
����������
�������

Citation: Alhussan, A.A.; AlEisa,

H.N.; Atteia, G.; Solouma, N.H.;

Seoud, R.A.A.A.A.; Ayoub, O.S.;

Ghoneim, V.F.; Samee, N.A.

ForkJoinPcc Algorithm for

Computing the Pcc Matrix in Gene

Co-Expression Networks. Electronics

2022, 11, 1174. https://doi.org/

10.3390/electronics11081174

Academic Editor: Pedro Valero-Lara

Received: 25 February 2022

Accepted: 30 March 2022

Published: 7 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

ForkJoinPcc Algorithm for Computing the Pcc Matrix in Gene
Co-Expression Networks
Amel Ali Alhussan 1 , Hussah Nasser AlEisa 1,*, Ghada Atteia 2 , Nahed H. Solouma 3,
Rania Ahmed Abdel Azeem Abul Seoud 4 , Ola S. Ayoub 5, Vidan F. Ghoneim 6 and Nagwan Abdel Samee 2

1 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; aaalhussan@pnu.edu.sa

2 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; geatteiaallah@pnu.edu.sa (G.A.);
nmabdelsamee@pnu.edu.sa (N.A.S.)

3 Biomedical Engineering Department, King Faisal University, P.O. Box 9149, Alahsa 13980, Saudi Arabia;
nsolouma@kfu.edu.sa

4 Department of Electronics and Communication Engineering, Faculty of Engineering, Fayoum University,
Fayoum 63511, Egypt; raa00@fayoum.edu.eg

5 Biomedical Engineering Department, Cairo University, Giza 12511, Egypt; ola.salaheldin@gmail.com
6 Biomedical Engineering Department, Helwan University, Helwan 11731, Egypt; vidan@gmail.com
* Correspondence: haleisa@pnu.edu.sa

Abstract: High-throughput microarrays contain a huge number of genes. Determining the relation-
ships between all these genes is a time-consuming computation. In this paper, the authors provide
a parallel algorithm for finding the Pearson’s correlation coefficient between genes measured in
the Affymetrix microarrays. The main idea in the proposed algorithm, ForkJoinPcc, mimics the
well-known parallel programming model: the fork–join model. The parallel MATLAB APIs have
been employed and evaluated on shared or distributed multiprocessing systems. Two performance
metrics—the processing and communication times—have been used to assess the performance of the
ForkJoinPcc. The experimental results reveal that the ForkJoinPcc algorithm achieves a substantial
speedup on the cluster platform of 62× compared with a 3.8× speedup on the multicore platform.

Keywords: Pearson’s correlation; high performance computing; multicores; cluster; fork–join; MPI;
gene co-expression networks

1. Introduction

High-throughput microarrays contain a huge number of genes. Determining the
relationships between these genes can be conducted using two approaches. In the first
one, the dependencies can be calculated between only a set of informative genes [1]. The
Pearson’s correlation coefficient, Pcc, and mutual information can be used as measures
of such gene dependencies to construct a gene co-network [2]. In the second approach,
parallel computing can be used to find the dependencies between all the huge numbers
of genes measured in our high-throughput microarray experiments. Parallel computing
is essential, as the high-throughput microarrays contain more than 30,000 genes, and the
determination of dependencies between the genes is infeasible using existing computing
infrastructures. Therefore, in this research, the authors are proposing a solution for deter-
mining the relationships between genes measured in high-throughput microarrays. The
correlation coefficient measures the strength of a linear relationship between two variables.
Therefore, it is used as a similarity measure between two gene expression profiles. A strong

Electronics 2022, 11, 1174. https://doi.org/10.3390/electronics11081174 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11081174
https://doi.org/10.3390/electronics11081174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7530-7961
https://orcid.org/0000-0002-5462-595X
https://orcid.org/0000-0003-1336-2409
https://orcid.org/0000-0001-5957-1383
https://doi.org/10.3390/electronics11081174
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11081174?type=check_update&version=3

Electronics 2022, 11, 1174 2 of 13

association between genes should have Pcc values from ±0.7 to ±1. The Pcc between two
expression profiles X and Y is defined as in Equation (1):

r =
∑Q

i=1
(
Yi − Y

)(
Xi −

X
)

√
∑Q

i=1 (Yi − Y)2
√

∑Q
i=1 (Xi −

X)

2
(1)

The proposed algorithm here, ForkJoinPcc, calculates the correlation matrix between
genes expressed in Affymetrix microarrays. The main idea in the ForkJoinPcc algorithm
mimics a well-known parallel programming model: the fork–join model [3]. The fork–join
programming model, shown in Figure 1, begins as a single process: the master thread,
which is executed serially. Then, the master thread creates a team of parallel threads, and
each thread performs some linear algebra on its subset of data. When the team threads
complete their tasks in the parallel region, they synchronize and terminate, leaving only the
master thread. The fork–join model has been demonstrated to have powerful performance
in parallelization on the multicore platform [4,5].

Figure 1. Master and worker threads in a fork–join programming model.

2. Literature Review

During the last decade, many studies have been focused on utilizing the parallel
computing paradigms in solving heavy computational problems in bioinformatics [6]. As
the data are growing at a faster rate than the corresponding growth of the performance of the
available hardware, new solutions should be provided to process such data [7]. Problems
of this form are sometimes referred to as embarrassingly parallel. If multiple processors
or computers, which are often available in organizations where statistical computations
are carried out, could be easily harnessed to perform these computations in parallel, then
computations that would otherwise take hours or days could be performed in minutes or
hours. One of the most important goals of research in bioinformatics is the inference of
the gene co-expression networks and gene-to-gene interactions [8]. Gene co-expression
networks are demonstrations of the relationships between a set of interacting genes [9]. To
identify the interactions between a set of genes, the associated gene expressions should
be measured. Affymetrix microarrays [10] and RNA sequencing [11] are the dominant
approaches for measuring the expression profiles of genes under certain conditions. The
output of these approaches is the gene expression matrix, which is the input for the
construction of gene co-expression networks.

