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Abstract

FORETELL: Aggregating Distributed,

Heterogeneous Information from Diverse Sources

Using Market-based Techniques

Janyl Jumadinova, M.S., Ph.D

University of Nebraska, 2013

Advisor: Prithviraj Dasgupta

Predicting the outcome of uncertain events that will happen in the future

is a frequently indulged task by humans while making critical decisions.

The process underlying this prediction and decision making is called in-

formation aggregation, which deals with collating the opinions of different

people, over time, about the future event’s possible outcome. The in-

formation aggregation problem is non-trivial as the information related

to future events is distributed spatially and temporally, the information

gets changed dynamically as related events happen, and, finally, people’s

opinions about events’ outcomes depends on the information they have

access to and the mechanism they use to form opinions from that in-

formation. This thesis addresses the problem of distributed information

aggregation by building computational models and algorithms for differ-

ent aspects of information aggregation so that the most likely outcome of

future events can be predicted with utmost accuracy. We have employed



a commonly-used market-based framework called a prediction market to

formally analyze the process of information aggregation. The behavior of

humans performing information aggregation within a prediction market is

implemented using software agents which employ sophisticated algorithms

to perform complex calculations on behalf of the humans, to aggregate

information efficiently. We have considered five different yet crucial prob-

lems related to information aggregation, which include: (i) the effect of

variations in the parameters of the information being aggregated, such as

its reliability, availability, accessibility, etc., on the predicted outcome of

the event, (ii) improving the prediction accuracy by having each human

(software-agent) build a more accurate model of other humans’ behavior

in the prediction market, (iii) identifying how various market parameters

effect its dynamics and accuracy, (iv) applying information aggregation to

the domain of distributed sensor information fusion, and, (v) aggregating

information on an event while considering dissimilar, but closely-related

events in different prediction markets. We have verified all of our pro-

posed techniques through analytical results and experiments while using

commercially available data from real prediction markets within a sim-

ulated, multi-agent based prediction market. Our results show that our

proposed techniques for information aggregation perform more efficiently

or comparably with existing techniques for information aggregation using

prediction markets.
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Chapter 1

Introduction

Forecasting the outcome of events that will happen in the future is an essential task

in decision-making processes. Forecasting is especially difficult since the information

related to future events frequently appears in bits and pieces, for example, as dis-

persed opinions, insights, and intuitions of people. Each person only knows a little

but possible useful piece of information, and aggregating the dispersed information

together may make considerable contribution to the decision making process. This

is encountered in various domains such as forecasting the outcome of geo-political

events, betting on the outcome of sports events, forecasting the prices of financial

instruments such as stocks, and casual predictions of entertainment events. The un-

certainty of the event changes as time goes by and new information related either

directly or indirectly to the event becomes available. Also, with the number of dif-

ferent data sources and forms exploding, the age of “Big Data” has arrived; bringing

with it challenges of analyzing the large amounts of data from various domains such

as social networks, sensor networks, and healthcare, and making decisions based on
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it. Therefore, how to aggregate vast amounts of dispersed information timely for

useful decision making is a crucial task.

1.1 Motivation

There are various forecasting methods that have been developed over the past decades.

These methods can be roughly divided into statistical and non-statistical methods [16].

Statistical methods, such as econometric models and some machine learning tech-

niques, require some historical data. The limitation of statistical methods is that in

addition to requiring the existence of enough historical data, they also require that

historical data contain valuable information about the future event. On the other

hand, non-statistical methods frequently rely on experts’ judgment and opinions.

The limitation of non-statistical methods is that in order to elicit experts’ opinions

we have to identify experts, have them agree to participate, and determine how to

combine different opinions when experts are in disagreement. All of these tasks are

complex in their own way.

The reliability of collective decision making has been of substantial interest for

a long time. In 1906 British scientist Francis Galton attended a weight judging

competition at Plymouth. Almost eight hundred people estimated the weight of an

ox. Some of the participants were experts at judging the weight of cattle (butchers,

farmers), while others only used their intuition with no insider knowledge of cattle.

Surprisingly enough for Galton, the mean estimate, which can be interpreted as the

collective wisdom of the Plymouth crowd, was very accurate. Galton’s experience

suggests that under some circumstances, groups are remarkably intelligent and even

smarter than the smartest people in them. In 2005 James Surowiecki coined the

term the “wisdom of crowds” by describing how groups of people solve, under cer-

tain conditions, complex problems far better than single individuals [102]. There are
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Figure 1.1: Prediction markets use the wisdom of the crowd and the market-based
structure to predict the outcomes of unknown events.

various ways to utilize the wisdom of crowds such as using wikis, reputation systems,

or polling mechanisms. Another way to aggregate dispersed information is by setting

up a market. Economists have long understood that, in theory, the market prices

in properly designed markets reflect the collection of all the information possessed

by all the traders about future events [94]. Over the past few years, a market-based

paradigm, called prediction markets, has emerged as an attractive market mechanism

to solve forecasting problem using the aggregated opinions of the market’s partici-

pants. A prediction market consists of human traders that bet their money on the

possible future outcome of real-world events. The amount of money betted by a

trader on a particular event depends on the trader’s current belief about the outcome

of the event. The aggregate value of the monetary bets made by different traders on

an event dynamically determines the price of future bets related to the event. Pre-

diction markets are considered to be an efficient aggregation mechanism for public

opinion on the event because the dynamic price fluctuations of the bets related to an

event is claimed to be an indicator of the public opinion or belief about the outcome of

the event [109]. Its success is evidenced from the successful predictions of actual events

Introduction/IntroductionFigs/intro.eps
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done by prediction markets run by the Iowa Electronic Marketplace(IEM) [42], Trade-

sports, Hollywood Stock Exchange, the Gates-Hillman market [83], and by companies

such as Hewlett Packard, Google [23] and Yahoo!. The effectiveness of prediction mar-

kets was further confirmed during the 2012 presidential election; they were much more

effective than polls in predicting the vote shares of President Barack Obama and Gov.

Mitt Romney. Prediction markets were initially introduced as social research tools

for aggregating the opinions of a large number of people on the future outcome of im-

minent events. The following success of prediction markets as an effective aggregator

of public opinion has led to their adoption in various domains ranging from academic

research to commercial betting markets for popular events and predicting the per-

formance or sales of products by software companies. Figure 1.1 shows some of the

events that prediction markets have been used to predict. Although the concept of

prediction markets originated from financial markets, ongoing research on this topic

has evolved beyond purely market-oriented aspects into using prediction markets as

an information aggregation and decision making mechanism.

Prediction markets have many advantages over statistical or non-statistical fore-

casting methods. Compared with statistical forecasting methods, prediction markets

can incorporate real-time information, which was not contained in historical data.

Compared with non-statistical forecasting methods, prediction markets are less con-

strained by space and time since there is no need to identify experts and solicit their

participation, and hence are often less expensive in practice, and they do not need to

deal with conflicting opinions. More importantly, prediction markets can potentially

make real-time predictions that take advantage of the dispersed information, which

are sometimes hard to capture using other forecasting methods.
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1.2 Thesis Objectives

Despite the advantages and recent popularity of prediction markets, understanding

and explaining the behavior of prediction markets and how to design effective pre-

diction markets are still open questions to a large extent. If prediction markets are

to be used to assist in making critical decisions in the real world, investigating these

questions is imperative. The goal of this thesis is to provide an understanding of

the properties and performance of prediction markets, through rigorous theoretical

and empirical examinations, and to obtain an initial framework to guide prediction

market design and development for decision making. To do this, we divide the thesis

into five distinct contributions.

Next, we discuss the main contributions of this thesis.

1. Analyzing the Effect of Information Related Parameters on Prediction

Markets. The first contribution is a multi-agent system that is used to analyze the

effect of information on the prediction market performance. The effect of information

on prediction markets is a crucial factor that affects the behavior of the trading

agents in the market. Information about an event that the trading agents receive also

influences the prices corresponding to the event and finally determines the outcome

of the event. Our multi-agent based system incorporates different information-related

aspects including the arrival rate of the information, the reliability of the information,

the penetration or accessibility of the information among the different trades and the

perception or impact of the information by the trading agents. The multi-agent

implementation of a prediction market allows us to easily analyze and verify the

trading agents’ behavior while varying different market and agent related internal

parameters of the prediction market, as well as external parameters related to the

information about events arriving at the market.

2. Analyzing the Behavior of the Trading Agents. Researchers have

proposed theoretical models capturing individual aspects of prediction markets such
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as utility theory-based models for participants’ behavior, or aggregation strategies for

combining the information from the market’s participants [13;18;81]. However, behav-

ior of the prediction market’s participants on the market’s predicted outcome in a

partially unknown environment has not yet been fully investigated. For the second

contribution we address this deficit by developing a game theoretic representation

of the trading agents’ interaction and determining their strategic behavior using the

equilibrium outcome of the game. We also consider risk preferences of the agents and

show theoretical properties for truthful revelation from risk averse agents. We empir-

ically compare this equilibrium trading strategy with five different trading strategies

used in similar markets with a detailed commercially available data from the Intrade

prediction market [51] that contains time-stamped information on individual trades

of each trader buying and selling securities as well as on traders’ volume and their

duration in the prediction market.

3. Analyzing the Dynamics of the Prediction Market. Despite a growing

research on prediction markets, their implementation in practice is still difficult. It is

important to know under what conditions the prediction market becomes most effi-

cient. As the third contribution we focus on the dynamics of prediction markets under

various conditions using Boolean Network techniques. Using a Boolean Network and

a mean-field approaches from statistical physics we generate a mathematical model

for a prediction market. In our model one node represents the market maker, that

at each time step aggregates the information from the other nodes in the system,

that represent the trading agents. Then, using the tools from dynamical systems and

chaos theory [? ], we analyze the evolution of the aggregated information under various

scenarios.

4. A Prediction Market used for Decision Making in Multi-Sensor Do-

main. For the fourth contribution we study a decision making setting that uses

a prediction market framework. Accurate information aggregation about uncertain
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events is very important for a decision maker. Within the last decade, much em-

pirical and analytical work on prediction markets has shown prediction markets to

be a successful information aggregation mechanism. We consider an analogous prob-

lem of information fusion from multiple sensors of different types with the objective

of improving the confidence of inference tasks, such as object classification. We de-

velop a multi-agent prediction market-based technique to solve this information fusion

problem. We experimentally verify our technique using simulations of multi-sensor

information fusion for an automated landmine detection scenario.

5. Distributed Prediction Markets. For the fifth contribution we consider a

novel, yet practical setting of prediction markets called distributed prediction mar-

kets, where the predicted outcome of an event in one prediction market is affected

dynamically by the predicted outcome of similar events in other, simultaneously run-

ning prediction markets. We focus on the problem of decision making facing a mar-

ket maker to determine the possible outcome of an event within such a setting. We

propose a formal framework based on graphical games to model the distributed pre-

diction market setting and to capture the local interactions between multiple market

makers. We also develop an algorithm that determines the best action for the par-

ticipants in the prediction market using our proposed model. Our results show that

our agent-based distributed prediction market technique operates more efficiently and

accurately than individually-operating, isolated prediction markets in predicting the

event’s outcome. Table 1.1 shows the specific research questions that we address in

each of our contributions. We investigate these questions from four approaches: theoretical

examination, empirical analysis, and design and development. Theoretical examination can

help us understand how and why prediction markets behave a certain way. This is achieved

through developing and analyzing computational models of prediction markets. Empirical

analysis using some real-world data and theoretical models aims at analyzing the behav-

ior of prediction markets. Based on previous results, we then investigate issues of design

and development of information aggregation system for decision making using prediction
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Contr. Research Question Research Approach
1 How do changes in different aspects Empirical Analysis

of information affect the behavior of
prediction markets?

2 How do different trading agent behaviors Empirical Analysis
affect the behavior of prediction markets?

2 What trading strategies perform the Empirical Analysis
best in prediction markets?

2 How can prediction markets incentivize Theoretical Examination
trading agents to participate in order to
achieve a higher prediction accuracy?

2 How does the trader’s behavior using Empirical Analysis
a formal game-theoretic model
compare to the trader’s behavior
in real prediction markets?

3 How does a prediction market evolve Theoretical Examination
and what are its dynamics under different Empirical Analysis
market and trader conditions?

3 How can we make a prediction market Theoretical Examination
unaffected by “noise”? Empirical Analysis

4 How can prediction markets be used for Design and Development
decision making? Theoretical Examination

4 Is there an advantage of using prediction Empirical Analysis
markets for sensor fusion?

4 Can a prediction market-based model for
sensor fusion be effective in realistic Empirical Analysis
settings given various limitations?

5 How can we design a distributed Theoretical Examination
model of a prediction market Design and Development
to be used for decision making?

5 Is our distributed model of the prediction Theoretical Examination
market incentive compatible?

5 How does a distributed information Theoretical Examination
aggregation in a prediction market Empirical Analysis
compare to the centralized aggregation?

Table 1.1: Research questions that are addressed in this thesis.

market.
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1.3 Thesis Organization

This thesis is structured in six chapters. Chapter 2 introduces basics of prediction mar-

kets and reviews related work extensively. The rest of the chapters discuss contributions 1

through 5 and answer corresponding research questions. Chapter 3 analyzes the effect of

different information related parameters on the traders’ behavior and on prediction mar-

ket’s performance. Chapter 4 studies the trading agents’ interaction and proposes an algo-

rithm for their strategic behavior. Chapter 5 studies the dynamics of prediction markets

under various conditions using Boolean Network techniques. Chapter 6 solves an informa-

tion fusion problem from multiple sensors of different types using prediction market-based

framework. Chapter 7 proposes distributed prediction markets framework where multiple

prediction markets running similar events can affect each other’s aggregated prices. And

finally, chapter 8 concludes the thesis, discusses some future work, and presents some open

problems.
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Chapter 2

Related Work

In this chapter, we highlight the major participating entities and essential features of

the operation of a prediction market. We then summarize the related work on prediction

market.

2.1 Prediction Markets Overview

2.1.1 Prediction Market Participants and Operations

Prediction markets [109] use the collective opinions of a group of people, called the market’s

traders, to forecast the outcome of a future event. Usually, a payment mechanism with

either real or play money is used to motivate the traders to participate in the market. The

prediction market has a set of future events whose outcome has not yet been determined.

Traders bet their money on the possible future outcome of real-world events, such as the

presidential elections, some movie’s box office performance, or the sales performance of a

particular product. The amount of money betted by a trader on a particular event depends
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Figure 2.1: Essential components of a prediction market and operations of a trading
agent in a prediction market.

on the trader’s current belief about the outcome of the event. The outcome of each event

is considered as a binary variable with the outcome being 1 if the event happens and the

outcome being 0 if it does not. Each outcome of an event has a security associated with

it. A security is a specific contract that has a market price associated with it and yields

payments based on the outcome of an uncertain future event. One example of a security

could be “Democratic Party candidate to win the 2016 US Presidential Election”. Securities

can be purchased or sold by traders at any time during the lifetime of the security’s event.

A security expires when the event associated with it happens at the end of the event’s

duration. At this point the outcome of the event has just been determined and all traders

are notified of the event’s outcome. The traders that had purchased the security during

the lifetime of the event then get paid a certain amount of money for every security they

possess if the event happens with an outcome of 1, or, they do not get paid anything

and lose the money they had spent on buying the security if the event happens with an

outcome of 0. During the lifetime of the event, the aggregate value of the monetary bets

made by different traders on an event dynamically determines the market price of a security

associated with the outcome of the event. The market price of a security in a prediction can

be interpreted as the probability that the event’s outcome associated with that security will

SoTA/SotAFigs/diagram.eps
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be realized. The institution or company running the prediction market usually performs

the aggregation process and determines the market price using an intermediary called the

market maker. Traders interact with the market maker to buy and sell securities. The

market maker aggregates the prices at which traders want to trade their securities into a

single market price that represents the possible outcome of the event. Figure 2.1 shows the

main entities of a prediction market along with the operations performed by a trader in a

prediction market.

A special class of prediction markets is a combinatorial prediction market [46]. In a

combinatorial prediction market, allowable bets are not explicitly listed, but are rather

implicitly defined on a combinatorial space. For example, in a market for NBA basketball

rankings involving n teams, the outcome space might be all the n! possible permutations

of the teams. And the allowable bets could be permutations such as “Los Angeles Lakers

wins the NBA championships” or “Los Angeles Lakers beats Dallas Mavericks and Chicago

Bulls”. As another example, in a market for the state-by-state outcome (win or loss) of the

US presidential elections, the outcome space could be 250 possible state-by-state results,

while allowable bets are Boolean statements like “Obama wins in Ohio and California

but not in Nebraska”. Combinatorial prediction markets offer greater expressiveness by

being able to capture complex relationships between events. However, having to work with

a combinatorial outcome space also increases the complexity and computational cost of

predicting outcomes in a combinatorial prediction market.

2.1.2 Prediction Markets and Early Models

Prediction markets were started in 1988 at the Iowa Electronic Marketplace to investigate

whether betting on the outcome of geo-political events (e.g. outcome of presidential elec-

tions, possible outcome of international political or military crises, etc.) using real money

could elicit more accurate information about the event’s outcome than regular polls. Fol-

lowing the success of this experiment, several other prediction markets have been started in

different domains. For example, the Hollywood Stock Exchange [50] is used to predict per-

formance of movies at the box-office, Betfair [6] is used to predict the outcome of sports or
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finance-related events, while Intrade [51] is used to predict outcomes of various events rang-

ing from political to entertainment. Recently, several companies such as Google, Hewlett

Packard, Microsoft and Yahoo! have used prediction markets to analyze different technology

trends such as information processing practices in organizations and product management

strategies. In 2003, the interest in prediction markets was strong enough that a think tank

within the U.S. Department of Defense planned to establish a Policy Analysis Market where

securities corresponding to different political and geographical events could be traded.

With the successful operation of several prediction markets, researchers attempted to

make mathematical models to understand various aspects of the market’s operation. Among

the earliest research on this topic, Wolfers and Zitzewitz [109] compared forecasts made by

prediction markets in different domains such as oil markets and movie box office earnings to

show that prediction market forecasts follow other independent forecasting mechanisms very

closely. The major insights offered by their work hypothesized that prediction markets will

not perform well at predicting small probability events, that the profit motive of traders is

sufficient to prevent prediction markets from being manipulated, and, that it was important

to design the market trading rules carefully. Contrary to this result, Manski [69] concluded

that the predictions of event outcomes made in prediction markets did not closely correspond

to the actual probability beliefs of the traders in the market unless the probability is near

either 0 or 1. In response, Wolfers and Zitzewitz [111] presented empirical results showing that

prediction market prices closely track the mean beliefs of traders, providing a foundation for

the claim that predictions markets efficiently aggregate beliefs. The authors used different

mathematical belief functions to show that distributions of beliefs that are not too diverse

result in market prices that are close to the mean belief of the traders. With the support of

empirical prediction market data from U.S. election and professional football domains, the

authors concluded that Manski’s special case that showed how prices and beliefs may diverge

was not the best case scenario but, rather, a worst-case scenario. Further, Gjerstad [34]

showed that traders’ risk aversion and beliefs may significantly affect the equilibrium price.

Using the same coefficient of relative risk aversion (CRRA) expected utility function but

independent wealth and belief distribution for the traders, Gjerstad showed that predictions
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are typically very close to the mean belief of the traders in the market if the distribution of

beliefs is smooth and risk aversion is modeled into the traders’ behavior.

Despite encouraging results in these earlier papers motivating prediction markets, other

evidence, however, suggests that the relative performance advantage of prediction markets

may be small, and that markets may not even be the best performers. In predicting the

outcome of football games, Chen et al. reported that pooled expert assessments are com-

parable in accuracy to prediction markets [15]. Goel et al. [36] compared the performance

of prediction markets against conventional methods, i.e. polls and statistical models for

sports and entertainment domains and showed that prediction markets do not significantly

outperform the other methods. Therefore, researchers have been tackling important open

questions that help to identify conditions under which prediction markets work the best,

how they work, and how to design efficient prediction markets. We review some of these

techniques in the next section.

2.2 Prediction Market Models

In recent times, with the advent of intelligent software agents that can perform complex

computations to model the behavior of human traders in a prediction market, much of the

prediction market research has concentrated on using artificial prediction markets where

software agents mimic the functionality of human traders and market makers from a real

prediction market. Clearly, the advantage of artificial, agent-based prediction markets is

that mathematical models of trader behavior and market operation can be studied and

analyzed relatively easily by simulating the operations in the market while using data from

real prediction markets. Because of the widespread use of agent-based prediction markets,

in the remainder of this chapter we have used the terms trader and agent interchangeably

to refer to either a human trader or a software trading agent.
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2.2.1 Prediction Market Trading Protocols

Because prediction markets have their roots in financial markets, a popular protocol for

trading in financial markets called the continuous double auction (CDA) protocol, has been

used relatively extensively in early work on prediction markets [92;109]. In a CDA each

security is associated with two prices in the market - a bid price and an ask price. The bid

price is the price at which agents are willing to purchase the security and the ask price is

the price at which agents are willing to sell the security. The difference between bid price

and sell price is known as the spread. There are usually two types of orders that agents

can place, known as market orders and limit orders. Market order is an order to buy or

sell a security at the best available price and is of the form “Buy(Sell) X shares”. Market

orders are executed immediately at the prevailing market bid or ask price. Limit order

is an order to buy or sell a security at a specific price and is of the form “Buy(Sell) X

shares at price Y”. The highest buy limit order and the lowest sell limit order form the

market bid and ask prices respectively. A new market buy order is traded at the price

corresponding to the lowest limit sell order, while, a market sell order is traded at the

price corresponding to the highest limit buy order. Traditional Iowa Electronic Markets

and InTrade prediction markets use the CDA protocol. The CDA protocol offers two main

advantages over other common prediction market trading protocols. First, with CDAs,

the price of a security is allowed to make instantaneous jumps by arbitrary values. These

price jumps can immediately capture the extent of the impact of an external event or

information on a security’s price. For example, following a natural calamity affecting crude

oil production, a security corresponding to the event ’crude oil futures closing above $100

in 2013’ can go, for example, from $90 to $40 in one trade in a prediction market using

CDA. Secondly, agents using CDA are able to express their opinions precisely by placing

bid or ask orders at specific prices. In contrast, other protocols require agents to specify the

quantity they wish to trade while regulating the market price, usually through the market

maker. However, the CDA protocol has shortcomings when used in a prediction market. In

the CDA, traders reveal the prices at which they wish to trade through buy and sell orders,

and, consequently, run the risk of potentially losing profit by revealing their willingness to
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trade beforehand to other traders. Another major drawback of the CDA protocol is that it

fails to work if there is insufficient liquidity, that is, if there are very few traders who cannot

reach an agreement on a trading price, and, thus may never trade securities with each other.

Liquidity problems are most prominent in combinatorial prediction markets since they have

vast numbers of outcomes to predict. Hanson [46] proposed the use of automated market

makers within the context of combinatorial prediction markets to deal with matching and

liquidity problems using a market scoring rule, which we discuss next.

2.2.2 Automated Market Makers and Scoring Rules

Scoring rules were first proposed by Brier [11] and analyzed further by Winkler [108]. They

were initially used for forecasting weather and finance events. A scoring rule is a mathe-

matical formula that determines the payment received by an agent for its forecast for the

outcome of an event. Suppose an event e has m possible outcomes with oi representing the

i-th outcome. r =< ro1 , ro2 , ..., rom > is a reported probability estimate vector where roi

corresponds to the price that a risk-neutral trader wants to pay for securities corresponding

to outcome oi. A scoring rule S = {s1(r), s2(r), ..., sm(r)} assigns a score si(r) to a trader

who reports r if outcome oi is realized ∗. Scoring rules have been shown to elicit good

probability estimates from individual traders.

A regular scoring rule (if si(r) is finite when ri > 0) is (strictly) proper if truthful

reporting (strictly) maximizes the expected score of a risk-neutral agent, that is, given the

true belief p, where
∑

i pi = 1,

Ep(si(p)) ≥ EP (si(r)) given
∑

i

ri = 1 (2.1)

si is strictly proper if the inequality in Equation 6.8 is strict.

Hanson [46] combined features of scoring rules and prediction markets into a market

scoring rule (MSR). A special type of scoring rule called the logarithmic scoring rule

(LSR), which has been used extensively in prediction markets, deserves special mention. A

∗The specific mathematical formula for soi(r) is determined by the type of the scoring rule used,
such as, quadratic, spherical, logarithmic, etc.
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logarithmic scoring rule is defined by the following expression:

si(r) = ai + b · log(ri), (2.2)

where, si(·) is the score corresponding to the i-th outcome of an event being realized given

a report r. ai > 0 is an arbitrary parameter while b > 0 is a parameter determined by the

market maker to control its monetary risk as well as the maximum quantity of securities

that agents can buy or sell at or near the current price without causing massive price

swings. Larger values of b allow agents to trade more frequently but also increase the

market maker’s chances to lose money. The logarithmic scoring rule has some desirable

properties - it preserves the conditional independence relations∗ [47], and it is the only rule

that can be used both to reward an agent and to evaluate its performance using statistical

likelihood methods [108].

When the general logarithmic scoring rule is used sequentially by agents to calculate

their payoffs in a prediction market, the scoring rule is called the Logarithmic Market

Scoring Rule (LMSR). The LMSR gives a formula to calculate the current market price for

a small quantity (small enough so that the trade can be completed in one time period) of

a security corresponding to the event’s outcome being oi, as follows:

pi(s) =
exp(si−ai

b )
∑m

j=1 exp(
(sj−aj)

b )
,

where, s is the logarithmic market scoring rule vector over all possible outcomes of the

event, si ∈ S and other parameters are as defined in Equation 2.2.

A market maker using the LMSR to determine the market price in a prediction market is

called an LMSR market maker. As pointed out by Hanson [46;47], the fundamental difference

in the trading protocol using an LMSR market maker from that using a CDA is that agents

now only express quantities they wish to buy or sell at the current market price that is set

by the market maker, instead of specifying the price along with the quantity at which they

∗Placing a bet on conditional event A given eventB should not change the conditional probability
distribution of B or C for some event C that is unrelated to how event A might depend on event B
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wish to buy or sell through buy and sell orders. An LMSR market maker is a type of market

maker called a cost-function based market maker [13]. It offers m securities, one for each

possible outcome, where each security pays $1 if the corresponding outcome happens and

$0 otherwise. Let q = (q1, q2, ..., qm) denote the vector specifying the number of units of

each security held by different agents. The market maker first calculates a cost function to

reflect the total money wagered in the prediction market by the agents. Agents inform the

quantity of a security they wish to buy or sell to the market maker. If an agent purchases

δ units of a security, the market maker determines the payment the agent has to make as

C(q+ δ)−C(q). Correspondingly, if the agent sells δ quantity of the security, it receives a

payoff of C(q)− C(q− δ) from the market maker. For the LMSR market maker, the cost

and price (corresponding to outcome oi) functions are given by:

C(q) = b · log(
m∑

i=1

eqi/b), and,

pi(q) =
exp(qi/b)∑m
j=1 exp(qj/b)

, respectively,

where
∑m

i=1 pi(q) = 1.

