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Abstract. In the recent post-CAESAR era, it became clear that authenticated encryp-
tion optimized for short messages is a research problem that is both highly relevant,
and not yet fully solved. The concept of forkcipher, a new kind of cryptographic
primitive, has been proposed as a mean to sidestep the overcome the limitations of
AE schemes based on typical primitives (such as blockciphers). This paper introduces
a forkcipher construction that is based on the tweakable blockcipher KIASU, which
is in turn based on AES.
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1 Introduction
A forkcipher is tweakable symmetric cryptographic primitive with a fixed input length and a
fixed output length that is expanding (i.e., it output more bits than it takes as input). It has
been reently proposed by Andreeva et al., primarily as a mean to construct authenticated
encryption (AE) that is higly efficient for the shortest messages [1, 2]. Andreeva et al.
formalized the syntax and security notion of tweakable forkciphers, proposed a framework
that lifts an iterated tweakable blockciper to a forkcipher, designed ForkSKINNY (a
forkcipher construction based on SKINNY tweakable blockcipher [4]), and introduced
provably secure forkcipher modes for AE efficient for the shortest queries.

This paper describes ForkAES, a preliminary instance of a forkcipher. ForkAES uses a
vanilla version of the framework by Andreeva et al. to transform the tweakable blockcipher
KIASU [13] into an iterated forkcipher. KIASU itself is a tweakable blockcipher that is
based on AES [7] and the Tweakey framework [14].

Recent cryptanalysis results [3] have evidenced that further strnegthening of this
ForkAES can benefit its security.

2 Preliminaries
All strings are binary strings. The set of all strings of length n (for a positive integer n)
is denoted {0, 1}n. We let {0, 1}≤n denote the set of all strings of length at most n. We
denote by Perm(n) the set of all permutations of {0, 1}n.

For a string X of ` bits, we let X[i] denote the ith bit of X for i = 0, . . . , ` − 1
(starting from the left) and X[i . . . j] = X[i]‖X[i + 1]‖ . . . ‖X[j] for 0 ≤ i < j < `.
We let left`(X) = X[0 . . . (` − 1)] denote the ` leftmost bits of X and rightr(X) =
X[(|X| − r) . . . (|X| − 1)] the r rightmost bits of X, such that X = leftχ(X)‖right|X|−χ(X)
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for any 0 ≤ χ ≤ |X|. We let (L,R) = lsplitX,n denote splitting a string X ∈ {0, 1}∗
into two parts such that L = leftmin(|X|,n)(X) and R = right|X|−|L|(X). In particular,
for n ≥ |X| we have (X, ε) = lsplitX,n. We further let (M ′,M∗) = msplitn(M) denote a
splitting of a stringM ∈ bits∗ into two partsM ′‖M∗ = M , such that |M∗| ≡ |M | (mod n),
and 0 ≤ |M∗| ≤ n, where |M∗| = 0 if and only if |M | = 0. We let (C ′, C∗, T ) = csplitn(C)
splitting a string C of at least n bits into three parts C ′‖C∗‖T = C, such that |C∗| = n,
|T | ≡ |C| (mod n), and 0 ≤ |T | ≤ n, where |T | = 0 if and only if |C| = n. Finally, we
let C ′1, . . . , C ′m, C∗, T ← csplit-bn(C) denote a version of csplitn(C), where the string C ′
further gets partitioned into |C ′|n blocks of n bits, such that C ′ = C ′1‖ . . . ‖C ′m.

Given a string X and an integer n, we let X1, . . . , Xx, X∗
n←− X denote partitioning

X into n-bit blocks, such that |Xi| = n for i = 1, . . . , x, 0 ≤ |X∗| ≤ n and X =
X1‖ . . . ‖Xx‖X∗, so x = max(0, bX/nc − 1). We let |X|n = dX/ne. Given a (possibly
implicit) positive integer n and an X ∈ {0, 1}∗, we let X‖10∗ denote X‖10n−(|X| mod n)−1

for simplicity.
The symbol ⊥ denotes an error signal, or an undefined value. We denote by X ←$ X

sampling an element X from a finite set X following the uniform distribution.

