concluded that the retrieval accuracies were site-dependent, tree species-dependent,
and affected by the forest structure, the shape and dimensions of leaves and stems, and
the ground conditions as well [17–20]. Studies using backscattering coefficients at different
polarimetric channels and frequencies to retrieval above-ground component biomass con-
cluded that L-band data was especially suited to trunk biomass estimation, while C-band
data was more suitable for canopy biomass estimation [11,21]; P-band data performed best
in stem biomass estimation, followed by L- and C-band data; while C- and L-band data
correlated significantly with leaves, branches, stems, and total biomass, the correlations
being stronger than those generated with P-band data [13,22]. The study using C-band
polarimetric decomposition observations to retrieve canopy component biomass found a
significant correlation between the volume scattering component and canopy biomass and
no obvious saturation phenomenon occurred [23]. However, there is still a research gap
relating to the actual potential of using polarimetric observations obtained with multiple
frequencies to retrieve forest above-ground component and total biomass. Moreover, the
impact of forest structure, for instance, tree species and AGB level, on polarimetric signal
response has not yet been fully explored [20].

The forests of Southwest China, together with those in the Northeast, which represent
the main sources of wood supply for China, are important for the economic development
of wood-dependent industries and the livelihoods of Chinese people [24,25]. Yunnan
pines (Pinus yunnanensis) is known as one of the pioneer tree species for afforestation in
Southwest China, and the Dahurian larch (Larix gmelinii) is one of the dominant tree species
for afforestation in Northeast China [26]. Both tree species are important forest types for
national natural forest conservation projects. The accurate biomass inversion of Yunnan
pines and Dahurian larches can support not only their suitable forest management and
timber harvest but also the correct calculation of their carbon stocks. Currently, the research
on AGB inversion of Yunnan pines and Dahurian larches using SAR technology is still at
the forest stand level, which has resulted in uncertainty and lower accuracy regarding their
inversion results [27,28]. The aim of this study is to explore the potential of polarimetric
observations extracted from C- and L-band polarimetric data for forest component and
total AGB estimation. Meanwhile, the effects of different microwave wavelengths on forest
component and total AGB estimation are addressed and their potential for improving
saturation retrieval is analyzed as well.

2. Materials and Methods
2.1. Test Site
2.1.1. Test Site I

Test site I is the Xiaoshao forest farm (24◦39′ to 24◦54′ N, 103◦02′ to 103◦12′ E) in the
county of Yiliang in Yunnan province, Southwest China. The elevation varies from 1300 to
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2500 m. Most of the plots are located in areas with slopes <30◦. The area has a subtropical
monsoon climate.

2.1.2. Test Site II

Test site II is located in the high latitude and cold area in Genhe City (50◦20′ to 52◦30′ N,
120◦12′ to 122◦55′ E) in the northeast of Hulunbuir League and on the west slope of the
north section of Daxinganling, Inner Mongolia, Northeast China. The average altitude is
less than 1000 m and with a flat terrain. It has a cold temperate humid forest climate and
the characteristics of a continental monsoon climate.

2.2. Plot Measurements

In the field campaign, we recorded tree diameter at breast height (DBH), tree species,
and tree height in each plot for the trees with the character of DBH ≥ 5 cm. The sample
plots of two test sites were sampled according to a simple random sampling method at the
design stage of field work and then several of them were adjusted to be more representative
of the forest structure of the study area. Where samples proved difficult to collect during the
field campaign due to poor accessibility, the sample sites were changed to make collection
easier or abandoned when nearby samples were still not available.

For test site I, the field campaign was conducted in the middle of August, 2019. A
total of 15 plots of 25 m × 25 m square stands were investigated. All of the 15 plots were
dominated by Pinus yunnanensis.

For test site II, the field campaign was conducted in the middle of August, 2012. A
total of 30 plots of 30 m × 30 m square stands were investigated. The dominant tree species
in these sample plots were Larix gmelinii, with a few Betula platyphylla and Populus davidiana.

