
Forgery and Subkey Recovery on CAESAR
Candidate iFeed

Willem Schroé1,2, Bart Mennink1,2(B), Elena Andreeva1,2, and Bart Preneel1,2

1 Department of Electrical Engineering, ESAT/COSIC,
KU Leuven, Leuven, Belgium

{bart.mennink,elena.andreeva,
bart.preneel}@esat.kuleuven.be

2 iMinds, Ghent, Belgium

Abstract. iFeed is a blockcipher-based authenticated encryption design
by Zhang, Wu, Sui, and Wang and a first round candidate to the
CAESAR competition. iFeed is claimed to achieve confidentiality and
authenticity in the nonce-respecting setting, and confidentiality in the
nonce-reuse setting. Recently, Chakraborti et al. published forgeries on
iFeed in the RUP and nonce-reuse settings. The latter attacks, however,
do not invalidate the iFeed designers’ security claims. In this work, we
consider the security of iFeed in the nonce-respecting setting, and show
that a valid forgery can be constructed after only one encryption query.
Even more, the forgery leaks both subkeys EK(0128) and EK(PMN ‖1),
where K is the secret key and PMN the nonce used for the authenticated
encryption. Furthermore, we show how at the price of just one additional
forgery one can learn EK(P ∗) for any freely chosen plaintext P ∗. These
design weaknesses allow one to decrypt earlier iFeed encryptions under
the respective nonces, breaking the forward secrecy of iFeed, and leading
to a total security compromise of the iFeed design.

Keywords: CAESAR · iFeed · Forgery · Subkey recovery · Breaking
forward secrecy

1 Introduction

The CAESAR [3] competition was launched in 2014 to select a portfolio of rec-
ommended robust and efficient authenticated encryption algorithms by 2018.
CAESAR is much in the spirit of the Advanced Encryption Standard [1] (AES)
and SHA-3 hash [5] algorithm competitions, which were organized by the Amer-
ican institute of standards and technology (NIST). The main goal of this type
of competitions is that they allow for public discussions, analysis, and there-
fore more comprehensive, secure and collectively agreed upon choices of crypto-
graphic algorithms. In March, 2014, CAESAR received 57 submissions. In July
2015, 30 of them have advanced to the second round.

In this work we analyze the security of the first round CAESAR submis-
sion iFeed[AES] v1 – iFeed for short – by Zhang et al. [6]. iFeed is an AES
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 197–204, 2016.
DOI: 10.1007/978-3-319-31301-6 11

198 W. Schroé et al.

blockcipher-based design which combines PMAC-style authentication with ded-
icated encryption. Below we will treat iFeed generically, and consider it to be
based on an arbitrary blockcipher E. iFeed processes the data in an on-line man-
ner and it is inverse-free, meaning that both encryption and decryption only use
the block cipher in forward direction. The design is inherently nonce-based: the
authors claim and prove confidentiality and authenticity of iFeed in a setting
where the adversary is not allowed to make repeated queries under the same
nonce. We refer to this setting and type of adversary as nonce-respecting. The
design is moreover claimed to achieve confidentiality under some conditions also
in the nonce-reuse setting.

iFeed uses the secret key K to derive two subkeys: a nonce-independent
Z0 = EK(0128) and its multiples Zi = 2i · Z0, and a nonce-dependent U =
EK(PMN ‖10∗) where PMN is a variable public message number (nonce) and
10∗ is the padding to a full 128-bit block with one 1 bit and appropriate num-
ber of 0 bits. The processing of the associated data and of the message are done
independently of each other, both resulting in a subtag. The XOR of the two sub-
tags produces the final tag. The general encryption and decryption procedures
of iFeed are given in Figs. 1 and 2, respectively. The processing of the associated
data is distinctively independent of the nonce: the inputs to the blockcipher E
are masked only using Zi. The data is encrypted using both the Zi and U . One
design choice of iFeed is that the computation of the subtags is performed using
the same subkeys: Z1 or Z2 for the associated data, and Z1 ⊕ U and Z2 ⊕ U for
the plaintext.1

Chakraborti et al. [4] recently presented forgeries on iFeed both in the nonce-
reuse setting, and in a setting where the adversary is granted access to ciphertext
decryptions irrespective of the verification result, also known as the release of
unverified plaintext (RUP) setting from [2]. The iFeed designers, however, do not
claim any security against these properties, and the attacks from Chakraborti
et al. do not invalidate the security of iFeed.

Our Contribution. In this paper, we present a simple forgery attack on iFeed
in the nonce-respecting model. Our attack exploits the unfortunate repetition of
the Z1 (respectively Z2) subkeys at the finalization of the associated data and
plaintext. Our attack on iFeed leads to a total security break and also invalidates
the security claims and proofs posited by the designers of iFeed. The attack
uses only one encryption query with no associated data and an arbitrary n-bit
(or single block) plaintext. Then, we show how to construct a valid forgery with
n-bit associated data and 2n-bit ciphertext.

