
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

177

Manuscript received September 5, 2007

Manuscript revised September 20, 2007

FORK-160: A New 160 - bit Software-Oriented

Hash Function

Amir Hossein Tabatabaee†, Yaser Esmaeili††, Mohammad Reza Sohizadeh Abyaneh††, Hadi Ahmadi†† ,

†Zaeim Electronic Industry, Tehran, Iran. ††Sharif University of Technology, Tehran,Iran.

Summary
There are various cryptographic protocols in which 160-bit
message digest is required. SHA-1is the most well-known 160-
bit hash function which is still used in protocols despite of its
vulnerabilities against collision attacks. Lack of 160-bit hash
function structures and disadvantages of truncating outputs of
other secure hash functions (security problems and inefficiency)
motivated us to introduce a new 160-bit hash function. In this
paper, we describe our new software-efficient hash function
FORK-160. Hence the name, this function uses basic design
principles from the recently proposed hash function FORK-256.
However, FORK-160 aims at improving FORK-256 both on
security and efficiency. Most notably, FORK-160 uses more
secure step function, reasonable message ordering and additive
constants which make it resistant against existing cryptanalysis
especially local collision attacks.

Key words:
Hash function, collision attack, differential attack, FORK-256.

1. Introduction

Hash functions are a group of cryptographic
functions which are used in digital signatures, data
integrity, e-cash and many other cryptographic schemes
and applications. A one-way hash function maps bit
strings of arbitrary finite length into strings of fixed
length.

For a cryptographic hash function, the following
security requirements according to complexity
considerations are needed:
1. Pre-image resistance: It is infeasible to find any input
message which hashes to any pre-specified image.
2. Second pre-image resistance: It is infeasible to find any
second input which has the same output as pre-specified
input message.
3. Collision resistance: It is infeasible to find two different
messages which hash to one message digest.

Assume that the output space of a hash function
consists of n-bit strings i.e. {0,1}n. For a well-designed
hash function, finding pre-image or second pre-image
requires about 2n and finding collision requires about
2n/2 hashing operations.

Since hash functions are desired to be fast in
performance, recent designing methods of hash functions
are based on sequentially iterating a simple and fast step
function. The most popular hash functions, which are

called MD-like, have been designed according to this
method in an evolutional process. The first of this type
was MD4, proposed by Rivest in 1990 [6]. MD4 was a
novel design, oriented towards software implementation
on 32 bit architectures. Several hashing algorithms were
derived from MD4 hash function called MDx-class hash
functions. MD5, SHA0/1, HAVAL and RIPEMD are
some prominent instances [1, 2]. These hash functions are
the most popular hash functions because of their
performance and trust gained from cryptanalysis
techniques [1, 2]. All of the mentioned hash functions are
based on a serial method but RIPEMD. The RIPEMD
family of hash functions was designed by combining
sequential method and parallel structure. This method of
designing is still reliable due to no effective attacks so far,
except elementary versions of RIPEMD [1, 7]. The most
recently proposed hash functions based on this method,
FORK-256, motivates us to design a 160-bit output hash
function based on its structure. There are several
applications of 160-bit hash functions especially in
cryptographic protocols. Nonetheless, the most well-
known and widely used 160-bit hash function, SHA-1, has
been broken by Wang et al [8]. Thus it seems better to use
a secure hash function with longer output and truncate the
output to a 160-bit string; however, this method is not
recommendable due to lack of performance and
reasonable security. Consequently, designing a secure
dedicated 160-bit hash function could be a major task in
hash function area. In this paper, we introduce a 160-bit
output hash function based upon a parallel structure like
FORK-256. Hence, we named this hash function FORK-
160. FORK-160 while being adapted to 160-bit has
improved the security of FORK-256 against existing
attacks.

The paper is organized as follows: In section 2 we
introduce the structure of FORK-160 along with the
related functions and parameters. Section 3 explains our

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

178

design principles for designing each part of the introduced
algorithm. This explanation is followed by security
analysis and performance evaluation in section 4 and
section 5, respectively. Section 6 includes the final results
and concluding remarks. It is worth mentioning that the
source code of FORK-160 written by C++ programming
language with a test vector is given in the appendices.

2. Description of FORK-160

One compression function of FORK-160 consists of four
parallel branches; each compresses a twenty-word
expanded message to a five-word output. Fig. 1 shows
the scheme of the compression function in FORK-160.
First, the input message is padded in order to be
devisable to 512-bit (16-word) message blocks,
corresponding to compression functions. Padding is like
SHA-1, i.e. appending a single bit 1 next to the least
significant bit of the message followed by zeros until the
length of the message is 448 modulo 512, and then
appending the original message length modulo 264. The
compression function of FORK-160 hashes a 512-bit
string to a 160-bit string. Next, each message block is
compressed through the compression function, using the
previous compression output as the chaining variable.
According to Fig. 1 the four parallel branch functions
are called BRANCH 1 to BRANCH 4. The chaining
variable for ith block (ith compression function) is
CVi=(A,B,C,D,E) and is initialized to IV0, represented
below:

A= 0x6a09e667, B= 0xbb67ae85, C= 0x3c6ef372,
D= 0xa54ff53a, E= 0x510e527f

Each message block M is divided to sixteen 32-bit words
M0,…,M15 and is compressed according to Fig. 1, where

4,3,2,1),,...,()()15()0(==å jMMM
jjj ss

 is the

permutation for message words, selected according
Table 2 (section 2.2). CVi is updated through the
following relation.