The average AGB value of the sampled plots in test site I was around 50 t/hm2 and
the maximum value was less than 150 t/hm2. The average AGB value of the sampled plots
in test site II was around 70 t/hm2 and the maximum value was less than 200 t/hm2. The
distribution of the plots for the two test sites is shown in Figure 1; Figure 1a is for test site I,
while Figure 1b is for test site II. The red plots are the collected sample plots.
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2.3. Field-Based AGB Calculation

We calculated total and component AGB using DBH and tree height according to the
tree biomass equations shown in Table 1 [29–31]. The component biomass values of each
tree were totaled to obtain the AGB total amount for all trees in each plot, then the area of
each sample plot (0.0625 hm2 for test site I and 0.09 hm2 for test site II) was divided to obtain
the total AGB and component biomass of each plot. To eliminate the influence of biomass
changes caused by tree growth during the time interval between the sample plot survey
and SAR image acquisition, we used the growth pattern models for the corresponding
tree species to correct the calculated AGB values of the ground data [32–34]. The detailed
biomass information for each plot and the distribution of biomass at each component are
described in Figure 2.

Table 1. Equations of total and component AGB for Pinus yunnanensis, Larix gmelinii, and
Betula platyphylla.

AGB Model Equations Determination Coefficient

Total AGB (MA, kg)
For Pinus yunnanensis: 0.070231DBH2.10392H0.41120

For Larix gmelinii: 0.06848DBH2.01549H0.59145

For Betula platyphylla: 0.06807DBH2.10850H0.52019

For Pinus yunnanensis: 0.9485
For Larix gmelinii: 0.9690

For Betula platyphylla: 0.9550

Stem (MS, kg) MS = 1
1+g1+g2+g3

×MA

For Pinus yunnanensis: 0.9494
For Larix gmelinii: 0.9701

For Betula platyphylla: 0.9545

Bark (MB, kg) MB =
g1

1+g1+g2+g3
×MA

For Pinus yunnanensis: 0.8724
For Larix gmelinii: 0.8817

For Betula platyphylla: 0.8678

Branch (MBr, kg) MBr =
g2

1+g1+g2+g3
×MA

For Pinus yunnanensis: 0.8395
For Larix gmelinii: 0.8513

For Betula platyphylla: 0.9545

Leaf (ML, kg) ML =
g3

1+g1+g2+g3
×MA

For Pinus yunnanensis: 0.6540
For Larix gmelinii: 0.7439

For Betula platyphylla: 0.6311

Note: DBH (cm); H is tree height (m); g1, g2 and g3 are proportional functions of bark,
branch, and leaf relative to stem biomass of 1, respectively: g1 = 1.50018DBH−0.27008H−0.57857,
g2 = 1.93610DBH0.61425H−1.36341, g3 = 2.37294DBH0.43806H−1.65700 for Pinus yunnanensis;
g1 = 0.36742DBH−0.16892H−0.17313, g2 = 2.30634DBH0.72188H−1.54081, g3 = 1.57804DBH0.19257H−1.36274 for
Larix gmelinii; g1 = 0.53498DBH0.09004H−0.46520, g2 = 1.05167DBH0.66925H−1.04662, g3 = 0.61793DBH0.17097H−0.88182

for Betula platyphylla.
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2.4. SAR Data Acquisition and Processing

We acquired a Gaofen-3(GF-3) and an ALOS-2 PALSAR-2 to obtain full polarimetric
SAR images covering the study area for test site I and a RADARSAT-2 and an ALOS-2
PALSAR-2 to obtain the images for test site II. Detailed information about the acquired
images for the two test sites is shown in Table 2 (test site I) and Table 3 (test site II).

Table 2. Detailed information about the SAR images for test site I.

Parameters GF-3 ALOS-2 PALSAR-2

Acquired Date 18 May 2018 22 April 2016
Center frequency 5.40 GHz 1.24 GHz
Incidence angle 39.1◦ 33.9◦

Resolution (range × azimuth) 2.248 m × 5.120 m 2.86 m × 3.21 m
Orbit direction Ascending Ascending

Observation mode Quad-Polarization Stripmap I (QPSI) High-Sensitive Full Polarization (HBQ)

Table 3. Detailed information about the SAR images for test site II.

Parameters RADARSAT-2 ALOS-2 PALSAR-2

Acquired Date 20 August 2013 29 August 2014
Center frequency 5.405 GHz 1.24 GHz
Incidence angle 37.4◦ 36.52◦

Resolution (range × azimuth) 4.96 m × 4.73 m 2.86 m × 2.64 m
Orbit direction Ascending Ascending

Observation mode ULTRA FINE High-Sensitive Full Polarization (HBQ)

The pre-processing of SAR data was conducted on a computer with the following
specifications: Intel Core I7 9750H 2.60 GHz CPU, 16 GB Memory, and an NVIDIA GeForce
1660 Ti GPU. The procedures of SAR data pre-processing included radiometric calibra-
tion, speckle filtering, multi-looking, terrain correction, and geocoding. The radiometric
calibration, speckle filtering, and multi-looking for the SAR data were performed using
PolSARpro software provide by the ESA (European Space Agency), and terrain correction
and geocoding were processed using IDL software.

