
Forkscan

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Alistarh, Dan et al. "Forkscan: Conservative Memory Reclamation
for Modern Operating Systems." EuroSys '17: Proceedings of the
Twelfth European Conference on Computer Systems, April 2017,
Belgrade, Serbia, Association for Computing Machinery, April 2017
© 2017 The Authors

As Published http://dx.doi.org/10.1145/3064176.3064214

Publisher Association for Computing Machinery

Version Author's final manuscript

Citable link https://hdl.handle.net/1721.1/123336

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/123336
http://creativecommons.org/licenses/by-nc-sa/4.0/


Forkscan: Conservative Memory Reclamation
for Modern Operating Systems

Dan Alistarh
ETH Zurich

dan.alistarh@inf.ethz.ch

William Leiserson
MIT

willtor@mit.edu

Alexander Matveev
MIT

amatveev@mit.ed

Nir Shavit
MIT and Tel-Aviv University

shanir@csail.mit.edu

Abstract
The problem of efficient concurrent memory reclamation in
unmanaged languages such as C or C++ is one of the ma-
jor challenges facing the parallelization of billions of lines
of legacy code. Garbage collectors for C/C++ can be in-
efficient; thus, programmers are often forced to use finely-
crafted concurrent memory reclamation techniques. These
techniques can provide good performance, but require con-
siderable programming effort to deploy, and have strict re-
quirements, allowing the programmer very little room for
error.

In this work, we present Forkscan, a new conservative
concurrent memory reclamation scheme which is fully auto-
matic and surprisingly scalable. Forkscan’s semantics place
it between automatic garbage collectors (it requires the pro-
grammer to explicitly retire nodes before they can be re-
claimed), and concurrent memory reclamation techniques
(as it does not assume that nodes are completely unlinked
from the data structure for correctness). Forkscan’s imple-
mentation exploits these new semantics for efficiency: we
leverage parallelism and optimized implementations of sig-
naling and copy-on-write in modern operating systems to ef-
ficiently obtain and process consistent snapshots of memory
that can be scanned concurrently with the normal program
operation.

Empirical evaluation on a range of classical concurrent
data structure microbenchmarks shows that Forkscan can
preserve the scalability of the original code, while main-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23 - 26, 2017, Belgrade, Serbia

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . 15.00

DOI: http://dx.doi.org/10.1145/3064176.3064214

taining an order of magnitude lower latency than automatic
garbage collection, and demonstrating competitive perfor-
mance with finely crafted memory reclamation techniques.

CCS Concepts •Software and its engineering → Gen-
eral programming languages; •Theory of computation
→ Program analysis

Keywords Synchronization, Memory Management

1. Introduction
A key requirement for modern multicore software is scal-
ability: the capacity to perform better under higher thread
counts. The last decade has seen a tremendous amount of
progress in this area, such that, nowadays, scalable concur-
rent versions are known for many classic data structures,
such as linked-lists [5, 24, 31, 35, 38], hash-tables [36, 39,
52], search trees [1, 30], and priority queues [3, 53].

While parallelizing data structures shows great promise
for improving system performance, it also poses new chal-
lenges to existing programming methods and tools. We focus
on one of the major obstacles to scalability: concurrent mem-
ory reclamation. This is the problem of deallocating memory
while ensuring that no concurrent thread holds references
to target memory blocks. This is especially pertinent since
many high-performance concurrent data structures are im-
plemented in unmanaged languages, such as C/C++, where
developers are especially concerned with performance. To
illustrate this problem, let us consider Harris and Michael’s
popular non-blocking linked list algorithm [31, 43].

The design is based on two key observations. The first
is that, for scalability, list traversals should avoid using ex-
pensive synchronization, in the form of locks or compare-
and-swap (CAS) operations. This unsynchronized traversals
principle is common to many scalable data structure designs
as listed above, and to parallelization techniques such as
read-copy-update [42] and read-log-update [41]. The sec-



ond observation is that naively manipulating node pointers
only via CAS operations is unsafe due to race conditions.
Instead, the algorithm should “mark” nodes for deletion be-
fore they are actually made physically unreachable within
the data structure. This is done by setting a mark bit in the
next pointer of the node: an attempt to update this pointer af-
ter it is marked will fail. Figure 1 depicts how node deletion
works in the Harris-Michael list.