]}))(,(4

))(,(3[

))](,(2

))(,(1{[

4

3

2

11

å
å
å

å

+

Å

++=+

MCVBRANCH

MCVBRANCH

MCVBRANCH

MCVBRANCHCVCV

i

i

i

iii

(1)

2.1 Branch Functions of FORK-160

Each branch contains five step functions and each step
function deals with four message blocks; thus each branch
uses a set of 20 message words representing a simple
expansion and permutation on the input message block.
 For the BRANCH j (1 ≤ j ≤ 4) the message block is
compressed as follows:
1. The chaining variable CVi is assigned to initial

variables Vj,0.
2. At (k+1)th step function (0 ≤ k ≤ 3) , the output Vj,k+1 is

computed as follows:

),,,,

,,,,(

12,2,12,2,)32(

)22()12()2(,,1,

+++

+++ =

kjkjkjkjk

kkkkjkjkj

j

jjj

M

MMMVSTEPV

bbaas

sss (2)

where aj,2k, aj,2k+1, bj,2k, bj,2k+1 are constants. In the fifth
step, message words are calculated from the following
relations applied to the original sixteen message words:

).(,)(

,)(,)(

419)3(19418)2(18

417)1(17416)0(16

jj

jj

jj

jj

MgMMfM

MfMMgM

++

++

+¢=+¢=

+¢=+¢=

dd

dd

qq

qq
(3)

where qj(t) (0 £ t £ 3),)3()2()1()0(,,,

jjjj

MMMM qqqq
¢¢¢¢ and

functions f and g are defined in the Table 1, relation 4 and
relation 5, respectively.

Table 1. The contents of qj (t), (0 ≤ t ≤ 3), (1 ≤ j ≤ 4).

t 0 1 2 3

q1(t) 16 17 18 19

q2(t) 17 18 19 16

q3(t) 18 19 16 17

q4(t) 19 16 17 18

B
R

A
N

C
H

 1

B
R

A
N

C
H

 2

B
R

A
N

C
H

 3
 B

R
A

N
C

H
 4

CVi

CVi+1

å 2
)(M å 3

)(M å 4
)M(

Fig. 1. FORK-160 compression function

å1
)(M

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

179

15141312111098

7654321016

MMMMMMMM

MMMMMMMMM

Å+Å+Å+Å

+Å+Å+Å+Å=¢

15141312111098

7654321017

MMMMMMMM

MMMMMMMMM

+Å+Å+Å+

Å+Å+Å+Å+=¢

15141312111098

7654321018

MMMMMMMM

MMMMMMMMM

Å++ÅÅ++

ÅÅ++ÅÅ++=¢

15141312111098

7654321019

MMMMMMMM

MMMMMMMMM

+ÅÅ++ÅÅ

++ÅÅ++ÅÅ=¢

(4)

)2713()(

)227()(

<<<+<<<Å=

<<<Å<<<+=

XXXXg

XXXXf (5)

Constant values dj are defined in section 2.3.
Consequently, Vj,5 is the five-word output of BRANCH j.

Vj,5=STEPj,4(Vj,4,M16, M17, M18, M19,

aj,8, aj,9,bj,8, bj,9)

(6)

Table 2. Message words permutation for all branches.

t 0 1 2 3 4 5 6 7

s1(t) 0 1 2 3 4 5 6 7

s2(t) 13 12 14 15 1 2 3 0

s3(t) 10 11 8 9 14 15 12 13

s4(t) 7 4 5 6 11 8 9 10

t 8 9 10 11 12 13 14 15

s1(t) 8 9 10 11 12 13 14 15

s2(t) 5 6 7 4 9 10 11 8

s3(t) 2 3 0 1 6 7 4 5

s4(t) 15 12 13 14 3 0 1 2

Fig. 2. Step function of FORK-160

2.2 Permutation of Message Words

The permutation of message words in FORK-160 is
designed based on Latin square matrices. Table 2
represents the order of message words M0,…,M15 applied
to each of four branches.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

180

2.3 Additive Constants

The compression function of FORK-160 uses thirty six
additive constants (Table3).