The LMSR market maker has been extensively used in recent prediction market re-

search [1;13;14;43;78;83;87] where it has been implemented, extended, analyzed or compared

with other market maker strategies. It is also used at several prediction markets, such as

Inkling Markets, Consensus Point, Yahoo!, Microsoft, BizPredict, and Washington Stock

Exchange. Among recent significant works on LMSR market makers, Chen and Vaughan [14]

showed that there is a one-to-one mapping between the strictly proper market scoring rules

and convex cost-function based market makers. In particular, they show that these two

formulations map to each other if and only if

C(q) = supp∈∆m

(
m∑

i=1

piqi −
m∑

i=1

pisi(p)

)
,

where qi is the number of units of security corresponding to outcome oi that is being held by

all agents, pi is the true belief of an agent that the outcome is oi, and ∆m is the probability
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simplex that consists of all possible probability distributions for a random variable with

state space [m] = {1, 2, ...,m}. The authors’ mapping allows for an easy conversion between

market scoring rule and cost-function based market makers. They also showed that a cost-

function based market maker with bounded loss can be interpreted as a no-regret learner,

that is as learning a probability distribution over outcomes by treating each observed trade

as a training instance.

The computational complexity of an LMSR market maker has been a topic of interest in

several literature. In [17], the authors examined permutation combinatorics, where outcomes

are permutations of objects, and, Boolean combinatorics, where outcomes are combinations

of binary events, within a combinatorial prediction market. The problem of LMSR pricing in

the combinatorial prediction market was shown to be #P hard, even with severely limited

languages. They also proposed an approximation technique for pricing in combinatorial

prediction markets that is based on permutation learning technique.

One way to deal with this computational complexity is to use a restricted betting lan-

guage that limits the set of tradable securities. Guo and Pennock [43] studied combinatorial

prediction markets with an LMSR market maker where events are represented as a tree-like

hierarchy and agents can bet on the sum of values at any tree node. For example, in the US

presidential election market, the total number of electoral votes determines the outcome of

the election. The tree for this example has “Overall Election Results” as a root node and

each state’s result as a leaf node. Therefore, betting on the number of electoral votes won

by President Obama from a set of states is the same as betting on the weighted sum of

the binary variables representing those states, where weights are electoral votes of different

states. The authors proposed three expressive languages for betting on the weighted sum:

• Sum of arbitrary subset (SAS): betting on the weighted sum of an arbitrary subset

of values

• Sum of varying weights (SVW): agents set their own weights in their bets but restrict

subsets to form hierarchy

• Sum with predefined weights (SPW): betting on the weighted sum of selected subsets



20

of values, where weights are predefined and subsets form a hierarchy

They further analyzed the computational complexity of each proposed language and showed

that pricing for SAS and SVW was NP-hard, but a polynomial time algorithm existed for

SPW.

Researchers have also recently identified some drawbacks of the LMSRmarket maker and

proposed alternate market making rules. Othman and Sandholm [83] ran a prediction market

with an automated market maker using LMSR to predict the opening day of the Gates and

Hillman Centers at Carnegie Mellon University. They found two flaws in LMSR automated

market maker - spikiness of prices across similar events, and, liquidity insensitivity leading

to price volatility. To fix these two problems, Othman et al. [87] introduced a modified LMSR

market maker. The authors argued that parameter b was non-trivial to set since it controlled

how quickly prices move and also the worst-case loss of the market makers. Their proposed

market maker increases b continuously with the total number of all securities purchased by

agents thereby. Thus, the modified market maker automatically adjusts how easily market

prices change according to the amount of trading in the market. The authors showed that

no market maker can satisfy three properties: (1) path independence(budget-balanced), (2)

no-arbitrage (no gain without a risk), (3) and liquidity sensitivity (small trades move market

prices less in thick(liquid) markets). They noted that an LMSR market maker satisfies the

path independence and no-arbitrage properties. They have subsequently weakened the no-

arbitrage property in the LMSR market maker and designed an automated market maker

that can run at profit.

Brahma et al. [10] evaluated two different market makers - an inventory-based logarithmic

market scoring rule (LMSR) market maker and a Bayesian market maker (BMM). The

authors used an information-based market maker model that is based on the canonical

Glosten-Milgrom model [35] of price-setting under asymmetric information. The market

maker has to set a bid (buy) price, denoted by bid, and an ask (sell) price, denoted by ask.

It does this using its beliefs about the realization of outcome oi, such that its expected

profit is non-negative. An agent receives a signal s, where the variance of s measures the

uncertainty in the agent’s signal, and trades as follows: if s < bid, the agent sells, and if
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s > ask, the agent buys. The authors found that BMM offered market price stability and

lower expected loss compared to LMSR market maker, but BMM did not guarantee bounded

loss. The authors also identified that LSMR market maker represents an uninformed agent

and may be outsmarted by human agents; BMM market maker on the other hand, is able

to handle large trades and adapt quickly to market shocks.

Dudik et al. [29] proposed a new automated market maker for providing liquidity across

multiple logically inter-related securities and propagating as much information as possi-

ble among logically related securities while keeping the pricing algorithm tractable. Their

model consists of two components. First, a large prediction market is broken into small

markets, which solves the intractability problem, but may introduce arbitrage opportuni-

ties. Secondly, a general scheme is introduced that detects and removes arbitrage based on

convex optimization and constraint generation using linear equalities and inequalities. The

authors found that their method lies between a market maker that treats related securities

as independent and unrelated, and, a full combinatorial market maker for which pricing is

computationally intractable. They also found that their market maker is competitive with

an LMSR market maker but it adds the ability to scale to exponential outcome spaces.

So far we have discussed automated market makers that satisfy some of the four proper-

ties that are desired to have in a market maker - bounded loss, the ability to make a profit,

a vanishing spread that approaches zero in the limit as volume gets large, and, unlimited

market depth, that is, the price of any fixed-size trade approaches the marginal bid or ask

price. Satisfying all four characteristics is difficult because several of the properties are con-

tradictory. For example, different variations of the LMSR market maker that we discussed

above [13;14;83] can offer bounded worst-case loss and no marginal bid/ask spread. But they

do not offer the ability for the market maker to make a profit, and they only offer a fixed

liquidity of the market, i.e. the market does not become more liquid with the increase of the

volume. Othman and Sandholm [86] presented a market maker that satisfies all four of the

desired properties. Their proposed market maker extends the constant-utility cost function

market maker [13] with two separate functions, liquidity and profit, that are added to the

market prices that are quoted to the agent. The liquidity function uses its gains to increase
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the amount of liquidity provided by the market maker, while the profit function represents

a “lockbox” of savings that is separate from the rest of the market maker’s decision-making

process. For most of the market makers in the literature, including the LMSR market

maker, an agent can buy and then immediately sell a security from the market maker at

no cost. The authors showed that real markets do not generally function this way because

an agent that buys and then immediately sells a security from the market maker will en-

counter a loss. Their proposed market maker imitates real world market makers in their

path dependence. The authors provide the complete set of conditions that are required for

different parts of their automated market maker along with several examples of functions

that satisfy this set of conditions, noting that any mix of these examples will produce an

automated market maker with certain desirable qualities.

2.2.3 Dynamic Parimutuel Markets

Complementary to using MSRs, Pennock [91] proposed another model for prediction markets,

called a dynamic parimutuel market (DPM). Under this model, which is similar to horse

race betting, market liquidity is automatically created by allowing all agents to purchase any

security at any time. There are m securities in a DPM, each corresponding to one outcome.

The agents that participated in the prediction market split the total pool of money at the

end of the prediction market in proportion to the amount they have put in. The agents

are allowed to see the securities they hold before the outcome is known since the market

price of a single security varies dynamically according to a price function. DPM acts as an

automated market maker similar to the cost-function based market maker, except that the

payoff of a security is not fixed.

The common cost and price functions used in DPM are:

C(q) =

√√√√
m∑

i=1

q2i and pi(q) =
qi√∑m
j=1 q

2
j

respectively.

The payoff of a security, corresponding to outcome oi when outcome oi happens and q is
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the quantity vector at the end of prediction market, is given by:

ri(q) =
C(q)

qi

Unlike a regular parimutuel market, in Pennock’s DPM, agents are allowed to trade their

previous investments using a continuous double auction (CDA) protocol. However, such

trading occurs at a heavily discounted market price. This creates considerable (monetary)

risk for agents to invest in bad securities. Thus a DPM makes rational agents inherently

risk-averse or risk-neutral, which makes prediction markets operate more efficiently.

Recently, there has been some interest in comparing and unifying market scoring rules

and DPM mechanisms for prediction markets. Nikolova and Sami [78] developed a new

abstract betting game, called the segment game. A segment game can serve as a strategic

model of DPMs, and can also model the strategies in market scoring rules. The segment

game is tractable to analyze, and has an attractive geometric visualization that makes the

strategic moves and interactions more transparent. The authors used their segment game to

prove several strategic properties about the dynamic parimutuel market. They also proved

that a special form of the segment game is strategically equivalent to the spherical scoring

rule, and, strategically similar to other scoring rules.

2.3 Models for Overall Prediction Market Behav-

ior

Trading protocols in prediction markets which were reviewed in the previous section specify

rules for determining trading prices by the traders or by the market maker. In parallel,

some recent work on prediction markets analyzes the market’s overall price dynamics while

using the trading protocols mentioned earlier. One of the earliest computational models

of a prediction market [32] used a Shapley-Shubik game to formally represent the market’s

interactions. In the Shapley-Shubik model trading occurs in rounds and each agent must

offer at least one security for sale with no restrictions on credit. The market price of a
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security at the end of each round is determined by averaging the bids over the number of

agents. Agents bid for securities on each round and agents are always assumed to reveal

their true preferences. The authors found that good predictions depend on some knowledge

of the market by the agents but knowledge alone is not sufficient. Instead, they argued that

the prediction market structure that affects how private information is shared is important

and the design of prediction markets that converge to direct communication equilibrium

are an important research topic. Chen et al. [16] generalized the Shapley-Shubik game based

model to allow for aggregate uncertainty, which occurs when the state of the world is not

known even after all agents have shared their information. Their work addresses different

properties related to the market equilibrium in prediction markets such as convergence to

a consensus equilibrium, the rate of convergence, identifying the best possible equilibrium,

and, whether a prediction market is guaranteed to converge to the best possible equilibrium.

Section 2.4 also describes various models that were developed to study the behavior of

the agents and their effect on the prediction market.

2.4 Traders: Behavior and Strategies

There have been a number of prediction market studies that analyzed real prediction market

data to identify some properties of the behavior of the agents in prediction markets. For

example, Cowgill et al. [23] analyzed the trade data from internal prediction markets at

Google. While other companies have created such markets, the Google markets were the

largest such experiment at the time. The study had the advantage of having trade-by-trade

data and short-lived markets. 157 different markets were analyzed and all had the common

characteristic of representing outcomes that had a direct impact on Google. Measures of

geographical, organizational, and social proximity and demographic similarity were used to

study trading behavior and to investigate correlations in information and opinion. These

measures were used in a regression model designed to predict the differences in the holdings

of individual agents after each trade. The prior positions of colleagues were used to predict

the size and direction of each trade. The authors found that the agents tended to be most
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optimistic about subjects over which they had some control, such as completing a project

on time or whether a particular office would be opened. Their results also suggest that

micro-geography played an important role in the flow of market information - trades of

physically proximate employees were correlated after the employees began to sit next to

each other. And finally, work history and organizational proximity played lesser roles while

social connections and demographics had little explanatory power.

Another aspect investigated by researchers is whether agents in a prediction market

respond to play money in the same manner they do to real money. To investigate this,

Servan-Schreiber et al. [98] conducted an online experiment comparing the predictions of

TradeSports.com (real money) against predictions of NewsFutures.com (play money) re-

garding American Football outcomes during the 2003 − 2004 NFL season. The authors

suggested that real-money markets may better motivate information discovery while play-

money markets may yield more efficient information aggregation.

There have also been a lot of theoretical studies on the behavior of the agents in pre-

diction markets. For example, Othman and Sandholm [85] studied the behavior of simple

agents and how their behavior affect market prices over time. They considered two models:

adversarial ordering model and random ordering model. They used a pricing rule that de-

fines a structured way of adjusting prices in response to instantaneous aggregate demand.

They assumed that the market maker’s pricing rule is a strictly increasing function, which

is history independent. They also assumed that the simple agents have fixed beliefs, fixed

budget, participate only once and sequentially interact with an automated market maker.

They found that under the adversarial ordering model, market prices can be arbitrarily

uninformative and show that final market prices diverge arbitrarily based on the order

of agent participation, while under random ordering model market prices are informative.

They proved their results for two agents and then for a countable set of agents. Their results

suggest that a market can become unhinged - as a failure of the 1996 Iowa Electronic Mar-

ket vote-share market, and agent ordering has the greatest potential of skewing the market

prices at the end of trading. This work, however, assumed that agents are myopic and

risk-neutral. These assumptions have been relaxed in other literature, which are discussed
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next. account.

2.4.1 Incentive Compatibility and Bluffing

Hanson [46] has shown that, for risk-neutral agents that are myopic (i.e., do not account for

the effect of their trades on other agents), it is optimal for each agent to reveal its true

beliefs of the outcome of the traded event in a market scoring rule-based prediction market.

This result leads to two questions: 1) What happens when agents take into account future

payoffs, i.e. when they are non-myopic? 2) What happens when agents are not risk-neutral?

The first question is addressed in Chen et al. [18], where the authors studied whether there

exists game-theoretic equilibria at which agents reveal their truthful information quickly (as

soon as they can). They considered one event in a prediction market with two outcomes

using an LMSR market maker and risk-neutral agents. They modeled such a prediction

market as an n-player, incomplete-information, dynamic game. At the beginning of their

prediction market each agent i gets a private signal si. The joint distribution of si’s and

the outcome of the event is common knowledge. Agents trade in the prediction market

according to a predefined sequence. The authors analyzed two scenarios: when agents have

conditionally independent signals and when agents have unconditionally independent sig-

nals. Agents’ signals are conditionally independent when their observations are independent

given the true state of the world. For example, signals are conditionally independent in the

prediction market trying to predict whether a product was manufactured with high quality

materials or low quality materials. Signals are uncondionally independent when signals may

influence the outcome of the event, but are not caused by the true state of the world. For ex-

ample, signals are unconditionally independent in a presidential election prediction market.

The authors showed that the truthful strategy is an equilibrium strategy when agents have

conditionally independent signals, and, a mixed strategy of bluffing with a certain probabil-

ity is an equilibrium strategy, when agents have unconditionally independent signals, where

bluffing is the strategy of betting contrary to one’s information in order to deceive future

agents, with the intent of gaining profits on their resultant misinformed trading.

Jian and Sami [53] extended the work in [18] by conducting experiments with humans to
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study the speed and efficiency of information aggregation. They compared two market scor-

ing rules - direct [46;47], where agents report their beliefs as probabilities, and, indirect [13],

where agents reveal their beliefs through buying and selling. They found that the informa-

tion is better aggregated in the experiments when the trading sequence is prespecified. They

also found that under the assumption of a pre-specified trading sequence, agent behaviors

are different under the two information structures - conditionally independent signals and

unconditionally independent signals. When the trading sequence is prespecified there are

more manipulative behaviors with unconditionally independent signals than with condition-

ally independent signals, while this difference is not found without the prespecified trading

sequence.

It was assumed in [18;53] that the agents are myopic, however strategic agents will not

always behave myopically as they may try to manipulate the beliefs of the other agents, and

therefore, the market price in order to make extra profit. Conitzer [22] explored strategic

aspects of prediction markets through their analogy to mechanism design. He observed

that market scoring rules only incentivize agents to report their beliefs truthfully if they

are myopic, but with non-myopic agents truthful revelation cannot be guaranteed. He

proposed that mechanism design was an appropriate technique to solve this problem since

direct-revelation mechanisms that are incentive-compatible to agents do not give agents

any incentive to misreport their private information (beliefs). The author acknowledged

that direct-revelation prediction markets are not very practical, but argued for the need

of a mechanism design-based prediction market model. He proposed a sample mechanism

comprising of information agents, that have relevant information about the event, but not

necessarily able to convert this information into a probability, and, probability agents, that

do not necessarily have any information about the event, but are able to convert any given

information to a probability. The proposed mechanism uses information agents to compute

conditional probability of an event happening and then it uses the probability agents to get

estimates of these conditional probabilities using standard prediction market.
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2.4.2 Risk Behavior

Dimitrov et al. [28] tackled the second question: What happens when agents are not risk-

neutral? In practice, most people are better modeled as being risk-averse in their decision

making. They modeled agents as expected-utility maximizers with an arbitrary weakly

monotone and concave utility function that captures their risk aversion. The authors focused

on a general setting in which agents have unknown risk aversion, and study whether it

is possible to guarantee myopic truthfulness while preserving other desirable properties

of prediction markets. They specified that any prediction market-like mechanism should

satisfy the following properties:

• myopic strategyproofness, giving agents no incentive to report untruthfully,

• sequential trade, giving agents the opportunity to update beliefs,

• a variant of sybilproofness, capturing the idea that trading under multiple identities

does not yield any direct advantage

• boundedness of the expected subsidy.

They proposed one mechanism that satisfies all of these properties, even with the agents that

have unknown risk-averse preferences. The key building block of their result is a technique

of scoring agents by varying their probability of winning a fixed reward. However, the

mechanism has the undesirable property that expected profits decrease exponentially as

the number of agents grows, and moreover, they proved that this is unavoidable in the

context of mechanisms for arbitrarily risk-averse agents.

Iyer et al. [52] studied a setting where there are n risk-averse agents with conditionally

independent private signals that participate in the prediction market with an automated

market maker. They identified a condition called smoothness requirement under which a

prediction market will aggregate the private information of rational risk-averse agents. The

smoothness condition requires that there is no bid-ask spread for buying or selling a small

quantity of any security. They showed that if the securities held by the agents converged over

time, and the limiting market price charged by the market maker is continuously differen-
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tiable at zero with respect to the quantity traded, then the prediction market will aggregate

information at any Perfect Bayesian Equilibrium (PBE). The authors proved that if the sig-

nal space is finite, then in any pure strategy PBE that satisfies asymptotic smoothness and

bounded loss, prediction market aggregates information of the agents. The authors found

that the market prices in general are not equal to the posterior state distribution because

market prices must also reflect the risk aversion of the agents, i.e. the marginal expected

utility of the agents. But they showed that when there is at least one risk-neutral agent

in the prediction market along with risk-averse agents, the market prices are equal to the

posterior probability. Although, the authors characterized conditions for full information

aggregation at PBEs, the existence of such equilibria is still an open question.

2.5 Prediction Market for Decision Making

The work surveyed in this chapter so far has implicitly assumed that trading agents can

not take actions to influence the outcome of the event. This is often not true in the real

world. For example, with an internal prediction market to predict a software delivery date, a

developer of the software who purchases securities in the prediction market may deliberately

take actions outside of the prediction market to affect the software delivery date so that

the securities he buys will pay off. Hanson [46] and Berg and Rietz [5] first hinted on the

idea that prediction markets can be used as decision support systems, calling such markets

decision markets. Once incorporated into the decision making process, prediction markets

often unintentionally create incentives for trading agents to manipulate the market price.

An emerging line of research has studied incentive issues that arise when using prediction

markets for decision making.

Othman and Sandholm [84] looked at information elicitation from one agent by the de-

cision maker. In their setting the decision maker chooses an action from a set of possible

actions, D = {d1, ..., dk}, in order to maximize the probability of achieving a desirable

outcome oi, which could for example be “product launch by the beginning on 2013”. The

decision maker asks an agent to tell him the probability of achieving the outcome oi under
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each of the alternative actions. Based on the agent’s report, the decision maker makes his

decision. The agent is risk-neutral and does not care which action is taken or whether the

outcome oi is achieved, it just cares about its payoff and how its payoff gets affected. To

encourage an agent to submit an accurate probability, the decision maker pays the agent

using a scoring rule.

The authors showed that there does not exist any strictly proper scoring rule and de-

cision rule pair. They then created an asymmetric quasi-strictly proper rule for the max

decision rule, wheremax decision rule is the rule that allows the decision maker to select the

action that has the highest reported probability of achieving the desired outcome and where

ties are broken in some fixed way. The rule is called a quasi-strictly proper rule if, given

agent’s true belief p = (p1, ..., pk), dj - the action taken by the deterministic decision rule

D, and u(p) - the agent’s expected utility from reporting p given the decision rule/scoring

rule pair, u(p) ≥ u(p′), u(p) > u(pj), ∀p′ 6= p and where pj represents any report for which

the jth component does not equal pj (that is, the agent does not report P (oi|dj) truthfully).

The authors have shown that in a decision making prediction market with multiple agents,

the agents always have an incentive to manipulate using the standard scoring rules. They

proposed a family of new scoring rules that reduces the possibility of manipulation.

Chen and Kash [12] expanded Othman and Sandholm’s work in [84]. They used the same

model but they allowed randomized decision rules and considered multiple possible out-

comes, instead of just two outcomes. Their main theorem provides a simple test to de-

termine whether the scoring rule is proper for an arbitrary decision rule and scoring rule

pair and generalizes result in [84] by characterizing all (strictly) proper scoring rules for all

decision rules. The authors also discussed how the elicitation problem becomes more com-

plicated when there are multiple agents; while strictly proper scoring rules can be used

for a single agent and extended to prediction markets with multiple agents, these scoring

and decision rule pairs do not have a such a natural extension. In particular, the authors

identified two main problems. First of all, an agent has to base its decisions on beliefs about

what the final market probabilities would be since only one decision is made in the end.

Secondly, scoring rules that encourage truthful revelation no longer have the same effect in
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this situation since no individual agent controls the final decision.

Thus to combat these problems, in [19] the authors characterized all scoring rules incen-

tivizing a single risk-neutral agent to report truthfully given a decision rule. They intro-

duced myopic incentive-compatible decision markets. Unlike previously proposed models of

decision markets, the authors calculated the payoff for agents using a decision scoring rule

instead of a standard scoring rule. They found that when a decision maker risks taking an

action at random, these decision scoring rules allow the rewards of unlikely actions to be

increased and the rewards of likely actions are comparatively reduced, making risk-neutral

agents indifferent to their effect on the decision. The authors also found that the risk of

taking an action at random is necessary for myopic incentive-compatible decision markets,

and reducing this risk increases the decision maker’s worst-case loss.

Shi, Conitzer, and Guo [99] examined settings where agents participating in a prediction

market may also have an ability to influence the outcome. Their setting comprises of a

principal (i.e. the company) that sets up a prediction market and has a preference over

the event outcomes (i.e. on-time delivery of the software), and, a group of agents that

has information about the event of interest and can take actions to affect the outcome.

The authors characterized all principal-aligned proper scoring rules that do not incentivize

agent to take any action that may harm the principal in expectation. They showed an

overpayment result, which roughly states that with n agents, any prediction mechanism

that is principal-aligned will, in the worst case, require the principal to pay Θ(n) times

as much as a prediction market. However, in this work, unlike works in [12;84], the elicited

information is not explicitly used for decision making.

Boutilier [9] continued the study of realistic settings, in which the decision maker takes

an action based on the agent’s belief and the agent has an inherent interest in the decision,

by presenting a formal model of scoring rules, in the form of compensation functions, that

incentivize truthful reporting even when agents have an interest in the actions taken by the

decision maker. Unlike any of the previous works, Boutilier explicitly modeled the decision

maker’s policy, utility, or loss in case of manipulation, and considered agent’s utility apart

from the payoff offered by the market maker. By analyzing a single agent setting, Boutilier
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found that the agent does not need to know the decision maker’s policy prior to reporting its

probabilities as long as it can verify which action has been taken after the fact and that the

decision maker cannot ensure truthful reporting without full knowledge of the agent’s utility

function. However, in a multiple agent setting, he noted that more development needs to

be done to make compensation rules applicable to and practical in prediction markets.

The incentives for the trading agents to manipulate the market price in a prediction

market used for decision making can take the form of the potential to profit in a subsequent

market. Dimitrov and Sami [27] examined incentive problems when there are two prediction

markets for two different but related events. They showed that this situation might cause

an agent to report sub-optimally in one market to mislead the agent in another market, and,

that the information revealed and agent’s payoffs in equilibrium are uniquely determined,

and consistent with a minimax strategy profile. Chen et al. [20] extended the work in [27]

with the outside incentives being of a general form of any monotone function of the final

market price instead of the form of the potential profit in a second market used in [27].

They found that, for the case when the first agent has the outside payoff with probability

1, i.e. when the existence of the outside incentives to manipulate the market price is

certain and common knowledge, in many cases there exists a separating equilibrium for the

market where information is fully aggregated. They also showed that, for case when the

probability for the first agent to have the outside payoff is less than 1, i.e. the existence

of outside incentives is uncertain, there exists no separating or semi-separating equilibrium

where information is fully aggregated if the outside incentive is sufficiently large.

2.6 Application Domains of Prediction Markets

Up to now, we have reviewed various mathematical and computational models for predic-

tion markets where the main objective is to aggregate the traders’ information to forecast

the outcome of a future event or to make decisions. In contrast, some recent work has

applied prediction markets to various domains beyond event outcome forecasting and de-

cision making. In [31], a Turing Trade was created, which was a Web-based game that was



33

a hybrid of a prediction market and a Turing test. Turing Trade allowed the users to buy

securities (place bets) on whether they are talking to a human or a computer. The results

were then analyzed quantitatively to determine how human-like a particular bot is. In a

Turing Trade, a group of agents conversed with a single target. Each individual agent in the

group could ask the target public questions, and the target gave public answers. During the

conversation, all agents in the group participated in the prediction market, where the single

binary event that the judges were trying to predict was “the target will be revealed to be a

human.” They were doing this by buying and selling securities using points, not real money.

At the end of the game, the target’s true nature (human or computer) was revealed, and

based on this outcome some of the securities paid out. About 900 games of Turing Trade

were played and the authors were able to collect large quantities of fine-grained data and to

introduce a novel, fast-paced prediction market. By analyzing the data collected from the

Turing Trade games, the authors found that Turing Trade produced very strong and accu-

rate predictions after short periods of time, and that the market price responded rapidly to

good or bad answers by the target.

Ellis and Sami [30] used a prediction market to supplement classroom learning. The

authors carried out a quasi-experiment in an introductory political science class at the

University of Michigan, Ann Arbor by creating 12 prediction markets with MSR market

makers that were relevant to the topic of the course. The purpose of the study was to

analyze the effect of prediction markets on student engagement with the course material.

After analyzing their data, the authors concluded that an elective upper-level undergraduate

course or a graduate course may be more appropriate settings for using prediction markets

as an educational tool.

Pfeiffer and Almenberg [93] discussed the benefits of using prediction markets for biomed-

ical research through an example application in the context of decision making in research

on the genetics of diseases. When researchers investigate gene-disease associations the case-

control studies are very useful, where a case-control study a group of patients that have

been diagnosed with a disease is matched with a healthy control group, and the researchers

then estimate whether a particular genetic marker is more frequent in one of the two groups.
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The authors argue that prediction markets could be used to obtain prior probabilities for

the association between genetic markers and the disease. The authors also discussed that

prediction markets have a potential to improve the performance of not only biomedical

research, but a general scientific research as well, by examining the ways to link prediction

markets with scientific publishing.

Barbu and Lay [4] introduced a mathematical theory of simulating prediction markets

numerically for the purpose of supervised learning of probability estimators. They presented

a novel method for fusing the prediction information of features or trained classifiers, where

the fusion result is the market price of the securities corresponding to the possible outcomes.