From the perspective of reclaiming memory, this type of
data structure implementation presents two key challenges.
First, since logical and physical node deletion are decoupled,
logically deleted nodes may still be reachable from other
nodes in the data structure. Second, and more importantly,
even unreachable nodes may still be accessed by concurrent
threads holding references to such nodes. In the Harris-
Michael list a stalled thread may still hold references to
unreachable nodes as part of its traversal. Because traversals
involve no synchronization, it is impossible to tell from the
structure’s state if a traversing thread holds a reference to a
given node.

This is the problem of invisible readers: threads that tra-
verse the data structure and read from nodes without alert-
ing other threads to their presence may read old or junk data
when another thread performs an update that frees a node.
This can lead to wrong outputs or even segmentation faults.
Guaranteeing that no thread is looking at a removed node, al-
lowing it to be freed and reallocated, requires invisible read-
ers, threads traversing the data structure without writing to
it, to make their activities known in some way.

A programmer wishing to reclaim memory for an im-
plementation of the concurrent list data structure in C/C++
has, broadly, two sets of options. The first, general one, is
to employ a thread-safe automatic garbage collector, such as
the popular implementation by Boehm et al. (BDW) [17].
Automatic memory reclamation tends to be very easy to ap-
ply, and takes the burden of discovering “who knows what
and when” away from the data structure developer, shield-
ing the end-programmer from this complexity. Garbage col-
lectors usually have an automalloc() interface that is a
drop-in replacement for a traditional allocator’s malloc().
automalloc() returns memory that is tracked by the garbage
collector, which will search for external references and reuse
the memory if no such references can be found. How-
ever, such solutions can have a high cost in terms of raw
performance and unpredictable high latency imposed on
user threads, especially when the implementation is multi-
threaded. (Please see Section 4 for experimental evidence.)

A second, fine-grained approach is to employ one of
many existing concurrent memory reclamation schemes,
e.g. [2, 4, 26, 31, 32, 34, 44], which we discuss in detail in
the next section. These are methods specifically designed to
solve the problem of concurrent access to reclamation candi-
dates, and can reduce the performance overheads of garbage
collection. The price for performance is the fact that most

Thread'P'wants'to'delete'node'D'
P'

A' B' C' D' E'

Step'1:'Mark'node'D'
=>'Sets'LSB'bit'in'D.next''

P'

A' B' C' D' E'

Step'2:'Disconnect'node'D'
=>'Swing'C.next'to'E''
=>'But'this'fails'since''
=>'Q'marks'C.next'

P'

A' B' C' D' E'

A' B' C' D' E'

Q'

Later,'Thread'S'that'reads'nodes,'will'
finalize'the'swings'that'failed'

S'

Figure 1. Node deletion in the Harris-Michael list: the
thread (P) first performs a traversal; if the node (D) is found,
the operation marks the node as described above, thus “log-
ically removing” it. Then, the thread (P) performs a single
attempt to physically remove the node from the data struc-
ture by swinging its incoming pointer (C.next to E). Im-
portantly, this attempt may fail if the previous list node has
changed since the traversal (update by thread Q in this case).
However, the thread (P) will not try again: future traversals
(thread S) encountering logically deleted nodes physically
remove them from the list and reclaim their memory (swing
B.next to E). Notice that there is no easy way to identify
when a node is fully disconnected and can be reclaimed.

of these methods are not automatic: the programmer must
manually apply them to the data structure implementation.

Frustratingly, concurrent memory reclamation schemes
leave the programmer little room for error: these schemes
critically rely on the assumption that nodes which are re-
moval candidates are unreachable in the data structure. This
requirement significantly complicates otherwise simple op-
erations: for instance, the removal of multiple nodes from
a singly-linked list must first disconnect each node in turn.
Moreover, the resulting code base is fragile and great care
must be taken when modifying it. To illustrate, consider the
two-phase delete of Harris’ list (Figure 1). Ensuring that the
deleted node is fully unreachable after the delete completes
requires handling of failures in the second phase that swings
the “previous” node to the next node. However, this requires
finding the proper “previous” node that needs to be modified,
which may require re-traversal of the whole list. Ignoring the
cost in performance, the cost in code complexity means that



such systems are full of edge cases, difficult to implement
correctly, and difficult to understand.

We note that similar issues have been addressed in the
context of managed programming languages such as Java or
C#. In particular, fast, near-real-time concurrent garbage col-
lection is known to be possible in such languages, e.g. [46],
and efficient techniques have been proposed to speed up col-
lection for concurrent data structures written in Java [14].