Table 3. Additive constants in FORK-160.

d0=0x428a2f98 d1=0x71374491

 d4= 0x3956c25b d5= 0x59f111f1

d8= 0xd807aa98 d9= 0x12835b01

d12= 0x72be5d74 d13= 0x80deb1fe

d16= 0xe49b69c1 d17= 0xefbe4786

d20=0x2de92c6f d21= 0x4a7484aa

d24= 0x983e5152 d25= 0xa831c66d

d28= 0xc6e00bf3 d29= 0xd5a79147

d32= 0x27b70a85 d33= 0x2e1b2138

d2= 0xb5c0fbcf d3= 0xe9b5dba5

d6= 0x923f82a4 d7= 0xab1c5ed5

d10= 0x243185be d11= 0x550c7dc3

d14= 0x9bdc06a7 d15= 0xc19bf174

d18= 0x0fc19dc6 d19= 0x240ca1cc

d22= 0x5cb0a9dc d23= 0x76f988da

d26= 0xb00327c8 d27= 0xbf597fc7

d30= 0x06ca6351 d31= 0x14292967

d34= 0x4d2c6dfc d35= 0x53380d13

The first 20 constant values of Table 3 are utilized in each
branch as additive constants for the compression functions,
according to the table 4.

Table 4. Permutation table for using additive constants.

Ste
p

No.

(α1,0,…,
α1,9)

(α2,0,…,
α2,9)

(α3,0,…,
α3,9)

(α4,0,…,
α4,9)

d0 d19 d1 d18 1
d2 d17 d3 d16

d4 d15 d5 d14 2
d6 d13 d7 d12

d8 d11 d9 d10 3
d10 d9 d11 d8

d12 d7 d13 d6 4
d14 d5 d15 d4

d16 d3 d17 d2 5
d18 d1 d19 d0

Ste
p

No.

(β1,0,…,
β1,9)

(β2,0,…,
β2,9)

(β3,0,…,
β3,9)

(β4,0,…,
β4,9)

d1 d18 d0 d19 1
d3 d16 d2 d17

d5 d14 d4 d15 2
d7 d12 d6 d13

d9 d10 d8 d11 3
d11 d8 d10 d9

d13 d6 d12 d7 4
d15 d4 d14 d5

d17 d2 d16 d3 5
d19 d0 d18 d1

The remaining 16 constant values of Table 3 are used in
the process of message expansion in four branches of
FORK-160 (relation (3)).

3. Design Principles

In this section, we describe the security criteria for
designing FORK-160 and the design process based upon
these criteria. The design criteria include basic structure,
additive constants, message expansion, nonlinear
functions and rotation values.

3.1 Basic Structure

FORK-160 consists of four branches with parallel
structure. This kind of structure refers to RIPEMD
family hash function [7]. In this family, the functions
with the same message ordering in each chaining
variable words are resistant against collision attacks. So
using message words with different permutation causes
algorithm to be more secure [7, 8]. The second hash
function which uses parallel structure is FORK-256. In
FORK-256, each branch uses message words with
different ordering. Pieprzyk et al. could find some
weaknesses in FORK-256 compression function and
attacked on two branches of the algorithm [9]. In
addition, they showed that the security of algorithm
against collision attack is of order 2126.6 FORK-256
operator [9].

In FORK-160 an improved message permutation with
using expanded message words are combined with each
other to consolidate the algorithm against two branch
attack. Moreover, interaction between two left and right
parts of each step causes algorithm to be more resistant
against attacks which are based on partitioning two
parts of each step.

3.2 Additive Constants

According to the description of FORK-160 in section 2,
each step function uses four additive constants; hence,
BRANCH 1, which consists of five steps, uses 20

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

181

additive constants. Since each new branch uses a new
permutation of 20 additive constants of the previous
branch, the whole compression function uses 20 additive
constants within its structure. It is notable that the last
step of each branch uses 4 unique extra constants in its
message expansion process; thus there are 16 constants
used in message expansion for last steps of four
branches. As a consequence, there are totally 36
different additive constants, used in the compression
process of FORK-160. Then totally 36 different constant
values are applied in the FORK-160 compress function
(Table 3). The contents of these 32-bit constants are
selected in order to have the best possible diffusion
which makes the algorithm more resistant against
micro-collision finding attacks. The main criteria of
selecting these constants are their independency;
therefore, these constants represent the first 32 bits of
the fractional parts of the cubic roots of the first 36
prime numbers, which have no interrelationship.

3.3 Message Expansion

FORK-160 uses an expansion process for the fifth step
of each branch. In this process, four message words are
calculated from the original message block words, by
the relation (3). This simple process uses the two word-
oriented functions, f and g, along with the dual XOR
and modular sum operations and 16 additive constants.
Therefore, the expansion process, while being efficient
in performance, causes each branch to tolerate local
collision attacks, due to the bit diffusion property. The
notable criteria of the introduced expansion process are
written as follows:

1. Existence of modular addition causes nonlinear
behavior against XOR difference.

2. Using two functions f and g with one linear and one
nonlinear operator causes high differential diffusion in
output message words.

3. One way structure of the expansion relation makes it
infeasible to inverse the operations.

The introduced message expansion in FORK-160 causes
the algorithm to be more resistant than FORK-256 against
attacks on single branch which will be considered in the
following sections.