3 Forkcipher
In this section, we briefly state the syntax and security goals of a forkcipher. We note
that the formalism differs from that of Andreeva et al. [1, 2] in that the decryption and
reconstruction algorithm are merged into a multipurpose "decryption" in the latter work.

Syntax. A forkcipher is a triple of deterministic algorithms, the encryption algorithm F :
{0, 1}k×T ×{0, 1}n → {0, 1}2n, the inversion algorithm F−1{0, 1}k×T ×{0, 1}n×{0, 1} →
{0, 1}n and the tag reconstruction algorithm Fρ{0, 1}k × T × {0, 1}n × {0, 1} → {0, 1}n.
We call k, n and T the keysize, blocksize and tweak space of F, respectively.

A tweakable forkcipher F meets the correctness condition, if for every K,T,M, β ∈
{0, 1}k × T × {0, 1}n × {0, 1} we have

F−1(K,T,F(K,T,M)[(β · n) . . . (β · n+ n− 1)], β) = M

and

F(K,T,M)[((1−β)·n) . . . ((1−β)·n+n−1)] = Fρ(K,T,F(K,T,M)[(β·n) . . . (β·n+n−1)], β).

Security Definition. We define the security of forkciphers by an indistiguishability ex-
periment based on the security games in Figure 1.

An adversary A that aims at breaking a tweakable forkcipher F plays the games
prtfp-real and prtfp-ideal and define the advantage of A at distinguishing F from a
random tweakable injection in a chosen ciphertext attack as

Advprtfp
F (A) = Pr[Aprtfp-realF ⇒ 1]− Pr[Aprtfp-idealF ⇒ 1].

4 ForkAES
We design ForkAES, a forkcipher construction. It is best described by its name: it is an
AES-based design with its internal state forked after half of the rounds to produce two
redundant 128-bit output blocks. We also add a tweak to facilitate the design of simple
modes of operation. ForkAES is obtained by combining two ingredients: the KIASU [13,14]
tweakable blockcipher (which is, in turn, a derivative of AES, hence the name), and the
iterate-fork-iterate paradigm [1,2].
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Game prtfp-realF

K ←$ {0, 1}k
b← AEnc,Dec

return b

Oracle Enc(T,M)
return F(K,T,M)

Oracle Dec(T,C, β)
return F−1(K,T,C, β)

Game prtfp-idealF

for T ∈ T do πT,0, πT,1 ←$ Perm(n)
b← AEnc,Dec

return b

Oracle Enc(T,M)
return πT,0(M)‖πT,1(M)

Oracle Dec(T,C, β)
return π−1

T,β(C)

Figure 1: Games prtfp-real, and prtfp-ideal used to define security of a (strong)
forkcipher.

4.1 Specification
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Figure 2: Illustration of an encryption by ForkAES. A 128 bit plaintext P, a 128 bit key K
and 64 bit tweak T (all in blue) are used to compute a 256 bit ciphertext C = C0‖C1 (in
red). RF denotes a single iteration of the AES round function and KS denotes a single
iteration of the AES keyschedule.

ForkAES is a deterministic cryptographic algorithm which takes a 128-bit plaintext P,
a 64-bit tweak T and a 128-bit secret key K as input, and outputs a 256-bit ciphertext C
(i.e., ForkAES(K, T, P) = C).

It is based on the tweakable blockcipher KIASU. In KIASU, a round function based on
the SubBytes, Shiftrows and Mixcolumn operations of AES is iteratively applied to the
plaintext block. Following the TWEAKEY framework [14], the secret key and tweak are
used to generate subkeys which are xored to the intermediate internal state before every
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application of the round function.

Iterate-fork-iterate. How ForkAES differs from both AES and KIASU is that after half
of the rounds, the encryption is forked and two copies of the internal states are further
processed with different sets of independent subkeys. The additional required subkeys are
generated by doing the necessary number of extra iterations of the key schedule (beyond
what would have been done in the original (tweakable) blockcipher).

Inverse algorithms. Associated to ForkAES are the decryption algorithm ForkAES−1 and
the reconstruction algorithm ForkAESρ. Because the two output blocks produced by
ForkAES are redundant, either one of them is sufficient for decryption. The decryption
algorithm thus takes a secret key K, a tweak T, a half-ciphertext C of 128 bits, and a
bit b that indicates whether this is the left half or the right half, and inverts the “fork”
indicated by b and then the initial common processing. For every K, P ∈ {0, 1}128 and every
T ∈ {0, 1}64 we have

P = ForkAES−1 (K, T, leftn(ForkAES(K, T, P)), 0) = ForkAES−1 (K, T, rightn(ForkAES(K, T, P)), 1) .