All the images were first radiometrically calibrated to obtain the backscattering coeffi-
cients and the scattering matrix (S); the radiometric calibration was carried using the follow-
ing equation to transform the digital number of each pixel into backscattering coefficients:

For the C-band GF-3 data:

σ0
dB = 10 log10(PI(Q V/32767)2)− KdB (1)

where PI = I2 + Q2, I and Q are the real and imaginary portions of the level 1A SLC
product, respectively, QV is the maximum value of the original image data, which can
be found from the QualifyValue in the metadata, and Kdb is the calibration cons in the
metadata. For the calibration of C-band RADARSAT-2 data, readers are referred to our
previous studies [35,36].

For the L-band ALOS-2 PALSAR-2 data:

σ0
dB = 10 log10(I2 + Q2) + CF (2)

where I and Q are the real and imaginary portions of the SLC data and CF is the calibration
factor, which is −83 ± 0.406 dB.

After radiometric calibration, the images were speckle filtered and multi-looked with
3 × 3 for PALSAR-2 data, 3 × 3 for GF-3 data, and 2× 2 for RADARSAT-2 data at range and
azimuth directions, respectively. Then, the coherency matrices (T) were obtained. Range-
Doppler terrain correction was applied using 30 m Shuttle Radar Topography Mission-1
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(SRTM-1) DEM data, the SAR image simulated according to their imaging geometry and
available orbit information from the metadata, and the real SAR images were matched to the
simulated images, warping to the DEM coordinate system. After the terrain correction, all
the SAR images were geocoded into the World Geodetic System-1984 (WGS-84) geographic
coordinate system and projected into Universal Transverse Mercator (UTM) map projection
(Zone 48N for test site I, Zone 51N for test site II). Next, the SAR parameters corresponding
to the sample plot were extracted. Since each sample plot area was 0.0625 or 0.09 ha, we
averaged the values of each SAR parameter according to the position relationships between
image pixels and the center point of each sample plot. The Pauli RGB color-coded SAR
images are shown in Figure 3.
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2.5. Polarimetric Parameter Extraction

Since the ground objects in the study area are all woodland and a forest is a complex
ecosystem, the ground scattering objects are more complex, and they are basically inco-
herent targets; therefore, we applied polarimetric decomposition for incoherent targets to
the acquired SAR data to extract polarimetric parameters [37]. In this paper, the selected
incoherent polarimetric decomposition methods included H/A/Alpha decomposition,
Freeman–Durden two-component decomposition (Freeman2), Yamaguchi three-component
decomposition (Yamaguchi3), and Target Scattering Vector Model decomposition (TSVM).
Table 4 gives the details about the extracted polarimetric parameters.

Table 4. Polarimetric decomposition parameters.

Method Parameter

Yamaguchi3
decomposition

Volume scattering component of Yamaguchi3 decomposition (Yam3_Vol)
Odd scattering component of Yamaguchi3 decomposition (Yam3_Odd)
Double-bounce component of Yamaguchi3 decomposition (Yam3_Dbl)

Freeman2
decomposition

Scattering component of Yamaguchi3 decomposition (Fre2_Vol)
Ground scattering component of Yamaguchi3 decomposition (Fre2_Grd)

H/A/alpha
decomposition

Mean scattering angle (alpha)
A parameter for assessing the type of symmetry (anisotropy)

Polarimetric scattering entropy (entropy)
Single-Bounce Eigenvalue Relative Difference (SERD)

Double-Bounce Eigenvalue Relative Difference (SERD)
Shannon entropy (SE)

Intensity component of Shannon entropy (SEi)
Polarization degree component of Shannon entropy (SEp)

Polarization Fraction (PF)
Polarization Asymmetry (PA)
Radar Vegetation Index (RVI)

Pedestal Height (PH)

TSVM
decomposition

4 symmetry scattering parameters (TSVM_alpha_s, TSVM_alpha_s1, TSVM_alpha_s2,
TSVM_alpha_s3)

4 target phase angle parameters (TSVM_phi_s; TSVM_phi_s1, TSVM_phi_s2, TSVM_phi_s3)
4 target orientation angle parameters (TSVM_psi, TSVM_psi1, TSVM_psi2, TSVM_psi3)

4 target ellipticity angle parameters (TSVM_tau_m, TSVM_tau_m1, TSVM_tau_m2, TSVM_tau_m3)

2.6. Correlation Analysis

Correlation analysis is a statistical method used to express the correlation between
two variables by a correlation coefficient. The correlation analysis of the total and compo-
nent AGB with backscattering and polarimetric information were carried out to explore
the relationship between each component biomass and backscattering and polarimetric
parameters.