As a consequence of our attack the values of the subkeys Z0 and U are
also leaked. These subkeys are valuable information as they can be used to
recover plaintext from old encryptions, even though they were performed under
a different nonce. Namely, we show how at the price of just a single additional
forgery, one learns EK(P ∗) for any plaintext P ∗. More concretely, the extra
forgery allows an attacker to learn the U ′ = EK(PMN ′‖10∗) values for some
1 Z1 is used if the last associated data block is fractional; Z2 is used otherwise. Simi-

larly for Z1 ⊕ U and Z2 ⊕ U with respect to the last plaintext block.

Forgery and Subkey Recovery on CAESAR Candidate iFeed 199

earlier used nonce PMN ′. Once U ′ is obtained, the ciphertext with PMN ′ for
any P ∗ can be retrieved: the inputs to EK in the decryption algorithm can
be computed offline (using Zi, U ′, and the ciphertext), and forgeries can be
performed to find out the plaintexts one by one.

Our forgeries not only invalidate the security claim and proof of iFeed [6],
but they also break its forward secrecy. To gain a better understanding of the
presented iFeed security weaknesses, we conclude by revisiting and pointing out
the errata in the security proof of iFeed.

Outline. We introduce iFeed in Sect. 2. Our forgery and subkey recovery attack
on iFeed is given in Sect. 3. Next, we show how the subkeys can be used to learn
EK(P ∗) for any P ∗ in Sect. 4. We elaborate on the key properties that caused
this attack to work and look back at the proof of iFeed in Sect. 5. The paper is
concluded in Sect. 6.

2 iFeed

iFeed [6] is a blockcipher-based authenticated encryption scheme. It is originally
specified using the AES-128 blockcipher. Our attacks are generic and do not
exploit any weakness of AES-128. Therefore, from now we simply describe iFeed
based on any blockcipher E : {0, 1}n × {0, 1}n → {0, 1}n, where n = 128. iFeed
is on-line, it only uses E in forward direction (inverse-free), and it allows for
parallelized encryption.

The scheme is keyed via a key K ∈ {0, 1}n. It operates on public message
numbers PMN of size between 1 and 127 bits, associated data A in {0, 1}≤|A|max ,
and plaintexts/ciphertexts P/C from {0, 1}≤|P |max , where |A|max and |P |max

are some large values which sum to at most 271 − 512. The tag T is of size
32 ≤ τ ≤ n = 128. In the nonce-respecting setting, the public message number
is required to be unique for every query to the iFeed encryption function E . The
iFeed encryption E and decryption D functions are depicted in Figs. 1 and 2,
respectively. Here, Pad(X) equals X if |X| = n and X‖10n−1−|X| if |X| < n,
and the usage of Z1 versus Z2 (resp. Z ′

1 versus Z ′
2) depends on the last block of

A (resp. P): Z2/Z
′
2 is used if the last data block is of size n bits, Z1/Z

′
1 is used if

the last block is fractional. We remark that our attacks use integral blocks only,
for which Pad(X) = X and Z2 is used instead of Z1.

For the presentation of the attacks, however, it suffices to only discuss a
simplified version of iFeed. In more detail, in our attacks we will only query E
on input of n-bit plaintext and no associated data. We also make the forgery
queries to D for either n or 2n-bit associated data and 2n-bit ciphertext. All
queries consider 127-bit PMN and tag size τ = n = 128. In Algorithms 1 and 2,
we give a formal description of iFeed’s E and D, respectively, for the input sizes
relevant for our attacks. We refer to [6] for the general description of iFeed, and
stress that our attacks easily translate to the general case.

The iFeed mode makes use of secret subkey Z0 = EK(0128) which is used to
derive additional subkeys Zi = 2 · Zi−1. Here, the multiplication is performed

200 W. Schroé et al.

Fig. 1. iFeed encryption E . All wires represent n-bit values. The output is the ciphertext
C1 · · ·C� and the tag T = leftτ (TA ⊕ C�+1)

Fig. 2. iFeed decryption D. All wires represent n-bit values. The output is the plaintext
P1 · · ·P� when T is leftτ (TA ⊕ C�+1)

Forgery and Subkey Recovery on CAESAR Candidate iFeed 201

Algorithm 1. iFeed E for |PMN | = 127, |A| = 0, and |P1| = n

1: Z0 = EK(0128)
2: for i = 1, . . . , 3 do
3: Zi = 2 · Zi−1

4: U = EK(PMN ‖1)
5: TA = 0128

6: C1 = EK(Z3 ⊕ U) ⊕ P1

7: C2 = EK(P1 ⊕ Z2 ⊕ U)
8: return (C, T) = (C1, TA ⊕ C2)