They have shown that their obtained artificial prediction market is a maximum likelihood

estimator and that artificial prediction market generalizes linear aggregation, logistic re-

gression and even some kernel methods. The authors conducted experiments, where they

compared the artificial prediction markets with other estimators, and their results showed

that the artificial prediction markets often outperform random forest and implicit online

learning on synthetic data and real datasets.

In the following chapters we present our contributions in solving open problems related

to different aspects of prediction markets.
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Chapter 3

Analyzing the Effect of

Information on Prediction Markets

Information about an event that the trading agents receive affects their belief values about

the outcome of an event, influences the prices corresponding to the event and finally deter-

mines the outcome of the event. Therefore, it makes sense to analyze the behavior of the

trading agents in response to different information-related parameters in a prediction mar-

ket. We develop a multi-agent based system that incorporates different information-related

aspects including the arrival rate of the information, the reliability of the information, the

accessibility of the information among the different trades and the perception of impact

of the information by the trading agents. The multi-agent implementation of a prediction

market allows us to easily analyze and verify the trading agents’ behavior while varying

different market and agent related internal parameters of the prediction market, as well as

external parameters related to the information about events arriving at the market. To

build our multi-agent system, we use modeling parameters obtained from various sources

such as existing analytical models of financial markets, empirical evidence and data from

real prediction markets, and agent utility and belief theory. The research question that
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we are trying to answer in this contribution is reproduced below in Table 3.1. We per-

form extensive simulations of our agent-based prediction market for analyzing the effect of

information related parameters on the trading agents’ behaviors expressed through their

trading prices. We also compare our prediction market’s behavior with an existing predic-

tion market model, and, our agents’ strategies with the zero-intelligence(ZI) agent strategy

that has been formerly used for strategic pricing in prediction markets. The results show

that our agent-based prediction market operates correctly and that our agents price predic-

tions result in higher utilities than ZI agents. Next, we describe modeling of some of the

information parameters we have used in our prediction market and some of our simulation

results. More details of our modeling parameters and complete simulation results can be

found in [55].

Contr. Research Question Research Approach
1 How do changes in different aspects Empirical Analysis

of information affect the behavior of
prediction markets?

Table 3.1: Research question that is addressed in contribution 1 of this thesis.

3.1 Preliminaries

In this chapter we use a multi-agent prediction market to empirically analyze its behavior

and the behavior of traders in response to different market parameters. In our prediction

market, each human trading agent is modeled as a software agent called a trading agent that

embodies the behavior of a human trading agent. We use a prediction market model that

is similar to the continuous double auction(CDA) protocol. Each event e is associated with

two prices in the market - a bid price πbuy
e,d at which trading agents can purchase a security

of the event and a ask price πsell
e,d at which trading agents can sell a security of the event

during day d. Both of these prices are normalized to the range of [0, 1] and trading agents

calculate the current market price of an event e during day d, πe,d, as the average of the

current bid and ask prices of the event during the day. That is, πe,d = 0.5× (πbuy
e,d + πsell

e,d ).
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trading agents then interpret the current market price πe,d for the event e on day d as the

expected probability of the event e happening (that is, its outcome being 1).

A trading agent n ∈ N observes the information set In,e,d associated with event e on

day d and decides to place an order to buy the security associated with event e at a price

πbuy
n,e,d or to sell the security associated with event e at a price πsell

n,e,d. A market order for

trading a security contains the identifier and number of units of the security the trading

agent wishes to buy or sell. Market orders are executed instantly in the market, but the

price of πbuy
n,e,d (for purchase orders) or πsell

n,e,d (for sell orders) is not guaranteed to trading

agent n for buying or selling the security. Instead, if a trading agent wishes to purchase

the security, it has to pay a price of πbuy
e,d , corresponding to the maximum price that has

been offered by any trading agent for purchasing a security related to the event during the

day d. πbuy
e,d is called the bid (buy) price of the event and is given by πbuy

e,d = maxn∈N πbuy
n,e,d.

Similarly, when a trading agent wishes to sell the security, it has to pay a price of πsell
e,d ,

where πsell
e,d = minn∈N πsell

n,e,d. π
sell
e,d is called the ask (sell) price of the event and corresponds

to the minimum price that a trading agent has offered for selling a security related to the

event during day d.

3.2 Agent-based Prediction Market

3.2.1 Trading Agents: Functionality and Parameters

One of the most important parameters in a prediction market is the perception of the

probability of occurrence of an event by the human traders. This parameter affects the

dynamic values of the prices of securities corresponding to the different events in the market

as well as the quantities of different securities each trader buys or sells. To model the

perception of event occurrence probabilities, each trading agent n in our prediction market

uses a private belief bn,e ∈ [0, 1] that corresponds to the probability that the event e will

occur with an outcome = 1. Existing models of prediction markets [34;69;82] have empirically

verified that this belief value is drawn from a Beta distribution. Following these studies,
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we have assumed in our prediction market that a trading agent n’s initial belief about the

outcome of an event being 1 is drawn independently from a continuous beta distribution

Beta(α, β), where α and β are positive shape parameters that determine the shape and

skew of the beta distribution’s curve. There are two cases when the belief of an agent is

dynamically updated. The first case is when the market price changes and the second case

is when a new information about the event becomes available to the trading agent. For

the first case, the belief update function used by our trading agents is based on Gjerstad’s

prediction market model [34] where, during each day, every time a market price of the security

for an event e changes, trading agent n updates its beliefs as a weighted sum of the event e’s

observed market prices during that day and its own beliefs using the belief update Equation

3.1.

bn,e ← µn,e,d · bn,e + (1− µn,e,d) · πe,d, (3.1)

where πe,d denotes the current market price of the security for event e during day d, bn,e

is the belief of agent n for event e, and µn,e,d ∈ (0, 1) is agent n’s belief weight factor [111]

that represents the confidence of agent n in its current belief value about the outcome of

an event e. At the end of each day, agent n finds out whether its buy or sell order for that

day was executed or not and updates its belief weight factor using the equation (with U

representing a uniform distribution):

µn,e,d =





U [0.5, 1] , if buy/sell order executed;

U [0, 0.5] , if buy/sell order wasn’t executed.

This ensures that if the buy/sell order was executed (not executed) an agent gives a

higher (lower) preference to its own previous belief value while updating its belief using

Equation 3.1. The second case of the belief update is discussed in Section 3.2.3 after we

introduce the information modeling in our prediction market.
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3.2.2 Dynamic Information Modeling in Prediction Markets

Empirical data from real prediction markets such as the Iowa Electronic Marketplace show

that the belief value of trading agents for an event e is significantly affected by new in-

formation that arrives in the market. However, previous prediction market models do not

consider the effect of new event information on the belief values of a trading agent. To ad-

dress this deficit, we have introduced a new belief update formula that uses new parameters

in our prediction market, that are described below:

a. Information impact parameter ζi,e: In a prediction market, the price of the security

related to an event is changed by the traders every time new information about the

event becomes available. Also, different information about an event result in different

degrees of price change of the security. We incorporate the effect of new information

on the prices in the prediction market using an information impact parameter ζi,e ∈

[−0.5, 0.5] for information i related to event e. Larger values of ζi,e indicate high-

impact information or unexpected news related to an event, which significantly affects

the price of security related to the event. Smaller values of ζi,e indicate a normal-

impact or low-impact information. These correspond to expected news about an

event and don’t affect prices significantly.

b. Information reliability parameter rn,e: Previous research on online financial mar-

kets [65] have shown that different people rely on the new information in the market

to different degrees and that an information reliability parameter can be used to rep-

resent the level of agent n’s reliance on information regarding event e. Following a

study on the relation between trust and risk reported by Molm et al. [75], we consider

that the risk coefficient of an agent, θn,e,d, is affected by the reliability it associates

with new information related to events. To model this, we introduce an information

reliability parameter, rn,e of an agent n for an event e. If a trading agent n is a

risk-taker (θn,e,d < 0), then its reliability parameter is high (rn,e ∈ U [0.5, 1.0]), if it is

risk-neutral (θn,e,d = 0), then rn,e = 0.5, and if it is risk-averse (θn,e,d > 0), then its

reliability parameter is low (rn,e ∈ U [0, 0.5)). Thus, new information about an event
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e is perceived by the trading agents with different amounts of information reliabil-

ity. To model this behavior, the trading agents in our prediction market dynamically

update the reliability parameter at the end of each day using the following equation:

rn,e,d =





U [0, 0.5] , if θn,e,d > 0;

0.5 , if θn,e,d = 0;

U [0.5, 1.0] , if θn,e,d < 0.

c. Information availability parameter an,e: In real prediction markets, different traders

have access to different amounts of information related to events. Traders with access

to a larger amount of information related to events are able to make informed deci-

sions about the price of the securities related to events. We model different levels of

availability of information among the trading agents using an information availability

parameter an,e ∈ {0, 0.5, 1}. an,e = 1 indicates that agent n has access to all avail-

able information about event e in the market, while an,e = 0.5 and an,e = 0 indicate

limited and no access to information about event e respectively. Although the avail-

ability of information to human traders follows a more complex model, we restrict

the information availability parameter to three discrete values to get easily analyzable

results of the effect of information availability on the trading agents, without loss of

generality.

3.2.3 Agent Belief Revision based on new information

On each day in the prediction market, a trading agent has to make a decision about the

securities it wants to purchase, sell or hold. The belief value about the outcome of the events

related to the securities plays a pivotal role in making this decision. Therefore, every agent

has to update its belief values for each event it is interested in based on the new information

in the market related to those events. Because new information about events can arrive

into the market from various sources with different reliabilities, an agent should adjust the

impact of the information with the corresponding information reliability parameter. The
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reliability-weighted information impact parameter of an event then increases the belief value

about the outcome of that event if its positive, and decreases the belief value if it is negative.

Finally, to prevent rapid changes to the belief value, belief updates should also include the

current belief value of an event. The belief update equation based on these factors that is

used by a trading agent in our prediction market is given by:

bn,e ← rn,e,d · (bn,e − ¯ζi,e · ln bn,e) + (1− rn,e,d) · bn,e (3.2)

where ζ̄i,e =
∑

i ζi,e denotes the average value of the information impact parameter for all

information related to event e by agent n, and rn,e,d denotes the information reliability

parameter agent n has for event e on day d. A positive (negative) value of the information

impact factor, increases (decreases) the new belief value from its previous value, while a

zero value of the information impact factor does not change the belief value. Also, the

agent with higher information reliability accounts more for the information impact, while

the agent with smaller information reliability places more weight on its past belief.

3.2.4 Utility Maximization and Optimum Trading Quantity

Calculation

The main problem facing a trading agent in a prediction market is to determine what

quantities of each security to buy and sell on each day at the trading price of the security

so that it can maximize its own utility or monetary gain. To achieve this, a trading agent

dynamically incorporates new information about the event related to each security and

dynamically obtains updates of the current market price of each security to estimate the

optimum quantity of the security it should buy or sell. When the prediction market starts

on day d0, each trading agent n is provided with an initial wealth of wn,d0 > 0. We

consider each trading agent in our prediction market as a utility maximizer that buys or

sells securities to maximize its wealth on each day. The instantaneous utility of agent n on
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day d− 1 is updated by the following equation:

ún,d =
∑

e∈E
qselle,d · π

sell
e,d −

∑

e∈E
qbuye,d · π

buy
e,d (3.3)

where, qselle,d is the number of securities related to an event e sold by agent n on day d, qbuye,d

is the number of securities related to an event e bought by agent n on day d, and πsell
e,d and

πbuy
e,d are respectively the ask and bid price of the security for event e during day d.

Equation 3.3 maintains the instantaneous utility of the agent n on day d depending on

the transactions it has made on that day, however it does not account for its risk type.

Previous research [34;111] has shown that the correct behavior of prediction market models

can be obtained only if the risk-taking and risk-averse behaviors of the human traders

are considered while trading securities in prediction markets. Therefore, in our prediction

market we adopt a constant relative risk averse (CRRA) utility function ũn,d for agent n

with a relative risk aversion coefficient. CRRA utility functions have been widely used to

model risk behaviors. Relative risk aversion coefficient, θn, is used to classify trading agent

n’s risk levels as follows. If θn > 0, the agent n is risk-averse, if θn = 0, the agent n is

risk-neutral, and if θn < 0, the agent n is risk-seeking. The trading agents’ risk coefficients

are normally distributed in our simulations. Following Gjerstad’s trading agent utility

model [34], during each day a trading agent uses its instantaneous utility and its risk-taking

coefficient to calculate its modified instantaneous utility for that day, using Equation 3.4.

ũn,d(ún,d, θn) =





ú1−θn
n,d

1−θn
, if θn 6= 1;

ln(ún,d) , if θn = 1.
(3.4)

The utility value for an agent can fluctuate considerably in successive days based on its

trading pattern, and the price of securities in the market. Large fluctuations in the utility

can in turn delay the convergence to equilibrium because it can cause large fluctuations in

the number of securities being bought or sold in the market. To prevent these fluctuations
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we have used a daily weighted utility value for an agent’s utility given by:

un,d(ũn,d) =
d−H∑

h=d

δh · ũn,d, (3.5)

where δh is a discount factor that ensures that more recent utility levels have a greater

influence on the current weighted utility,
∑d−H

h=d δh = 1, and H is the number of days

considered from the past.

The final objective of a rational trading agent is to maximize the utility it receives

from purchasing and selling securities in the prediction market. To achieve this objective,

a trading agent has to calculate the optimum quantity of securities it should trade so that

the resulting utility is maximized. Let Qn,e,d denote the optimum quantity of securities

related to event e for trading agent n during day d. The trading agent’s decision is to

choose quantity to buy or sell for each security, so that the expected utility is maximized.

We have used a similar model in this part of the thesis with the expected utility given by

equation below:

Ee(un,d(θn, Qn,e,d)) =





1
1−θn

bn,e,d(un,d +Qn,e,d · (1− πe,d))
1−θn+

(1− bn,e,d)(un,d −Qn,e,d · πe,d)
1−θn , if θn 6= 1;

bn,e,d · ln(un,d +Qn,e,d · (1− πe,d))+

(1− bn,e,d)ln(un,d −Qn,e,d · πe,d) , if θn = 1.

where πe,d is the current market price of the security for an event e on day d. The optimum

quantity Qn,e,d is obtained by taking the first-order derivative of the expected utility equa-

tion above, setting the resulting equation equal to 0, and solving it to obtain the following

solution:

Qn,e,d(πe,d, bn,e,d, θn, un,d) =

((1 − πe,d)
1
θn b

1
θn

n,e,d − (πe,d)
1
θn (1− bn,e,d)

1
θn )un,d

((1 − πe,d)(πe,d)
1
θn (1− bn,e,d)

1
θn + πe,d(1− πe,d)

1
θn b

1
θn

n,e,d)

(3.6)
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Figure 3.1: A flowchart showing the operation of the trading agents in the prediction
market.

If Qn,e,d > qn,e,d, that is the quantity required to maximize utility on day d is more than

the number of securities of event e that agent n currently has on day d, the agent places a

buy order for purchasing Qn,e,d − qn,e,d additional units of the security of event e. On the

other hand, if Qn,e,d < qn,e,d, the agent places a sell order for selling Qn,e,d − qn,e,d units of

the security of event e. The agents set their prices corresponding to their current beliefs;

that is, πbuy
n,e,d = bn,e,d if the trader is purchasing securities of event e and πsell

n,e,d = bn,e,d if

Chapter1/Chapter1Figs/pred_market-flowchart.eps
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the trader is selling securities of event e during day d.

Figure 3.1 gives a flowchart of the algorithm used by a trading agent in our agent-

based prediction market. Each trading agent n enters the prediction market with some

initial wealth, a belief about the outcome of each event that is initially drawn from a

Beta distribution, a risk coefficient, and, information reliability and information availability

parameter values. First, the agent checks its information availability parameter an,e and

updates its beliefs about an event e (using Equation 3.2) with a probability corresponding

to the value of an,e. Throughout the day, the trading agent n checks whether the market

price for the security associated with an event e has been updated. When the market price

is changed, the trading agent updates its beliefs using Equation 3.1. At the end of each day,

the trading agent n updates its utility using Equation 3.5 and calculates Qe,d, the number

of units of security corresponding to event e it needs to maximize its utility. Based on Qe,d

value it then makes a decision to buy, sell, or to hold a security associated with an event e

and submits an order to the prediction market. If the order is accepted, the trading agent

n updates its weighted utility using Equation 3.3. Finally, the trading agent’s information

reliability parameter is updated and the new day starts.

3.3 Simulation Results

We verify the performance of our prediction market through several simulations while vary-

ing different market, event and agent related parameters. The first objective of our sim-

ulations is to clarify that our prediction market behaves in a manner similar to actual

prediction markets with human traders. Secondly, we attempt to understand the dynamic

behavior of trading agents’ prices and utilities under different values of the information

related parameters.

3.3.1 Model Comparison

For our first set of experiments, we compare the performance of our multi-agent predic-

tion market with the model proposed by Gjerstad [34]. The price data for this experiment
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was taken from the 2008 Democratic Presidential Nomination Market in IEM [71]. There

are four securities in this market representing four different outcomes, i.e., Hillary Clinton,

John Edwards, Barack Obama, or another candidate winning the democratic presidential

nomination. Figure 3.2 shows the difference between the actual market price and the pre-
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Figure 3.2: The comparison of the simulated market prices with real market prices
in a prediction market based on Gjerstad’s model(a) and our agent-based prediction
market(b). The solid line represents perfect prediction of market prices by agents.

dicted market price while using our agent-based prediction market (a) and the prediction

market based on the Gjerstad’s model (b) for the security corresponding to Obama winning

the nomination. The error bars show the confidence intervals over 10 runs. As shown in

Figure 3.2, the difference between the predicted and actual prices using our agent-based

prediction market is significantly lower (8%) than that reported in Gjerstad’s model (35%).

The more accurate price prediction in our prediction market can be attributed to our belief

update mechanism that considers two additional parameters - the risk coefficient of each

agent through the information reliability parameter rn,e, as well as the information impact

parameter ζi,e, as compared to Gjerstad’s model. These parameters incorporate the infor-

mation flow across the agents in the market as well as the effect of the information of the

agents, and, therefore, enable the agents to make a more informed decision about the belief

related to the event in the market.

For all of our other simulations in this contribution, we use price data from the movie

markets in Iowa Electronic Marketplace(IEM) [71]. A security in a movie market on IEM

Chapter1/Chapter1Figs/GjersModel-real_vs_simPrice.eps
Chapter1/Chapter1Figs/ourModel-real_vs_simPrice.eps
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Figure 3.3: A graph showing the effect of the information impact parameter on the
market prices.

corresponds to a boolean event - whether the box office collections of a certain Hollywood

movie will reach a predetermined dollar amount. The movie market securities are particu-

larly suitable for our agent-based prediction market because like the events in our market,

the events corresponding to the different movies are not correlated with each other.

3.3.2 Effect of information impact

In a prediction market, the same information about an event can cause different traders to

behave differently based on the traders’ perceptions of the impact of that information. In our

next set of experiments, we attempt to analyze the effect of different traders having different

information impact parameters on the belief values of agents in the market. Our definition

of the dependency between agent belief values and the information impact parameters is

given in Equation 3.2, which is reproduced below:

bn,e,d = rn,e,d · (bn,e,d−1 − ¯ζi,e · ln bn,e,d−1) + (1− rn,e,d) · bn,e,d−1

From this equation, we see that a positive(negative) value of the information impact

factor causes an increase(decrease) in the belief value of an agent for a security, while a

Chapter1/Chapter1Figs/jump_parm.eps
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zero value of the impact factor does not change the belief value. This increases the utility

the agent receives and results in more buy(sell) orders from the agent (using Equation 3.6)

before the event expires. To verify the effect of different values of the information impact

factor, we consider the effect of a positive-only impact factor (ζi,e ∈ U [0.1, 0.5]), a negative-

only impact factor (ζi,e ∈ U [−0.5,−0.1]), and the impact factor consisting of mixed positive

and negative values (ζi,e ∈ U [−0.3, 0.3]).

In prediction markets, trading agents’ beliefs about an event are expressed through the

aggregated market price of the event. We have therefore used the real closing prices of the

MAT45H security that has a duration of 25 days from the IEM movie data to analyze the

effect of information impact factor on the agents’ beliefs. For this set of experiments, each

trading agent n is assumed to have fixed information reliability parameter rn,e = 0.5 about

each event e. In Figure 3.3, we report the results of the different values of the information im-

pact parameter on the aggregate market prices of the agents over the 25-day duration of the

security.

Mean of ζi,e Mean Variance

distribution Price in Price

0.3 0.53 0.04

0 0.49 0.07

−0.3 0.45 0.05

Figure 3.4: Mean and variance of

the market prices under different

ζi,e values.

Figure 3.4 shows the means and the variances of the

market prices corresponding to different values of the

information impact factor from the results shown in

Figure 3.3. The Pearson’s correlation coefficient be-

tween the means of the information impact factor

values and the means of the market prices obtained

under the corresponding ζi,e values is 0.98. A positive

value of the correlation coefficient close to 1 shows

that market prices are strongly correlated with the

value of the information impact parameter. When

the impact factor of the new information about an event has mixed positive and negative

values, then it does not have a significant impact on the market prices as shown by the

U [−0.3, 0.3] curve in Figure 3.3.
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3.3.3 Effect of information availability

In this set of experiments we set out to test if different information availability levels related

to events have any effect on trading agents’ beliefs and the agents’ utilities. We have

once again used agents’ ask prices to illustrate the relationship between the information

availability and the agents’ beliefs because agents express their beliefs by setting their

bid and ask prices. By analyzing ask prices, we can also see how different the information

availability values lead to different prices being set by agents, which in turn leads to different

values in utility. Different levels of availability of information among the trading agents can

result in different trading decisions made by the trading agents and therefore in different

utility. For example, a trading agent with all the information about an event available with

it, can benefit from that information by making more informed trading decisions and get

a higher utility. We have used the information availability parameter described in Section

3.2.2, an,e = {0, 0.5, 1}, to denote different degrees of information penetration among the

trading agents. We have again reported the results using the closing prices and event’s

duration from the MINC180H security of the IEM movie market. In our simulations, one

third of the trading agent population has no access to the information about the event with

an,e = 0, another third of the agent population has partial access to the information with

an,e = 0.5, while the final third of the population has full access to the information with

an,e = 1. The results of our simulations are shown in Figure 3.5.
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Figure 3.5: Effect of the different levels of information availability on (a) the trading
agents’ ask prices and (b) their utilities.
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From these results, we calculated the Pearson’s correlation coefficient between the infor-

mation availability parameter and the market price and found it to be −0.88. This indicates

that there is a strong negative association between the market price and the information

availability parameter. This implies that the trading agents with more information (higher

value of an,e) about the event are able to set the lowest ask prices for the event’s security

and purchase the security. Figure 3.5(b) shows that trading agents with full information

availability are able to obtain higher utility than other agents. This behavior can be at-

tributed to the fact that if an,e = 1, the agent’s belief function update using Equation 3.2 is

always triggered to include new information about the event e if available, as shown in the

flowchart in Figure 3.1. This results in more up-to-date values of beliefs (using Equation

3.2) and ensures more accurate value of the quantity of security that the agent should trade

(using Equation 3.6) and culminates in higher utility to the trading agent. On the other

hand, if an,e = 0.5, the agent’s belief function update using Equation 3.2 is triggered only

50% of the time, resulting in less utility for agent n. When an,e = 0, the agent n’s belief

function update using Equation 3.2 is never triggered, resulting in the least utility for agent

n. Our result also agrees intuitively with the behavior of real traders in prediction markets

- more information about an event enables a trader to make a more informed decision and

thereby obtain higher utilities.

3.3.4 Effect of scalability

For our next set of experiments in this chapter, we have tested the scalability of our multi-

agent based prediction market with the number of trading agents and the number of events.

We have tested our prediction market with different combinations of 5, 10, 15, 20 and 25

events, and, 50, 100, 300, 500 and 1000 trading agents in the market. Table 3.2 shows the

average utility for a trader at the end of 100 days. We observe that as the number of events

in the market increases, the traders’ utilities increase by 30% because they are able to trade

in more securities. In a similar manner, when the number of trading agents in the market

increases but the number of events is fixed, the average utility of a trader decreases by

40% because of the increased competition between traders in the market. In summary, as
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Traders→/ 50 100 300 500 1000 Avg. over
Events↓ no. of agents

5 1480.5 1191.9 1071.0 1003.6 893.5 1059.1
10 1560.0 1265.0 1187.5 1089.6 965.2 1183.6
15 175716 1456.8 1299.2 1174.6 1006.5 1306.3
20 1791.1 1545.5 1424.5 1287.5 1104.4 1397.8
25 1843.3 1643.2 1534.5 1393.8 1275.2 1511.2
Avg. over no. 1631.5 1406.7 1295.0 1153.9 970.9
of events

Table 3.2: Utilities of one trader from the simulations with different number of traders and

events.

the prediction market becomes more populated in the number of events and the number of

agents, the utilities of the trading agents increase correspondingly.

Our simulation results quantify the effect of information on the price dynamics and

utilities of trading agents in a prediction market. We briefly summarize our simulation

results. From our results we observe that the trading agents with a higher value of the

information reliability are able to obtain higher utilities. This allows us to conclude that a

higher reliance of the trading agents on the information in the market allows them to get

more news about the event and make more informed decisions. We also observe that the

trading agents with more information (higher value of information availability parameter)

about the event are able to obtain higher utilities. This result suggests that the trading

agents that have access to more information are able to use the available information to

obtain higher utilities. This also consistent with the behavior of human traders in real

prediction markets, where well-informed traders are able to make better decisions. Overall,

our results suggest that different aspects of the information about events in a prediction

market have a significant impact of the prices, utilities and probabilities of the events in the

market. This and other simulation results obtained for this part of the thesis can be used

to obtain a better understanding of traders’ behavior in a prediction market in response to

information about events. The work presented in this chapter was published in [55] and the

overview of our findings is shown in Table 3.3.
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Contr. Research Question Research Findings
1 How do changes in different - Higher information arrival rate leads to

aspects of information lower price fluctuations and higher utilities.
affect the behavior of - Higher impact information tends to

increase the prices.
prediction markets? - Higher reliability of information leads to

more stable prices and higher utilities.
- Higher information availability results in,
lower prices and higher utilities.

Table 3.3: Research findings for the research question in contribution 1 of this thesis.
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Chapter 4

A Multi-Agent Prediction Market

based on Partially Observable

Stochastic Games for Analyzing

the Behavior of the Trading Agents

In this work, we address the problem of designing a formal and realistic framework of

prediction market that can be used to model the interactions of the software trading agents.

Our main goal is to develop a strategy for trading agents that when used in our proposed

framework can improve information aggregation in a prediction market as well as improve

the utilities of the trading agents in general.