2.7. Parameter Optimal Selection

Parameter optimal selection means selecting a set of parameters with distinguishing
properties from a group of parameters according to certain rules. In this study, the total
biomass and biomass components were taken as dependent variables, and the backscatter-
ing coefficients of four polarization channels at the C- and L-bands and all SAR polarimetric
decomposition parameters were taken as the group of independent parameters. We utilized
a random forest (RF) algorithm to select the optimal parameters. RF is a machine learning
algorithm proposed by Breiman Leo and Adele Cutler in 2001 for classification, regression,
and survival analysis [38]. This algorithm can be understood as calculating the importance
of features and ranking them. In this study, R language was applied for the performance of
RF [39]. For the details of the RF algorithm, readers are referred to the work of Breiman [38].
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2.8. Model Building and Evaluation

Regression-based models are the most common biomass estimation approach when
using remote sensing data [3]. They have the advantage of flexibility and high interpretabil-
ity, and many studies have demonstrated their validity for biomass estimation [9,18,23,40].
Therefore, in this study, we selected a multiple linear regression method to build the es-
timation model. Samples investigated in this study were used for model building and
validation. Given the limitations of the small samples, here we used the leave-one-out
cross-validation (LOOCV) method to evaluate the capability of the built model [41,42],
that is, one sample plot was used as a validation sample each time and other samples
were used as training samples for modeling. The process is repeated continuously and all
cross-validation results are recorded. Finally, all groups of measured and predicted values
were obtained to evaluate the original model. This method can provide unbiased estimation
of the true fitting ability of the model and with no data wastage [42]. The coefficient of
determination (R2), root mean square error (RMSE), and relative root mean square error
(rRMSE in %) were selected to evaluate the model fitting results and estimation results.

R2 = 1−

n
∑

i=1
(yi − y)2

n
∑

i=1
(Yi − y)2

(3)

RMSE =

√
1
n

n

∑
i=1

(Yi − y)2 (4)

rRMSE =
RMSE

y
× 100% (5)

where Yi, yi and y are measured AGB, predicted AGB, and the mean values of the measured
AGB, respectively, and n describes the sample number.

3. Results
3.1. Relating Biomass to Backscattering Coefficients of Each Polarimetric Channel

The correlation analysis was carried out between the backscattering coefficients in
the two bands and the total and component AGB of the corresponding sample plots. The
results are shown in Table 5 (test site I) and Table 6 (test site II).

Table 5. R values between the backscatter coefficients and forest biomass for test site I.

Biomass HH (C) HV (C) VH (C) VV (C) HH (L) HV (L) VH (L) VV (L)

Total 0.737 ** 0.827 ** 0.805 ** 0.723 ** −0.173 0.224 0.243 0.008
Stem 0.724 ** 0.817 ** 0.795 ** 0.720 ** −0.198 0.204 0.229 −0.010
Bark 0.748 ** 0.830 ** 0.811 ** 0.710 ** −0.115 0.265 0.269 0.047

Branch 0.742 ** 0.829 ** 0.808 ** 0.722 ** −0.157 0.235 0.250 0.018
Leaf 0.748 ** 0.831 ** 0.812 ** 0.711 ** −0.099 0.275 0.275 0.057

** Represents a significance level at 1% (two-tailed). C and L in brackets mean C- and L-band, respectively.

Table 6. R values between the backscatter coefficients and forest biomass for test site II.