In [12], the compute unified device architecture (CUDA) was utilized for inferring the
gene regularity networks on GPUs. In [13], the R package MPICorMat was introduced.
They employed the MPI/OpenMP approach to construct the similarity matrix between a
huge number of genes. The Pcc was used as a measure of similarity between the genes
in such networks. However, the construction of such a matrix is a heavy computation
that may take days to weeks to finish, as all pairwise similarities must be computed, and
the complexity of the computation rises quadratically versus the number of genes. An

Electronics 2022, 11, 1174 3 of 13

expansion was performed in [14] to the MPICorMat package, which included extra met-
rics for the measurement of the similarity matrices. In [15], an efficient parallel package
(MPIGeneNet) is presented. They utilized the random matrix theory and the Pcc as a
measure of dependencies in gene co-expression networks. In [16], MPI was employed
for the construction of the mutual information (MI) between genes interacting in a gene
co-expression network. Although they used the MI to represent the measure of similarity
between genes, this measure is irrelevant for inferring the interactions in such networks, as
stated in [17]. In [18], a framework for the R statistical computing language was presented.
It provided a simple, powerful programming interface to a computational cluster. The
resulting framework allows statisticians to obtain significant speedup for some computa-
tions at little additional development cost. However, it does not provide a solution flexible
enough to express all classes of parallel algorithms. In [19], GPUs and the CUDA language
were used to calculate the pairwise distances (Manhattan distances and Pcc) between genes
in estimating the hierarchical clusters of genes measured by a set of microarrays. However,
this study was limited to only the creation of pairwise distances, and it did not perform any
type of linkage algorithm to create a set of clusters. The work performed in [19] presents a
prototype framework (SPRINT) that allows the addition of parallelized functions to R to
enable the easy exploitation of high-performance computing systems. SPRINT is a wrapper
around such parallelized functions. Their use requires very little modification to existing
sequential R scripts and no expertise in parallel computing. The main issue regarding
the framework proposed in this study is that functions must be reimplemented, which
requires significant effort. In [20], two parallel algorithms for computing the correlation and
covariance matrix are proposed. The first algorithm uses the quadrant correlation method,
and the second uses the Maronna method. The parallel implementation of these methods
made them applicable to much larger problems. However, the parallel implementation of
the proposed algorithm in this study was limited to the cluster computer infrastructure.

There are other studies on parallel programming that have been conducted in dif-
ferent applications rather than bioinformatics. The authors in [21] introduced a parallel
implementation of the Ranking SVM algorithm. They presented OpenCL and OpenMP
versions for the multicore, and manycore platforms, and an evaluation of both parallel
programming models was performed. More work was performed in [22] to calculate
the Pearson’s correlation matrix using a hybrid programming model of CUDA and MPI.
The data matrix was divided into pieces, and a master GPU distributed the pieces on
the worker GPUs using the MPI technique. In [23], a GPU-based parallel programming
model was introduced to calculate the pairwise Pcc in real MRI data to understand the
functional associations in the human brain. Additionally, in [24], the authors presented
a novel computation model for determining the scalability of the parallel programming
iterative algorithms in a distributed multiprocessing system of computer clusters.

To conclude, the scope of most of the previously mentioned publications was introduc-
ing or evaluating different APIs in different parallel computing architectures for solving
some of the heavy computations in bioinformatics and non-bioinformatics applications.
However, the MATLAB APIs introduced in the MATLAB Parallel Computing Toolbox
and the MATLAB Distributed Computing Server (MDCS) have not yet been investigated
in the current state of the art. The MathWorks Parallel Computing ToolboxTM and MAT-
LAB Distributed Computing ServerTM are two examples of technologies that provide this
functionality [25]. In this study, the ForkJoinPcc algorithm has been developed using the
Parallel MATLAB Toolbox and two software structures has been utilized including the
single program multiple data model (SPMD) and parallel loop (ParFor). They are abstrac-
tions for the message passing function defined in the MPI-2 standard [26]. Parallel SPMD
programs are usually built using a message passing library such as MPI. For designing and
running parallel programs on the Windows platform, Microsoft MPI [27] is a Microsoft
implementation of the MPI standard. Another SPMD implementation is available in many
programming tools, such as the Java parallel programming model [28]. The parallel loop
(ParFor) construct is analogous to OpenMP parallel loops [29] and the Fortress language

Electronics 2022, 11, 1174 4 of 13

specification’s parallel for constructs [30]. The main distinction is that OpenMP parallel
loops and Fortress loops run on threads within a single process on a single physical com-
puter, whereas ParFor repetitions run on several processes, perhaps on multiple physically
independent systems. The parallel constructs available in the MATLAB parallel computing
toolbox abstract information as needed and present to users a language independent of
resource allocation and underlying implementation, which is why the suggested method
was implemented using the MATLAB API in this work. Most crucially, the toolbox includes
the same functionality as more difficult tools like CUDA and C++ but in a MATLAB-like
programming style [31]. Since MATLAB is a commonly used tool for researchers in our
area, and we believe an implementation with the MATLAB API will be valuable for the
community.

The contributions of this work include the following:

• A proposed framework for the ForkJoinPcc algorithm which mimics the fork–join
model is introduced here.