3.4 Permutation of Message Words

Since FORK-160 has parallel structure, it should
necessarily tolerate simultaneous collision finding attacks
in parallel branches. A simple method for this purpose is
to use message re-ordering for different branches. In this

case, if an attacker constructs an intended differential
characteristic for one branch function, the ordering of
message words will cause unintended differential patterns
in the other branch functions; thus, finding specific
differences for patterns would not be straightforward.

There are some important criteria for designing this
message permutation such as: balance of upper and lower
part, balance of left and right part and balance of sums of
in input indices [7]. We have designed the message
permutation by inspiration of Latin square matrices, so
that all of the former criteria are preserved and even
improved in comparison with those of FORK-256.
Moreover, by this selection of indices, passing the same
differential pattern through two different branches has
gotten hard. Further details are explained in the section 4.

3.5 Functions and Shift Rotations

Almost all dedicated hash functions use Boolean functions
with three or more variables and therefore the weaknesses
of these bit oriented functions could be exploited by
attackers [7]. Some of the most well-known examples of
these hash functions are MD4, MD5, HAVAL, RIMEMD
and SHA0/1 [1,2]. Instead, FORK-160 uses two nonlinear
word-oriented functions, f and g, which work on a single
32-bit variable. These functions are the same as those in
FORK-256. On the other hand, these functions affect all
of the five chaining variable words during each step and,
unlike FORK-256, we cannot divide each step to isolated
left and right parts; this point causes resistance to the
existing attacks on two branches [9].

 In FORK-160 each output of the functions f and g
except the first one is rotated by specific number and then
used to update chaining variable words. Using rotation,
while having low complexity in software and hardware,
causes differential diffusion within steps. This is an
essential security principle for any existing dedicated hash
function. These rotation constants, are calculated, using a
heuristic search method among odd numbers (not devisors
of 32), based upon SAC criteria.

4. Security Analysis of FORK-160

In this section, we explain security considerations in
designing FORK-160. As stated in section 3, FORK-256
hash function with parallel structure was designed in
order to improve weaknesses appeared in the previous
well- known hash functions. In spite of having apparent
strong structure, FORK-256 contains weak points,
especially in message permutation and interaction within
chaining variable. Attacks on two branches of FORK-256
and finding near collisions and approximations for full
round [9] of the algorithm are evidences of these

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

182

weaknesses. Due to similarities between FORK-256 and
FORK-160, we investigate the following considerations in
comparison with the attacks implemented on FORK-256.

1. Security analysis for a single branch of FORK-160

2. Security analysis for two branches of FORK-160
against collision attack

4.1 Security Analysis for a Single Branch of FORK-
160

In this section, we consider two possible types of attack on
a single branch of FORK-160. The first attack is an
ordinary collision finding attack and the second one is a
chosen IV collision finding attack. Ignoring the advantage
of using expansion for the fifth step of each branch, one
can easily find a one branch collision by assigning
compatible values for message words within the steps 1 to
4 of the branch. For example, in this case the following
algorithm leads to collision for the first branch with four
steps:

1. Select two message words M0 and M’0 with nonzero
XOR difference ∆M0, which satisfy in the equation
f(M0+δ0) = f(M’0+ δ0).

2. Preserve zero differences output in 1st to 4th chaining
variable words at the output of the second step by
assigning zero values to all message words except for M9
and M’9.

3. Set: M9 = E1,4 and M’9 = E’1,4 in order to compensate
the first differential and obtain the local collision.

It is obvious that attack on a single branch of FORK-160
would have no more complexity than that on FORK-256,
without considering message expansion. However, the
expansion in the fifth step, adds four new 32-bit check
equations in the collision finding scenario which hold
with the probability of 24*32=2128; consequently, this
expansion increases the complexity of such a one branch
collision finding attack up to 2128 trials which is even
more than the complexity of birthday attack (280). Hence,
even one branch of FORK-160 is resistant against such
collision attacks.

Another attack which is worth considering on a single
branch of FORK-160 is chosen IV collision finding
attack. This attack can be applied on any single branch
of FORK-160. For example, considering the first branch
of FORK-160, one can find a chosen IV collision by
implementing the following algorithm:

1. Select two messages M and M’ with two message
words M0 and M’0 and two initial chaining variables IV

and IV’ with two different first words IV[0] and IV’[0],
provided that M0 = IV[0] and M’0 = IV’[0],

2. Preserve zero values for outputs of all chaining
variable words, by assigning zero to all message words
except M0 and M’0.

3. If ∆A1,10=0, ∆B1,10=0, ∆C1,10=0, ∆D1,10=0, ∆E1,10=0,
then one collision is found; return the collision.

4. Else, return to 1.

The complexity of above algorithm for finding chosen
IV collision would be also of O (2128) due to the
limitations of four equations in the fifth step of the
branch. However, we tried about 237 message and IV
differentials and investigated whether there are any
collisions in one branch output, through simulation. As
a consequence, we could only find one word collision
(i.e. an output word with zero differentials) for the
branch. This simulation result also reveals that even one
branch of FORK-160 is resistant against collision
attacks, based upon our knowledge.