Biomass HH (C) HV (C) VH (C) VV (C) HH (L) HV (L) VH (L) VV (L)

Total 0.511 ** 0.285 0.335 0.493 ** 0.273 0.473 ** 0.481 ** 0.302
Stem 0.508 ** 0.268 0.321 0.474 ** 0.255 0.455 ** 0.462 ** 0.283
Bark 0.515 ** 0.306 0.350 0.513 ** 0.289 0.488 ** 0.499 ** 0.321

Branch 0.494 ** 0.296 0.342 0.511 ** 0.293 0.488 ** 0.500 ** 0.320
Leaf 0.532 ** 0.333 0.401 * 0.530 ** 0.292 0.481 ** 0.508 ** 0.352

* Represents a significance level at 5% (two-tailed). ** Represents a significance level at 1% (two-tailed). C and L in
brackets mean C- and L-band, respectively.
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For test site I, the values in Table 5 revealed that the backscattering coefficients of each
polarimetric channel in the C-band correlated significantly with the total and component
AGB at the level of 0.01, the R values indicated that the backscattering of the C-band
showed greater sensitivity to the change of biomass in the test site than the L-band. Among
them, the C-band HV backscattering coefficient showed a better correlation with total and
component AGB than the other three channels. It had the best correlation with the leaf
biomass with an R value of 0.831. Next was bark biomass, which was almost the same
as that of branch biomass, although the worst correlation was with branch biomass. For
other polarimetric channels, the correlations between backscattering coefficients and leaf
and branch biomass were also higher than total AGB and stem biomass. The phenomenon
revealed the greater sensitivity of C-band backscattering coefficients to the biomass changes
in the canopy (branches and leaves).

In test site I, compared with the C-band, each backscattering coefficient of four po-
larimetric channels of the L-band showed obvious lower sensitivity to both total and
each component AGB. Even stem biomass, which usually correlated better with L-band
backscattering coefficients in previous studies, also showed a lower correlation with each
L-band polarimetric channel backscattering coefficient, with the highest R value being
0.250 obtained via the HV channel. This may result from the different tree species and the
forest structure in our study area as compared with previous study areas [43].

Compared to test site I, the R values for the C-band in test site II were lower, but
the relationships between HH, VV backscattering coefficients, and biomass were still
significant at the 1% level. Meanwhile, HH backscattering coefficients showed the highest
correlation with leaf biomass with an R value of 0.532. The relationships between HV, VH
backscattering coefficients, and biomass in the L-band were significant at the 1% level,
which was better than that obtained at test site I; nonetheless, HH and VV backscattering
coefficients showed a poor correlation with total and component biomass.

3.2. Relating Biomass to Polarimetric Decomposition Parameters

The analysis results for the correlations between polarimetric information and forest
total and component AGB in this study are shown in Table 7 (test site I) and Table 8 (test
site II). Compared with the backscattering coefficients, the correlations between certain
polarimetric decomposition parameters and component biomass were obviously increased.

The values in Table 7 revealed that, in test site I, the C-band volume components
both from Freeman2 and Yamaguchi3 correlated best with not only total AGB but also
each component biomass. Meanwhile, the volume scattering parameter coming from
Yamaguchi3 (Yam_Vol3) was more sensitive than that extracted with Freeman2. Next were
the Ground (or Dbl) components in these two decomposition methods, which showed
better correlation both with total AGB and component biomass. As with the volume
component, other parameters extracted from Yamaguchi3 decomposition were better than
those extracted from Freeman2. The R value for the C-band volume scattering component of
Yamaguchi3 decomposition (Yam3_Vol) was around 0.88, while it was 0.82 for the volume
scattering component of the Freeman2 decomposition method (Fre2_Vol). The better
performance of Yamaguchi3 parameters may be due to the fact that Yamaguchi modified
the volume scattering matrix in the Yamaguchi3 decomposition method according to the
relative backscattering magnitudes of the HH channel versus the VV channel. The scattering
orientation distribution function of the dipole, which described the dominant scattering
objects in the forest canopy, was also modified. The modified volume model seems to be
more in accordance with the forest volume scattering in the study area. In addition, the
second eigenvector of the TSVM target ellipticity angle (TSVM_tau_m2), Shannon entropy
(SE), and its intensity component (SEI) from the C-band were also significantly correlated
with the biomass of each fraction.
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Table 7. R values between the polarimetric parameters and forest biomass for test site I.