• The performance of the ForkJoinPcc algorithm is tested intensively in terms of the
processing time and the communication overhead between the worker nodes.

• The ForkJoinPcc algorithm is applied to cover gene expression matrices of hepatocel-
lular carcinoma (HCC), comprising a huge number of genes.

• Four MATLAB constructs including SPMD, distributed arrays, MatlabPool, and ParFor
are employed in implementing the ForkJoinPcc algorithm.

• The adequacy of these constructs in achieving good performance on shared or dis-
tributed multiprocessing systems (multicore and computer cluster) is evaluated.

3. Parallel MATLAB Toolsets

There have been many attempts [32–34] made by researchers in MathWorks to pro-
duce some MATLAB utilities for parallel programming. In November 2004, MathWorks
presented two toolboxes as an explicit parallel programming utility, including the Parallel
Computing Toolbox and the MDCS. The MDCS includes a set of worker nodes managed by
a master node connected in a shared and distributed multiprocessing system. The master
node in the MATLAB Client propagates a computation task to the workers and labs through
a set of message-passing functions. These functions are abstractions for the message-passing
function defined in the MPI-2 standard [26]. The master node communicates via a point-
to-point communication paradigm with the working labs. The message-passing functions
include labSend and labReceive for the point-to-point operations between the MATLAB
Client and the worker nodes. Other software constructs that exist in the Parallel MATLAB
Toolbox include SPMD, distributed arrays, MatlabPool, and ParFor, which will be described
in the following subsections.

3.1. Single Program Multiple Data (SPMD) Model

This is a technique utilized to accomplish parallelism on the shared and distributed
memory systems. In a distributed memory architecture, there is a set of independent
workers (computing nodes). Each worker executes their task on a different subset of the
dataset, and the workers can communicate via MPI by transmitting and receiving messages.
In a shared memory multiprocessing system, the workers are CPUs that share a memory
space. Workers can perform the same task on different batches of the whole dataset, and
they can communicate by placing their results in the shared memory section. As shown in
Figure 2, the whole dataset is split among N workers which run simultaneously to attain
faster execution of the whole program. To employ SPMD in MATLAB, one must initially
generate a pool of parallel workers with a total number of workers that does not exceed the
actual number of nodes in the shared CPUs and distributed multiprocessing system. Then,
within the frame of the SPMD section, each worker node will have a unique identifier that
identifies that node for further communication between its neighboring nodes.

Electronics 2022, 11, 1174 5 of 13

Figure 2. Splitting a dataset among workers in shared and distributed memory systems.

3.2. Parallel Pool

A parallel pool (MatlabPool) is a set of workers working in parallel on a cluster of
computing nodes or a multiprocessor system. Instead of executing a task via a single
working node, the pool utilizes several workers to accomplish the same task on different
chunks of data simultaneously. The working nodes in the pool can communicate with
each of their neighbors throughout the lifetime of the running job. In MATLAB, the pool
size and number of workers should be identified in advance. Figure 3 shows a request for
creating a parallel pool of four working nodes. Reserved working nodes in a pool are not
accessible to other clients, and only a single parallel pool can be created at a time for the
client session in MATLAB.

Figure 3. MatlabPool (pool size = 4).

Electronics 2022, 11, 1174 6 of 13

3.3. Loop Parallelism (ParFor)

This is a kind of parallelism in parallel programming that tries to parallelize the heavy
computational tasks in loops. The ability to parallelize the sequential tasks in a loop is
possible if the data are stored in a random-access structure. In the parallelized program,
multiple threads will be employed to work on multiple indices simultaneously instead of
working on one index at a time, as in the sequential program. In this manner, the overall
execution for the loop will need less time, and the complexity of its processing is decreased.
Parallelism can be performed simply just in the case of independent operations where each
iteration in the loop is independent of other iterations. However, numerous algorithms
may fail when parallelized due to the dependency between its iterations in a repeated loop.
In such cases, some mechanisms like synchronization via message passing and semaphores
should be employed.

4. Design and Implementation of ForkJoinPcc

In this section, the complexity of finding the dependencies between huge numbers of
genes using Pcc is discussed. The serial algorithm SerialPcc for computing the correlation
matrix for a set of genes is shown in Algorithm 1. It consists of three nested loops, which
make it a heavy computational process. For example, if there are 20,000 genes measured in
35 microarrays, then there will be 20,000 × 20,000 × 35 iterations to obtain the Pcc between
these genes (correlation matrix). It is undesirable to perform this computation serially as it
has quadratic complexity.

Algorithm 1: A serial algorithm for computing the Pcc in gene co-expression networks.

Input:
Gene expression matrix of N genes expressed in S samples
Output:
Correlation matrix C (N,N)
For I = 1 to N

For K = 1 to N
Cor_sum = 0; X_sum = 0 ; Y_sum = 0

For J = 1 to S
Cor_sum = Cor_sum + ((GenExp(i, j)−mean(GenExp(i, ;) ∗ (GenExp(k, j)−mean(GenExp(k, ;))))
X_sum = X_sum + ((GenExp(i, j) −mean(GenExp(i, ;)))ˆ2
Y_sum = Y_sum + ((GenExp(k, j) −mean(GenExp(k, ;)))ˆ2

End For
C(I, K) =

cor_sum√
X_sum ∗

√
Y_sum

)

End For
End For

The main idea in the ForkJoinPcc algorithm is breaking the nested loops, as shown
in Algorithm 1. This was accomplished by dividing the whole computation into modules.
Each module has an independent linear algebra. By examining the arithmetic formula
of Pcc mentioned in Equation (1), this calculation can be divided into mini-processes
as follows:

1. Find the mean value of each gene;
2. Subtract the mean value from all values in the gene expression matrix;
3. Multiply the shifted matrix by its transpose;
4. Square the shifted matrix;
5. Find the sum of each row in the squared matrix;
6. Find the correlation matrix between all genes.