4.2 Security Analysis for Two Branches of FORK-
160 against Collision Attack

In this section, we investigate the security of two
branches of FORK-160 against differential based
cryptanalysis to find collisions. In our cryptanalysis by
each round, we mean half of a step in which two
messages, two additive constants, one function f and one
function g is used and finally a word permutation in
chaining variable is occurred. In other words, (Aj,k+1,
Bj,k+1, Cj,k+1, Dj,k+1, Ej,k+1) is the result of one round
implementation in BRANCH j on (Aj,k, Bj,k, Cj,k, Dj,k,
Ej,k), according to Fig. 2.

Since the number of ways for choosing 2 branches from
the four branches of FORK-160 is 6, our objective is to
investigate how it is hard to find any simultaneous
collisions in each of these 6 pairs of branches. To
achieve the goal, we consider each branch without the
fifth step function. Then, we extend the attack five-step
branch pairs. The attack design scenario on four-step
branch pairs is written as follows:

For each pair of branches, we activate one differential
message in the first branch and trace the effects of the
selected differential message over the other branch. In this
way, we can omit the influence of activated chaining
variables by choosing the other message. Finally, we
calculate the alternation of differential chaining variables
in each chaining variable (totally 10 chaining variables
for 2 branches) while we trace the outputs of forth rounds.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

183

Also we must observe the alternation of differential
chaining variables in 10 chaining variables after the last
step function. We compare the differences of 2 branches
in chaining variables outputs, it is clear that in the case of
equality, collisions are gained.

Table 1 shows that differential chaining variables sets that
can be calculated for simultaneous equations provided
that message pairs (Mi,Mj) are altered.

Table 5. Set of pairs of messages (Mi,Mj) which are used in
simultaneous equations

(1,4) (1,3) (1,2)
pairs of
branch

(M1,M11)
(M3,M4)

(M3, M14)
(M4, M14)

(M0,M10)
(M1,M11)
(M4,M14)
(M5, M15)

(M4,M14)
pairs of
message

s

(3,4) (2,4) (2,3)
pairs of
branch

(M1, M6)
(M1, M11)
(M4, M14)
(M6, M11)

(M1, M11)
(M2, M8)
(M4, M14)
(M7, M13)

(M10,
M15)

(M1, M11)
(M4, M9)
(M4, M14)
(M9, M14)

pairs of
message

s

The equations of selected messages in Table 5, which
must be satisfied, can be seen in Table 6. In this table (f
i,g j) of columns (N,M) means that it is required to build
simultaneous collision equation for ith round (considering
each two-round steps) of branch number N and
simultaneous collision equation for jth round of branch
number M. e.g. (f 6,f 2f 3g 7) in the cell (3,4) represents one
equation of function f at round 6 in the third branch and
three equations of f,f and g at round 2,3 and 7 respectively
in the forth round.

Table 6. Formation of simultaneous collision equations
 for each 2 branches before expansion.

(1,4) (1,3) (1,2)

pairs of
branch

pairs of
messages

- (f1g6,f 1g6) - (M0, M10)

- - - (M1, M6)

(g1g2,f 3g7) (g1g2,g1g2) - (M1, M11)

- - - (M2, M8)

(f 2,g1g2f 6) - - (M3, M4)

(f 2f 3g7,f 6) - - (M3, M14)

- - - (M4, M9)

(f 3g7,g1g2) (f 3g7,f 3g7) (f3g7,g2) (M4, M14)

- (g3g4,g3g4) - (M5, M15)

- - - (M6, M11)

- - - (M7, M13)

- - - (M9, M14)

- - - (M10, M15)

 (3,4) (2,4) (2,3)

pairs of
branch

pairs of
messages

- - - (M0, M10)

(f 6,f 2f 3g7) - - (M1, M6)

(g1g2,f 3g7) (f 3g7,f 3g7) (f 3g7,g1g2) (M1, M11)

- (g3g4,g3g4) - (M2, M8)

- - - (M3, M4)

- - - (M3, M14)

- - (f6,f 2f 3g7) (M4, M9)

(f3g7,g1g2) (g2,g1) (g2,f 3g7) (M4, M14)

- - - (M5, M15)

(g1g2,f 2) - - (M6, M11)

- (f1g5,f 1g5) - (M7, M13)

- - (g2f 6,f 2) (M9, M14)

- (f2f3,f 4) - (M10, M15)

According to Table 5 and Table 6, it can be concluded
that at least 2 simultaneous equations (in only one
position) are required, moreover it is obvious that the last
step function added to simultaneous equations causes the
propagation of differential messages in 10 output chaining
variables of 2 branches to be too high.

5. Performance Analysis of FORK-160

The performance of FORK-160 in software is compared
with other hash functions such as MD5, SHA-1,
RIPEMD-160 and FORK-256 in Table 7. The

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

184

performance comparison is accomplished using Pentium
IV, 2.8 GHz, 512MB RAM/ Microsoft Windows XP
Professional v. 2002/ Microsoft Visual C++ Ver. 6.0.