The work in this chapter builds upon previous directions of research on prediction

markets and develops a game-theoretic formal model for the strategic behavior of trading

agents. The main contribution of this chapter is to use a partially observable stochastic

game (POSG) [45] that can be used by each agent to reason about its actions. Within
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this POSG model, we calculate the correlated equilibrium strategy for each agent using the

aggregated price from the market maker as a recommendation signal. We have also consider

the risk preferences of trading agents in prediction markets and show that a Pareto optimal

correlated equilibrium solution can give incentives for truthful revelation to risk averse

agents. We then compare the POSG/correlated equilibrium based trading strategy with

five different trading strategies used in similar markets with the data obtained from the

Intrade prediction market events. Our results show that the agents using the correlated

equilibrium strategy profile are able to predict prices that are closer to the actual prices

that occurred in real prediction markets and these traders also obtain 35 − 127% higher

utilities. The research questions that we try to answer in this contribution are reproduced

below in Table 4.1.

Contr. Research Question Research Approach
2 How do different trading agent behaviors Empirical Analysis

affect the behavior of prediction markets?
2 What trading strategies perform the Empirical Analysis

best in prediction markets?
2 How can prediction markets incentivize Theoretical Examination

trading agents to participate in order to
achieve a higher prediction accuracy?

2 How does the trader’s behavior using Empirical Analysis
a formal game-theoretic model
compare to the trader’s behavior
in real prediction markets?

Table 4.1: Research questions that are addressed in contribution 2 of this thesis.

4.1 Partially Observable Stochastic Games for Trad-

ing Agent Interaction

As before, we assume that each human trader is represented by a software trading agent that

buys and sells securities on behalf of the human trader. For simplicity of explanation, we

consider a prediction market where a single security is being traded over a certain duration.

This duration is divided into trading periods, with each trading period corresponding to
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a certain time period in a real prediction market. The ‘state’ of the market is expressed

as the quantity of the purchased units of the security in the market. At the end of each

trading period, each trading agent receives information about the state of the market from

the market maker. With this prior information, the task of a trading agent is to determine

a suitable quantity to trade for the next trading period, so that its utility is maximized.

In this scenario, the environment of the agent is partially observable because other agents’

actions and payoffs are not known directly, but available through their aggregated beliefs.

Agents interact with each other in stages (trading periods), and in each stage the state of

the market is determined stochastically based on the actions of the agents and the previous

state. This scenario directly corresponds to the setting of a partially observable stochastic

game [33;45]. A POSG model offers several attractive features such as structured behavior by

the agents by using best response strategies, stability of the outcome based on equilibrium

concepts, lookahead capability of the agent to plan their actions based on future expected

outcomes, ability to represent the temporal characteristics of the interactions between the

agents, and, enabling all computations locally on the agents so that the system is robust

and scalable.

Previous research [55] has shown that information related parameters in a prediction

market such as information availability, information reliability, information penetration,

etc., have a considerable effect on the belief (price) estimation by trading agents. Based on

these findings, we posit that a component to model the impact of information related to an

event should be added to the POSG framework. With this feature in mind, we propose an

interaction model called a partially observable stochastic game with information (POSGI)

for capturing the strategic decision making by trading agents. A POSGI is defined as:

Γ = (N,S, (Ai)i∈N , (Ri)i∈N , T, (Oi)i∈N ,Ω, (Ii)i∈N ), where N is a finite set of agents, S is a

finite, non-empty set of states - each state corresponding to certain quantity of the security

being held (purchased) by the trading agents. Ai is a finite non-empty action space of agent

i s.t. ak = (a1,k, ..., a|N |,k) is the joint action of the agents and ai,k is the action that agent

i takes in state k ∈ S, where agents take actions sequentially. In terms of the prediction

market, a trading agent’s action corresponds to certain quantity of security it buys or sells,
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while the joint action corresponds to changing the purchased quantity for a security and

taking the market to a new state. Ri,k is the reward or payoff for agent i in state k which

is calculated using the LMSR market maker. T : T (s, a, s′) = P (s′|s, a) is the transition

probability of moving from state s to state s′ after joint action a has been performed by

the agents. Oi is a finite non-empty set of observations for agent i that consists of the

market price and the information signal, and oi,k ∈ Oi is the observation agent i receives

in state k. Ω : Ω(sk, Ii,k, oi,k) = P (oi,k|sk, Ii,k) is the observation probability for agent i of

receiving observation oi,k in state sk when the information signal is Ii,k. Finally, Ii is the

information set received by agent i for an event Ii =
⋃

k Ii,k where Ii,k ∈ {−1, 0,+1} is the

information received by agent i in state k. The complete information arriving to the market

I =
⋃

i∈N Ii is temporally distributed over the duration of the event. Information that

improves the probability of the positive outcome of the event is considered positive (Ii,k =

+1) and vice-versa, while information that does not affect the probability is considered to

have no effect (Ii,k = 0). For example, for a security related to the event “Obama wins

2008 presidential elections”, information about Oprah Winfrey endorsing Obama would be

considered high impact positive information and information about Obama losing the New

Hampshire Primary would be considered negative information.

Based on the POSGI formulation of the prediction market, the interaction of an agent

with the environment (prediction market) and the information source can be represented

by the transition diagram shown in Figure 4.1∗. The environment (prediction market) goes

through a set of states S̃ = {s1, ..., sH} : S̃ ∈ S, where H is the duration of the event

in the prediction market and sh represents the state of the market during trading period

h. This state of the market is not visible to any agent. Instead, each agent i has its own

internal belief state Bi,h corresponding to its belief about the actual state sh. Bi,h gives

a probability distribution over the set of states S, where Bi,h = (b1,h, ..., b|S|,h). Consider

trading period h − 1 when the agents perform the joint action ah−1. Because of this joint

action of the agents the environment stochastically changes to a new state sh, defined by the

∗We only show one agent i to keep the diagram legible, but the same representation is valid for
every agent in the prediction market. The dotted lines represent that the reward and environment
state is determined by the joint action of all agents.
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agent i action by 
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the length of the bars indicate the strength of the information's impact

high impact information low impact information

Figure 4.1: An agent interactions with the hidden environment (prediction market)
and an external information source.

state transition function T (sh−1, ah−1, sh). The agent i doesn’t directly see the environment

state, but instead receives an observation oi,Sh
= (πsh , Ii,sh), that includes the market price

πsh corresponding to the state sh as informed by the market maker, and the information

signal Ii,sh . The agent i then uses a belief update function to update its beliefs. Finally,

agent i selects an action using an action selection strategy and receives a reward Ri,sh . The

belief update and action selection strategy of the trading agent are discussed next.

4.1.1 Trading agent belief update and utility functions

Recall from Section 4.1 that a belief state of a trading agent is a probability vector that gives

a distribution over the set of states S in the prediction market, i.e. Bi,h = (b1,h, ..., b|S|,h).

A trading agent uses its belief update function b : ℜ|S|×Ai×Oi → ℜ
|S| to update its belief

state based on its past action ai,h−1, past belief state Bi,h−1 and the observation oi,Sh
. The

calculation of the belief update function for each element of the belief state, bs′,h, s
′ ∈ S, is

Chapter2/Chapter2Figs/automata.eps
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described below:

bs′,h = P (s′|ai,h−1, oi) =
P (s′, ai,h−1, oi, )

P (ai,h−1, oi)

=
P (oi|s

′, ai,h−1) · P (s′, ai,h−1)

P (oi|ai,h−1)P (ai,h−1)
(4.1)

Because ai,h−1 is conditionally independent given s′ and oi is conditionally independent

given ai,h−1, we can rewrite Equation 4.1 as:

bs′,h =
P (oi|s

′) · P (s′, ai,h−1)

P (oi)P (ai,h−1)
=

∑
ι∈I P (ι)P (oi|s

′, ι)
∑

s∈S P (s)P (s′|s, ai,h−1)P (ai,h−1)

P (oi)P (ai,h−1)

=

∑
ι∈I P (ι)P (oi|s

′, ι)
∑

s∈S P (s)P (s′|s, ai,h−1)

P (oi)

=

∑
ι∈I P (ι)Ω(s′, ι, oi)

∑
s∈S T (s, ai,h−1, s

′)bs,h−1

P (oi)
(4.2)

All the terms in the r.h.s. of the Equation 4.2 can be calculated by an agent: P (ι) is

the probability of receiving information signal ι , Ω(s′, ι, oi) is the probability of receiving

observation oi in state s′ when the information signal is ι, T (s, ai,h−1, s
′) is the probability

that the state s transitions to state s′ after agent i takes action ai,h−1, bs,h−1 is the past

belief of agent i about state s, P (oi) is the probability of receiving observation oi, which is

constant and can be viewed as a normalizing constant.

Incorporating the risk preferences of the trading agents is an important factor in pre-

diction markets. For example, the erroneous result related to the non-correlation between

the trader beliefs and market prices in a prediction market in [69] was because the risk pref-

erences of the traders were not accounted for, as noted in [34]. This problem is particularly

relevant for risk averse traders because the beliefs(prices) and risk preferences of traders

have been reported to be directly correlated [26;62]. Therefore, in our model we assume that

the trading agents are risk-averse. The risk preference of an agent i is modeled through

a utility function called the constant relative risk aversion (CRRA). We use CRRA utility

function to model risk averse agents because it allows to model the effect of different levels
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of risk aversion and it has been shown to be a better model than alternative families of

risk modeling utilities [106]. It has been widely used for modeling risk aversion in various

domains including economic domain [49], psychology [66] and in the health domain [8]. The

CRRA utility function, ui(φ,Ri), for agent i (for legibility we have dropped state k, but

the same calculation applies at every state) is given below:

ui(φ,Ri) =
R1−θi

i

1− θi
, if θi 6= 1 (4.3)

= ln(Ri), if θi = 1

Here, −1 < θi < 1 is called the risk preference factor of agent i with θi > 0 for risk-averse

agents and Ri is the payoff or reward to agent i calculated using the LMSR as was discussed

in Section 2.2.2. The reward Ri is calculated after agent i’s trade is executed.

4.1.2 Trading agent action selection strategy
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Figure 4.2: Finite state automata of the environment represented by the number of
outstanding units of the security, q, in the prediction market.

The objective of a trading agent in a prediction market is to select an action at each

stage so that the expected reward that it receives is maximized. To understand this action

Chapter2/Chapter2Figs/states.eps
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selection process, we consider the decision problem facing each trading agent. As an example

consider two agents whose available actions during each time step are to buy (=+1) or

sell(=-1) only one unit of the security or not do anything (=0) by holding the security. Let

the market state be denoted by q, the number of purchased units of the security. Based on

the set of actions available to each agent, the state can transition to one of the following

states q + 2 (both agents buy), q + 1 (only one agent buys), q (both agents hold, or, one

agent buys while the other agent sells, resulting in no transition), q − 1 (only agent sells),

and q − 2 (both agents sell). Figure 4.2 shows the finite state automata generated in this

way. We can expand this state space further by adding more states and transitions, but

the number of states remains finite because the set of states S of the POSGI is finite. Also,

since the number of units of a security is finite, the number of securities the trading agent is

allowed to buy or sell is bounded and the number of transitions from a state is guaranteed

to be bounded. We also do not consider budget restrictions for the trading agents in this

work.

4.1.3 Correlated Equilibrium (CE) calculation

In the POSGI, the aggregated price information received by a trading agent from the market

maker can be treated as a recommendation signal for selecting the agent’s strategy. This

situation lends itself to a correlated equilibrium (CE) [2;89], where a trusted external agent

privately recommends a strategy to play to each player. A correlated equilibrium is more

preferred to the Nash or Bayesian Nash equilibrium because it can lead to improved payoffs,

and it can be calculated using a linear program in time polynomial in the number of agents

and number of strategies.

Each agent i has a finite set of strategy profiles, Φi defined over its action space Ai.

The joint strategy space is given by Φ =
∏|N |

i=1 Φi and let Φ−i =
∏

j 6=iΦj . Let φ ∈ Φ

denote a strategy profile and φi denote player i’s component in φ. A correlated equilibrium

is a distribution p on Φ such that for all agents i and all strategies φi, φ
′
i if all agents

follow a strategy profile φ that recommends player i to choose strategy φi, agent i has no

incentive to play another strategy φ′
i instead. This implies that the following expression
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holds:
∑

φ−i∈Φ−i
p(φ)(ui(φ) − ui(φ

′
i, φ−i)) ≥ 0, ∀i ∈ N , ∀φi, φ

′
i ∈ Φi and where ui(φ

′
i, φ−i)

is the utility that agent i gets when it changes its strategy to φ′
i while all the other agents

keep their strategies fixed at φ−i and p(φ) is the probability of realizing a given strategy

profile φ.

We now prove the existence of a correlated equilibrium in our POSGI-based prediction

market.

Theorem 1. A correlated equilibrium(CE) exists in our POSGI-based prediction market

representation at each stage (trading period).

Proof. At each stage in our prediction market, we can specify the correlated equilibrium by

means of linear constraints as given below:

∑

φ−i∈Φ−i

p(φ)(ui(φ)− ui(φ
′
i, φ−i)) ≥ 0,∀i ∈ N,∀φi, φ

′
i ∈ Φi (4.4)

∑

φ∈Φ
p(φ) = 1, (4.5)

p(φ) ≥ 0 (4.6)

Equation 4.4 states that when agent i is recommended to select strategy φi, it must get

no less utility from selecting strategy φi as it would from selecting any other strategy

φ′
i. Constraints given in Equations 4.5 and 4.6 guarantee that p is a valid probability

distribution. We can rewrite the linear program specification of the correlated equilibrium

above by adding an objective function to it.

max
∑

φ∈Φ
p(φ), or min −

∑

φ∈Φ
p(φ) s.t. (4.7)

∑

φ∈Φ,φ−i∈Φ−i

p(φ)(ui(φ)− ui(φ
′
i, φ−i)) ≥ 0, (4.8)
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p(φ) ≥ 0 (4.9)

Equation 4.8 is either trivial with a maximum of 0 or unbounded. Next, we show the

relationship between Equation 4.5, which defines correlated equilibrium in the form of a

constraint program, and the alternate formulation of this problem given in Equation 4.8.

Lemma 1. Problem given in Equation 4.5 has a solution iff problem in Equation 4.8 is

unbounded.

Proof. If problem in Equation 4.5 has a solution p(φ), then p(φ) is also feasible in the

problem given in Equation 4.8. However, since for any a > 1 ap(φ) is also feasible in

Equation 4.8, but it has a larger value, p(φ) is not optimal solution in Equation 4.8. Thus,

lima→∞
∑

φ∈Φ(ap(φ)) =∞ and therefore problem in Equation 4.8 is unbounded.

If the problem in Equation 4.8 is unbounded, its set of solutions is non-empty (by

definition). We can transform an arbitrary solution p′(φ) 6= 0 into a solution p(φ) for

problem in Equation 4.5 by normalizing to guarantee that p(φ) is a valid distribution.

Lemma 1 shows that there is a correlated equilibrium if and only if problem in Equation

4.8 is unbounded. To prove the unboundedness we consider the dual problem of Equation

4.8 given in Equation 4.11.

max 0, s.t. (4.10)

∑

φ∈Φ,φ−i∈Φ−i

p(φ)[(ui(φ)− ui(φ
′
i, φ−i)]

T ≤ −1 (4.11)

p(φ) ≥ 0 (4.12)

where for every p(φ) there is p(φ) such that p(φ)[(ui(φ) − ui(φ
′
i, φ−i)]p(φ) = 0.

In [89], the authors showed that the problem given in Equation 4.11 is infeasible. From

operations research we know that when the dual problem is infeasible the primal problem

is feasible and unbounded. This means that the primal problem from Equation 4.8 is
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unbounded. We can then conclude that there is at least one correlated equilibrium in every

trading period of the prediction market. We note that although the CRRA utility function

is concave, the concave structure does not affect the existence of at least one correlated

equilibrium because the unboundedness of Equation 4.8 is not affected by the concave

structure of ui.

To calculate correlated equilibrium(CE) we first characterize the set of all Pareto optimal

strategy profiles. A strategy profile φP is Pareto optimal if there does not exist another

strategy profile φ′ such that ui(φ
′) ≥ ui(φ

P ) ∀i ∈ N with at least one inequality strict. In

other words, a Pareto optimal strategy profile is one such that no trader could be made

better off without making someone else worse off. A Pareto optimal strategy profile can be

found by maximizing weighted utilities

maxφ

|N |∑

i=1

λiui(φ) for some λi (4.13)

Setting λi = 1 for all i ∈ N gives a utilitarian social welfare function. The maximization

problem in Equation 4.13 can be solved using the Lagrangian method. We get the following

system of |N | equations:
|N |∑

i=1

λi
ui(φ)

φi
= 0 , ∀j = 1, ..., |N | (4.14)

that must hold at φP . Each of these equations is obtained by taking a partial derivative

of the respective agent’s weighted utility with respect to respective agent’s strategy profile,

thus solving the maximization problem given in Equation 4.13. By solving the system of

equations 4.14 we get the set of Pareto optimal strategy profiles, ΦP .

We then apply CE calculation algorithm shown in Algorithm 1 on ΦP . Algorithm

1 is based on the Ellipsoid Against Hope algorithm proposed by [89]. We have used the

correction proposed by Stein et al. [90] to solve the numerical precision problems that might

arise in the Ellipsoid Against Hope algorithm. The calculation of the matrix values of the

U matrix must be done once for each of the N agents. The computation of the utility

difference ui(φ) − ui(φi, φ−i) for each agent i can be done in |ΦP
i |

2 time. Therefore, the
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time complexity of the CECalc algorithm during each trading period comes to N × |ΦP
i |

2.

CECalc(D,ΦP )
Input: D,ΦP //D is the duration of the market, ΦP is the set of Pareto

optimal strategies
Output: p //correlated equilibrium
foreach t← 0 to D do

//do this in each trading period
Let U be the matrix consisting of the values of (ui(φ)− ui(φi, φ−i)),
∀i ∈ N, φ ∈ ΦP , φ−i ∈ ΦP

i

p′t ← getDualDistribution(ΦP , U);
pt ← solve for pt s.t. ptU

T p′t = 0;
return pt;

end

GetDualDistribution(ΦP , U)
Input: ΦP , U

Output: ∆
l = 0;
p′l ∈ [0, 1];
∆ = {};
while UT · p′l ≤ −1 is feasible do

∆ = ∆+ p′l;
p′l+1 = pl + ǫN ; //increase all elements of p′ by some small amounts from
vector ǫN

l ++;
end
return ∆;

Algorithm 1: Correlated Equilibrium Algorithm

Proposition 1. If p is a correlated equilibrium and φ is a Pareto optimal strategy profile

calculated by p in a prediction market with risk averse agents, then the strategy profile φP

is incentive compatible, that is each agent is best off reporting truthfully.

Proof. We prove by contradiction. Suppose that φP is not an incentive compatible strategy,

that is, there is some other φ′ for which

ui(φ
′) ≥ ui(φ

P ) (4.15)

Equation 4.15 violates two properties of φP . First of all, since φP is Pareto optimal, we

know that Equation 4.15 is not true, since ui(φ
P ) ≥ ui(φ

′) by the definition of Pareto
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optimal strategy profile. Secondly, if we rewrite Equation 4.15 as ui(φ
P ) − ui(φ

′) ≤ 0 and

multiply both sides by p(φP ), we get p(φP )[ui(φ
P ) − ui(φ

′)] ≤ 0. Since p is a correlated

equilibrium this inequality can not hold, otherwise it would violate the definition of the

correlated equilibrium.

4.2 Experimental Results

We conduct several simulations using our POSGI prediction market. The main objective

of our simulations is to test whether there is a benefit to the agents to follow the correlated

equilibrium strategy. We do this by analyzing the utilities of the agents and the market price.

We consider events that are disjoint (non-combinatorial). This allows us to compare our

proposed strategy empirically with other existing strategies while using real data collected

from the Intrade prediction market, which also considers non-combinatorial events. We

report the market price for the security corresponding to the outcome of the event occurring.

We assume that risk aversion coefficient of our trading agents, θ = 0.6, since experimental

evidence suggests that this value captures humans’ risk attitude without being too extreme

in either direction [37]. Since currently there is no real data relating to the risk averseness of

the human traders and our main goal is to demonstrate the performance of our algorithm,

we assume that the trading agents all have the same level of risk aversion.

4.2.1 Intrade Data

For all of our experimental results we use commercially available data from four diverse

prediction markets obtained from Intrade [51] company. The details of the Intrade markets

that are used for our experiments are given in Table 4.2 and the market prices of these

markets in Intrade are shown in Figure 4.3. We note that the date format that is used in

Intrade’s data and shown in our graphs is day/month/year. We have obtained the general

market data comprising of the market price data for each day and also the trade data

consisting of the number of shares bought and sold by individual traders and the changes

in price after each trade. Intrade prediction market allows for two possible outcomes to
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Name Description Total Total number Duration
number of securities (Trading
of traders traded period)

Presidential “Barack Obama to be 3252 1, 244, 892 744 days
Election elected President in 2008”
Recession “The US economy to 728 75, 187 600 days

go into recession in 2008”
Best “The Social Network 242 18,767 142 days
Picture to win Best Picture 2011”
American “Lee DeWyze to win 105 17,292 93 days
Idol American Idol (Season 9)”

Table 4.2: Intrade markets used for our experiments.
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Figure 4.3: Market prices of American Idol(a), Best Picture(b), Recession(c), and
Presidential Elections(d) Intrade markets.

each event - yes, the event will happen as described, or no, it will not happen. Intrade is an

exchange, so each trader buys or sells securities from another member of Intrade. Therefore,

for our experiments we assume that the market maker in our model only calculates the

Chapter2/Chapter2Figs/priceAI.eps
Chapter2/Chapter2Figs/priceSN.eps
Chapter2/Chapter2Figs/priceRecession.eps
Chapter2/Chapter2Figs/priceElections.eps
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Figure 4.4: Modified diagram of the operations of a trading agent used in our exper-
iments.

market price and the trading agents’ rewards, but does not sell or buy securities itself. In

Intrade when the market’s outcome becomes known, the market settles at either $0 or $10.

If the market’s event happens, the traders holding securities corresponding to the market

get paid $10 for every security that they hold. If the market’s event does not happen, the

traders with the securities of that market do not get anything. Also, since Intrade allows

short selling, i.e. selling securities that you don’t yet own, we also allow short selling in our

simulated POSGI market.

In all of our simulations we use the same number of trading agents as the number of

traders in Intrade markets, and we also sync the start, trade and end times of our trading

agents in each simulated market with the start, trade and end times of the real traders from

Intrade markets. Figure 4.4 is a modified Figure 3.1 indicating the inputs to and outputs

of our POSGI prediction market model used for our simulations. Trading agents receive

Intrade’s market price according to time steps indicated in the Intrade’s data. The market

price in Intrade is updated after each trade. We conduct two types of experiments, in the

first type of experiments we compare the utility from CE strategy with the utility from the

Intrade market, and in the second type of experiments we compare CE strategy to other

Chapter2/Chapter2Figs/predmarket2.eps
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well-known strategies. For the first type of experiments, in order to be able to compare

with the Intrade’s data we assume that the trading agents receive Intrade’s market price

instead of the LMSR market price, but they use CE strategy to determine their action and

receive utility based on it. For the second type of experiments, we assume that the market

maker uses LMSR to calculate the market price as specified in the POSGI model.

We use Google News [77] to obtain information signals that the trading agents receive.

We use each market’s description as specified by Intrade to obtain results in Google News,

which are then narrowed down by the time period during which each market was active.

The results are then ran through SentiStrength [103], which is a tool that estimates the

strength of positive and negative sentiment in short texts. We specify positive strength

sentiment to be 1, negative strength sentiment to be −1, and neutral strength sentiment to

be 0. SentiStrength basically gives a score (1,−1 or 0) to each result obtained from Google

News, which is then used as an information signal sent to a number of the trading agents

selected randomly from the total agent population at the same time step (date and time)

as the date and time it was published on Google News. Finally, the trading agents in our

model update their beliefs either when they receive a new information signal or at the belief

update time step interval, which is determined as an average trading time of all traders in

the market.

We notice that there were different kind of traders in the Intrade markets, for example

some traders were very active and some were not very active, some traders only joined the

market for 1 day and some traded in the market throughout its duration. Therefore in

order to analyze the performance of different types of trading agents, we have clustered

the traders in each of four Intrade markets that we have used according to the duration of

their participation in the market and the number of their trades. We use EM(expectation

maximization) clustering technique [25] within a popular clustering tool, called Weka 3.6 [44].

We didn’t specify the number of clusters, instead EM used cross validation to select the

number of clusters automatically. We obtained 3 clusters for the American Idol and Best

Picture markets, 4 clusters for the Recession market, and 4 clusters for the Presidential

Election market.
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Figure 4.5: Average utilities of the traders in Intrade markets and the trading agents
in POSGI prediction market for clusters 1 (a), 2 (b), and 3 (c) in the American Idol
market.
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Figure 4.6: Average cumulative utilities of traders in Intrade markets and trading
agents in POSGI prediction markets for clusters 1 (a), 2 (b), and 3 (c) in the Best
Picture market.

For our first set of experiments, we want to compare the performance of the trading

agents using CE strategy within POSGI model with the performance of the traders in the

real Intrade market. We ran simulations of our POGSI model where all trading agents

use CE strategy and we compare their utility to the utility of the actual traders in the

Intrade markets using Equation 4.4. We show the results for the average cumulative utility

of the traders in Intrade market and the average cumulative utility of the trading agents

in the POSGI market for each cluster in each market. The last point in the utility graphs

corresponds to the final utility that the trading agents receive after the market clears, i.e.

trading agents get paid $10 for each security they possess at the end of the market.

Figures 4.5 and 4.6 (a-c) show the average utility of the trading agents for cluster 1, 2,

and 3 correspondingly in the American Idol and the Best Picture markets. While Figures
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Figure 4.7: Average utilities of traders in Intrade markets and trading agents in
POSGI prediction markets for clusters 1 (a), 2 (b), 3 (c), and 4 (d) in the Recession
market.

4.7 and 4.8 (a-d) show the average utility of the trading agents for cluster 1, 2, 3, and 4

correspondingly in the Recession and the Presidential Election markets. We note that

different clusters have different durations, for example in the Best Picture market, cluster

1 shown in Figure 4.6(a) lasts for only 21 days, whereas cluster 3 shown in Figure 4.6(c)

lasts for the entire duration of the market. From this set of experiments we observe that

due to the look-ahead capability of the CE strategy the trading agents are able to get more

utility than the human traders in the Intrade markets. A negative trading agents’ utility

throughout most of the duration in some markets is because the agents buy securities at the

beginning of the market’s duration and in the markets(or clusters) with a shorter duration,

such as the American Idol market, they do not have enough time to play the market to

increase their utility until almost the end of the market. However, in the markets with
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Figure 4.8: Average utilities of traders in Intrade markets and trading agents in
POSGI prediction markets for clusters 1 (a), 2 (b), 3 (c), and 4 (d) in the Presidential
Election market.

longer duration the trading agents are able to increase their utility throughout the market’s

duration. In summary of this set of experiments, we observe that using trading agents with

CE strategy to trade on behalf of humans may be beneficial since it leads to higher utility

and it can avoid inefficient human trading decisions that might result in a very large loss,

such as the one observed in the Presidential Election market for cluster 3 shown in Figure

9 (c).