In the ForkJoinPcc algorithm, the fork–join model is mimicked by breaking the math-
ematical operations into independent mini-operations that can be processed in parallel.
Each mini-operation that can be performed in parallel is called a parallel section. The main
framework of the ForkJoinPcc algorithm is depicted in Figure 4. The detailed steps for

Electronics 2022, 11, 1174 7 of 13

each parallel section are listed in Algorithm 2. It starts by preprocessing the microarrays
in serial computation to compute the data array (the gene expression matrix). The data
array is 22,277 × 35 in a row-major order of 22,277 genes and 35 microarray experiments.
Then, the data array is broadcasted to all cores. In the first parallel section, the mean value
of each gene is computed. This parallel section was implemented as follows. A pool of
4 labs (cores) in the multicore system was opened, and 12 cores were used in the cluster
computer. A single program multiple data section was initiated, and the mean value of
each gene in the gene expression matrix was calculated through a parallel loop inside this
section. Each core worked on a subset of genes, and the results were stored in a distributed
array. The results were gathered in the master node. In a new parallel section using the
SPMD and parallel loop, all values for each gene were shifted by the mean value. In the
same manner, the other parallel sections were implemented. However, the implementation
of the parallel sections in steps 7 and 13, as listed in Algorithm 2, requires 2 nested loops
that yield 22,277 × 22,277 iterations. Therefore, each iteration of the outer 22,277 iterations
had a parallel for loop with 22,277 iterations. This way of implementation was undesirable
for these parallel sections. Therefore, this obstacle was overcome in two ways: initiating
parallel jobs for implementing these sections instead of SPMD and parallel loops. The task
of the parallel job for the first parallel section is the multiplication of the shifted matrix by
its transpose. The output of this task is a 22,277 × 22,277 matrix. However, such a matrix
size cannot be allocated in the multicore platform. Therefore, in the multicore system, six
jobs were created for performing this multiplication. Each job worked with 4000 items
except the last one, which worked with 2277 items of the shifted matrix. When finished,
each worker and lab sent their results to the client lab. In the same manner, the other
bottleneck parallel section was implemented.

Algorithm 2: A parallel algorithm for computing the correlation matrix

Input:
Gene expression matrix, X, of N genes expressed in S samples
Output:
Correlation matrix C (N,N)
1 Initialize a pool of worker nodes.
2 Broadcast the gene expression matrix to all workers nodes.
3 In parallel, Compute the mean value of the expression of each gene in all samples, Mean[i]
where i =1 to N.
4 Gather the results.
5 In parallel, subtract the mean from each value in X

X_shifted[i, j] = X[i, j]−Mean[i]
6 Gather the results.
7 In parallel, multiply X_shifted by its transpose

Y[i, j] = X[i, j] ∗ transpose(X[i, j])
8 Gather the results.
9 In parallel, multiply each element in Y by itself to get the Squared_Y
10 Gather the results.
11 In parallel, find the sum of each row in the matrix Squared_Y into the variable Sum_Sq_Y
12 Gather the results.
13 In parallel, find the correlation between gene i, and j

C[i, j] =
Y[i, j]√

Sum_Sq_Y[i] ∗
√

Sum_Sq_Y[j]
14 Gather the results.

Electronics 2022, 11, 1174 8 of 13

Figure 4. A fork–join model for computing the correlation matrix in gene co-expression networks.

5. Experimental Set-Up and Dataset

The experiments were conducted on devices at the El Fayoum University High-
Performance Computing Center. For the multicore platform, a Core i7 Intel 10750H
processors with 2.60 GHz and 16 GB RAM were utilized. The Core i7 processor con-
sists of four hyper-threaded cores. For each hyperthreaded processor core that is physically
present, the operating system addresses two virtual processors and shares the workload
between them when possible. For the cluster platform, the experiments were conducted
on six nodes, with one master and five worker computers. Each node had a Core i7 Intel
10750H processor with 2.60 GHz and 16 GB RAM. The operating system that was utilized
was Windows 10 (64-bit operating system with an x64-based processor). For the SDK, the
MATLAB Parallel Computing Toolbox and MDCS release 2019a from MathWorks were
been employed. The hardware details are shown in Table 1.

Table 1. The hardware details of the experimental environment.

Device
Processor

Base
Frequency

Number of
Physical

Cores
Cache

Max Memory
Bandwidth

(GB/s)

10th Gen Intel® Core™
i7-10750H Hex Core

Processor
2.60 GHz 6 12 MB Intel®

Smart Cache
45.8 GB/s

We conducted our experiments using a real dataset to launch a comparison of the
performance of each parallel infrastructure. The gene expression matrix of hepatocellular
carcinoma (HCC) was employed to estimate and analyze its gene networks and pathways.
Hepatocellular carcinoma is a consequence of the hepatitis C virus (HCV), and it is the
most important type of liver cancer. Raw data were downloaded from Gene Expression
Omnibus (GEO) (Edgar, Domrachev, and Lash, 2002) and preprocessed via the Affy pack-
age [35] offered by Bioconductor [36]. The preprocessed gene expression matrix contained
22,277 genes and 35 normal or tumor samples.