Similarly, the redundancy can be used to recompute one output block from the other
which is what the reconstruction algorithm does. It takes a secret key K, a tweak T, a
half-ciphertext C of 128 bits, and a bit b that indicates whether this is the left half or the
right half, inverts the indicated “fork”, and then recomputes the other one. For every
K, P ∈ {0, 1}128 and every T ∈ {0, 1}64 we have

ForkAESρ (K, T, leftn(ForkAES(K, T, P)), 0) = rightn(ForkAES(K, T, P))

and
ForkAESρ (K, T, rightn(ForkAES(K, T, P)), 1) = leftn(ForkAES(K, T, P))

The formal algorithmic description of all three algorithms is given in Figure 3, and the
encryption operation is illustrated in Figure 2.

To generate the round keys, we set the secret key as the first round key, iterate the key
schedule of AES 16 times, and xor the tweak to the 8 leftmost bytes of each round key.
This is exactly what is done in KIASU, except we iterate the key schedule 6 more times.
The round key generation algorithm is described in Figure 3.

4.2 Security Evaluation
In this section, we briefly discuss the security of ForkAES against the most important
cryptanalytic attacks. We only consider classical black-box attacks, i.e., we do not consider
side-channel attacks.

Differential Cryptanalysis. Differential crpyptanalysis is one of the most powerful security
analysis methods and showing the security of a cipher against it is essential part of the
security evaluation. For a cipher based on the Substitution Permutation Network (SPN)
the analysis is relatively easy and well-understood and it is based on counting the number
of active s-boxes over the cipher rounds. When the active s-boxes reach a certain threshold
then the cipher is assumed to be secure against differential cryptanalysis. For example,
in the case of AES in the single-key model, one can guarantee at least 25 active s-boxes
for a differential path of four rounds due to the careful choice of a permutation layer
(which is a diffusion matrix with branching number five). If each active s-box reaches the
maximal differential probability of the AES S-box pmax = 2−6, then the probability of
the differential path becomes 2−150 < 2−128. Hence, four AES rounds already provide
enough protection. Since our ForkAES design uses the AES round function, we can easily
deduce that our design will provide enough security in this setting after four rounds against
differential attacks in the single-key model.
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1: Algorithm ForkAES(K, T, P)
2: K0, . . . , K16 ← KeySched(K, T)
3: S ← P
4: for i← 0 to 4 do
5: S ← S ⊕Ki

6: S ← AESrnd(S)
7: end for
8: S0 ← S; S1 ← S
9: for i← 5 to 9 do

10: S0 ← S0 ⊕Ki

11: S0 ← AESrnd(S0)
12: end for
13: C0 ← S0 ⊕K10
14: for i← 11 to 15 do
15: S1 ← S1 ⊕Ki

16: S1 ← AESrnd(S1)
17: end for
18: C1 ← S1 ⊕K16
19: return C0‖C1
20: end Algorithm

1: Algorithm ForkAES−1(K, T, C, b)
2: K0, . . . , K16 ← KeySched(K, T)
3: S ← C⊕K10+b·6
4: for i← 9 + b · 6 to 5 + b · 6 do
5: S ← AESrnd−1(S)
6: S ← S ⊕Ki

7: end for
8: for i← 4 to 0 do
9: S ← AESrnd−1(S)

10: S ← S ⊕Ki

11: end for
12: return S
13: end Algorithm

1: Algorithm ForkAESρ(K, T, C, b)
2: K0, . . . , K16 ← KeySched(K, T)
3: b′ ← b⊕ 1
4: S ← C⊕K10+b·6
5: for i← 9 + b · 6 to 5 + b · 6 do
6: S ← AESrnd−1(S)