For our next set of experiments, we compare the trading agents’ and market’s behavior

under various strategies employed by the trading agents in Intrade’s markets given in Table

4.2. In this set of experiments in each run of each market all agents use the same trading

strategy. We then compare separate runs with different strategies. We use the following

five well-known strategies [67] for comparison with our proposed CE strategy.
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a. ZI (Zero Intelligence) - each agent submits randomly calculated quantity to buy or

sell.

b. ZIP (Zero Intelligence Plus) - each agent selects a quantity to buy or sell that satisfies

a particular level of profit by adopting its profit margin based on past prices.

c. CP (by Preist and Tol) - each agent adjusts its quantity to buy or sell based on past

prices and tries to choose that quantity so that it is competitive among other agents.

d. GD (by Gjerstad and Dickhaut) - each agent maintains a history of past transactions

and chooses the quantity to buy or sell that maximizes its expected utility.

e. DP (Dynamic Programming solution for POSG game) - each agent uses dynamic pro-

gramming solution to find the best quantity to buy or sell that maximizes its expected

utility given past prices, past utility, past belief and the information signal [45].

Market p value of the t-test
Presidential Election 0.07
Recession 0.11
Best Picture 0.08
American Idol 0.12

Table 4.3: Correlation test conducted using two tailed type 3 t-test showing the
correlation of the market prices in the Intrade markets and the market prices produced
by LMSR in POSGI prediction markets.

In order to compare the effect of different trading strategies on the market prices, in

the remaining set of experiments we have LMSR market maker calculate the market price

and send the LMSR market price back to the trading agents instead of the Intrade’s market

price. We first compare the market prices calculated by LMSR market maker and the real

Intrade’s market prices. The results of the t-test shown in Table 4.3 indicate a strong

correlation between the two market prices for all four markets.

Figures 4.9 (a) column show the market prices calculated by the LMSR market maker

for four Intrade markets. We observe that agents using the CE strategy are able to trade

at prices that are closer to the final outcome of the event, indicating that agents using
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Figure 4.9: The market prices(a) and the average utilities(b) of the agents under
different trading strategies for American Idol market, Best Picture market, Recession
market, and Presidential Election market (top to bottom).
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the CE strategy are able to respond to other agents’ strategies and predict the aggregated

price of the security more efficiently. This efficiency is further supported by the graph in

Figures 4.9(b) column that show the utilities of the agents while using different strategies.

The agent population was uniformly divided for different strategies. We see that the agents

using the CE strategy are able to obtain 39% more utility on average than the agents

following the next best performing strategy (DP) and 137% more utility on average than

the agents following the worst performing strategy (ZI) in all markets. Overall, we can say

that using the POSGI model allows the agent to avoid myopically predicting prices and use

the correlated equilibrium to calculate prices more accurately and obtain higher utilities.

In summary, the POSGI model and the CE strategy proposed in this chapter of the

thesis result in better price tracking and higher utilities because they provide each agent

with a strategic behavior while taking into account the observations of the prediction market

and the new information of the events. The work presented in this part of the thesis was

published in [56] and [54] and the overview of our findings is shown in Table 4.4.

Contr. Research Question Research Findings
2 How do different trading agent - We observed that a higher utility

behaviors affect the behavior of of the trading agents leads to
prediction markets? a more accurate price prediction.

2 What trading strategies - Our proposed strategy based on
perform the best in Correlated Equilibrium was shown
prediction markets? to perform the best.

2 How can prediction markets - By rewarding (paying) trading
incentivize trading agents to agents for useful trades and
participate in order to achieve penalizing them for
a higher prediction accuracy? misleading trades.

2 How does the trader’s behavior - Our experiments and correlated
using a formal game-theoretic model tests show that there is
compare to the trader’s behavior a strong correlation
in real prediction markets? between them.

Table 4.4: Research findings for research questions in contribution 2 of this thesis.
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Chapter 5

A Multi-Agent Prediction Market

Based on Boolean Network

Evolution for Analyzing Market

Dynamics

In this chapter of the thesis, we propose a form of a dynamical system, called a Boolean

Network (BN), that uses simple Boolean rules to model the operation of a prediction market.

We then use this BN-based model to study the overall dynamics of the prediction market

and how various parameters effect its behavior. In a BN, each node is represented by a

binary state while the network edges represent rules that update the state of the node that

the edges are incident on. Although inherently simple, BNs can be used to analyze essential

aspects of complex networks such as values of parameters that effect a specific behavior and

the time required to reach that behavior. It also makes sense to use Boolean networks in the

context of a prediction market because there is a direct correspondence between Boolean
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values output by the Boolean network’s rules and the binary outcomes of events predicted

by a prediction market.

The main contributions of this part of thesis are to develop simple Boolean rules for

updating the beliefs for each of the market’s participants and for aggregating the partici-

pants’ belief information into a single market price. We show that despite the simplification

of the traders’ beliefs in the prediction market into Boolean states, the aggregated market

price calculated using our BN model is strongly correlated with the price calculated by

a commonly used aggregation strategy in existing prediction markets called the Logarith-

mic Market Scoring Rule (LMSR). Our experimental results show that our BN model also

eliminates the problem of frequently fluctuating prices that are known to be a drawback of

the LMSR. We also use our BN model to analyze the dynamics of the prediction market

with respect to different market parameters and determine the conditions under which the

market price converges. Finally, we model the untruthful belief revelation by the market

participants, a commonly encountered problem in prediction markets, using the presence

of noise in the Boolean rules of our prediction market and obtain similar results as the

conventional (non-Boolean) prediction markets. The research questions that we attempt to

answer in this contribution are reproduced below in Table 5.1.

Contr. Research Question Research Approach
3 How does a prediction market evolve Theoretical Examination

and what are its dynamics under different Empirical Analysis
market and trader conditions?

3 How can we make a prediction market Theoretical Examination
unaffected by “noise”? Empirical Analysis

Table 5.1: Research questions that are addressed in contribution 3 of this thesis.

5.1 BN-based Prediction Market

As our previous multi-agent prediction markets, our BN-based prediction market consists

of three major entities: trading agents, a market maker agent, and information sources that

are external to the market but provide information to the market’s agents. Because of the
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Figure 5.1: The sequence of operations done by the trading agents and the market
maker agent in one trading period in a prediction market.

binary nature of the event outcomes, it makes sense to use Boolean functions to represent

the beliefs of the traders in prediction markets [21]. The basic operations of our BN-based

prediction market are based on the traditional prediction market’s operations, however the

trading agents’ beliefs are updated using a Boolean function and a novel technique using the

Boolean beliefs of the trading agents is used to calculate the market price. Figure 5.1 shows

the operation of both the conventional and the BN-based prediction market proposed in this

part of the thesis ∗. To do this, each trading agent maintains a belief about the outcome

of the security corresponding to the event and updates this belief at certain intervals using

the aggregated market price, past belief values and external information. In our BN-based

prediction market each trading agent uses a variable called a state to represent this belief.

Each state can take one of two values: 1 or ON, meaning that the trading agent believes

∗For the simplicity of our discussion and without the loss of generality, we assume there is one
event in our prediction market with two possible outcomes - event happens/does not happen.

Chapter3/Chapter3Figs/diagram.eps
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that the event will happen, or 0 or OFF, meaning that the trading agent believes the event

will not happen. Following the belief update rule in a conventional prediction market,

trading agents update the value of their state at each trading period t based on the current

aggregated market price, their past state, and the information signal they receive about the

event. The state update procedure is represented as a Boolean function which is described in

the next section. After the trading agents update their state, they calculate their expected

utility using their past state and the current market price and use this utility to determine

the optimal quantity of each security to buy or sell. The optimal quantity to buy or sell

is given by the quantity that maximizes the expected utility of the trading agent. The

trading agents send the quantity of securities they want to buy or sell and their current

belief/state to the market maker agent. The market maker agent updates the market price

after aggregating the beliefs received from the trading agents. The market maker agent also

calculates the cost of each trading agent’s transaction and sends it back to each trading

agent.

In the next section we describe the Boolean function formulation of the operations

by the trading agents and the market maker agent in a prediction market. A summary

comparison between the operations of our BN-based prediction market and a conventional

(LMSR-based) prediction market is given in Table 5.2.

5.1.1 Trading Agents’ Boolean Belief Update

The state of a trading agent n ∈ N is determined by the three variables defined below:

a. pr(t) - the aggregated market price at trading period t. In our BN-based prediction

market we call the current aggregated market price the density of ones which is the

fraction of trading agents that are in state 1 at a given trading period t.

b. rn(t) - state of the n-th trading agent at trading period t representing its belief about

the outcome of the event.

c. wn = (wn
1 , w

n
2 , w

n
3 ) - a vector of weights representing the trust that the n-th trading

agent holds for the accuracy of the posted market price, its own past belief, and
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Operation Conventional PM BN-based PM

Belief update 1. Trading agents calculate
their beliefs as a weighted av-
erage of the market price, their
past belief and the information
signal [109] with all the parame-
ters ∈ [0, 1].

1. Trading agents’ beliefs
are represented through their
Boolean states which are up-
dated as a threshold function
of the weighted average of the
market price ∈ [0, 1], their past
Boolean state ∈ {0, 1} and the
Bernoulli information signal ∈
{0, 1}.

2. Trading agents submit their
beliefs as a discrete value ∈
[0, 1].

2. Trading agents send their
belief (i.e. their state) as a
Boolean value ∈ {0, 1}.

Aggregation
rule

3. The market maker uses
some rule such as LMSR to
aggregate the beliefs of the
traders and set the market
price [13].

3. The market maker uses the
fraction of traders that are ON
to calculate the market price.

External
information
service

4. Most prediction markets use
a continuous probability distri-
bution to model the external
information signal.

4. Following [53], we use a
Boolean value for the signal.

Table 5.2: Differences between conventional LMSR-based prediction market and our
BN-based prediction market.

the new information signal it obtains, respectively, following [38]. These trusts are

represented as weights wn
i ∈ [0, 1], such that

∑3
i=1w

n
i = 1, for i = 1, 2, 3.

Let Bn(t) be the information signal received by the n-th trading agent at trading period

t. For simplicity and for the purpose of illustration of this method, we assume that Bn(t)

is the value of a Bernoulli random variable with probability qn of obtaining a 1, that is

positive information, and probability 1− qn of obtaining a 0, that is negative information.

The rule that generates the new state of the n-th trading agent can be written as follows

and is shown as a diagram in Figure 5.2:

rn(t+ 1) =





1 , if wn
1 · pr(t) + wn

2 · rn(t) + wn
3 · Bn(t) > z,

∑3
i=1w

n
i = 1, wn

i ∈ [0, 1], for i = 1, 2, 3;

0 , otherwise.

(5.1)
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pr(t)

rn(t)

Bn(t)

new belief = weighted 
average of pr(t), rn(t) 

and Bn(t) 

rn(t+1) 
   = 0 

rn(t+1) 
   = 1 

new belief <= z

new belief > z

Agent n

Figure 5.2: The Boolean belief update used by agent n at trading period t.

Here z ∈ [0, 1] represents a threshold parameter used to convert the quantity wn
1 ·pr(t)+

wn
2 · rn(t) +wn

3 ·Bn(t) into a Boolean value. The rule basically says that the trading agent

rn is turned ON at trading period t + 1 if the weighted sum of the market price, its own

past state, and the external information signal is greater than some threshold value z at

trading period t. Thus the trading agent rule is a linear threshold function. The value of

z indicates the boundary between what is considered negative or positive overall impact of

the aggregated information on each trading agent’s belief. For simplicity, we will assume

that z is fixed for all trading agents. Although in real prediction markets different agents

may have different ways of evaluating information and reflecting on their past experiences,

for simplicity we assume that the trust weights wn and the Bernoulli distribution B are

the same for all trading agents. Also, in real prediction markets different trading agents

may have different thresholds or predispositions for believing that an event will take place;

therefore future work will allow for generalizations with varying thresholds. In Section 5.2.1

we show how the weights, wn
1 , w

n
2 , w

n
3 , can be learned using a neural network.

5.1.2 Mean-field Analysis for Calculating the Aggregated Mar-

ket Price by Market Maker agents

The fraction of trading agents in state 1 at trading period t give the aggregated belief of

trading agents that believe the event will happen at trading period t. In our model this

value is represented through the density of ones which is calculated by the market maker

agent. The market maker agent uses a mean-field approach specific to statistical physics to

Chapter3/Chapter3Figs/belief_diagram.eps
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generate a recursive mathematical model for the density of ones. The mean-field approach

assumes a sufficiently large number of nodes so that potential local correlations can be

ignored. This makes the computations more manageable.

Let pr(t) be the probability that a (generic) trading agent is ON at trading period t,

and 1 − pr(t) the probability that the trading agent is OFF at trading period t. We find

pr(t + 1) in terms of pr(t), using a probabilistic approach typical for derivations of mean-

field formulae, based on the law of total probability and the assumption of independence

of inputs of the rules governing the dynamics of the prediction market. Since the trust

weights wn and Bernoulli distribution Bn(t) is assumed to be the same for all agents, in the

derivation below we will drop the trading agent index n.

Observe that by the rule of total probability, pr(t+1) = P (r(t+1) = 1) = P (r(t+1) =

1|r(t) = 0)(1 − pr(t)) + P (r(t + 1) = 1|r(t) = 1)pr(t), where P (A) is used to denote the

probability of an event A. We note that

P (r(t+ 1) = 1|r(t) = 0) = P (w1pr(t) + w3B > z) = (5.2)

= P
(
B > z−w1pr(t)

w3

)
and similarly

P (r(t+ 1) = 1|r(t) = 1) = P (w1pr(t) + w2 + w3B > z) = (5.3)

= P
(
B > z−w1pr(t)−w2

w3

)
.

Putting equations (5.2) and (5.3), we get:

pr(t+ 1) = P

(
B >

z − w1pr(t)

w3

)
(1− pr(t))+ (5.4)

+P
(
B > z−w1pr(t)−w2

w3

)
pr(t).

To simplify the notation, denote FB(b) = P (B > b), the complementary cumulative

distribution function associated to the random variable B. Then the formula for pr(t+ 1)

becomes

pr(t+ 1) = FB

(
z − w1pr(t)

w3

)
(1− pr(t))+ (5.5)
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+FB

(
z−w1pr(t)−w2

w3

)
pr(t).

Observe that this formula can be used with both discrete and continuous distributions

for the external information. However, in the numerical investigations we will focus on the

Bernoulli random variable. For the Bernoulli case, we can actually compute the values of

FB according to the relative positions of z−w1pr(t)−w2

w3
< z−w1pr(t)

w3
with respect to the two

possible values of B, namely 0 and 1. Recall that q is the probability that B is 1. By a

straightforward computation we obtain:

pr(t+ 1) =





1, if pr(t) >
z
w1

q(1− pr(t)) + pr(t), if

max{z−w2
w1

, z−w3
w1
} < pr(t) ≤

z
w1




pr(t), if
z−w2
w1

< pr(t) ≤
z−w3
w1

q, if z−w3
w1

< pr(t) ≤
z−w2
w1

qpr(t), if
z−w2−w3

w1
< pr(t) ≤ min{z−w2

w1
, z−w3

w1
}

0 , if pr(t) ≤
z−w2−w3

w1
.

(5.6)

The mathematical model for the density of ones not only represents the aggregated

market price but can also be used to analyze the dynamics of the prediction market. Observe

that the function (5.6) represents a map (that is a function whose domain and codomain

are the same) on [0, 1] whose fixed points can be computed. Let us denote it by f(p). A

point p ∈ S is a fixed point of the map f if f(p) = p. It is known from chaos theory that

the fixed points of a map drive the dynamics of the map. More precisely, if say p is a fixed

point of f , then if |f ′(p)| < 1, the fixed point p attracts all other points close enough to p.

More precisely, if x is a point close to p, then fn(x)→ p as n→∞, where fn(x) is the n-th

iterate of f at the point x. The set {x, f(x), f2(x), ..., fn(x), ...} is called the orbit of x. On

the other hand, if |f ′(p)| > 1, the fixed point p repels all the orbits starting at points x in

a neighborhood of p.

We find the fixed points for the map given in (5.6) in our BN-based prediction market
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by setting pr(t + 1) = pr(t). The analysis of the stability of the fixed points of the map

(5.6) reveals that the fixed points 0 and 1 are always stable. On the other hand, if w2 < w3

then there is a third stable point q. The orbits will be attracted to one of these three

fixed points, depending on the parameters. If w2 > w3, we may also end up with the case

where all points in [0, 1] are fixed points, which means that all states are frozen from the

very beginning, so the system is unstable. This can happen if z−w2
w1

< 0 and z−w3
w1

> 1

which means w1 + w3 < z < w2. Higher order iterations of the map (5.6) do not reveal

more complexity. Thus, in case the external information is modeled by a Bernoulli random

variable, the behavior of the model is non-complex and can be easily predicted.

5.2 Experimental Results

5.2.1 Learning the trust values by trading agents

output layer

hidden layerinput layer

w
1

w*
1

w
2

w
3w*

3

w*
1

w*
2

learned weights

input weights

w*
1

w*
2

w*
2

w*
3

w*
3

pr(t)

rn(t)

Bn(t)

rn(t+1)

Figure 5.3: One hidden layer neural network used for learn trust weights.

To find the correct combination of weight parameters, wn
1 , w

n
2 , w

n
3 used by the n-th trad-

ing agent’s belief update rule given in Equation 5.1, we use a neural network representation.

We construct a neural network with one hidden layer, where the market price at trading

period t, pr(t), the state of the trading agent at trading period t, rn(t), and the Bernoulli

variable representing the information parameter, Bn(t), are the inputs to the network. The

new state of the trading agent at trading period t+1, rn(t+1), is the output of the neural

network. The representation of the neural network used is shown in Figure 5.3. The initial

Chapter3/Chapter3Figs/neural.eps
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input weights are set randomly, while the learned (output) weights are learned for different

values of the parameters in our BN model, namely z - the threshold parameter, and q - the

probability that the Bernoulli random variable is 1. We use the backpropagation technique

to learn the weights in our neural network [97]. The training set used for the neural network

was obtained by simulating the prediction market for over 200 different combinations of

values of z and q parameters in our BN. For the data generated for the training set pr(t)

was calculated as the fraction of the trading agent nodes that are equal to 1 at time t, rn(t)

was set to 1 if the belief that maximizes the expected utility of the trading agent [34] was

above z and 0 otherwise, and Bn(t) was set to 0 or 1 based on the value of q. A set of

learned weights was generated for each combination of z and q values. The learned values

are used in the numerical investigations given below.

5.2.2 Patterns and validation of the mean-field based price

aggregation mechanism

Having too few trading agents may lead to discrepancies between the mathematical mean-

field model and the actual simulation of prediction market due to the fact that for a mean-

field approximation the prediction market has to be large enough to ignore local correlations.

In our experiments we found that a prediction market with 100 trading agents is sufficiently

large for a good match in the fraction of trading agents that are ON between the mathe-

matical model and the actual network. Therefore, in all of our experimental results except

those presented in Section 5.2.5 we use 100 trading agents. Similar results were obtained

with a larger number of trading agents. We start our experimental analysis by presenting

pattern formation plots generated with a Boolean network governed by the rules presented

in Section 5.1.1. More precisely, pattern formation plots are obtained by arranging the

nodes, representing the trading agents, in a one-dimensional array and numbering them

from left to right. Then we choose an initial state of the prediction market and iterate

it a number of trading periods with time evolving downwards. We plot a black dot when

the state of the trading agent is 1 and a neutral dot when it is 0. Figure 5.4 shows the



85

1 100
100

50

1

Network evolution

Trading Agents     

					(a)           
T

ra
d

in
g

 P
e
ri

o
d

s

0 100
0

0.5

1

(b) Trading Periods

q=0.3, z=0.6, w=0.1,0.2,0.7

p
r(t

)

Fraction of nodes in state 1

1 100
100

50

1

Network evolution

Trading Agents

          (c)           

T
ra

d
in

g
 P

e
ri

o
d

s

0 100

0.5

1

(d) Trading Periods

q=0.7, z=0.7, w=0.1,0.1,0.8

p
r(t

)

Fraction of nodes in state 1

1 100
100

50

1

Trading Agents

           (e)           

T
ra

d
in

g
 P

e
ri

o
d

s

0 100
0

0.5

1

(f) Trading Periods

q=0.2, z=0.8, w=0.1,0.8,0.1
p

r(t
)

1 100
100

50

1

Trading Agents     

					(g)           

T
ra

d
in

g
 P

e
ri

o
d

s

0 100
0

0.5

1

(h) Trading Periods

q=0.2, z=0.2, w=0.4,0.2,0.4

p
r(t

)

Figure 5.4: (a),(c),(e),(g): Pattern Formation plots for a prediction market starting
with a random initial condition and the parameters specified in the associated right
plots. (b),(d),(f),(h): The corresponding aggregated market price. The parameters
are set as specified in the graphs.

pattern formation plots and the corresponding aggregated market price using BN at each

trading period of the prediction market’s evolution. This is done for four distinct parameter

combinations. We can see in Figure 5.4(a), that for a low value of q = 0.3 and a medium

value of z = 0.6 (which means that the most weight is given to the information value), the

aggregated market price oscillates in a narrow range of values around 0.3. The correspond-

ing pattern formation plot in Figure 5.4(b) looks random but with more nodes in state 0

(more neutral dots). Figures 5.4(c) and (d) show similar result for q = 0.7 and z = 0.7.

Here the aggregated market price does not reach stability, but it oscillates within a narrow

range of values around 0.7 and therefore its corresponding pattern has more nodes in state

1 (more black dots). The overall higher values for the aggregated market price are due to

the fact that the probability of information signal being 1 is high (q = 0.7) and the weight

corresponding to the information signal is also high (w3 = 0.8). In Figures 5.4(e) and (f)

the parameters are q = 0.2 and z = 0.8. We can see that the aggregated market price is

stable around 0.7 and thus the pattern is stationary with neutral and black vertical stripes

showing that trading agents are either in state 0 or in state 1 throughout the prediction

market’s duration. Finally, for the parameters q = 0.2, z = 0.2 in Figure 5.4(g) and (h) it

takes less than 25 trading periods for the aggregated market price to reach stability. This
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Figure 5.5: The system (blue dots) versus the mathematical model (red circles) for
the 1st, 5th, and 20th trading periods. Note the apparent match between them.

can be seen more clearly from the pattern formation plot where the top of the plot shows

clear randomness, while the rest of the plot is black meaning all of the trading agents are

in state 1. The aggregated market price is able to converge here mostly because of the low

value of the threshold parameter z. Thus from these results we can see that the aggregated

market price can be used as a predictor for future market dynamics. It can also estimate

the trading period needed to reach a certain type of long-term behavior, e.g. convergence.

We now check that the mean-field model for the aggregated market price, pr(t), derived

in Equation (5.5) is a good approximation for the fraction of nodes in state 1 obtained by

evolving the actual BN. We do this by graphing on the same plot both pr(t) and the actual

fraction of trading agents in state 1 for the 1st, 5th, and the 20th trading periods as shown

in Figure 5.5. On the x-axis we plot the initial conditions for the fraction of trading agents

in state 1 ({0, 1
N , 2

N , ..., , (N−1)
N }), representing how many traders are initially in state 1, i.e.

believe that the event will happen. We first apply the mathematical model to each of these

initial conditions, iterate them, and plot the results with a red straight line. We then apply

the prediction market evolution for a network state corresponding to each initial fraction

of the trading agents in state 1, evolve the prediction market, and plot it with a blue ‘+’.

For each given initial fraction of ones we randomly select trading agents that are in state 1.

Figure 5.5 shows the comparison results for two different combinations of the parameters

Chapter3/Chapter3Figs/iterations1.eps
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Figure 5.6: Graphical illustration of the iterations of the aggregated market price
(density of ones map given in Equation 5.6) (blue ‘+’) versus the main diagonal (red
line). The intersection between them yields the fixed points of the map.

w, q, and z. We performed exhaustive simulations for the possible ranges of q, z, and their

corresponding weights learned via neural network, and obtained similar results to those in

Figure 5.5. We can see from Figure 5.5 that the first iteration matches perfectly. Then, as

the prediction market and the mathematical model evolve during their transient phase, the

match becomes a little less perfect due to the actual correlations that are building up in a

prediction market. These correlations are ignored in the mean-field approach. Despite the

assumption of no correlations, in the long run the mathematical model for pr(t) is a very

good approximation of the evolution of the aggregated market price for the actual network.

We also illustrate the behavior of our mean-field based model for the aggregated market

price using BN by generating multiple iterations of the mathematical model for pr(t + 1)

(blue line marked with ‘+’) for various values of q and z in Figure 5.6. We also plot the

line representing pr(t + 1) = pr(t) (red straight line). Note that the intersection of each

iteration with the first diagonal generates the fixed points. As we discussed in Section 5.1.2

Chapter3/Chapter3Figs/iterations.eps
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Figure 5.7: Comparison of the market prices set by LMSR (marked by ‘x’ - blue) and
the aggregated market price using BN (marked by ‘⋄’ - red) by trading periods. Note
the similarities between the two models, as well as the robustness of the BN model
as opposed to the increased variation of the LMSR model.

our system has fixed points (when pr(t + 1) = pr(t)) at 0, 1 and q. We find that our

prediction market mainly conforms to one of four behaviors shown in Figure 5.6. Figure

5.6(a) shows the case when the system converges to 1, while Figure 5.6(b) illustrates the

case when the prediction market converges to 0, and Figure 5.6(c) shows the existence of

the fixed point at q. Figure 5.6(d) shows the last case when pr(t + 1) = pr(t), so the two

lines overlap, meaning chaos.

5.2.3 Comparison to Conventional Prediction Markets

In this section we compare the aggregated market price obtained using the BN-based pre-

diction market model to the aggregated market price obtained with a Logarithmic Market

Scoring Rule (LMSR) aggregation mechanism [13] while using the same underlying parame-

ters. To illustrate the comparison we graph both market prices on the same plot for different

values of q and z. The x-axis represents the number of trading periods, while the y-axis is

the market price. We can see from Figure 5.7 that in the long run, both the LMSR and BN
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models yield approximately the same results. It is also revealed that the aggregated market

price does not fluctuate as much as the LMSR price, which is a known and reported problem

of the LMSR pricing [85]. We also note in Table 5.3 that the correlation coefficients between

the data from the LMSR and BN models are fairly close to 1, revealing a strong correlation

between them. Thus, the BN-based model is a realistic model of prediction markets.

q z Correlation
0.25 0.15 0.7925
0.25 0.5 0.7421
0.25 0.85 0.8556
0.55 0.15 0.8827
0.55 0.5 0.7912
0.55 0.85 0.7591
0.85 0.15 0.8404
0.85 0.5 0.8295
0.85 0.85 0.8661

Table 5.3: Correlations between the LMSR market price and the aggregated market
price using BN from Figure 5.7. Observe that the numbers are fairly close to 1 which
indicates a significant correlation between the LMSR and BN models.