6. Results and Discussion

To assess the adequacy of the ForkJoinPcc algorithm on the multicore system and the
cluster computer, the computation time for each parallel section in the proposed algorithm
was computed. In addition, the broadcast and gather times for different chunks of data
for each parallel section were measured. The broadcast and gather time represents the
communication overhead that can be faced when using a parallel infrastructure. On the
other hand, the computation time is the useful part that should be decreased with the help

Electronics 2022, 11, 1174 9 of 13

of parallel computing. The detailed measured broadcast and gather and computation times
for the first parallel section in the ForkJoinPcc algorithm for a different number of working
cores are depicted in Table 2. For more illustration of the broadcast and gather time in all
phases of the parallel sections of the ForkJoinPcc algorithm, the measured times for the
second, third, fourth, fifth, and sixth parallel sections are listed in Table 3.

Table 2. Broadcast and gather and computation times for the first parallel section.

Number of Cores Broadcast and Gather Time (s) Computation Time (s)

1 0 830.64
2 (multicore) 6.95 616.00
3 (multicore) 7.83 412.38
4 (multicore) 8.74 210.78
12 (cluster) 17.6 68.88

Table 3. Broadcast and gather and computation times for the second, third, fourth, fifth, and sixth
parallel sections in the ForkJoinPcc algorithm.

Parallel Section in
the ForkJoinPcc

Algorithm
Number of Cores Broadcast and

Gather Time (s)
Computation Time

(s)

2nd parallel section 4 (multicore) 8.75 820.83
12 (cluster) 17.63 230.53

3rd parallel section 4 (multicore) 8.755 16,518.65
12 (cluster) 17.84 873.52

4th parallel section 4 (multicore) 8.72 713.42
12 (cluster) 17.4 147.7

5th parallel section 4 (multicore) 8.74 13.79
12 (cluster) 17.13 10.7

6th parallel section 4 (multicore) 8.53 19,446.23
12 (cluster) 17.51 900.52

In Table 2, the broadcast and gather time was calculated as the total elapsed time for
the labSend and labReceive constructs between the master lab and worker lab to finish
the first parallel section. It can be observed that the broadcast and gather time increased
as the number of cores and labs increased. On the other hand, the computation time for
the multicore system was reduced from 830 s to 210 s as the number of cores increased
to 4 cores. A much lower computation time of 68.88 s was retrieved for the computer
cluster. Such large growth in time for the multi-core execution was due to the third-party
MATLAB parallel constructs. As mentioned before, there were three MATLAB parallel
constructs employed in the implementation of the first parallel section, including SPMD,
ParFor, and distributed arrays. The MATLAB distributed array is an API that was originally
implemented on the top of the message-passing infrastructure, and each lab stores a portion
of that array. In addition, the execution of the ParFor construct is perofrmed on labs that
have been created on a Matpool. The labs in the pool do not share memory, which is a
significant feature in the multicore platform.

As depicted in Table 3, the retrieved broadcast and gather time had a slight variation
for the different parallel sections and was almost constant. The broadcast and gather time
for the cluster platform was approximately double the corresponding time consumed for the
multicore platform. It reached approximately 17.6 s for the whole dataset of 22,227 genes on
the cluster platform. This reveals that the communication overhead in the cluster platform
was high, but this time could be neglected with respect to the computation time, which
was much higher than the broadcast and gather time on the cluster platform.

Additionally, the third and sixth parallel sections were the most time-consuming
parallel sections in the ForkJoinPcc algorithm, as illustrated in Table 3. The processing
time for the third parallel section for the whole dataset reached 16,518 and 883 s on the

Electronics 2022, 11, 1174 10 of 13

multicore and cluster platforms, respectively. A time of 19,446 s was needed to run the sixth
parallel section on the multicore platform compared with the 900 s needed on the cluster
platform. The implementation for these parallel sections was based on using parallel jobs
and distributed arrays. The underlying strategy for the parallel jobs in MATLAB was based
on physically separated nodes working on a cluster platform, which is inefficient for the
shared-memory architecture of the multicore platform.

7. Comparing the Performance

In this section, the performance of the ForkJoinPcc algorithm is compared to Seri-alPcc.
The speedup for the ForkJoinPcc algorithm was calculated on the multicore and cluster
platforms. For an illustration of the performance of the ForkJoinPcc algorithm, the speedup
for different data sizes, a different number of genes (N), and a different number of samples
(M), these are listed in Table 4. As illustrated in Table 4, it can be noticed that the speedup of
ForkJoinPcc on the cluster platform (17–62×) was much greater than the corresponding one
on the multicore platform (3.4–3.9×) for different data sizes. This is because of the higher
efficiency and compatibility of the third-party toolset (MATLAB Parallel Computing tools)
to the underlying message-passing infrastructure of the cluster platform. The main clue of
the offered MATLAB Parallel Computing tools is to extend MATLAB’s capabilities into the
parallel computing industry and introduce MATLAB tools that can help in parallelizing the
code to be executed in a cluster computing environment [25,37,38]. Figure 5 depicts the key
components of the software stack that support both the MATLAB and Parallel Computing
Toolbox functionalities, while the significant feature of the multicore platform, shared
memory architecture, has not been efficiently utilized using the MATLAB parallel toolsets.

As depicted in Table 4, the performance of the ForkJoinPcc algorithm was compared
to our previous contribution in [37] for implementing a parallel implementation for the
same application on a cloud platform. Two big data approaches including MapReduce
and Spark were introduced for computation of the Pcc similarity matrix in the GCN. For
22,277 genes, the processing of the Pcc matrix consumed 1789.98 and 17,443.98 s on the
cloud platform using the Spark and MapReduce techniques, respectively. The speedup
can be listed in descending order as follows: 80×, 62×, 8.22×, and 3.8× for Spark and
ForkJoinPcc on the cluster platform and MapReduce and ForkJoinPcc on the multicore
platform, respectively. when comparing the speedup on the cloud and the multicore and
cluster environments, the parallel implementation using Spark on the cloud platform
yielded fast processing and an 80.1× speedup of the Pcc matrix for the whole number of
genes. The data processing performed in the main memory of the worker nodes in the
spark system and the avoidance of unnecessary I/O operations with the disks helped in
accomplishing its higher performance with respect to the other techniques.