7: S ← S ⊕Ki

8: end for
9: for i← 5 + b′ · 6 to 9 + b′ · 6 do

10: S ← S ⊕Ki

11: S ← AESrnd(S)
12: end for
13: C′ ← S ⊕K10+b′·6
14: return C′

15: end Algorithm

1: Algorithm KeySched(K, T)
2: K0 ← K⊕ Rwfy(T‖064)
3: W0, . . . , W3

32←−− K
4: for i← 1 to 16 do
5: tmp← RotWord(W[3])
6: W ′0 ←W0 ⊕ SubWord(tmp)⊕ Rcon[i]
7: for j ← 1 to 3 do
8: W ′j ←Wj ⊕W ′j−1
9: end for

10: for j ← 0 to 3 do
11: Wj ←W ′j
12: end for
13: Ki ←W0‖W1‖W2‖W3 ⊕ Rwfy(T‖064)
14: end for
15: return K0, . . . , K16
16: end Algorithm

1: Algorithm AESrnd(S)
2: S ← SubBytes(S)
3: S ← ShifRows(S)
4: S ← MixColumns(S)
5: return S
6: end Algorithm

1: Algorithm AESrnd−1(S)
2: S ← iMixColumns(S)
3: S ← iShifRows(S)
4: S ← iSubBytes(S)
5: return S
6: end Algorithm

Figure 3: The algorithms ForkAES, ForkAES−1 and ForkAESρ. The function Y =
Rwfy(X) (from “rowify”) is a byte-transposition of a 128-bit string X that maps
Yi = X4∗(i mod 4)+bi/4c.
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Table 1: Upper bounds on probabilities of related-TWEAKEY differential characteris-
tics [13, Table 4.1].

Rounds Active S-boxes Probability (upper bound) Method
1 0 20 trivial
2 0 20 trivial
3 1 2−6 Matsui’s
4 8 2−48 Matsui’s
5 ≥ 14 2−84 Matsui’s
7 ≥ 22 2−132 extended split (3R+ 4R)

Related-TWEAKEY Attacks. The extra freedom provided from keyK (in our case tweak
T as well) makes the security evaluation of ciphers against related-key (in our case related-
tweakey) attacks more challenging. Over the years, many search algorithms [5,6,11,12,15,16]
were given to compute an upper bound for the related-key differential characteristics. The
KIASU designers gave a comprehensive related-key analysis for KIASU by extending the
search algorithms to cover the related-tweak option and we summarize their results in
Table 1. Our design is based on the KIASU algorithm and its tweakey schedule and thus a
closer inspection reveals that the latter results also apply to ForkAES.

Meet-in-the-Middle Attack. There are numerous meet-in-the-middle attacks performed
against AES [8–10] and for all those attacks the key schedule plays an important role.
In these attacks partial encryption/decryption is done by guessing keys to prepare pre-
computed tables. To reduce the amount of guessed key bytes (and respective attack
complexities), the existing linear relations of the AES key schedule are exploited. In our
design, we use KIASU as our core encryption operation which in turn replies on the AES
cipher with the tweak addition to key schedule. The tweak is a fixed and known constant
value T and therefore the existing meet-in-the-middle attacks for AES-128 will apply to
both KIASU and our design.

Security Against Other Attacks. Our forkcipher ForkAES is based purposely on the AES
block cipher regarding round function and key schedule designs. Moreover, we borrow the
KIASU tweak (tweak and key) treatment to support the use of the additional tweak input
in our design. Since we do not introduce any novel design complexities, the security of
our forkcipher design can be reduced to the security of the AES and KIASU ciphers for
further type of attacks.

Third party cryptanalysis. An independent cryptanalysis of ForkAES by Banik et al.
showed, that a round-reduced version with 9 rounds (instead of full 10 rounds) can be
attacked with practical complexity [3]. More precisely, Banik et al. showed that differential,
impossible-differential and yoyo attacks exist that exploit the reconstruction interface, and
that further rectangle and impossible-differential attacks exist that only use the encryption
queries. The implications of these attacks were exemplified by transforming them into
forgery attacks against the modes presented by Andreeva et al.

5 Discussion
This brief paper presented ForkAES, a preliminary construction of the forkcipher primitive.
While it demonstrates the performance advantages that can be achieved through the
iterate-fork-iterate paradigm, it is also an immature construction; while no efficient attack
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on the full version is known, its security margin is certainly insufficient. We refer the reader
looking for a secure forkcipher instance to the work that introduces ForkSKINNY [1,2].
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