Biomass Fre2_Grd
(C)

Fre2_Vol
(C)

Yam3_Dbl
(C)

Yam3_Odd
(C)

Yam3_Vol
(C) SE (C) SEi (C) TSVM_tau_m2(C) TSVM_psi3(L)

Total 0.798 ** 0.809 ** 0.814 ** 0.675 ** 0.833 ** 0.781 ** 0.837 ** 0.634 * −0.689 **
Stem 0.786 ** 0.795 ** 0.835 ** 0.657 ** 0.863 ** 0.789 ** 0.824 ** 0.626 * −0.683 **
Bark 0.810 ** 0.825 ** 0.849 ** 0.703 ** 0.868 ** 0.791 ** 0.850 ** 0.640 * −0.692 **

Branch 0.804 ** 0.813 ** 0.805 ** 0.684 ** 0.861 ** 0.794 ** 0.841 ** 0.635 * −0.690 **
Leaf 0.809 ** 0.828 ** 0.809 ** 0.708 ** 0.881 ** 0.801 ** 0.851 ** 0.641 * −0.690 **

* Represents significance level at 5% (two-tailed). ** Represents significance level at 1% (two-tailed). C, L in
brackets means the C- and L-bands, respectively.

Table 8. R values between the polarimetric parameters and forest biomass for test site II.

Biomass Fre2_Vol
(C)

Yam3_Odd
(C)

Yam3_Vol
(C) SE (C) SEI (C) TSVM_alpha_s1(C) TSVM_tau_m2(C) Fre2_Grd

(L)
Yam_3_Vol

(L) TSVM_phi_s2(L)

Total 0.519 ** 0.378 * 0.561 ** 0.533 ** 0.481 ** −0.458 * −0.549 ** 0.419 * 0.499 ** 0.554 **
Stem 0.511 ** 0.371 * 0.552 ** 0.523 ** 0.470 ** −0.439 * −0.536 ** 0.389 * 0.484 ** 0.550 **
Bark 0.535 ** 0.390 * 0.569 ** 0.546 ** 0.495 ** −0.485 **. −0.564 ** 0.441 * 0.510 ** 0.546 **

Branch 0.519 ** 0.367 * 0.557 ** 0.526 ** 0.477 ** −0.481 ** −0.565 ** 0.474 ** 0.507 ** 0.551 **
Leaf 0.520 ** 0.387 * 0.580 ** 0.538 ** 0.512 ** −0.451 * −0.563 ** 0.396 * 0.512 ** 0.496 **

* Represents significance level at 5% (two-tailed). ** Represents significance level at 1% (two-tailed). C, L in
brackets means the C- and L-bands, respectively.

Among the above-mentioned higher correlations between C-band SAR polarimetric
parameters, forest leaf, branch, and bark biomass correlated better with the volume scat-
tering component than with other parts and total AGB. The reason for high correlation
between bark biomass and polarimetric SAR parameters needs to be further explored, while
the high correlation between leaf and branch biomass and the polarimetric SAR parameters
confirmed that the dominant volume scattering mechanism at the C-band came from the
forest canopy, while the lower values of R for the correlation between the Dbl component
and each component biomass revealed that the Dbl mechanism at the C-band may occur
at tree needles, branch, and stem. However, since most of the R values at the L-band did
not reach the significance level, we think that the L-band backscatter and polarimetric
parameters are disadvantaged for biomass estimation in test site I.

As for test site II, the values in Table 8 revealed that C-band Shannon entropy and
components from Freeman2 and Yamaguchi3 decomposition also performed as well as
they did in test site I, even with a lower R value. Meanwhile, the L-band polarimetric de-
composition parameters performed better in study area II; the Freeman2 ground scattering
component (Fre2_Grd), the Yamaguchi3 volume scattering component (Yam3_Vol), and the
second eigenvector of the TSVM target phase angle (TSVM_phi_s2) from the L-band all
correlated significantly with biomass at the 5% level.

3.3. Optimal Selected Parameters

Table 9 listed the top five parameters which were most important for forest total AGB
and component biomass estimation. The order of their importance was determined by the
RF optimal parameter selection procedure. The selected features in Table 9 revealed that
C-band polarimetric parameters performed better in test site I for estimation of total AGB
and for each component biomass, while for test site II, Table 9 shows that the polarimetric
parameters both from the C- and L-bands were sensitive for retrieving total AGB and all
biomass components. The phenomenon may result from the different forest structures in
the two test sites. For test site I, the trees were younger and the forest canopy is more open
than that at test site II, meanwhile the average AGB is also lower than that of test site II; the
C-band has deeper penetration in test site I and showed better performance than in test
site II.
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Table 9. The selected SAR parameters for biomass estimation.