Table 4. Speedup of the ForkJoinPcc algorithm on different platforms.

Gene Expression
Matrix

(N Rows ×M
Columns)

SerialPcc
Time (s)/Speedup

ForkJoinPcc on
Multicore

Time (s)/Speedup

ForkJoinPcc on
Cluster

Time (s)/Speedup

Parallel
Algorithm Using
MapReduce [37]

Time (s)/Speedup

Parallel
Algorithm Using
Spark [37] Time

(s)/Speedup

400 × 10 826.05/1× 209.63/3.9× 48.59/17× 25.98/31.79× 17.652/46.77×
1000 × 15 7773.29/1× 2100.89/3.7× 151.15/51× 93.516/83.12× 25.56198/304.1×
4000 × 20 22,034.14/1× 6480.63/3.4× 306.56/71× 4813.2/4.58× 355.98/61.88×

22,277 × 35 143,382.74/1× 37,732.30/3.8× 2281.46/62× 17,443.98/8.22× 1789.98/80.1×

Electronics 2022, 11, 1174 11 of 13

Figure 5. Parallel computing software stack in MATLAB.

8. Conclusions

The interactions between the co-expressed genes in a GCN can be identified with
the help of computing the correlation coefficients between all genes. The construction of
such a matrix is a heavy computation, and the present study proposes a parallel algorithm,
ForkJoinPcc, for its implementation on shared and distributed multiprocessing platforms to
find the dependencies between all the huge numbers of genes measured in high-throughput
microarrays. The main idea in the proposed algorithm mimics a well-known parallel
programming model: the fork–join model. The implementation was performed using
the parallel MATLAB APIs introduced in the MATLAB Parallel Computing Toolbox and
the MATLAB Distributed Computing Server. Four constructs from MATLAB, including
SPMD, distributed arrays, MatlabPool, and ParFor, were utilized. Our evaluation for the
parallel MATLAB tools based on the high values of the speedup attained on the cluster
platform implies that these tools are more compatible with the underlying message-passing
infrastructure of the cluster platform than the multicore platform. However, the pros of
the multicore platform, such as a shared memory architecture, have not been effectively
employed using the MATLAB parallel toolsets.

In this study, we created a different parallel algorithm and implementation for the
same application: the correlation matrix in gene co-expression networks. We employed the
fork–join model in the introduced algorithm, which had a similar idea to MapReduce and
Spark. The fork–join approach utilizes the divide-and-conquer algorithms that recursively
fork processes running in parallel, waits for them to finish, and then merges their results [38].
However, we obtained negative results compared with the yielded results we found in our
previous work using Spark.

Electronics 2022, 11, 1174 12 of 13

Author Contributions: Conceptualization, A.A.A., H.N.A., G.A., N.H.S., R.A.A.A.A.S., O.S.A., V.F.G.
and N.A.S.; methodology, A.A.A., H.N.A., G.A., N.H.S., R.A.A.A.A.S., O.S.A., V.F.G. and N.A.S.;
software, N.A.S.; validation, A.A.A., H.N.A., G.A., N.H.S., R.A.A.A.A.S., O.S.A., V.F.G. and N.A.S.;
formal analysis, A.A.A., H.N.A., G.A., N.H.S., R.A.A.A.A.S., O.S.A., V.F.G. and N.A.S.; investigation,
A.A.A., H.N.A., G.A., N.H.S., R.A.A.A.A.S., O.S.A., V.F.G. and N.A.S.; resources, N.A.S.; data curation,
N.A.S.; writing—original draft preparation, A.A.A., H.N.A., G.A., N.H.S., R.A.A.A.A.S., O.S.A., V.F.G.
and N.A.S.; writing—review and editing, A.A.A., H.N.A., G.A., N.H.S., R.A.A.A.A.S., O.S.A., V.F.G.
and N.A.S.; visualization, N.A.S.; supervision, N.H.S. and R.A.A.A.A.S.; project administration,
A.A.A.; funding acquisition, A.A.A. All authors have read and agreed to the published version of
the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2022R308), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors express their gratitude to Princess Nourah bint Abdulrahman
University Researchers Supporting Project number (PNURSP2022R308), Princess Nourah bint Abdul-
rahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abdel Samee, N.M.; Solouma, N.H.; Kadah, Y.M. Detection of Biomarkers for Hepatocellular Carcinoma Using a Hybrid

Univariate Gene Selection Methods. Theor. Biol. Med. Model. 2012, 9, 34. [CrossRef] [PubMed]
2. Samee, N.M.A.; Solouma, N.H.; Kadah, Y.M. Gene Network Construction and Pathways Analysis for High Throughput

Microarrays. In Proceedings of the National Radio Science Conference, NRSC, Cairo, Egypt, 10–12 April 2012; pp. 649–658.
3. De Wael, M.; Marr, S.; Van Cutsem, T. Fork/Join Parallelism in the Wild: Documenting Patterns and Anti-Patterns in Java

Programs Using the Fork/Join Framework. In Proceedings of the PPPJ ’14 International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools, Krakow, Poland, 23–26 September 2014; Association
for Computing Machinery: New York, NY, USA, 2014; Volume 13, pp. 39–50.