Table 7. Comparison of FORK-160 performance with the other
hash functions, implemented on P4/WinXP/VC (all numbers are
in Mbps).

Alg. MD5
FORK-
160

SHA-1
RIPEMD-
160

FORK-
256

Perf. 1656.49 728.77 616.83 593.10 478.70

The software implementation of FORK-160 in this
evaluation is not well-optimized, thus we expect some
improvement in performance of any prospective
optimized version of this algorithm. However, the
simulation results in Table 7 imply that FORK-160 is
about 18% faster than SHA-1 and 23% faster than
RIPEMD-160 on a Pentium PC.

6. Conclusions

This paper deals with designing a new dedicated hash
function with 160-bit output length, which we have called
FORK-160. Our designing scheme has been based on
parallel structure used in FORK-256. The introduced
design criteria yielded more resistance against existing
collision attacks in comparison to FORK-256. We
analyzed resistance of FORK-160 against single branch
and dual branches collision attacks, with regard to attacks
which have been implemented on FORK-256 [9]. We
have also evaluated performance of FORK-160 and
compared it by well-known hashing algorithms, namely
MD5, SHA-1, RIPEMD-160 and FORK-256.

The dual security analysis and performance simulation
results indicate that our introduced hash function is not
only more secure but also more efficient in software
performance in comparison to the standard hash
algorithm, SHA-1 and other functions such as RIPEMD-
160 and FORK-256. As a result, we believe that FORK-
160 could replace previous 160-bit hash functions, like
SHA-1 in various applications. In fact, from the security
point of view, there are various suggestions to improve
FORK-160; nonetheless, in these cases the performance
might be sacrificed.

References

[1] B. Van Rompay. Analysis and design of cryptographic
hash functions, MAC algorithms and block ciphers.
PhD thesis, K. U. Leuven, Januvary 2004.

[2] B. Preneel. Analysis and design of cryptographic hash
functions, PhD thesis, Katholieke University Leuven,
January 1993.

[3] B. Preneel. Cryptographic primitives for information
authentication state of the art, in State of the Art in
Applied Cryptography (B. Preneel and V. Rijmen,
eds.), no. 1528 in Lecture Notes in Computer Science,
pp. 50-105, Springer-Verlag, 1998.

[4] B. Preneel. The state of cryptographic hash functions,
in Lectures on Data Security. Modern Cryptology in
Theory and Practice (I. B. Damgard, ed.), no. 1561 in
Lecture Notes in Computer Science, pp. 158-182,
Springer-Verlag, 1999.

[5] B. Van Rompay, B. Preneel, and J. Vandewalle. The
digital timestamping problem, in Proceedings 20th
Symposium on Information Theory in the Benelux (A.
Barbe, E. C. van der Meulen, and P. Vanroose, eds.),
pp. 71-78, 1999.

[6] R. L. Rivest. The MD4 message digest algorithm, in
Advances in Cryptology Crypto'90 (A. Menezes and
S. A. Vanstone, eds.), no. 537 in Lecture Notes in
Computer Science, pp. 303-311, Springer-Verlag,
1991.

[7] D. Hong, J. Sung, S. Lee, and D. Moon. A new
dedicated 256-bit hash function: FORK-256, In Fast
Software Encryption-FSE'06, LNCS. Springer-Verlag,
2006.

[8] X. Wang, H. Yu and Y. L. Yin. Efficient Collision
Search Attacks on SHA-0, Advances in Cryptology –
CRYPTO 2005, LNCS 3621, Springer-Verlag, pp. 1–
16, 2005.

[9] K. Matsuesiewicz, S. Contini, and J. Pieprzyk.
Weaknesses of the FORK-256 compression function,
Available at http://eprint.iacr.org, 2007.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

185

Appendix A: Source Code

typedef unsigned int UINT;
//DELTA VALUES
UINT Delta[36]={
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4,0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13};

//ALPHA VALUES
UINT Alpha[4][10]={
Delta[0],Delta[2],Delta[4],Delta[6],Delta[8],Delta[10],Delt
a[12],Delta[14], Delta[16], Delta[18],
Delta[19],Delta[17],Delta[15],Delta[13],Delta[11],Delta[9
], Delta[7],
Delta[5],Delta[3],Delta[1],Delta[1],Delta[3],Delta[5],Delta
[7], Delta[9], Delta[11],
Delta[13],Delta[15],Delta[17],Delta[19],Delta[18],Delta[1
6],Delta[14], Delta[12],
Delta[10],Delta[8] ,Delta[6],Delta[4],Delta[2],Delta[0] };

//BETA VALUES
UINT Beta[4][10]={
Delta[1],Delta[3],Delta[5],Delta[7],Delta[9],Delta[11],Delt
a[13],Delta[15], Delta[17], Delta[19],
Delta[18],Delta[16],Delta[14],Delta[12],Delta[10],Delta[8
], Delta[6],
Delta[4],Delta[2],Delta[0],Delta[0],Delta[2],Delta[4],Delta
[6],Delta[8], Delta[10],
Delta[12],Delta[14],Delta[16],Delta[18],
Delta[19],Delta[17], Delta[15], Delta[13],
Delta[11],Delta[9], Delta[7],Delta[5],Delta[3],Delta[1] };