Test Site Component Parameter

I

Total AGB Yam3_Vol(C), Yam3_Dbl(C), SE(C), HV(C), HH(C)
Stem biomass Yam3_Dbl(C), SE(C), HV(C), HH(C), VV(C)
Bark biomass Yam3_Dbl(C), HV(C), SE(C), HH(C), VV(C)

Branch biomass Yam3_Vol(C), SE(C), VV(C), Yam3_Dbl(C), HV(C)
Leaf biomass Yam3_Vol(C), Yam3_Dbl(C), VV(C), HV(C), SE(C)

II

Total AGB TSVM_phi_s1(L), TSVM_phi_s2(L), TSVM_tau_m2(C), Yam3_Vol(C), SE(C)
Stem biomass TSVM_phi_s1(L), TSVM_phi_s2(L), TSVM_tau_m2(C), Yam3_Vol(C), SE(C)
Bark biomass TSVM_phi_s2(L), TSVM_phi_s1(L), TSVM_tau_m2(C), SE(C), Yam3_Vol(C)

Branch biomass TSVM_phi_s2(L), TSVM_phi_s1(L), TSVM_tau_m2(C), Yam3_Vol(C), SE(C)
Leaf biomass Yam3_Vol(C), TSVM_phi_s2(L), TSVM_tau_m2(C), TSVM_phi_s1(L), SE(C)

Note: (C) and (L) represent the parameters obtained from C- and L-band SAR data, respectively.

3.4. Forest AGB Estimation and Validation

Figure 4 provides a summary of the validation results of the regression model estab-
lished with the optimized parameters. For test site I, the model of leaf biomass had the
highest accuracy, with R2 = 0.637, RMSE =1.49 t/hm2, and rRMSE = 28.84%. For branch
biomass, which was similar to leaf biomass, with a R2 = 0.623, RMSE = 3.48 t/hm2, and
rRMSE = 31.25%. The model of total AGB had the lowest accuracy, with R2 = 0.562, RMSE
= 16.02 t/hm2, and rRMSE = 34.38%. For test site II, the model of bark biomass had the
highest accuracy, with R2 = 0.596, RMSE = 2.36 t/hm2 and rRMSE = 37.24%. Estimation
models for branch and leaf biomass performed similar to the bark biomass model; the
values of rRMSE were 39.53% and 37.43%, respectively. As for stem biomass, the R2, RMSE,
and rRMSE values of the model were 0.540, 17.13 t/hm2, and 41.20%, respectively. The
accuracies of each biomass model built for test site II were slightly lower compared to those
for test site I.
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Figure 4. The validation results of the estimated total AGB and component biomass of test sites:
(a) total AGB; (b) stem; (c) bark; (d) branch; (e) leaf.

The distribution maps of total AGB and component biomass for the two test sites were
generated and shown here in Figure 5 (test site I) and Figure 6 (test site II). The AGB maps
modelled by each component and total retrieval models showed a few overestimations; the
areas with overestimated AGB were almost similar for total AGB, stem, bark, branch, and
leaf biomass. Most of these areas in both test sites were located in forest areas with higher
AGB levels.
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4. Discussion

This study utilized the backscatter and polarimetric decomposition parameters ex-
tracted from C- and L-band data to estimate forest total AGB and component biomass of
Pinus yunnanensis and Larix gmelinii. In test site I, SAR parameters extracted from the C-
band showed better performance than those from the L-band for both total and component
AGB inversion. The results were in conformity with our previous study in the same study
area but where we used a different inversion model [44]. However, they differed from
the results mentioned in the research of Kasischke et al. and Cronin et al. [13,22]. In their
research, the L-band showed better performance than the C-band. The phenomenon may
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result from the low biomass level, poor stand structure, and terrain influence in our study
area. Le Toan et al. demonstrated that direct volume scattering occurring at the crown
having a much smaller scattering component would be stronger than that at a crown with a
bigger component and larger canopy gaps, while Dbl would be stronger in lower trees with
short scattering waves and higher trees with longer scattering waves [11]. The study of
Santoro et al. also addressed the great influence of forest structure on SAR backscattering
coefficients [45].

For the SAR backscatter coefficients, in test site I, HV channel backscattering coeffi-
cients both at the C- and L-bands correlated best with total AGB and component biomass.
For each component biomass, leaf biomass showed the highest correlation with HV chan-
nel backscattering coefficients both at the C- and L-bands. R values for these were 0.831
and 0.275, respectively. Stem biomass showed the lowest correlation with HV channel
backscattering coefficients with the R = 0.817 and R = 0.204, respectively. The study of [13]
also determined that HV channel backscattering coefficients at both the C- and L-bands
showed the greatest sensitivity to forest biomass compared to other polarimetric channels.