4. Francis, N.; Mathew, J. Implementation of Parallel Clustering Algorithms Using Join and Fork Model. In Proceedings of the 2016
Online International Conference on Green Engineering and Technologies, IC-GET 2016, Online, 19 November 2016; Institute of
Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017.

5. Jacob, A.C.; Eichenberger, A.E.; Sung, H.; Antao, S.F.; Bercea, G.T.; Bertolli, C.; Bataev, A.; Jin, T.; Chen, T.; Sura, Z.; et al. Efficient
Fork-Join on GPUs through Warp Specialization. In Proceedings of the 24th IEEE International Conference on High Performance
Computing, HiPC 2017, Jaipur, India, 18–21 December 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ,
USA, 2018; Volume 2017, pp. 358–367.

6. Liang, M.; Zhang, F.; Jin, G.; Zhu, J. FastGCN: A GPU Accelerated Tool for Fast Gene Co-Expression Networks. PLoS ONE 2015,
10, e0116776. [CrossRef] [PubMed]

7. Shi, H.; Schmidt, B.; Liu, W.; Müller-Wittig, W. Parallel Mutual Information Estimation for Inferring Gene Regulatory Networks
on GPUs. BMC Res. Notes 2011, 4, 189. [CrossRef] [PubMed]

8. Zhang, B.; Horvath, S. A General Framework for Weighted Gene Co-Expression Network Analysis. Stat. Appl. Genet. Mol. Biol.
2005, 4. [CrossRef]

9. Cai, Y.; Ma, F.; Qu, L.H.; Liu, B.; Xiong, H.; Ma, Y.; Li, S.; Hao, H. Weighted Gene Co-Expression Network Analysis of Key
Biomarkers Associated with Bronchopulmonary Dysplasia. Front. Genet. 2020, 11, 539292. [CrossRef]

10. DeRisi, J.; Penland, L.; Brown, P.O.; Bittner, M.L.; Meltzer, P.S.; Ray, M.; Chen, Y.; Su, Y.A.; Trent, J.M. Use of a CDNA Microarray
to Analyse Gene Expression Patterns in Human Cancer. Nat. Genet. 1996, 14, 457–460. [CrossRef]

11. Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63.
[CrossRef]

12. García-Calvo, R.; Guisado, J.L.; Diaz-del-Rio, F.; Córdoba, A.; Jiménez-Morales, F. Graphics Processing Unit–Enhanced Genetic
Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks. Evol. Bioinform. 2018, 14. [CrossRef]

13. González-Domínguez, J.; Martín, M.J. Fast Parallel Construction of Correlation Similarity Matrices for Gene Co-Expression
Networks on Multicore Clusters. Procedia Comput. Sci. 2017, 108, 485–494. [CrossRef]

14. Casal, U.; González-Domínguez, J.; Martín, M.J. Analysis of the Construction of Similarity Matrices on Multi-Core and Many-Core
Platforms Using Different Similarity Metrics. In Proceedings of the Lecture Notes in Computer Science; Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11536 LNCS,
pp. 168–181.

http://doi.org/10.1186/1742-4682-9-34
http://www.ncbi.nlm.nih.gov/pubmed/22867264
http://doi.org/10.1371/journal.pone.0116776
http://www.ncbi.nlm.nih.gov/pubmed/25602758
http://doi.org/10.1186/1756-0500-4-189
http://www.ncbi.nlm.nih.gov/pubmed/21672264
http://doi.org/10.2202/1544-6115.1128
http://doi.org/10.3389/fgene.2020.539292
http://doi.org/10.1038/ng1296-457
http://doi.org/10.1038/nrg2484
http://doi.org/10.1177/1176934318767889
http://doi.org/10.1016/j.procs.2017.05.023

Electronics 2022, 11, 1174 13 of 13

15. Gonzalez-Dominguez, J.; Martin, M.J. MPIGeneNet: Parallel Calculation of Gene Co-Expression Networks on Multicore Clusters.
IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 15, 1732–1737. [CrossRef]

16. Zola, J.; Aluru, M.; Sarje, A.; Aluru, S. Parallel Information-Theory-Based Construction of Genome-Wide Gene Regulatory
Networks. IEEE Trans. Parallel Distrib. Syst. 2010, 21, 1721–1733. [CrossRef]

17. Song, L.; Langfelder, P.; Horvath, S. Comparison of Co-Expression Measures: Mutual Information, Correlation, and Model Based
Indices. BMC Bioinform. 2012, 13, 328. [CrossRef] [PubMed]

18. Rossini, A.J.; Tierney, L.; Li, N. Simple Parallel Statistical Computing in R. J. Comput. Graph. Stat. 2007, 16, 399–420. [CrossRef]
19. Chang, D.J.; Desoky, A.H.; Ouyang, M.; Rouchka, E.C. Compute Pairwise Manhattan Distance and Pearson Correlation Coefficient

of Data Points with GPU. In Proceedings of the 10th ACIS Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing, SNPD 2009, in Conjunction with IWEA 2009 and WEACR 2009, Daegu, Korea, 27–29 May
2009; pp. 501–506.

20. Chilson, J.; Ng, R.; Wagner, A.; Zamar, R. Parallel Computation of High-Dimensional Robust Correlation and Covariance Matrices.
Algorithmica 2006, 45, 403–431. [CrossRef]

21. Zhu, H.; Li, P.; Zhang, P.; Luo, Z. A High Performance Parallel Ranking SVM with OpenCL on Multicore and Many-Core
Platforms. Int. J. Grid High Perform. Comput. 2019, 11, 12. [CrossRef]

22. Kijsipongse, E.; U-Ruekolan, S.; Ngamphiw, C.; Tongsima, S. Efficient Large Pearson Correlation Matrix Computing Using Hybrid
MPI/CUDA. In Proceedings of the 2011 8th International Joint Conference on Computer Science and Software Engineering,
JCSSE 2011, Nakhon Pathom, Thailand, 11–13 May 2011; pp. 237–241.