//NECESSARY FUNCTION
#define ROL(x,n) (x << n) | (x >> (32-n)) // n-bit left
rotation
#define F(x) (x + (ROL(x,7)^ROL(x,22)))
#define G(x) (x ^ (ROL(x,13)+ROL(x,27)))

//STEP FUNCTION
#define
step(A,B,C,D,E,M1,M2,M3,M4,Alpha1,Alpha2,Beta1,
Beta2)
A=(A^M1)+Alpha1;\

temp3=(E^M2)+Beta1;\
temp2 = F(A);\
temp4 = G(temp3);\
temp1 = (temp3^M3)+Alpha2;\
D = (D+ROL(temp2,23))^ temp4;\
C =(C+ROL(temp2,13))^ROL(temp4,5);\
B = (B+temp2)^ROL(temp4,11);\
E=(D^M4)+Beta2;\
temp2 = G(temp1);\
temp3 = F(E);\
D = (C+ROL(temp2,23))^ temp3;\
C = B+ROL(temp2,13))^ROL(temp3,5);\
B = (A+temp2)^ROL(temp3,11);\
A = temp1^ROL(temp3,17);

static void FORK160_Compression_Function(unsigned int
*CV, unsigned int *M) {
unsigned long R1[5],R2[5],R3[5],R4[5];
unsigned long temp1, temp2, temp3,temp4;
R1[0] = R2[0] = R3[0] = R4[0] = CV[0];
R1[1] = R2[1] = R3[1] = R4[1] = CV[1];
R1[2] = R2[2] = R3[2] = R4[2] = CV[2];
R1[3] = R2[3] = R3[3] = R4[3] = CV[3];
R1[4] = R2[4] = R3[4] = R4[4] = CV[4];

// BRANCH1(CV,M)
step(R1[0],R1[1],R1[2],R1[3],R1[4],M[0],M[1],M[2],M[
3],Alpha[0][0], Alpha[0][1],Beta[0][0], Beta[0][1]);
step(R1[4],R1[0],R1[1],R1[2],R1[3],M[4],M[5],M[6],M[
7],Alpha[0][2], Alpha[0][3],Beta[0][2], Beta[0][3]);
step(R1[3],R1[4],R1[0],R1[1],R1[2],M[8],M[9],M[10],M
[11],Alpha[0][4], Alpha[0][5],Beta[0][4],Beta[0][5]);
step(R1[2],R1[3],R1[4],R1[0],R1[1],M[12],M[13],M[14]
,M[15],Alpha[0][6], Alpha[0][7], Beta[0][6],Beta[0][7]);
step(R1[1],R1[2],R1[3],R1[4],R1[0],G(M[16]+Delta[20])
,F(M[17]+Delta[21]), F(M[18]+
Delta[22]),G(M[19]+Delta[23]),Alpha[0][8],Alpha[0][9],
Beta[0][8], Beta[0][9]);

// BRANCH2(CV,M)
step(R2[0],R2[1],R2[2],R2[3],R2[4],M[12],M[13],M[14]
,M[15],Alpha[1][0], Alpha[1][1], Beta[1][0],Beta[1][1]);
step(R2[4],R2[0],R2[1],R2[2],R2[3],M[1],M[2],M[3],M[
0],Alpha[1][2], Alpha[1][3],Beta[1][2], Beta[1][3]);
step(R2[3],R2[4],R2[0],R2[1],R2[2],M[5],M[6],M[7],M[
4],Alpha[1][4], Alpha[1][5],Beta[1][4], Beta[1][5]);
step(R2[2],R2[3],R2[4],R2[0],R2[1],M[9],M[10],M[11],
M[8],Alpha[1][6], Alpha[1][7],Beta[1][6],Beta[1][7]);
step(R2[1],R2[2],R2[3],R2[4],R2[0],G(M[17]+Delta[24])
,F(M[18]+Delta[25]),
F(M[19]+Delta[26]),G(M[16]+Delta[27]),Alpha[1][8],Al
pha[1][9],Beta[1][8], Beta[1][9]);

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

186

// BRANCH3(CV,M)
step(R3[0],R3[1],R3[2],R3[3],R3[4],M[10],M[11],M[8],
M[9],Alpha[2][0], Alpha[2][1],Beta[2][0],Beta[2][1]);
step(R3[4],R3[0],R3[1],R3[2],R3[3],M[14],M[15],M[12]
,M[13],Alpha[2][2], Alpha[2][3], Beta[2][2],Beta[2][3]);
step(R3[3],R3[4],R3[0],R3[1],R3[2],M[2],M[3],M[0],M[
1],Alpha[2][4], Alpha[2][5],Beta[2][4], Beta[2][5]);
step(R3[2],R3[3],R3[4],R3[0],R3[1],M[6],M[7],M[4],M[
5],Alpha[2][6], Alpha[2][7],Beta[2][6, Beta[2][7]);
step(R3[1],R3[2],R3[3],R3[4],R3[0],G(M[18]+Delta[28])
,F(M[19]+Delta[29]),
F(M[16]+Delta[30]),G(M[17]+Delta[31]),Alpha[2][8],Al
pha[2][9],Beta[2][8], Beta[2][9]);