For polarimetric parameters, volume scattering and double-bounce components both
at the C- and L-bands showed obvious high correlations with total and component AGB,
especially for test site I. The R values were slightly higher than those in the other study
with GF-3 C-band data and similar polarimetric parameters. For example, R values for the
correlation between crown biomass and Freeman3 and Yamaguchi3 volume scattering com-
ponents reported by [23] were 0.68 and 0.74 with significance at the 0.01 level, respectively.
Compared with previous studies using Freeman3 to retrieve total AGB, the R values for the
correlation between total AGB and surface scattering, double-bounce, and volume scatter-
ing components were 0.49, 0.63, and 0.61 respectively. The values were lower than for the
same C-band polarimetric components but higher than the L-band components in our study
area [18]. The better performance of Yamaguchi3 compared with Freeman2 may be due
to the fact that the volume scattering modelling in Yamaguchi3 was improved by adding
variable coefficients into the volume scattering model, and the addition of variable coef-
ficients could describe the forest vertical structure information more accurately [46]. The
results were also confirmed with the results of [19,20]. However, the correlation between
each polarimetric decomposition component and GSV differed from the results obtained
from our study area. The results from that study showed higher correlations between
volume scattering and surface scattering components with GSV (R = 0.473 and R = 0.732),
while in this study, volume scattering and double-bounce scattering components showed
better correlations with forest total AGB and component biomass. The phenomenon may
have resulted from the difference in tree species and forest structure. Although the Dbl
components from Freeman2 and Yamaguchi3 were not correlated as significantly as volume
scattering components, they had better correlations to each biomass component. The better
performance of the Yamaguchi3 Dbl component in correlating with crown biomass in the ar-
tificial forest was also confirmed in the study of [23]. In test site II, parameters exacted from
TSVM decomposition, such as the target ellipticity angle (τ) of the eigenvector of TSVM
decomposition (TSVM_tau), presented the relative importance in the models. Parameters
from the TSVM decomposition were commonly reported to present important information
for modelling AGB in the tropics [47–49]. Similarly, Shannon entropy and its components
were relatively important in the AGB inversion of tropical forests [49,50]. Few studies have
been reported on the inversion of AGB in subtropical forests and temperate forests using
the above parameters, and the role of parameters from the TSVM decomposition method
and Shannon entropy (SE) for the estimation of forest AGB in this region needs to be
further explored. The multiple linear regression models showed good performance for total
and component biomass estimation in our study. Previous studies also demonstrated the
efficiency of multiple linear regression models in forest parameter estimation [9,18,23,40].
Although high rRMSE values were obtained in this study, the error levels were still within
the range of similar studies using C-band data. For example, the results obtained by Tsui
et al. ranged from 44.0% to 53.6%, while rRMSE values in our study changed from 29.03%
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to 33.55% [9]. Moreover, the component biomass estimation in this study and in the study
of [23] all demonstrated that using polarimetric parameters to invert component biomass
showed no obvious saturation phenomenon. This reveals that the method used in this
study has potential to improve forest AGB inversion accuracy and saturation levels.

5. Conclusions

This study explored the potential of using backscatter coefficients at different polari-
metric channels and polarimetric parameters extracted from C- and L-band full polarimetric
SAR data to estimate forest total and component AGB. Through correlation analysis, pa-
rameter optimal selection, and a biomass inversion procedure, it is concluded that: (1)
adding polarimetric features can improve biomass estimation accuracy both for total and
component AGB. Several polarimetric parameters showed better performance than the best
backscatter coefficient in the estimation of total and component AGB; (2) the performance
of C- and L-band polarimetric observations showed obvious site-dependence during forest
total and component AGB estimation. The C-band performed better in more open forests
with lower AGB and the L-band performed better in closer forests with moderate AGB
levels; (3) for forest component biomass, especially for canopy components, such as branch
and leaf biomass, polarimetric features with better performance showed no obvious satura-
tion phenomenon. However, due to the limitation of the collected field sample plots, only
15 sample plots for test site I and 30 sample plots for test site II were used for modelling in
this study. Although the results are persuasive, more diverse observational data are needed
for verification. Furthermore, in this study only four methods of polarimetric decompo-
sition were used for polarimetric parameter extraction; in the future, other polarimetric
parameters extracted by different methods need to be further explored.
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