23. Eslami, T.; Saeed, F. Fast-GPU-PCC: A GPU-Based Technique to Compute Pairwise Pearson’s Correlation Coefficients for Time
Series Data—FMRI Study. High-Throughput 2018, 7, 11. [CrossRef]

24. Sokolinsky, L.B. BSF: A Parallel Computation Model for Scalability Estimation of Iterative Numerical Algorithms on Cluster
Computing Systems. J. Parallel Distrib. Comput. 2021, 149, 193–206. [CrossRef]

25. Sharma, G.; Martin, J. MATLAB®: A Language for Parallel Computing. Int. J. Parallel Program. 2009, 37, 3–36. [CrossRef]
26. Kepner, J. Parallel Programming with MatlabMPI. arXiv 2001, arXiv:astro-ph/0107406. [CrossRef]
27. Microsoft MPI—Message Passing Interface. Microsoft Docs. Available online: https://docs.microsoft.com/en-us/message-

passing-interface/microsoft-mpi (accessed on 20 February 2022).
28. Hummel, S.F.; Ngo, T.; Srinivasan, H. SPMD Programming in Java. Concurr. Pract. Exp. 1997, 9, 621–631. [CrossRef]
29. Chandra, R.; Dagum, L.; Kohr, D.; Maydan, D.; McDonald, J.; Menon, R. Parallel Programming in OpenMP; Morgan Kaufmann

Publishers: San Francisco, CA, USA, 2001.
30. Allen, E.; Chase, D.; Hallett, J.; Luchangco, V.; Maessen, J.-W.; Ryu, S.; Steele, G.; Tobin-Hochstadt, S. The Fortress Language

Specification; Sun Microsystems: Santa Clara, CA, USA, 2007.
31. Stripinis, L.; Žilinskas, J.; Casado, L.G.; Paulavičius, R. On MATLAB Experience in Accelerating DIRECT-GLce Algorithm for

Constrained Global Optimization through Dynamic Data Structures and Parallelization. Appl. Math. Comput. 2021, 390, 125596.
[CrossRef]

32. Travinin Bliss, N.; Kepner, J. PMATLAB Parallel MATLAB Library. Int. J. High Perform. Comput. Appl. 2007, 21, 336–359. [CrossRef]
33. Kepner, J.; Ahalt, S. MatlabMPI. J. Parallel Distrib. Comput. 2004, 64, 997–1005. [CrossRef]
34. Hudak, D.E.; Ludban, N.; Gadepally, V.; Krishnamurthy, A. Developing a Computational Science IDE for HPC Systems. In

Proceedings of the ICSE 2007 Workshops: Third International Workshop on Software Engineering for High Performance
Computing Applications, SE-HPC’07, Minneapolis, MN, USA, 26 May 2007; pp. 5–9.

35. Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. Affy-Analysis of Affymetrix GeneChip Data at the Probe Level. Bioinformatics
2004, 20, 307–315. [CrossRef]

36. Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al.
Bioconductor: Open Software Development for Computational Biology and Bioinformatics. Genome Biol. 2004, 5, R80. [CrossRef]
[PubMed]

37. Samee, N.A.; Osman, N.H.; Seoud, R.A.A.A.A. Comparing MapReduce and Spark in Computing the PCC Matrix in Gene
Co-Expression Networks. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 2021. [CrossRef]

38. Rosales, E.; Rosà, A.; Binder, W. FJProf: Profiling Fork/Join Applications on the Java Virtual Machine. In Proceedings of the
VALUETOOLS’20: 13th EAI International Conference on Performance Evaluation Methodologies and Tools, Tsukuba, Japan,
18–20 May 2020; ACM International Conference Proceeding Series. Association for Computing Machinery: New York, NY, USA,
2020; pp. 128–135.

http://doi.org/10.1109/TCBB.2017.2761340
http://doi.org/10.1109/TPDS.2010.59
http://doi.org/10.1186/1471-2105-13-328
http://www.ncbi.nlm.nih.gov/pubmed/23217028
http://doi.org/10.1198/106186007X178979
http://doi.org/10.1007/s00453-006-1219-9
http://doi.org/10.4018/IJGHPC.2019010102
http://doi.org/10.3390/ht7020011
http://doi.org/10.1016/j.jpdc.2020.12.009
http://doi.org/10.1007/s10766-008-0082-5
http://doi.org/10.48550/arXiv.astro-ph/0107406
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
http://doi.org/10.1002/(SICI)1096-9128(199706)9:6<621::AID-CPE310>3.0.CO;2-V
http://doi.org/10.1016/j.amc.2020.125596
http://doi.org/10.1177/1094342007078446
http://doi.org/10.1016/j.jpdc.2004.03.018
http://doi.org/10.1093/bioinformatics/btg405
http://doi.org/10.1186/gb-2004-5-10-r80
http://www.ncbi.nlm.nih.gov/pubmed/15461798
http://doi.org/10.14569/IJACSA.2021.0120937

	Introduction
	Literature Review
	Parallel MATLAB Toolsets
	Single Program Multiple Data (SPMD) Model
	Parallel Pool
	Loop Parallelism (ParFor)

	Design and Implementation of ForkJoinPcc
	Experimental Set-Up and Dataset
	Results and Discussion
	Comparing the Performance
	Conclusions
	References