// BRANCH4(CV,M)
step(R4[0],R4[1],R4[2],R4[3],R4[4],M[7],M[4],M[5],M[
6],Alpha[3][0], Alpha[3][1],Beta[3][0], Beta[3][1]);
step(R4[4],R4[0],R4[1],R4[2],R4[3],M[11],M[8],M[9],M
[10],Alpha[3][2], Alpha[3][3],Beta[3][2],Beta[3][3]);
step(R4[3],R4[4],R4[0],R4[1],R4[2],M[15],M[12],M[13]
,M[14],Alpha[3][4], Alpha[3][5], Beta[3][4],Beta[3][5]);
step(R4[2],R4[3],R4[4],R4[0],R4[1],M[3],M[0],M[1],M[
2],Alpha[3][6], Alpha[3][7],Beta[3][6], Beta[3][7]);
step(R4[1],R4[2],R4[3],R4[4],R4[0],G(M[19]+Delta[32])
,F(M[16]+Delta[33]),
F(M[17]+Delta[34]),G(M[18]+Delta[35]),Alpha[3][8],Al
pha[3][9],Beta[3][8], Beta[3][9]);
// OUTPUTS
CV[0] + =((R1[0] + R2[0]) ^ (R3[0] + R4[0]));
CV[1] + = ((R1[1] + R2[1]) ^ (R3[1] + R4[1]));
CV[2] + = ((R1[2] + R2[2]) ^ (R3[2] + R4[2]));
CV[3] + =((R1[3] + R2[3]) ^ (R3[3] + R4[3]));
CV[4] + = ((R1[4] + R2[4]) ^ (R3[4] + R4[4]));
}

Appendix B: Test vector

//IN ITIALIZATION
CV[0]=0x6a09e667;CV[1]=0xbb67ae85;CV[2]=0x3c6ef
372;
CV[3]=0xa54ff53a;CV[4] = 0x510e527f;

//MESSAGE 1
M[0]=0x4105ba8c; M[1]=0xd8423ce8;
M[2]=0xac484680; M[3]=0x07ee1d40;
M[4]=0xbc18d07a; M[5]=0x89fc027c;
M[6]=0x5ee37091; M[7]=0xcd1824f0;
M[8]=0x878de230; M[9]=0xdbbaf0fc;
M[10]=0xda7e4408; M[11]=0xc6c05bc0;
M[12]=0x33065020; M[13]=0x7367cfc5;
M[14]=0xf4aa5c78;M[15]=0xe1cbc780;

 //AFTER EXPANSION (MESSAGES FOR THE LAST
STEPS)
//Branch 1:
M[16]=0x64bf34a5; M[17]= 0xb9252343;
M[18]= 0x84a95a9d; M[19]= 0x73d6269;
//Branch2.
M[16]= 0xf5f70369; M[17]= 0xd27c3754;
M[18]= 0x1443c1d9; M[19]= 0xb0eff316;
//Branch3.
M[16]= 0xeb1433a; M[17]= 0xec2d94f8;
M[18]= 0xe19df64a; M[19]= 0xbaa53246;
//Branch4.
M[16]= 0x5ea6c2c6; M[17]= 0xa2ed73df;
M[18]= 0xfd5b09a; M[19]= 0x827d0202;
//OUTPUT 1
CV[0] = 0x6ebd05c2; CV[1] = 0x955a2b42; CV[2] =
0xb86ceabd;
CV[3] = 0xa8af1084; CV[4] = 0xb4ce0111;

//MESSAGE 2
memset(M,0,15*sizeof(UINT)); //M[0~15]=0
//AFTER EXPANSION (MESSAGES FOR THE LAST
STEPS)
//Branch1.
M[16]= 0x5006c190; M[17]= 0x854761cf;
M[18]= 0xdc08980a; M[19]= 0x85464605;
//Branch2.
M[16]= 0x46d5a2dd; M[17]= 0x441d0562;
M[18]= 0xa3c30ca1; M[19]= 0x80a38038;
//Branch3.
M[16]= 0x599f732c; M[17]= 0xa9a57d35;
M[18]= 0xfc3c1dec; M[19]= 0x2984c2a8;
//Branch4.
M[16]= 0xcecab673; M[17]= 0x7db6c017;
 M[18]= 0x4c646d3b; M[19]= 0xc883e77c;

//OUTPUT 2
CV[0]=0x5f87ccad; CV[1]=0xd4b5fdac;
CV[2]=0x6293277f;
CV[3]=0xd25d3bb2; CV[4]=0x7d5ff391;