5.2.4 Robustness to noise

It is known that real networks (biological/genetic, physical, neural, chemical, social, finan-

cial etc.) are always subject to disturbances and have the ability to reach functional diversity

and aim to maintain the same state under environmental noise. Prediction markets can also

be affected by some disturbances in the form of manipulation by the trading agents that

reveal their beliefs untruthfully. For example, in the Tradesports 2004 presidential markets

there was an apparent manipulation effort. An anonymous trader sold many securities cor-

responding to the event “George W. Bush will win the 2004 Presidential elections” at a

very low value. This caused the market price to be driven to zero, implying a zero percent

chance of the event happening. However, this manipulation effort failed, as the market

price of the security related to this event rebounded rapidly to its previous level [110]. As

prediction markets get more attention and become more widely known among the public,
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Figure 5.8: Iterations of the noisy aggregated market price (blue ‘+’) with j = 10
versus the main diagonal (red line). We used the same parameters as in Figure 5.6.

it is likely that some individuals or groups will be motivated to manipulate them. Inducing

disturbance in the system by changing the value of certain nodes in the network (according

to a deterministic or stochastic rule) is a good model for an environmental or intrinsic type

of perturbation. A similar procedure has been used for example by Bilke and Sjunnesson [7]

where one randomly chosen variable is inverted after the system has reached a limit cycle

in the Kauffman model, or by Goodrich and Matache [39] who show that the introduction

of noise can stabilize a certain type of BN for a wide range of parameters. We analyze

the response to disturbances of the prediction market in this chapter under a simple noise

process to assess the robustness of the BN-based model to potential non-truthful trading

agents.

We employ the following noise procedure, called the “flip rule”: at each trading period

t we randomly select j trading agents and flip their state before applying the Boolean rule.

This procedure has been used in [39]. Since the number of zeros and ones changes due to

the perturbation, the value of pr(t) is modified prior to the application of the model (5.5).

Now, if j nodes are chosen at random, then j · pr(t) of them are in state 1 and j · (1− pr(t))

are in state 0. By the flip rule, the total number of trading agents in state 1 is decreased

by j · pr(t) since they are changed to 0. On the other hand, the number is increased by

j · (1−pr(t)) since the zeros become ones. Thus, the proportion of trading agents in state 1,
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that is pr(t), becomes pr(t)
j·pr(t)

N + j·(1−pr(t))
N = pr(t) +

j
N (1− 2pr(t)). Clearly this number

is in [0, 1]. Then the formula (5.5) can be written as follows:

pr(t+ 1) = (5.7)

FB

(
z − w1(pr(t) +

j
N (1− 2pr(t)))

w3

)
(1− pr(t)−

j

N
(1− 2pr(t)))

+FB

(
z − w1(pr(t) +

j
N (1− 2pr(t))) − w2

w3

)

(pr(t) +
j
N (1− 2pr(t))).

Figure 5.8 illustrates iteration plots analog to those in Figure 5.6 (for the same parameter

values), but with induced perturbations. These results show that the noise generated by

the “flip rule” can stabilize the prediction market as seen from the Figure 5.8(d). In that

case the prediction market was chaotic without noise, and now it stabilizes around 0.5. This

result supports the result obtained by Hanson [48], where he showed that the manipulator

in the prediction market can aid its accuracy. For other parameter combinations, noise

may change the value of the fixed points, maintaining stability, as can be seen in the other

plots of Figure 5.8. The fixed points changed from 1 to 0.9 (Figure 5.8(a)), and from 0.5

to 0.4 (Figure 5.8(c)). In Figure 5.9 we show similar iteration plots but for parameter

combinations that yield piecewise functions. We note that there may be multiple fixed

points this time. However, all of them are stable since the derivative at those points is

always less than 1. Therefore, the stability of the prediction market is either preserved or

induced by the introduction of noise.

5.2.5 Scalability

In this section we test the scalability of our prediction market and analyze how the changes

in the number of trading agents affect the dynamics of the prediction market. Figure 5.10

shows that our mean-field based model’s accuracy for pr(t), the aggregated market price,
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Figure 5.9: Iterations of the noisy aggregated market price (blue ‘+’) with j = 5
versus the main diagonal (red line). Note that these parameter values yield piecewise
functions with the possibility of multiple fixed points that are stable.
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Figure 5.10: The system (blue dots) versus the mathematical model (red circles)
under “flip” noise procedure for 50, 500, 1000, 5000 trading agents for the 1st, 5th,
and 20th trading periods. The parameters are fixed as follows: w1 = 0.1, w2 =
0.05, w3 = 0.85, z = 0.8, q = 0.5.
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Figure 5.11: The aggregated market price by time steps, for different trader popula-
tion sizes.

improves as the number of trading agents increases. This is expected, since a mean-field

formula is valid in the limit N →∞. Figure 5.11 shows the aggregated market price using

a BN for 50, 100, 500, 1000, 5000, and 10000 trading agents for q = 0.7, z = 0.7, w1, w2, w3 =

0.1, 0.1, 0.8. This combination of z and q parameters yields a more dynamic behavior of the

prediction market as seen in Figure 5.4 (c,d), however here we can see that as the number of

trading agents increase the aggregated market price becomes less dynamic. However, there

is not much difference in the market price dynamics when N = 5000 and when N = 10000,

leading us to believe that in this case 5000 trading agents are enough to lead to an accurate

prediction market.

In summary, in this chapter we showed that the BN approach gives results similar

to the LMSR model with less fluctuations of the market price. In addition to proposing

a new method to calculate the aggregated market price using BN and mean-field based

mathematical modeling, we also showed how it can be used to analyze and predict the

dynamics of the prediction market. The work presented in this chapter was published in [60]

Chapter3/Chapter3Figs/density_traders.eps
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and the overview of our findings is shown in Table 5.4.

Contr. Research Question Research Findings
3 How does a prediction market - Our BN-based prediction market

evolve and what are its dynamics conforms to 4 distinct behaviors
under different market depending on parameters’ values.
and trader conditions? - The market price can be used as a

predictor for future market dynamics.
- Our BN-based model can be used
to determine how many traders
are sufficient for an accurate prediction.

3 How can we make a prediction - We find that within our BN-based
unaffected by “noise”? model the noise does not decrease

the accuracy of the market.

Table 5.4: Research findings for research questions in contribution 3 of this thesis.
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Chapter 6

Information Aggregation for

Multi-sensor Information

Processing using Prediction

Markets

In this chapter we tackle the problem of using prediction markets for decision making.

Accurate information aggregation about uncertain events is very important for a decision

maker. However, there has not been much effort in combining information aggregation and

decision making. We consider the information aggregation problem with a decision maker

in the multi-sensor domain. Multi-sensor fusion is concerned with the problem of fusing

data from multiple sensors in order to make a more accurate estimation of the environment,

and has been a central research topic in sensor-based systems [107]. Our work in this chapter

is based on the insight that the problem addressed by prediction markets of aggregating

the beliefs of different humans to forecast the outcome of an initially unknown event is
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analogous to the problem in multi-sensor fusion of fusing information from multiple sources

to predict the outcome of an initially unknown object.

Recently several multi-agent techniques [105] have been proposed to address the multi-

sensor fusion problem. Most of the solutions for multi-sensor information fusion and pro-

cessing are based on Bayesian inference techniques [68;80;96]. While such techniques have

been shown to be very effective, we investigate a complimentary problem where sensors can

behave in a self-interested manner. Such self-interested behavior can be motivated by the

sensors that deliberately misreport to save power, CPU cycles and memory (for example, to

devote more resources to other tasks), and therefore always behave in a way that maximize

their own benefits [72;95]. Moreover, these sensors may be programmed by different people

and the assumption of full cooperation may not always hold [101]. To address this problem,

we develop a multi-agent prediction market for multi-sensor information fusion that in-

cludes a utility driven mechanism to motivate each sensor, through its associated agent, to

reveal accurate reports. Besides being an efficient aggregation mechanism, using prediction

markets gives us several useful features - a mathematical formulation called a scoring rule

that deters self-interested sensors from misreporting information, a regression-based belief

update mechanism for the sensor agents for incorporating the aggregated beliefs (or infor-

mation estimates) of other sensors into their own calculation, and the ability to incorporate

an autonomous decision maker that uses expert-level domain knowledge to make utility

maximizing decisions to deploy additional sensors appropriately to improve the detection

of an object. Our experimental results illustrated with a landmine detection scenario while

using identical data distributions and settings, show that the information fusion performed

using our technique reduces the root mean squared error by 5 − 13% as compared to a

previously studied technique for landmine data fusion using the Dempster-Shafer theory [73]

and by 3− 8% using distributed data fusion technique [70]. The research questions that we

try to answer in this contribution are reproduced below in Table 6.1.
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Contr. Research Question Research Approach
4 How can prediction markets be used for Design and Development

decision making? Theoretical Examination
4 Is there an advantage of using prediction Empirical Analysis

markets for sensor fusion?
4 Can a prediction market-based model for

sensor fusion be effective in realistic Empirical Analysis
settings given various limitations?

Table 6.1: Research questions that are addressed in contribution 4 of this thesis.

6.1 Problem Formulation

To motivate our problem we describe a distributed automated landmine detection scenario

used for humanitarian demining. An environment contains different buried objects, some

of which could potentially be landmines. A set of robots, each equipped with one of three

types of landmine detection sensor such as a metal detector (MD), or a ground penetrating

radar (GPR) or an infra-red (IR) heat sensor, are deployed into this environment. Each

robot is capable of perceiving certain features of a buried object through its sensor such as

the object’s metal content, area, burial depth, etc. However, the sensors give noisy readings

for each perceived feature depending on the characteristics of the object as well as on the

characteristics of the environment (e.g., moisture content, ambient temperature, sunlight,

etc.). Consequently, a sensor that works well in one scenario, fails to detect landmines

in a different scenario, and, instead of a single sensor, multiple sensors of different types,

possibly with different detection accuracies can detect landmines with higher certainty [41].

Within this scenario, the central question that we intend to answer is: given an initial set of

reports from self-interested sensors about the features of a buried object, what is a suitable

set (number and type) of sensors to deploy over a certain time window to the object, so

that, over this time window, the fused information from the different sensors successively

reduces the uncertainty in determining the object’s type.

Let L be a set of objects. Each object has certain features that determine its type.

We assume that there are f different features and m different object types. Let Φ =

{φ1, φ2, ..., φf} denote the set of object features and Θ = {θ1, θ2, ..., θm} denote the set of
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object types. The features of an object l ∈ L is denoted by lΦ ⊆ Φ and its type is denoted

by lθ ∈ Θ. lΦ can be perceived, albeit with measurement errors, through sensors, and, our

objective is to determine lθ as accurately as possible from the perceived but noisy values

of lΦ. Let ∆(Θ) = {(δ(θ1), δ(θ2), ..., δ(θm)) : δ(θi) ∈ [0, 1],
∑m

i=1 δ(θi) = 1}, denote the set

of probability distributions over the different object types. For convenience of analysis, we

assume that when the actual type of object l, lθ = θj, its (scalar) type is expanded into a m-

dimensional probability vector using the function vec : Θ → [0, 1]m : vecj = 1, veci 6=j = 0,

which has 1 as its j-th component corresponding to l’s type θj and 0 for all other components.

Let A denote a set of agents (sensors) and At,l
rep ⊆ A denote the subset of agents that are

able to perceive the object l’s features on their sensors at time t. Based on the perceived

object features, agent a ∈ At,l
rep at time t reports a belief as a probability distribution over

the set of object types, which is denoted as ba,t,l ∈ ∆(Θ). The beliefs of all the agents

are combined into a composite belief, Bt,l = Agg
a∈At,l

rep
(ba,t,l), and let Θ̂t,l : Bt,l → ∆(Θ)

denote a function that computes a probability distribution over object types based on the

aggregated agent beliefs. Within this setting we formulate the object classification problem

as a decision making problem in the following manner: given an object l and an initial

aggregated belief Bt,l calculated from one or more agent reports for that object, determine

a set of additional agents (sensors) that need to be deployed at object l such that the

following constraint is satisfied:

min RMSE
(
Θ̂t,l, vec(lθ)

)
, for t = 1, 2, ....T , (6.1)

where T is the time window for classifying an object l and RMSE is the root mean square

error given by RMSE(x,y) = ||x−y||√
m

. In other words, at every time step t, the decision

maker tries to select a subset of agents such that the root mean square error (RMSE)

between the estimated type of object l and its actual type is successively minimized. The

major components of the object classification problem described above consists of two parts:

integrating the reports from the different sensors and making sensor deployment decisions

based on those reports so that the objective function given in Equation 6.1 is satisfied.

To address the first part, we have used distributed information aggregation with a multi-
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Figure 6.1: The different components of the prediction market for decision making
and the interactions between them.

agent prediction market, while for the latter we have used an expected utility maximizing

decision-making framework. A schematic showing the different components of our system

and their interactions is shown in Figure 6.1 and explained in the following sections.

6.1.1 Sensor Agents

As mentioned in Section 6.1, there is a set of robots in the scenario and each robot has

an on-board sensor for analyzing the objects in the scenario. Different robots can have

different types of sensors and sensors of the same type can have different degrees of accuracy

determined by their cost. Every sensor is associated with a software agent that runs on-

board the robot and performs calculations related to the data sensed by the robot’s sensor.

In the rest of this chapter, we have used the terms sensor and agent interchangeably. For

the ease of notation, we drop the subscript l corresponding to an object for the rest of this

section. When an object is within the sensing range of a sensor (agent) a at time t, the

Chapter4/Chapter4Figs/diagram.eps
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sensor observes the object’s features and its agent receives this observation in the form of an

information signal ga,t =< g1, ..., gf > that is drawn from the space of information signals

G ⊆ ∆(Θ). The conditional probability distribution of object type θj given an information

signal g ∈ G, P (θj |g) : G → [0, 1], is constructed using domain knowledge [24;73;74] within

a Bayesian network and is made available to each agent. Agent a then updates its belief

distribution ba,t using the following equation:

ba,t = wbel ·P(Θ|ga,t) + (1− wbel) ·B
t, (6.2)

where Bt is the belief value vector aggregated from all sensor reports.

Agent Rewards. Agents behave in a self-interested manner to ensure that they give

their ‘best’ report using their available resources including sensor, battery power, etc. An

agent a that submits a report at time t, uses its belief distribution ba,t to calculate the

report ra,t =< ra,t1 , ..., ra,tm >∈ ∆(Θ). An agent can have two strategies to make this report

- truthful or untruthful. If the agent is truthful, its report corresponds to its belief, i.e.,

ra,t = ba,t. But if it is untruthful, it deliberately reports an inaccurate belief to save its

belief computation costs. Each agent a can update its report ra,t within the time window

T by obtaining new measurements from the object and using Equation 6.2 to update its

belief. The report from an agent a at time t is analyzed by a human or agent expert [73] to

assign a weight wa,t depending on the current environment conditions and agent a’s sensor

type’s accuracy under those environment conditions (e.g., rainy weather reduces the weight

assigned to the measurement from an IR heat sensor, or, soil that is high in metal content

reduces the weight assigned to the measurement from an metal detector).

To motivate an agent to submit reports, an agent a gets an instantaneous reward,

ρa,t, from the market maker for the report ra,t it submits at time t, corresponding to its

instantaneous utility, which is given by the following equation:

ρa,t = V (nt′=1..t)− Ca(ra,t), (6.3)

where V (nt′=1..t) is the value for making a report with nt′=1..t being the number of times the

agent a submitted a report up to time t, and, Ca(ra,t) is the cost of making report ra,t for
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agent a. Ca(ra,t) is equal to the actual cost of resources used by the robot, such as expended

time, battery power, etc. if the agent uses truthful strategy, and it is equal to some value

cǫ << actual cost of resources if the agent uses untruthful strategy. We denote the agent’s

value for each report V (nt′=1..t) as a constant-valued function up to a certain threshold

and a linearly decreasing function thereafter, to de-incentivize agents from making a large

number of reports. Agent a’s value function is given by the following equation:

V (nt′=1..t) =





ν , nt′=1..t ≤ nthreshold

ν(nt′=1..t−nmax)
(nthreshold−nmax)

, otherwise

where ν ∈ Z+, is a constant value that a gets by submitting reports up to a threshold,

nthreshold is the threshold corresponding to the number of reports a can submit before its

report’s value starts decreasing, and, nmax is the maximum number of reports agent a can

submit before V becomes negative. Finally, to determine its strategy while submitting its

report, an agent selects the strategy that maximizes its expected utility obtained from its

cumulative reward given by Equation 6.3 plus an expected value of its final reward payment

if it continues making similar reports up to the object’s time window T .

6.1.2 Decision Maker Agent

The decision maker agent’s task is to use the composite belief about an object’s type,

Bt, given by the prediction market, and take actions to deploy additional robots(sensors)

based on the value of the objective function given in Equation 6.1. Let AC denote a

set of possible actions corresponding to deploying a certain number of robots, and D =

{d1, ...dh} : di ∈ Ac ⊆ AC denote the decision set of the decision maker, where h is the

number of decisions the decision maker has. The decision function of the decision maker

is given by dec : ∆(Θ) → D. Let udec
j ∈ Rm be the utility that the decision maker

receives by determining an object to be of type θj and let P (di|θj) be the probability that

the decision maker makes decision di ∈ D given object type θj. P (di|θj) and udec
j are

constructed using domain knowledge [24;73;74]. Given the aggregated belief distribution Bt
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at time t, the expected utility to the decision maker for taking decision di at time t is then

EUdec(di,B
t) =

∑m
j=1 P (di|θj) · u

dec
j · Bt. The decision that the decision maker takes at

time t, also called its decision rule, is the one that maximizes its expected utility and is

given by: dt = argmaxdi EUdec(di,B
t).

6.2 Prediction Market

A conventional prediction market uses the aggregated beliefs of the market’s participants or

traders about the outcome of a future event, to predict the event’s outcome. The outcome of

an event is represented as a binary variable (event happens/does not happen). The traders

observe information related to the event and report their beliefs, as probabilities about the

event’s outcome. The market maker aggregates the traders’ beliefs and uses a scoring rule

to determine a payment or payoff that will be received by each reporting trader. In our

multi-agent prediction market, traders correspond to sensor agents, the market maker agent

automates the calculations on behalf of the conventional market maker, and, an event in

the conventional market corresponds to identifying the type of a detected object. The time

window T over which an object is sensed is called the duration of the object in the market.

This time window is divided into discrete time steps, t = 1, 2, ..., T . During each time step,

each sensor agent observing the object submits a report about the object’s type to the

market maker agent. The market maker agent performs two functions with these reports.

First, at each time step t, it aggregates the agent reports into an aggregated belief about the

object, Bt ∈ ∆(Θ). Secondly, it calculates and distributes payments for the sensor agents.

It pays an immediate but nominal reward to each agent for its report at time step t using

Equation 6.3. Finally, at the end of the object’s time window T , the market maker also

gives a larger payoff to each agent that contributed towards classifying the object’s type.

The calculations and analysis related to these two functions of the market maker agent are

described in the following sections.

Final Payoff Calculation. The payoff calculation for a sensor agent is performed by

the market maker using a decision scoring rule at the end of the object’s time window. A
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decision scoring rule [12] is defined as any real valued function that takes the agents’ reported

beliefs, the realized outcome and the decisions made by the decision maker as input, and

produces a payoff for the agent for its reported beliefs, i.e. S : ∆(Θ) × Θ × D −→ R.

We design a scoring rule for decision making that is based on how much agent a’s final

report helped the decision maker to make the right decisions throughout the duration of

the prediction market and by how close the agent a’s final report is to actual object type.

Our proposed scoring rule for decision making given that object’s true type is θj is given in

Equation 6.4:

S(ra,tj , d[1:t], θj) = ̟(d[1:t], θj)log
(
ra,tj

)
, (6.4)

where, ra,tj is the reported belief that agent a submitted at time t for object type θj, d
[1:t] is

the set consisting of all the decisions that the decision maker took related to the object up

to the current time t, θj is the object’s true type that was revealed at the end the object’s

time window, log
(
ra,tj

)
measures the goodness of the report at time t relative to the true

object type θj, and, ̟(d[1:t], θj) is the weight, representing how good all the decisions the

decision maker took up to time t were compared to the true object type θj. ̟(d[1:t], θj)

is determined by the decision maker and made available to the agents through the market

maker. We assume that ̟(d[1:t], θj) =
∑t

i=1 P (di | θj)·u
dec
j , which gives the expected utility

of the decision maker agent for making decision i when the true type of the object is θj.

Aggregation. Since a sensor agent gets paid both through its immediate rewards for

making reports during the object’s time window and through the scoring rule function for

decision making at the end of the object’s time window, we define the total payment that

the agent has received by the end of the object’s time window as a payment function.

Definition 1. A function Ψ(ra,t, d[1:t], θj , n
t′=1..t) is called a payment function if each

agent a’s total received payment at the end of the object’s time window (when t = T ) is

Ψ(ra,t, d[1:t], θj , n
t′=1..t) =

t∑

k=1

ρa,k + S(ra,tj , d[1:t], θj) (6.5)

where ρa,k, S(ra,tj , d[1:t], θj) and their components are defined as in Equations 6.3 and 6.4.

Let Ψave denote a weighted average of the payment function in Equation 6.5 over all
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the reporting agents, using the report-weights assigned by the expert in Section 6.1.1, as

given below:

Ψave(rA
t
rep,t, d[1:t], θj, n

At
rep,t) =

t∑

k=1

∑

a∈At
rep

wa,kρa,k +̟(d[1:t], θj)
∑

a∈At
rep

wa,tlog
(
ra,tj

)
,

(6.6)

where At
rep is the subset of agents that are able to perceive object feature at time t and

wa,k is the weight assigned to agent a at time k by the expert. To calculate an aggregated

belief value in a prediction market, Hanson [47] used the generalized inverse function of the

scoring rule. Likewise, we calculate the aggregated belief for our market maker agent by

taking the generalized inverse of the average payment function given in Equation 6.6:

Bt
j = Agga∈At

rep
(ba,t) =

exp
(

Ψave−
∑t

k=1

∑

a∈At
rep

wa,kρa,k
)

̟(d[1:t],θj)

∑θm
θj=θ1

exp
(

Ψave−
∑t

k=1

∑

a∈At
rep

wa,kρa,k
)

̟(d[1:t],θj)

(6.7)

where Bt
j ∈ Bt is the j-th component of the aggregated belief for object type θj. The

aggregated belief vector, Bt, calculated by the market maker agent is sent to the decision

maker agent so that it can calculate its expected utility given in Section 6.1.2, as well as,

sent back to each sensor agent that reported the object’s type till time step t, so that the

agent can refine its future reports, if any, using this aggregate of the reports from other

agents. We also note that the aggregation mechanism used by our market maker is similar

to an LMSR technique which was shown to lead to Weak Perfect Bayesian Equilibrium

when, like in our setting, the information signals of the traders are independent conditional

on the state of the world [18].

6.3 Payment function: Properties and Character-

istics

In this section we first show that the payment function is proper, or incentive compatible.

Then we show that when the market maker uses this payment function to reward each agent
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for its reported beliefs, reporting beliefs truthfully is the optimal strategy for each agent.

We can characterize a proper payment function similar to a proper scoring rule.

Definition 2. A payment function Ψ is proper, or incentive compatible, if

Ψ(ba,t, d[1:t], θj , n
t′=1..t) ≥ Ψ(ra,t, d[1:t], θj , n

t′=1..t), (6.8)

∀ba,t, ra,t ∈ ∆(O). Ψ is strictly proper if the inequality in Equation 6.8 strict.

Payment functions can be shown to be proper by representing them using convex func-

tions [12]. To show that our payment function in Equation 6.5 is proper, we characterize it

in terms of a convex function, as shown below:

Theorem 2. A payment function Ψ is proper for decision making if

Ψ(ra,t, d[1:t], θj, n
t′=1..t) = G(ra,t)−G′(ra,t) · (ra,t) +

G′
i,j(r

a,t)

P (di|θj)
, (6.9)

where G(ra,t) is a convex function and G′(ra,t) is a subgradient of G at point ra,t and

P (di|θj) > 0.

Proof. Consider a payment function Ψ satisfying Equation 6.9. We will show that Ψ

must be proper for decision making. We will drop the agent and time subscripts in

this proof, and also we will write Ψ(r, d[1:t]) (or its element Ψ(rj , di|θj)) instead of full

Ψ(ra,t, d[1:t], θj, n
t′=1..t).

EU(b,b) =

h∑

i=1

m∑

j=1

P (di|θj)bjΨ(bj , di|θj) =
h∑

i=1

m∑

j=1

P (di)bj

(
G(b) −G′(b) · b+

G′
i,j(b)

P (di|θj)

)

= G(b)−G′(b) · b+

h∑

i=1

m∑

j=1

G′
i,j(b)bj = G(b) −G′(b) · b+G′(b) · b = G(b).

Since G is convex and G′ is its subgradient, we have

EU(b, r) =
h∑

i=1

m∑

j=1

P (di|θj)bjΨ(rj, di|θj) =
h∑

i=1

m∑

j=1

P (di|θj)bj

(
G(r)−G′(r) · r+

G′
i,j(r)

P (di|θj)

)

= G(r) −G′(r)(b − r) ≤ G(b) = EU(b,b).
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Thus, Ψ is a proper payment function for decision making. Ψ is strictly proper payment

function and the inequality is strict if G is a strictly convex function.

Proposition 2. The payment function given in Equation 6.5 is proper.

Proof. Let G(b) = EU(b,b) and G′
i,j(b) = P (di|θj)Ψ(b, d[1:t], θj, n

t′=1..t). Then the pay-

ment function can be written in the form given in Equation 6.9 from Theorem 2. Therefore,

the payment function Ψ given in Equation 6.5 is a proper payment function.

Ψ(b, d[1:t], θj , n
t′=1..t) =

h∑

i=1

m∑

j=1

P (di|θj)bjΨ(b, d[1:t], θj , n
t′=1..t)

− b ·
h∑

i=1

m∑

j=1

P (di|θj)Ψ(b, d[1:t], θj, n
t′=1..t) +

Ψ(b, d[1:t], θj , n
t′=1..t) · P (di|θj)

P (di|θj)

= Ψ(b, d[1:t], θj, n
t′=1..t).

Agent Reporting Strategy. Assume that agent a’s report at time t is its final report,

then its utility function can be written as ua,tj =
∑t

k=1 ρ
a,k + S(ra,tj , d[1:t], θj). Then, agent

a’s expected utility for object type θj given its reported belief for object type θj, r
a,t
j , and

its true belief about object type θj, b
a,t
j at time t is

EUa
j (r

a,t
j , ba,tj ) =

h∑

i=1

P (di|θj)b
a,t
j ua,tj =

h∑

i=1

P (di|θj)b
a,t
j

(
t∑

k=1

ρa,k + S(ra,tj , d[1:t], θj)

)
,

(6.10)

where P (di|θj) is the probability that the decision maker takes decision di when the object’s

type is θj.

Proposition 3. If agent a is paid according to Ψ, then it reports its beliefs about the object

types truthfully.

Proof. The proof is a straight forward solution to expected utility maximization problem.

Sensor agent a wants to maximize its expected utility function and solves the following
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program

argmax
r




h∑

i=1

m∑

j=1

P (di|θj)b
a,t
j

[
t∑

k=1

ρa,k +̟(d[1:t], θj)log
(
ra,tj

)]

 ,

s.t.
∑m

j=1 r
a,t
j = 1.

The Lagrangian is

L(r, λ) =




h∑

i=1

m∑

j=1

P (di|θj)b
a,t
j

[
t∑

k=1

ρa,k +̟(d[1:t], θj)log
(
ra,tj

)]



− λ




m∑

j=1

ra,tj − 1


 .