Algorithm 2. iFeed D for |PMN | = 127, |A′| = n or 2n, and |C ′| = 2n

1: Z0 = EK(0128)
2: for i = 1, . . . , 4 do
3: Zi = 2 · Zi−1

4: U = EK(PMN ‖1)
5: if |A′| = n then
6: define A′

1 = A′

7: T ′
A = EK(A′

1 ⊕ Z2)
8: else
9: parse A′

1A
′
2 = A′

10: T ′
A = EK(EK(A′

1 ⊕ Z3) ⊕ A′
2 ⊕ Z2)

11: parse C′
1C

′
2 = C′

12: P ′
1 = EK(Z3 ⊕ U) ⊕ C′

1 ⊕ Z4 ⊕ U
13: P ′

2 = EK(P ′
1 ⊕ Z4 ⊕ U) ⊕ C′

2

14: C′
3 = EK(P ′

2 ⊕ Z2 ⊕ U)
15: if T ′ = T ′

A ⊕ C′
3 then

16: return P ′ = P ′
1P

′
2

17: else
18: return ⊥

in the binary Galois Field GF(2128) defined by the primitive polynomial x128 +
x7 + x2 + x + 1.

3 Forgery and Subkey Recovery Attack on iFeed

Let K
$←− {0, 1}n be the secret key and consider τ = n. We present our forgery

attack on iFeed. It consists of one encryption query and the forgery itself. Upon
successful verification, the forgery will disclose the subkeys Z0 = EK(0128) and
U = EK(PMN ‖1).

– Fix arbitrary PMN ∈ {0, 1}127 and arbitrary P1 ∈ {0, 1}128, and make
encryption query with no associated data A = ε:

(C1, T) = EK(PMN , ε, P1);

202 W. Schroé et al.

– Write C ′
1 = C1 ⊕ P1 ⊕ PMN ‖1, and fix an arbitrary C ′

2 ∈ {0, 1}128. Set
A = C ′

2, T ′ = 0128, and output forgery:

DK(PMN , A,C ′
1C

′
2, T

′).

We next demonstrate that the forgery attempt is successful. First, regarding the
encryption query, note that

C1 = EK(Z3 ⊕ U) ⊕ P1. (1)

Now, verification of the forgery (cf. Algorithm 2) succeeds if T ′ = T ′
A⊕C ′

3 = 0128.
Note that we have

P ′
1 = EK(Z3 ⊕ U) ⊕ C ′

1 ⊕ Z4 ⊕ U

= PMN ‖1 ⊕ Z4 ⊕ U,

P ′
2 = EK(P ′

1 ⊕ Z4 ⊕ U) ⊕ C ′
2

= EK(PMN ‖1) ⊕ C ′
2 = U ⊕ C ′

2,

C ′
3 = EK(P ′

2 ⊕ Z2 ⊕ U)
= EK(C ′

2 ⊕ Z2).

As we defined A = C ′
2, this yields successful verification:

T ′
A = EK(A ⊕ Z2) = EK(C ′

2 ⊕ Z2) = C ′
3.

As verification is successful, D returns P ′
1P

′
2. The values U = P ′

2 ⊕ C ′
2 and

Z0 = 2−4(P ′
1 ⊕ PMN ‖1 ⊕ U) are directly obtained.

4 Finding EK(P ∗) for any Plaintext P ∗

Below, we construct an additional forgery, which is based on the information
gained from the main forgery attack. Namely, the goal is to use the knowledge
of the subkeys U , Z0, and the value EK(Z3 ⊕U) = C1 ⊕P1 from (1), to produce
another forgery, which would allow one to learn EK(P ∗) for any plaintext data
P ∗ ∈ {0, 1}n.

– Let PMN be as before, define (A′′
1 , A′′

2) = (P ∗⊕Z3, U), (C ′′
1 , C ′′

2) = (EK(Z3⊕
U) ⊕ P ∗, 0128), and T = 0128, and output forgery:

DK(PMN , A′′
1A′′

2 , C ′′
1 C ′′

2 , T ′′).

The verification (cf. Algorithm 2) is successful if T ′′ = T ′′
A ⊕ C ′′

3 = 0128. Note
that we have

P ′′
1 = EK(Z3 ⊕ U) ⊕ C ′′

1 ⊕ Z4 ⊕ U

= P ∗ ⊕ Z4 ⊕ U,

P ′′
2 = EK(P ′′

1 ⊕ Z4 ⊕ U) ⊕ C ′′
2

= EK(P ∗),
C ′′

3 = EK(P ′′
2 ⊕ Z2 ⊕ U)

= EK(EK(P ∗) ⊕ Z2 ⊕ U).