The first order conditions are

∂L

∂rj
=

h∑

i=1

m∑

j=1

P (di|θj)b
a,t
j

̟(d[1:t], θj)

ra,∗j

− λ = 0

⇒ ra,∗j =
̟(d[1:t], θj)b

a,t
j

∑h
i=1 P (di|θj)

λ

∂L

∂λ
= −

m∑

j=1

ra,tj + 1 = 0.

Substituting ra,∗j into the second equation above, we have

̟(d[1:t], θj)b
a,t
j

∑h
i=1 P (di|θj)

λ
= 1

λ = ̟(d[1:t], θj)

h∑

i=1

P (di|θj)

ra,∗j = ba,tj .
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selectStrategy()
foreach timestep t do

if object is within sensing range of a then
1. receive observation signals;
2. update belief using Eqn. 6.2;
3. calculate expected utility using Eqn. 6.10;
4. choose report ra,t that maximizes expected utility;
5. send ra,t to the decision maker;
6. get instantaneous reward, ρa,t;

end
else

continue sensing;
end
observe the decision dt made by the decision maker;
get the aggregated belief distribution Bt from the market maker agent;
if timestep t == object time window T then

get final payoff;
end

end
Algorithm 2: Algorithm used by agent a to select and submit reports

6.4 Experimental Results

We have conducted several experiments using our aggregation technique for decision-making

within a multi-sensor landmine detection scenario. Our environment contains different

buried objects, some of which are landmines. The true types of the objects are randomly

determined at the beginning of the simulation. Due to the scarcity of real data related to

landmine detection, we have used the domain knowledge that was reported in [24;73;74] to de-

termine object types, object features, sensor agents’ reporting costs, decision maker agent’s

decision set, decision maker agent’s utility of determining objects of different types, and,

to construct the probability distributions for P (θj |g) and P (di|θj). We report simulation

results for root mean squared error (RMSE) defined in Section 6.1 and also for number of

sensors over time, cost over object types, and average utility of the sensors over time.

Since the focus of our work is on the quality of information fusion, we will concentrate

on describing the results for one object. We assume that there are robots with three types of

sensors, MD (least operation cost, most noisy), IR (intermediate operation cost, moderately

noisy), and GPR (expensive operation cost, most accurate). Initially, the object is detected
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Decision P (di|θ0) P (di|θ1) P (di|θ2)

d1(MD) 0.6 0.4 0
d2(IR) 0.5 0.3 0.2
d3(GPR) 0.4 0.3 0.3
d4(MD,IR) 0.7 0.25 0.05
d5(MD,GPR) 0.6 0.35 0.05
d6(IR,GPR) 0.5 0.3 0.2
d7(MD,MD,IR) 0.8 0.2 0
d8(MD,MD,GPR) 0.75 0.2 0.05
d9(IR,IR,MD) 0.7 0.3 0
d10(IR,IR,GPR) 0.6 0.3 0.1
d11(GPR,GPR,MD) 0.6 0.3 0.1
d12(GPR,GPR,IR) 0.5 0.3 0.2
d13(MD,IR,GPR) 0.9 0.1 0

Table 6.2: P (di|θj) values used for our simulation experiments.

Features Meaning Possible values Sensors able to
provide readings

F1 Metallic content 0(low), 1(high) MD
F2 Area of the object 0(small), 1(large) MD, GPR, IR
F3 Depth of the object 0(shallow), 1(deep) MD, GPR
F4 Position of the sensor 0(near), 1(far) MD, GPR, IR

Table 6.3: Object features used in our simulation experiments.

using one MD sensor. Once the object is detected for the first time, the time window in the

prediction market for identifying the object’s type starts. The MD sensor sends its report to

the market maker in the prediction market and the decision maker makes its first decision

based on this one report. We assume that decision maker’s decision (sent to the robot/sensor

scheduling algorithm in Figure 6.1) is how many (0 − 3) and what type (MD,IR,GPR) of

sensors to send to the site of the detected object subsequently. We have considered a set

of 13 out of all the possible decisions under this setting as can be seen from Table 6.2.

From [74], we derive four object features given in Table 6.3, which are metallic content, area

of the object, depth of the object, and the position of the sensor. Combinations of the

values of these four features constitute the signal set G and at each time step, a sensor

perceiving the object receives a signal g ∈ G. The value of the signal also varies based on
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the robot/sensor’s current position relative to the object. We assume that the identification

of an object stops and the object type is revealed when either Bt
j ≥ 0.95, for any j, or after

10 time steps, or when there are no more sensors left. The default values for all domain

related parameters are shown in Table 6.3 and the probability values, P (θj |g) and P (di|θj),

are given in Tables 6.5 and 6.2 correspondingly. All of our results were averaged over 10

runs and the error bars indicate the standard deviation over the number of runs.

Name Value
Object types mine(θ0), metallic object(θ1)(non-mine),

non-metallic object(θ2)(non-mine)
Features metallic content, object’s area,

object’s depth, sensor’s position
Sensor types MD, IR, GPR
Max no. of sensors 10
Max no. of decisions 14
T (object identif-n window) 10
ν (agent’s value if 5
nt′=1..t ≤ nthreshold)
nmax (max no. of 20
reports before value
is negative)
nthreshold (no. of reports before 5
agent’s value < ν)

Table 6.4: Parameters used for our simulation experiments.

For our first group of experiments we analyze the performance of our technique w.r.t.

the variables in our model, such as wbel and time, and, w.r.t. to sensor and object types. We

assume that there are a total of 5 MD sensors, 3 IR sensors, and 2 GPR sensors available

to the decision maker for classifying this object. We observe that as more information gets

sensed for the object, the RMSE value, shown in Figure 6.2(a), decreases over time. It

takes on average 6 − 8 time steps to predict the object type with 95% or greater accuracy

depending on the object type and the value of wbel. We also observe that our model performs

the best with wbel = 0.5 (in Equation 6.2), when the agent equally incorporates its private

signal and also the market’s aggregated belief at each time step into its own belief update.

Figure 6.2(b) shows the average utility of the agents based on their type. We can see that
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g F1 F2 F3 F4 P (θ0|g) P (θ1|g) P (θ2|g)

g0 0 0 0 0 0.1 0.3 0.6
g1 0 0 0 1 0.15 0.35 0.5
g2 0 0 1 0 0.1 0.4 0.5
g3 0 0 1 1 0.15 0.4 0.45
g4 0 1 0 0 0.1 0.4 0.5
g5 0 1 0 1 0.15 0.4 0.45
g6 0 1 1 0 0.05 0.35 0.6
g7 0 1 1 1 0.1 0.4 0.5
g8 1 0 0 0 0.7 0.25 0.05
g9 1 0 0 1 0.6 0.3 0.1
g10 1 0 1 0 0.55 0.35 0.1
g11 1 0 1 1 0.5 0.35 0.15
g12 1 1 0 0 0.6 0.3 0.1
g13 1 1 0 1 0.5 0.35 0.15
g14 1 1 1 0 0.45 0.45 0.1
g15 1 1 1 1 0.4 0.4 0.2

Table 6.5: P (θ|g) values used for our simulation experiments.
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Figure 6.2: RMSE for different values of wbel(a), Average sensors’ utilities for different
sensor types(b).

MD sensors get more utility because their costs of calculating and submitting reports are

generally less, whereas GPR sensors get the least utility because they encounter the highest

cost. This result is further verified in Figure 6.3(a) where we can see the costs based on

sensor types and also based on object types. We observe that detecting a metallic object
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Figure 6.3: Cost for different object types(c), RMSE for sensors’ reports averaged
over sensor types(d).

that is not a mine has the highest cost. We posit that it is because both MD and IR sensors

can detect metallic content in the object and extra cost is due to the time and effort spent

differentiating metallic object from a mine. Although most of the mines are metallic [73;74],

we can see that the cost of detecting a mine and a non-metallic object are similar because we

require a prediction of at least 95%. Due to the sensitive nature of the landmine detection

problem, it is important to ensure that even a non-metallic object is not a mine even if we

encounter higher costs. However, despite MD’s high utility (Figure 6.2(b)) and low cost

(Figure 6.3(a)), its error of classifying the object type is the largest, as can be seen from

Figure 6.3(b).

In our next group of experiments we analyze the effect of the total number of sensors

that are available to the decision maker on the utility and the error using our prediction

market-based technique. We keep all the parameters fixed as described in Table 6.3 except

we vary the total number of sensors parameter. We also set the value of belief update weight

wbel = 0.5(used in Equation 6.2) and the object type to be a mine in these experiments.

Figures 6.4 and 6.5 show the average utilities and average RMSE for different types of

sensors. We observe that when there are diverse types of sensors available to the decision

maker, the sensors get higher utility and the RMSE of detecting the object’s type is lower

Chapter4/Chapter4Figs/cost.eps
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113

0 1 2 3 4
6

8

10

12

14

16

18

20

22

Number of Time Steps

A
v

e
ra

g
e

 U
ti

li
ty

MD

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

Number of Time Steps

A
v

e
ra

g
e

 U
ti

li
ty

MD

GPR

a b

0 1 2 3 4 5 6 7 8
−5

0

5

10

15

20

25

30

35

40

Number of Time Steps

A
v

e
ra

g
e

 U
ti

li
ty

MD

GPR

IR

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

Number of Time Steps

A
v

e
ra

g
e

 U
ti

li
ty

MD

GPR

IR

c d

Figure 6.4: Average sensors’ utilities in the environment with 5 MD sensors(a), 5 MD
and 1 GPR sensor(b), 5 MD, 1 IR, and 1 GPR sensors(c), 2 MD, 2 IR, and 2 GPR
sensors(d).

than when there are sensors of only one type available. For example, we can see that when

the decision maker has only a total of 5 MD sensors available to it, MD sensors receive

32% less utility than when there are a total of 2 MD, 2 IR, and 2 GPR sensors available

to the decision maker. We posit that this is because the sensors of different types sensor

the environment differently and produce different beliefs. Thus, in the environment where

there are sensors of different types, MD sensors take into account the beliefs of the sensors

of other types through the market price and they are able to update their beliefs to reflect

their private signals and also the beliefs of the sensors of other types. We also note that the

accuracy of predicting object’s type reaches only 80% when there are a total of 5 MD sensors
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Figure 6.5: Average RMSE in the environment with 5 MD sensors(a), 5 MD and
1 GPR sensor(b), 5 MD, 1 IR, and 1 GPR sensors(c), 2 MD, 2 IR, and 2 GPR
sensors(d).

available, but it reaches 94% when there are 2 MD, 2 IR, and 2 GPR sensors available. This

is because when there are sensors of different types in the environment there is more diverse

information available to the sensors, and also the decision maker has more opportunities to

make better decisions.

Compared Techniques. For comparing the performance of our prediction market

based object classification techniques, we have used two other well-known techniques for in-

formation fusion: (a) Dempster-Shafer (D-S) theory for landmine classification [73], where a

two-level approach based on belief functions is used. At the first level, the detected object is

classified according to its metal content. At the second level the chosen level of metal content
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is further analyzed to classify the object as a landmine or a friendly object. The belief up-

date of the sensors that we used for D-S method is the same one we have described in Section

6.1.1. (b) Distributed Data Fusion (DDF) [70], where sensor measurements are refined over

successive observations using a temporal, Bayesian inference-based, information filter. To

compare DDF with our prediction market-based technique, we replaced our belief aggrega-

tion mechanism given in Equation 6.7 with a DDF-based information filter. We compare our

techniques using some standard evaluation metrics from multi-sensor information fusion [80]:

root mean squared error (RMSE) defined as in Section 6.1, normed mean squared errors

(NMSE) calculated as: NMSEt(Θ̂t − vec(θj)) = 10 log10
1
m

∑m
j=1(Θ̂t

j ,vec(θj))
2

1
m(

∑m
j=1 vec(θj)

2)−( 1
m

∑m
j=1 vec(θj))

2 ,

and, the information gain, also known as Kullback-Leibler divergence and relative entropy,

calculated as: Dt
KL(Θ̂

t||vec(θj) =
∑m

j=1 Θ̂
t
jlog

(
Θ̂t

j

vec(θj)

)
.

Θ̂t was calculated using D-S, DDF, and our prediction market technique (Θ̂t = Bt).
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Figure 6.6: Comparison of our Prediction Market-based information aggregation with
Dempster-Shafer and Distributed Data Fusion Techniques using different metrics:
RMSE(a), NMSE(b), Information gain(c).

In Table 6.6, we show how the decision maker’s decisions using our prediction market

technique results in the deployment of different numbers and types of sensors over the

time window of the object. We report the results for the value of belief update weight

wbel = 0.5(used in Equation 6.2) while using our prediction market model, as well as using

D-S and DDF. We see that non-metallic object classification requires less number of sensors

as both MD and IR sensors can distinguish between metallic vs. non-metallic objects, and

Chapter4/Chapter4Figs/rmse_comparison.eps
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Object Time PM DDF D-S
type steps
Mine 1 1(1MD) 1(1MD) 1(1MD)

2 3(1MD,1IR) 3(1MD,1GPR) 3(1IR,1GPR)
3 4(1GPR) 5(1MD,1IR) 4(1MD)
4 5(1MD) 6(1IR) 5(1MD)
5 6(1MD) 7(1MD) 6(1IR)
6 7(1IR) 8(1MD) 7(1IR)
7 - 9(1IR) 8(1MD)

Metallic 1 1(1MD) 1(1MD) 1(1MD)
or 2 3(1MD,1IR) 4(1MD,1IR,1GPR) 3(1IR,1GPR)
Friendly 3 4(1GPR) 5(1MD) 4(1MD)
for D-S 4 5(1MD) 6(1IR) 5(1IR)

5 6(1IR) 7(1MD) 6(1IR)
6 7(1MD) 8(1IR) 7(1MD)
7 8(1IR) 9(1GPR) 8(1MD)
8 - 9(1MD) 8(1MD)

Non- 1 1(1MD) 1(1MD)
metallic 2 2(1MD) 2(1IR)

3 3(1IR) 3(1MD)
4 4(1MD) 4(1GPR)
5 5(1IR) 5(1MD)
6 6(1MD) 6(1IR)
7 - 7(1MD)

Table 6.6: Different number of sensors and the sensor types deployed over time by a
decision maker to classify different types of objects.

so, deploying just these two types of sensors can help to infer that the object is not a mine.

In contrast, metallic objects require more time to get classified as not being a mine because

more object features using all three sensor types need to be observed. We also observe

that on average our aggregation technique using prediction market deploys a total of 6− 8

sensors and detects the object type with at least 95% accuracy in 6−7 time steps, while the

next best compared DDF technique deploys a total of 7− 9 sensors and detects the object

type with at least 95% accuracy in 7− 8 time steps.

Our results shown in Figure 6.6(a) illustrate that the RMSE using our PM-based tech-

nique is below the RMSEs using D-S and DDF by an average of 8% and 5% respectively.

Figure 6.6(b) shows that the NMSE values using our PM-based technique is 18% and 23%
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Contr. Research Question Research Findings
4 How can prediction markets - With the design of the payment

be used for decision function that incentivizes truthful
making? revelation.

4 Is there an advantage of - Our results showed that PM-based
using prediction markets technique for sensor fusion results
for sensor fusion? in more accurate results than

existing methods.
4 Can a prediction market-based - Our simulation results show good

model for sensor fusion be results for a realistic scenario
effective in realistic settings in a sensor fusion setting.
given various limitations?

Table 6.7: Research findings for research questions in contribution 4 of this thesis.

less on average than D-S and DDF techniques respectively. Finally, in Figure 6.6(c) we

observe that the information gain for our PM-based technique is 12% and 17% more than

D-S and DDF methods respectively.

In summary, in this chapter of the thesis we described a sensor information aggregation

technique for object classification with a multi-agent prediction market and developed a

payment function used by the market maker to incentivize truthful revelation by each

agent. Our experimental results verify that, for identical data distributions and settings,

using our prediction market-based information aggregation technique increases the accuracy

of object classification favorably as compared to two other commonly used techniques. The

work presented in this part of the thesis was published in [57] and [58] and the overview of

our findings is shown in Table 6.7.
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Chapter 7

Weighted Bayesian Graphical

Games for Distributed Prediction

Markets

In the last part of this thesis we investigate a setting of several prediction markets

that are able to interact and influence each other’s aggregated market prices, and thus the

predictions about the outcome of future events. We call such setting distributed prediction

markets. Contrary to single prediction markets with confined traders, there are several

real-life instances where multiple prediction markets running simultaneously have similar

events. For example, both Intrade and Iowa Electronic Market ran prediction markets on

several events related to the 2012 U.S. Presidential elections. With such similar events across

markets, it is very likely that the expected outcomes (prices) of an event in one market will

influence the price of the same or similar event in a different market. There are several ways

in which prediction markets can influence each other. For example, traders participating in

prediction markets, just like in financial markets, are not locked in one prediction market;

they can trade in other markets. In such case, the market participants’ trading decisions
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maybe affected by their involvement in other related markets. Also, traders can observe the

fluctuations in the market prices of all related prediction markets, and thus their trading

decisions maybe influenced by that information. Such inter-market influence is frequently

observed in financial markets, which operate very similarly to prediction markets. For

example, after analyzing the data from the retail online brokerage, called eToro, Pan et al.

reported that the prices of securities in one market affect the prices of similar securities

in other markets and that social trading (when traders can see each others’ trades) results

in higher profits to the traders [88]. Financial market traders also tend to exhibit herding

behavior [3], where a trader tends to have the same beliefs as the majority of the traders in

its neighborhood. For example, a trader is more prone to riskier behavior (e.g., overreacting

to small price changes) when its peer traders exhibit risky behavior. Since a market maker

in a prediction market can be viewed as type of trader, they can also influence each other

in the similar manner. Therefore, it is important to consider the global setting, where the

aggregated market price in one prediction market is not only affected by the traders in that

market, but also by the expected outcome of similar events in other prediction markets.

Furthermore, we envisage that by taking into account the aggregated information of other

prediction markets, the aggregation of each prediction market can be improved. In this

chapter we attempt to make a first step into the study of distributed prediction markets

by investigating the effects of events across multiple prediction markets and analyze how

prices evolve due to such inter-market effects.

The main contributions made by this part of the thesis towards studying this problem

are the following: we describe a model of a distributed prediction market that comprises

multiple, parallel running prediction markets and uses a graphical structure between the

market makers of the different markets to represent inter-market influence. We then propose

a formal framework based on graphical games [64] called a Weighted Bayesian Graphical

Game (WBGG) to capture the interaction between multiple market makers and describe

an algorithm based on NashProp [79] to calculate an approximate Bayes-Nash equilibrium

efficiently for an n-agent WBGG. Finally, we conduct a number of experiments to analyze

the effect of different parameters in distributed prediction markets, and we find that when
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the size of the neighborhood is too small or too large, agents’ utilities decrease, and, that

agents using our algorithm in a distributed prediction market setting can outperform the

agents using a greedy strategy or the agents in the setting where prediction markets are

disjoint. To the best of our knowledge, this work represents the first attempt at studying

inter-market influences between similar events across multiple prediction markets through

strategic decision making by market makers. The research questions that we try to answer

in this contribution are reproduced below in Table 7.1.

Contr. Research Question Research Approach
5 How can we design a distributed Theoretical Examination

model of a prediction market Design and Development
to be used for decision making?

5 Is our distributed model of the prediction Theoretical Examination
market incentive compatible?

5 How does a distributed information Theoretical Examination
aggregation in a prediction market Empirical Analysis
compare to the centralized aggregation?

Table 7.1: Research questions that are addressed in contribution 5 of this thesis.

7.1 Distributed Prediction Markets

In this section we define and characterize distributed prediction markets. We consider n

prediction markets with each prediction market having one market maker that is responsible

for aggregating traders’ beliefs and setting the market price for its market. The events

across the prediction markets can be correlated and the market makers can interact with

each other if their prediction markets are running correlated events. Let N = {1, ..., n}

denote the set of market makers with i being the market maker for the i-th prediction

market. Let Γ = {Γ1, ...,Γn} denote a set of trading agents with Γi being the set of trading

agents in the i-th prediction market. Note that trading agents can participate in multiple

prediction markets simultaneously, i.e., Γi
⋂

Γj 6= ∅. Also let E = {E1, ..., En} denote the

set of events across all the prediction markets with Ei representing the set of events in the
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i-th prediction market∗. Finally, let P denote the trader population.

Next, we present two axioms that outline the behavior of market makers in the dis-

tributed prediction market setting. Consider two market makers i and j running events efi

and egj in their respective prediction markets. Let dfi,gj be a distance metric that measures

the similarity between the definitions of the two events efi and egj
†.

Definition 3. Related Event. An event efi is related to event egj if dfi,gj > ǫsim, where

ǫsim is a constant.

We denote the number of market makers that market maker i interacts with by ηi and

the influence of the market maker i on market maker j by ̟ij .

Axiom 1. Local interaction, Influence, Competition: If events efi and egj run by

market makers i and j correspondingly are related, then (1) market maker i interacts with

market maker j for determining the price of event efi , (2) 0 < ̟i,j < 1, and (3) market

makers i and j are competitive.

The first part of Axiom 1 determines the criterion for interaction between two market

makers. Market maker i interacts with another market maker j for updating event efi ’s

price, only if j’s market has an event that is related to event efi . The second part of Axiom

1 states that two market makers that have a pair of related events in their market have a

non-zero, positive influence on each other. Influence values are normalized to a range of 0

and 1. In a prediction market a market maker needs to be able to calculate the market price

(aggregate) and to stimulate the trading by always allowing traders to buy or sell securities.

If there are prediction markets with similar events, the traders may choose one prediction

market over the other, and market makers may end up competing over the traders just like

in financial markets [61]. The third part of Axiom 1 summarizes this competitive behavior

between market makers.

∗For legibility, we refer to the security corresponding to an event as the event itself.
†We assume that dfi,gj is based on the similarity between the textural description of the events

efi and egi and is provided externally to the market makers either by a human expert or by an
automated program.
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Axiom 2. Incentives: Let θi be the private information of market maker i denoted as

i’s type. Let ui(θi) be the utility that the market maker i gets for interacting with other

market makers when its type is θi. If dfi,gj > ǫsim, for any i, j, efi , egj , then ∃ θ′i such that

ui(θ
′
i) > ui(θi).

Finally, because market makers are competing with each other to attract traders on

related events, a market maker may have incentives to misreport its inside information about

aggregated prices when interacting with other market makers. In other words, market-

makers have preferences over their types to improve their utility as mentioned in Axiom

2.

a2 a3

a4 a5

a6

a1

P1

P2 P3

P5
P4

P6

h1=2

v2,1

v1,2

v1,3
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v4,2 v2,4
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v3,4
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v5,6
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v5,4

h3=4h2=3

h5=3

h6=2

h4=4

Figure 7.1: Example of the distributed prediction markets with 6 market makers
a1, ..., a6.

Definition 4. Distributed prediction market. A distributed prediction market is spec-

ified by the tuple M = 〈N,P,E,W〉 where N,P,E are as defined before and W = {̟ij :

i, j ∈ N}.

Figure 7.1 shows a diagram of a distributed prediction market with 6 market makers

a1, ..., a6, and corresponding trader populations P1, ..., P6. ηi denotes the number of agents

Chapter5/Chapter5Figs/diagram.eps
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ai interacts with. For the simplicity of the analysis in the rest of the chapter we assume

the setting where multiple market makers interact over one related event; but the results

are valid for multiple events. Since the decision making for inter-market influence is done

mainly by market makers, we abstract the operation of the trading agents and assume that

the intra-market price of each prediction market is updated by the market maker’s actions

in the locality of the current market price. Nevertheless, our proposed technique can be

combined easily with any other intra-market price update method such market scoring rules.

Since we are not focussing on the interactions of trading agents, we refer to market makers

as agents in the rest of the chapter.

7.1.1 Graphical Games for Distributed Prediction Markets

We propose a form of graphical games [64;79;100] as a formal model for the interaction between

market makers in a distributed prediction market. Graphical games are a compact repre-

sentation of complete information, one-shot, normal-form games that use graphical models

to represent the set of agents whose actions influence each others’ payoffs. A graphical game

representation is appropriate for modeling distributed prediction markets because they can

capture the interactions and influences between agents that are within a certain local neigh-

borhood of each other, unlike for example conventional Bayesian games. A graphical game

is described by an undirected graph G in which agents are identified with nodes, and the

edge between two nodes implies that the payoff of each of the two agents is dependent on

the other agent’s actions. Every graphical game has a Nash equilibrium and every game

can be represented as a graphical game by letting the game to be the complete graph.

Representation of graphical games is O(n2k) with k = maxiηi ≪ n, i.e. it is exponential in

the maximum degree of any node in the graph in comparison to normal form games which

representation is O(n2n), i.e. exponential in the number of agents [64;79].

The original work by Kearns et al. [64] considered acyclic graphical games of complete

information in which the underlying graph is a tree and presented a message-passing algo-

rithm, known as TreeProp or KLS algorithm, for computing approximate Nash equilibria

(NE) efficiently. The main idea of their algorithm is to view the game as being composed
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of several interacting local games and to exploit this locality by iteratively computing local

equilibria and combining them together to obtain global equilibria efficiently. Consequently,

in [79] the authors generalized the TreeProp algorithm to an arbitrary graph structure by

proposing a message-passing NashProp algorithm for complete information games which

involves an approach analogous to loopy belief propagation in graphical games. In other

work, Vickrey and Koller [104] presented multi-agent algorithms for solving graphical games

including hill-climbing, constraint satisfaction, and hybrid approaches. In [100] the authors

studied the graphical games with incomplete information with discrete and continuous types

and propose an extension to KLS algorithm to find Bayes-Nash equilibrium efficiently in a

tree structured graphical game. In games of incomplete information, the payoff to an agent

depends not only on the actions of the other agents but also on its own private type. Games

represented as sparsely connected graphs can be commonly be seen in various settings, for

example social networks, business relationships, financial markets, ad hoc networks of mo-

bile devices, etc. Kearns [63] has also argued that graphical games provide computational,

structural and interdisciplinary advantages as well.

We present an augmented form of the conventional graphical game to represent dis-

tributed prediction markets, called a Weighted Bayesian Graphical Game (WBGG). Unlike

previous works on graphical games, WBGG incorporates incomplete information, the influ-

ence of agents on each other as a pair of directed edges, and an arbitrary graphical structure

in one representation. We define a WBGG as follows:

Definition 5. A WBGG is a tuple (N,Θ, p,Ξ,W, A, u), where

- N = {1, ..., n} - set of market maker agents.

- Θ = Θ1 × ...×Θn, where Θi is the type space of agent i.

- p : Θ→ [0, 1] is the common prior over types.

- Ξ = {Ξ1, ...,Ξn} - set of directed edges, where Ξi = {ξij |ξij = (i, j), i, j ∈ N} with ξij

being an edge between agents i and j that are able to interact.
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- W - set of edge weights, where ̟ij ∈ W is the weight of the edge ξij between agents

i and j. ̟ij is determined by agent i and indicates the influence of agent i on agent

j. Given agent i’s type is θiopt, ̟ij is calculated as:

̟ij = αp(θjopt|θiopt) + (1− α)p(θjpes|θiopt), (7.1)

where θiopt ∈ Θi, θjopt, θjpes ∈ Θj and α is a confidence parameter representing i’s

belief that j is of the same type as itself.

- A = A1 × ...×An, where Ai is a finite set of actions available to agent i.