Forgery and Subkey Recovery on CAESAR Candidate iFeed 203

On the other hand, T ′′
A is computed from the two-block (A′′

1A′′
2) as follows

T ′′
A = EK(EK(A′′

1 ⊕ Z3) ⊕ A′′
2 ⊕ Z2)

= EK(EK(P ∗) ⊕ Z2 ⊕ U),

thus C ′′
3 = T ′′

A, and the verification is successful. The resulting plaintext satisfies
P ′′
2 = EK(P ∗). This attack works for any n-bit data block P ∗, it can for instance

be used to recover the subkeys of older iFeed encryptions (by putting P ∗ =
PMN ′‖10∗ �= PMN ‖1), and indirectly to decrypt earlier encryptions without
having possession of the key K.

5 Why the Attack Works

The attack of Sect. 3 is possible due to two main iFeed properties:

1. iFeed uses Z2 as masking in both the T ′
A and C ′

l+1;
2. The second last ciphertext block (C1 in our encryption example) is not masked

with Z4 ⊕ U as other ciphertext blocks.

Using these properties, the forgery is constructed in such a way upon decryption,
PMN ‖1 is directly fed into EK and the term U in the final mask Z2 ⊕ U is
canceled out.

The original submission document of iFeed [6] comes with an authenticity
proof of security in the nonce-respecting setting. Our attack of Sect. 3, however,
shows that this security claims is invalid. At a high level, the flaw is caused by an
oversight that the subkeys for the associated data and the plaintext are depen-
dent. Indeed, the associated data is masked with Z1, . . . , Za+2 and the plaintext
with Z1 ⊕ U, . . . , Z�+2 ⊕ U (where a and � denote the number of associated data
and plaintext blocks). For the decryption query, the proof claims that both TA

and C�+1 is randomly generated except with a small probability.2 These two
cases independently of each other rely on the randomness of Z0. In our attacks,
TA and C�+1 are, indeed, both newly and randomly generated. However, their
drawing is not independent, in fact, they satisfy TA = C�+1. Unfortunately, this
is what in our analysis indicates a security problem which as exemplified leads
to serious security problems.

6 Conclusion

Our attacks completely disprove and break the authenticity of the iFeed authen-
ticated encryption scheme. In more detail, if an adversary has access to D, it can
forge and learn the secret subkeys. We furthermore show that with the knowledge
of these data, an attacker can use D to decrypt earlier ciphertexts, even if they
2 In fact, it is claimed that Pw+1 is random, where w is the first block in the forgery

that is different from the older encryption query with the same nonce, and that all
subsequent values Pw+2, . . . , P�, C�+1 are random.

204 W. Schroé et al.

were encrypted under a different nonce (because of Sect. 4). On the other hand,
it appears that in the absence of a decryption mechanism, the confidentiality
(CPA security) of iFeed still stands.

As a possible remedy to the design of iFeed and future work we suggest the
exploration of the possibilities for applying different masks. One option may be
to use Zi ⊕ U as is for plaintext encryption but 3 · Zi for the associated data.
We, however, do not recommend the replacement of nonce encryptions with
encryptions of nonces masked with Z values since the same type of weaknesses
surfaces.

Acknowledgments. The authors would like to thank Liting Zhang for verifying the
attack. This work was supported in part by European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 644052 HECTOR and grant
agreement No. H2020-MSCA-ITN-2014-643161 ECRYPT-NET, and in part by the
Research Council KU Leuven: GOA TENSE (GOA/11/007). Elena Andreeva and Bart
Mennink are Postdoctoral Fellows of the Research Foundation – Flanders (FWO).

References

1. Announcing the Advanced Encryption Standard (AES), Federal Information
Processing Standards Publication 197. United States National Institute of Stan-
dards and Technology (NIST), October 2001

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014)

3. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness, May 2014. http://competitions.cr.yp.to/caesar.html

4. Chakraborti, A., Datta, N., Minematsu, K., Gupta, S.S.: Forgery on iFeed[AES] in
RUP and Nonce-Misuse Settings, CAESAR mailing list (2015)

5. SHA-3 Competition (2007–2012), United States National Institute of Standards and
Technology (NIST). http://csrc.nist.gov/groups/ST/hash/sha-3/

6. Zhang, L., Wu, W., Sui, H., Wang, P.: iFeed[AES] v1, submission to CAESAR
competition (2014)

http://competitions.cr.yp.to/caesar.html
http://csrc.nist.gov/groups/ST/hash/sha-3/

	Forgery and Subkey Recovery on CAESAR Candidate iFeed
	1 Introduction
	2 iFeed
	3 Forgery and Subkey Recovery Attack on iFeed
	4 Finding EK(P*) for any Plaintext P*
	5 Why the Attack Works
	6 Conclusion
	References