- ui : Θi∈N ×Ai∈N × T → R is the utility of agent i.

We assume that a set of similar events in a distributed prediction market have a duration

of T periods with t denoting the current time period. The agents that are able to interact

and therefore influence each other’s utilities define a neighborhood N, where N−i = {j|j ∈

N−i, ξij ∈ Ξi} and Ni = N−i ∪ {i}. We also assume that each agent can be one of two

possible types, i.e. if Θi is the type space of market maker agent i then Θi = {θiopt, θipes}

with θiopt implying that agent i is an optimistic market maker agent and θipes implying that

it is a pessimistic market maker agent.

Following Bayesian games [76] we use si(θiopt) to denote agent i’s mixed strategy over

Ai given its type is θiopt. Si is the set of all i’s mixed strategies. We use notation si for

unconditional mixed strategy of agent i. We use ANi
, sNi

, θNi
to denote the vector of actions,

strategies and types of all agents in the neighborhood of agent i, ̟N−i
denote the vector of

weights between agent i and all agents in the neighborhood of agent i, ai, si, θi to denote

the action, strategy and type of agent i, and AN−i
, sN−i

, θN−i
to denote actions, strategies

and types of all agents in the neighborhood of agent i except agent i itself.

Agent action set and utility function. For specifying the actions in agent i’s action

set Ai, we assume that agent i can have two possible actions in Ai - to raise the current

market price or to lower it by a certain amount that is specified by a jump parameter λt
i,

i.e., Ai = {λ
t
i,−λ

t
i}. To prevent arbitrary values of λt

i, we make λt
i inversely proportional
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to the market price πt
i , i.e. λt

i =
δti
πt
i

, where πt
i ∈ (ζ, 1] is the market price at time step t,

with ζ being a small positive constant corresponding to a very nominal price change, and

δti is a constant that determines the direction (up or down) of the price change ∗. The value

of δti is determined by agent i depending on its type and by observing the direction of the

market prices changes among its neighbors, as given by the following equations:

δti|θi=opt =





+ζ if

∑

j∈N−i
πt
j−πt−1

j

|N−i| ≥ 0,

−ζ otherwise

δti|θi=pes =





+ζ if ∀j ∈ N−i, π
t
j − πt−1

j ≥ 0,

−ζ if ∃j s.t. πt
j − πt−1

j < 0

If agent i is optimistic, it sets δti = +ζ if the average change in the market price of its

neighbors in the last time step has been non-negative, otherwise it sets δti = −ζi. Similarly,

if agent i is pessimistic, it sets δti = +ζi only if all of its neighbors increased their prices in

the last time step but sets δti = −ζi if at least one of its neighbors decreased its prices in

the last time step. †

The utility of agent i is calculated as:

uti(λi) = (T − t)e−λi(T−t), (7.2)

where t is the current time period (t = 0 at the start of the market). The above utility

equation guarantees that the utility of changing the market price (by taking an action in the

WBGG) is proportional to the remaining duration of the event in the market, and, more

exploration (large price changes) gives higher utility towards the beginning of the event,

but as the event nears its end and its price converges, large explorations are punished with

lower utility.

∗If πi crosses either its lower or upper bound due to action Ai, we set it back to its lower or
upper bound correspondingly.

†We drop superscript t from λt
i, δ

t
i , and πt

i henceforth, assuming it to be understood from the
context.
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Next, we define the agent’s expected utility in a weighted Bayesian graphical game as

EUi(si, sN−i
, θi) = (7.3)

∑

aNi
∈ANi

̟N−i
×
(
si(ai)sN−i

(AN−i
|θN−i

)ui(ANi
, θN−i

, θi)
)
,

where ̟N−i
=
∏

j∈N−i
̟j . Note that agent i has to consider every assignment of types to

the other agents in its neighborhood θN−i
and every action profile aNi

in order to calculate

the utility ui(aNi
, θN−i

, θi).

Definition 6. For agent i a strategy si is said to be best response (BR) in a WBGG for

type θi to θNi
, if

∀s′, EU(si, sN−i
, θi) ≥ EU(s′, sN−i

, θi) (7.4)

Definition 7. A strategy vector s is a Bayes-Nash Equilibrium (BNE) in a WBGG if

and only if every agent i is playing a best response to the others.

7.1.2 Computing Bayes-Nash Equilibrium

In this section we first present an abstract algorithm for computing BNE in a weighted

Bayesian graphical game of an arbitrary graphical structure. This algorithm is similar

to NashProp algorithm [79] that has been extended to incomplete games with an arbitrary

graphical structure, thus the definition of the expected utility and the best response have

been modified.

For now, we will not purposefully specify a certain representation and a certain im-

plementation. After proving the correctness of the abstract algorithm, we will fill in the

unspecified gaps. The abstract algorithm is basically a two-stage message passing algo-

rithm. In the first step, local optimal response is found for each agent, where each agent

calculates the optimal strategy given its neighbor’s strategies and sends it to its neighbors.

In the second step, global solution is constructed by eliminating inconsistent local optimal

response.

Let Di,j be the binary table indexed by all possible strategies of agent i and agent j
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that is sent from agent j to agent i. Let N
j
−i = (1, ...,m − 1) denote the neighbors of

agent j besides agent i. And let s
N

j
−i

= (s1, ..., sm−1) be the vector of mixed strategies of

agents in N
j
−i, called the witness to Di,j. Also let Pj be the projection set used to combine

information sent to agent j by its neighbors.

Theorem 3. Algorithm 3 computes BNE for an arbitrary graphical game and the tables

and witnesses calculated by it contain all possible BNE of the game.

Proof. The proof is a constructive argument of the workings of the algorithm. The stage 1

starts with an arbitrary node. Each node(agent) i sends each of its neighbors j a binary-

valued table Dj,i indexed by all possible strategies of agents j and i. For any pair of

strategies (sj, si) a table Dj,i is 1 if and only if there exists a BNE in which agent i plays

si when its neighboring agent j plays sj.

Consider a node i with neighbors j and N
j
−i = {1, ...,m − 1}. For induction, assume

that each h sends node i table Di,h. For any pair of strategies (sj , si) a table Dj,i is 1 if and

only if there exists a vector of strategies s
N

j
−i

= {s1, ..., sm−1} (witness) for N
j
−i such that:

1. Di,h(si, sh) = 1 ∀1 ≤ h ≤ m, and

2. si is the best-response to sh and sj.

There maybe more than one witness for Dj,i(sj, si) = 1. In addition to computing the

binary-valued tables (i.e. Dj,i), stage 1 of the algorithm also saves a list of witnesses for

each pair of strategies (sj, si) for which the table (Dj,i) is 1.

Now assume that Dj,i = 1 for some node i with neighbors j and N
j
−i for some witness

s
N

j
−i
. By construction, Di,h(si, sh) = 1 ∀h, and therefore by induction it must be that there

exists BNE in which h plays sh given that node i plays si and by construction of Dj,i si is

a best response of agent i and must be a part of BNE given that agent j plays sj.

Stage 1 converges because all tables begin filled with 1 entries and entries can only

change from 0 to 1, [79].

Stage 2 is a backtracking local assignment passing stage. It starts at an arbitrary node

j which can chose any sj for which P (sj) = 1 and any witness s
N

j
−i

from the associated

witness list. The node j then passes (sj, sh) to each its neighbors h telling h to play sh.
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Approximate-findBNE( )
Input: Game specification, ǫ approximation parameter, duration T
Output: ǫ-BNE of the game
Set t = 0; // initialize the prediction market’s time period
Set r = 0; // initialize the round for the first stage
Set D0

j,i(si, sj) = 1 ∀si, sj , ∀i, j; // initialize the table, where agent i and agent j are the
neighbors
foreach time period t ≤ T do

Stage 1 : Local Optima
while not converged do

foreach agent pair i, j do
foreach si, sj do

if Dr(sj , sh) = 1 ∀h AND sj is Best Response to s
N

j

−i

and si then

Dr+1(si, sj) = 1 ;
save s

N
j

−i

as a witness to Dr+1(si, sj) = 1;

end
else

Dr(sj , sh) = 0 ∀h;
end

end
send Dr+1 to all of its neighbors;

end
r = r + 1 ;

end
Stage 2 : Global Optima
foreach agent j do

if ∃ s
N

j

−i

s.t. D(sj , sh) = 1 ∀h ∈ N
j
−i then

Pj(sj) = 1;
end
else

Pj(sj) = 0;
end
// construct BNE - local search
1. Pick any agent j and any sj s.t. P (sj) = 1 with witness s

N
j

−i

;

2. Agent j assigns itself sj and each of its neighbors h it assigns sh;
3. Pick next node and assign of all its unassigned neighbors with its witness;
4. Backtrack if sj is not the Best Response when all of the agent j’s neighbors are
assigned;

end
t++;

end

Algorithm 3: Algorithm to find BNE in a WBGG.
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From the semantics of this message passing and backtracking step if sj turns out to not be

the best response when all of j’s neighbors are assigned strategies, it must be true that sj

is the best response to its neighbors for any node j.

7.1.3 Computing approximate Bayes-Nash Equilibrium

Algorithm 3 is incompletely specified because the representation and computation of the

step of passing tables in stage 1 is not completely specified. Since the strategy for an agent

is a mapping from types to the simplex of probability distributions over actions, it may

not be possible to represent tables D compactly or finitely for an arbitrary graphical game.

We now present an algorithm for computing approximate BNE in incomplete information

general structured graphical games with discrete types.

We adopt our abstract algorithm to compute ǫ-BNE in graphical games of an arbitrary

structure with discrete types. Our updated algorithm takes parameter ǫ as input, that

specifies how close of an approximation to BNE we want to get. The strategy space is

discretized analogous to [64], such that any agent can only choose actions with probabilities

that are multiples of τ , for some τ , instead of playing an arbitrary mixed strategy in

[0, 1]. For a graphical games that contains l actions the probability that each action will be

selected is a multiple of τ with the sum of all probabilities being 1. Then any agent i will

have O( 1
τ2(l−1) ) different strategies.

Approximate-findBNE( )
Input: Game specification and ǫ approximation parameter Output: ǫ-BNE of
the game
Run Algorithm 3 with two changes:
1. Only consider type-conditional discretized strategies
2. Change the requirement of best response to ǫ-best response.

Algorithm 4: Approximation algorithm to find BNE in a weighted graphical game.

Theorem 4. For any ǫ > 0, k = maxiηi ≪ n, and the discretization parameter τ ≤

ǫ
lk(4klog(k))

Algorithm 4 computes ǫ-BNE for an arbitrarily structured graphical game with

incomplete information.
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Proof. In [100] it was shown that if the mixed strategy space for every type is restricted to

multiples of τ , then for any ǫ and τ ≤ ǫ
lk(4klog(k))

there exists ǫ-BNE in tree structured

graphical games. Their result however does not depend on the underlying graph being a

tree, and therefore holds for arbitrary graphs also. The witness lists and tables of Algorithm

4 represent all ǫ-BNE. Therefore, Algorithm 4 is guaranteed to converge to an ǫ-BNE.

Theorem 5. For arbitrary structured graphical games with discrete types stage 1 in Algo-

rithm 4 converges in at most nk
τ4(l−1) rounds.

Proof. The total number of entries in each table D is O( 1
τ2∗2(l−1) ) since the number of

entries is determined by the number of joint strategies of two agents with two possible

types. Every round r before the algorithm converges has to change at least one entry in

one table. Therefore, stage 1 of the Algorithm 4 has to converge in at most nk
τ4(l−1) rounds,

where k is the maximum degree of any node in the graph.

Since our work in this chapter extends the existing NashProp algorithm, we don’t ex-

pect scalability and complexity to be significantly different from [79]. Instead we report the

dynamics in market maker’s prices and utilities which demonstrate the behavior, important

features and successful operation of our model in a distributed prediction markets setting.

Proposition 4. Algorithm 4 applied to a distributed prediction market problem that uses

utility function given in Equation 7.2 encourages truthful revelation.

Proof. For the simplicity of notation we show the proof for two agents i and j, with two

possible types θiopt and θipes, but the proof is extendable to multiple agents with several

possible types. We want to show that the expected utility that the agent i gets when

choosing action Atrue
i truthfully is greater or equal to the expected utility it gets when it

chooses action Afalse
i , i.e. EU true

i ≥ EUfalse
i . Since there are only two possible actions

Ai = {λi,−λi}, misreporting would mean that when Algorithm 1 recommends agent i to

take action Ai = λi, it takes action −λi instead; i.e. Afalse
i = −Atrue

i . From definition of
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Name Symbol Value
Number of market makers N 20
Market price’s jump scaling parm. ζ 0.01
Confidence that other market maker α 0.5
is of the same type
Prob. distr. over types p U [0, 1]
Discretization parameter τ 0.3
Approximation value ǫ 0.05
Number of actions li∀i 2
Number of neighbors ηi∀i 8

Table 7.2: Parameters used for our simulation experiments.

utility given in Equation 7.2 we can express the utility as ui(λi) = (T − t)e−|Ai|(T−t). Now,

EU true
i = αp(θjopt|θiopt)(T − t)

(
e−|Atrue

i |(T−t)
)

+ (1− α)p(θjpes|θiopt)(T − t)
(
e−|Atrue

i |(T−t)
)

and EUfalse
i = αp(θjopt|θiopt)(T − t)

(
e−|−Atrue

i |(T−t)
)

+ (1− α)p(θjpes|θiopt)(T − t)
(
e−|−Atrue

i |(T−t)
)
.

Since |Atrue
i | = | − Atrue

i |, we get EU true
i = EUfalse

i . Therefore, agent i does not have any

incentive to reveal its action untruthfully.

7.2 Experimental Results

We conduct several simulations using our algorithm for a distributed prediction market

setting to observe and verify the effect of different parameters on the evolution of market

maker utilities and prices in the markets. To make it easier to analyze the effect of different

parameters, in all of our simulations we assume that the number of neighbors is fixed for

each market maker. For each experiment we vary one set of parameters as specified in each

set of experiments and we hold the other parameters fixed at their default values given in

Table 7.2.

For our first set of experiments, we vary p, the probability distribution over types.
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Figure 7.2: The average cumulative utility(a) and the average market price(b) for
different types of market makers.

We allow for three types of market maker populations: mostly pessimistic, equal number

of optimistic and pessimistic, and optimistic. Figure 7.2(a) shows the cumulative utility

averaged over all 20 market makers, where the market maker population is either 80%

pessimistic, 50% pessimistic and 50% optimistic, and 80% optimistic. The type of each

market maker is determined at the beginning of the prediction market and it does not

change over time. We observe that when the majority of market makers is pessimistic the

average utility is 23% less than when the majority of market makers is optimistic. This is

because optimistic market makers’ strategy selection is affected by the average strategies

of their neighbors, whereas pessimistic market makers’ strategy selection is affected by

just one other market maker choosing a pessimistic strategy. In Figure 7.2(b) we continue

analyzing the effect of different market makers’ types by looking at the average market

price produced by the optimistic and the pessimistic market makers for the outcome of the

event that happens (market price = 1). We note that optimistic market makers are able

to predict a more accurate market price as opposed to the pessimistic ones. Again, this is

due to the optimistic market makers taking into account the average strategies of all the

market makers in their neighborhood. However, in real prediction market, there may be

a mix of different types of market makers. Therefore, for the default setting for the type

distribution we assume that there is about the same number of optimistic market makers

Chapter5/Chapter5Figs/days_vs_utility-Types.eps
Chapter5/Chapter5Figs/days_vs_price-Types.eps
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as pessimistic ones.
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Figure 7.3: The average cumulative utility(a) and the market price(b) of one market
maker using Algorithm 4, Greedy, or Influence-less markets strategies.

Next, we compare our Algorithm 4 to two other strategies:

• Greedy strategy: In this setting, each agent i chooses λi that maximizes immediate

utility given in Equation 7.2. This strategy does not consider the types of the market

makers.

• Influence-less markets: In this setting, we consider conventional single, isolated

markets where the market price is determined by the market maker based on that

market’s traders’ decisions only. This setting is the completely opposite scenario of a

distributed prediction market and it captures the effect of inter-market influences on

the market makers’ utilities and prices. To abstract the details of the traders’ deci-

sions, we have assumed that each agent i uses a derivative follower (DF) [40] strategy

where it keeps on increasing its market price πi by δi until its immediate utility ui

starts decreasing, at that time agent i starts decreasing πi by δi. This strategy does

not consider the types or the interaction among market makers.

Figures 7.3 (a) and (b) show the utilities and market prices for the market makers using

Chapter5/Chapter5Figs/days_vs_utility-Comparison.eps
Chapter5/Chapter5Figs/days_vs_price-Comparison.eps
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our proposed algorithm, greedy strategy, or influence-less markets strategy correspondingly.

We observe that market makers using our Algorithm 4 obtain 56% more utility than the

market makers following the next best greedy strategy. We also note that market prices

fluctuate more when market makers use a greedy strategy or are in influence-less markets

than when they use WBGG because greedy and influence-less market strategies are myopic

and do not consider market makers’ types. Finally, this result provides an important justi-

fication of our work in this part of the thesis - that, as compared to influence-less markets

with isolated market makers, interacting market makers in a distributed prediction market

are able to improve their utilities and predict prices with less fluctuations.

For our next set of experiments we analyze the effect of the α parameter which is used

in Equation 7.1. This parameter is the confidence parameter representing market maker

agent i’s belief that the other market maker in its neighborhood is of the same type as

itself. We assume that α is the same for all of market maker agent i’s neighbors and it

is set at the beginning of the market. We can see from Figure 7.4(a) that for the setting

where the market makers are of mixed types (about half is pessimistic and the other half

is optimistic), the market makers get the highest utility when α = 0.5. However, when

market makers are confident that all of their neighbors are either of the opposite type or of

the same type, they get 32% − 33% less utility correspondingly.

Finally, we report the results for different number of market makers and different number

of neighbors of each market maker. Figure 7.4(b) shows the cumulative utility averaged over

neighboring market makers for a setting with 20 market makers. We can see that when

market makers have a small number of neighbors then they get less utility than when the

number of neighbors is larger, up to a certain point. For example, market makers with

2 neighbors (10% of the total number of market makers) get 29% less utility than when

market makers have 8 neighbors (40% of the total number of market makers). However,

this relationship is not linear, i.e. when market makers have 12 neighbors (60% of the

total number of market makers) they get 19% less utility than when market makers have

8 neighbors. We posit that increasing the number of neighbors up to a point translates

to an increased utility because the market maker can improve its decision based on the
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Figure 7.4: The average cumulative utility for different values of α(a), the cumulative
utility averaged over all neighbors for different number of neighbors, i.e. 2, 5, 8, and
12(b).

information of its neighbors, but having too many neighbors may end up creating more

noisy information for the market maker.

We also conduct experiments showing the scalability of our Algorithm 4 with respect

to the number of market makers, and our results show that our algorithm scales linearly

with the number of market makers and that the running time increases with the increased

number of neighbors.

In summary, in this chapter we proposed a novel distributed prediction markets setting

where the aggregated (market) price of a security of an event in one prediction market is

affected dynamically by the prices of securities of similar events in other, simultaneously

running prediction markets. Our proposed formal framework, called a weighted Bayesian

graphical game (WBGG), is able to capture the local interactions between multiple market

makers and uses the Bayes-Nash equilibrium concept to find a suitable action for each

market maker in WBGG. Our experimental results showed our algorithm results in higher

utilities and more accurate prices in comparison to a greedy strategy or a disjoint prediction

markets. The work presented in this part of the thesis was published in [59] and the overview

of our findings is shown in Table 7.3.

Chapter5/Chapter5Figs/days_vs_utility-Influence.eps
Chapter5/Chapter5Figs/days_vs_utility-Neighbors.eps
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Contr. Research Question Research Findings
5 How can we design a distributed - We use a model based on a

model of a prediction market graphical game that allows
to be used for decision making? to model interactions of

multiple prediction markets.
5 Is our distributed model of the - We prove that our model

prediction market encourages truthful revelation.
incentive-compatible?

5 How does a distributed - Our experiments show that market
information aggregation in a makers get higher utilities and
prediction market compare achieve better accuracy in a
to the centralized aggregation? distributed setting.

Table 7.3: Research findings for research questions in contribution 5 of this thesis.
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Chapter 8

Conclusions

This thesis makes significant contributions to an analysis of prediction markets using a multi-

agent system, game theory, and Boolean network-based tools and to using the generated

knowledge for the design of information aggregation systems that can be used for decision

making and in a distributed scenarios. In this chapter we summarize our contributions

and identify future directions for our research. We also identify general open problems in

prediction markets.

8.1 Lessons Learned and Future Directions

This thesis makes five distinct contributions, which are summarized below along with future

research directions for each contribution:

1. The first contribution is a multi-agent system that is used to analyze the effect of

information on the prediction market performance. It helps answering the ques-

tion of how the changes in different aspects of information affect the performance

of prediction markets. Our research showed that incorporating information related

parameters into prediction market models can give insights into realistic aspects of

prediction market’s performance. For example, we verified that when information

arrives more frequently prices fluctuate less and utilities increase, when information

is more reliable prices are more stable and utilities are higher, and when information
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is easily available prices are driven down and utilities are higher. A direction worth

future investigation is how to incorporate psychological and sociological data about

humans’ beliefs and their private information. A possible way to address this issue is

to run a controlled real prediction market experiment to obtain human trader’s data,

and then use this data to further test the effect of information on prediction markets.

We are also interested in introducing and investigating correlations between events

in a prediction market.

2. The second contribution is a correlated equilibrium strategy for the traders within a

partially observable stochastic game-based model that incentivizes traders to reveal

their true beliefs and allows them to achieve higher payoffs than existing trading

strategies. This study uses the real data to compare the performance of the multi-

agent system based prediction market to the real prediction markets. From this

contribution we learned that accounting for the uncertainty of the environment leads

to a more precise prediction market model. We observed that game-theoretic corre-

lated equilibrium strategy improves the accuracy of the market prices and the utility

of the trading agents. Also, while using real data we were able to show that trading

agents using correlated equilibrium trading strategy can avoid inefficient human trad-

ing decisions that might result in a very large loss. Our work uses the Logarithmic

Market Scoring Rule (LMSR) to calculate the market price. However, LMSR has

been recently shown to have some drawbacks, for example, the market maker can

run at a loss which can be large and a single parameter b controls the loss bound,

the level of liquidity, and the rate of adaptability to market shocks [83]. Also, in our

work, we used the correlated equilibrium to determine the traders’ or agents’ selected

strategies. Although the CE finds a stable strategy for each agent, that strategy may

not satisfy certain desirable properties such as maximizing the joint utility received

by the agents. Besides, the CE strategy also relies on a third party, the market-maker

in the prediction market, to calculate the probabilities with which the agents could

play different strategies. An alternate solution concept to the CE that could guar-

antee desirable properties such as maximizing joint utilities to agents, guaranteeing
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a minimum utility to each agent, etc., and reducing or removing the reliance on the

market maker to calculate the CE would be worth future investigation. Another

future direction worthy of investigation is to incorporate liquidity-sensitive market-

maker that has been proposed very recently [87] for aggregating the traders’ or agents’

information. We also plan to study a technique for choosing the best equilibrium

efficiently, as it currently lies outside of the scope of this project.

3. The third contribution is a study of the dynamics of prediction markets under various

conditions using Boolean Network techniques. The results of this study show how

various market parameters affect the prediction market’s behavior. An interesting

lesson that we learned from this study is that using simple boolean rules to model

belief update of the traders does not negatively affect the quality of the aggregated

market price. We also observed that the market price can stabilize with the presence

of noise and also with increasing number of traders. In this work we assumed the

simple synchronous information transmission since our goal was to study the overall

dynamics of the market. Future directions to extensively study this aspect include

incorporating asynchronous information transmission that can be applied in a deter-

ministic or stochastic way and studying different belief update strategies based on

game theory.

4. The fourth contribution is a system that uses prediction markets for decision making.

This system is applied to sensor fusion domain and is tested in the landmine detection

scenario. In this study we showed that a special payment function can be used to

incentivize the sensor agents to report their observations truthfully. We also observed

that having different types of sensors participate in a simulated prediction market can

lead to better decision making and improve object type identification accuracy. Future

directions to extend our model could be to implement the proposed techniques on

physical robotic and sensor systems, minimizing the detection time while guaranteeing

the most accurate detection, integrating the decision making problem and scheduling

problem facing the decision maker, and achieving budget balance in our proposed
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mechanism.

5. The fifth contribution is a distributed-computational model of a decentralized infor-

mation aggregation between multiple prediction markets that are able to interact and

affect each other’s aggregated market prices. This study not only models important

and realistic distributed prediction markets scenario, but also provides an algorithm to

be used by agents in the distributed prediction market scenario that outperforms the

greedy strategy and the agents in the setting where prediction markets are disjoint.

In this contribution we found that prediction markets that are running similar events

can affect each other’s aggregated market prices. We learned that the game-theoretic

Bayes-Nash based algorithm improves the accuracy of the prediction markets and

also provides higher utilities to the traders in such inter-markets in comparison with

disjoint prediction markets. While our model studies the interaction among multi-

ple market makers, it implicitly incorporates influences between traders in multiple

prediction markets through the market maker’s prices. In the future, we plan to ex-

tend our framework to incorporate traders across different prediction markets. We

also plan to extend our algorithm for distributed prediction markets setting to study

stochastic graphical games which can model uncertainty as well as some repeated

games.

8.2 Open Problems

We finally conclude with some more general open problems that are worthy of investigation

to get a better understanding of prediction markets. Market scoring rules and automated

market makers in prediction markets have specifically generated a lot of research in the

past few years. However, there are still many computational challenges in using automated

market makers, especially in combinatorial prediction markets. There has also been a

lot of recent progress made in the direction of analyzing agents’ behaviors in prediction

markets, with one of the biggest research concentrations being on incentive compatibility

and manipulation. However, the full impact of these aspects can be understood with more
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work on non-myopic and non-risk-neutral agent behavior. There are a lot of open and

interesting problems to be solved in using prediction markets for decision making, especially

in generating incentive-compatible decision markets with many agents. Below we present a

few specific open research questions related to prediction markets.

Open Questions:

• Traders:

- What is the minimum number of traders that can guarantee a reasonably accurate

prediction?

- How does group trading affect the accuracy of the aggregated market price?

- What is a suitable strategy for a trading agent to choose its bets in a combinatorial

prediction market that are perhaps subject to constraints or penalties on the number

or complexity of bids?

• Prediction Market:

- What is a suitable model, e.g. filtering, for aggregating traders’ prices under noisy

conditions?

- What are the constraints on accurate predictions (type of market, type of event,

type of trader, etc.) in a prediction market?

- How can the aggregation computation be done in a distributed manner without

using a centralized entity like the market maker?

We envisage that with more research and a better understanding of prediction markets,

they can be used as an effective paradigm to address issues and challenges in several appli-

cations of distributed intelligence. With the recent prominence of large scale data and large

scale networks, prediction markets can be used as an important tool in analyzing “big data”

and in harnessing human knowledge for the purpose of making better decisions. Prediction

markets can also be combined with social networks or sensor networks to create a large

volume market that can be used to aggregate the large volume of data effectively. Finally,

the frameworks and algorithms that we developed in this thesis can be extended beyond

prediction markets. We foresee that our methods can also be applied to social media and
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complex, large-scale networks.
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