However, the programmer’s current choice when writing
C/C++ code is between solutions that are generic, but pos-
sibly inefficient or unpredictable in terms of latency, and
finely-crafted reclamation techniques which can be efficient,
but require a significant amount of programming effort, leav-
ing no room for error.

In this paper, we show that this choice is not inher-
ent. We present Forkscan, a new conservative reclama-
tion scheme tailored for concurrent data structures, which
is both automatic and scalable. Forkscan’s semantics are
simple: it implements a retire procedure, which takes a
pointer to a memory node that the programmer wants to
reclaim. Whereas garbage collectors treat automalloc()
as a drop-in replacement for malloc(), and eliminate
the free() call, Forkscan uses forkscan malloc() and
forkscan retire() as drop-in replacements for malloc()
and free(), respectively. The forkscan retire() be-
haves, from the programmer’s perspective, just as a free()
call would. It is necessary to call it exactly once on a node in
order to reclaim (and subsequently reuse) the memory. How-
ever, the call does not immediately reclaim the memory, but
acts as a “hint” to Forkscan that the node is thought to be
free of external references, and reuses it only once no such
references exist. In contrast to previous schemes, Forkscan
does not automatically assume that the node has been made
unreachable in the data structure, and will preserve program
correctness if this assumption does not hold, by postponing
reclamation of the node. These semantics are useful since 1)
they prevent catastrophic failure in case of a programming
error and 2) they simplify programming in the case of com-
pound node operations, such as removing a range of nodes
from a linked list. At the same time, empirical results show
that our implementation of Forkscan can preserve the per-
formance of the original application to a large extent, both
in terms of performance and latency.

Forkscan’s semantics place it between automatic garbage
collectors (since it requires the programmer to explicitly
retire nodes), and concurrent memory reclamation tech-
niques (since it does not require unlinking for correctness).
Forkscan only performs reclamation when the number of
outstanding retired nodes reaches a certain threshold. Addi-
tionally, since C/C++ programmers often tailor their mem-
ory allocators to their applications, Forkscan does not imple-
ment malloc itself but can be configured to use the preferred
malloc implementation under the hood.

Our implementation is based on a simple principle: we
aim to push the expensive components of reclamation onto
the operating system, taking advantage of kernel optimiza-
tions. In particular, we use modern operating system sup-
port for efficient signaling and copy-on-write mechanisms
to obtain an inexpensive coherent snapshot of memory for
the collector, and design the memory scan to take advantage
of prefetcher optimizations. Forkscan is both concurrent, in
the sense that the application can run concurrently with the
scanning process (except for a brief “freeze” period), and
parallel, in that it leverages thread parallelism to speed up
the scanning and the reclamation.

Some of the techniques behind Forkscan—such as ex-
ploiting copy-on-write to obtain inexpensive snapshots of
memory—have been proposed previously for garbage col-
lection [10, 48], but exhibited poor performance. We re-
visit these ideas in the context of modern operating sys-
tems, which provide efficient support for these constructs. To
our knowledge, Forkscan is the first fully automatic mem-
ory reclamation technique for C/C++ with high scalability
on many cores.

1.1 Algorithm Overview
At a high level, Forkscan has a simple division of labor. We
structure the execution around collection operations. Each
such operation consists of two phases: freeze-and-fork and
scan-and-mark.

The freeze-and-fork phase works as follows. We reserve
a reclaiming thread (the “reclaimer”), whose purpose is to
wait for and receive a list of pointers to memory blocks that
are candidates for deletion. Upon receiving such a list from
a user thread, the reclaimer starts a reclamation operation
by sending a signal to all other threads. Upon receipt of this
signal, each thread writes out its current stack boundaries
and register contents, replies with an acknowledgment, and
waits. When the reclaimer has received acknowledgments
from all threads, the memory is “frozen” of thread activity.
At this time, the reclaimer thread forks off another process
(the “scanner”), and then immediately signals all threads to
resume their regular execution.

Next, the child process performs a parallel scan of mem-
ory. Note that the child inherits a proper memory snapshot
at the “freezing” point, whose consistency is maintained by
the system through the copy-on-write mechanism. The scan-
ner partitions memory, and spawns siblings which iterate
sequentially through each partition, attempting to interpret
words as pointers to nodes in a list of reclamation candi-
dates.1 If a presumed pointer to a node is found, it is marked
and recursively searched. This technique allows Forkscan to
detect any cycles between retired nodes. At the end of the
scan, the last forked child notifies its parent and terminates.

1 Since it always pessimistically assumes that matched pointers are node
references, Forkscan is conservative.



Our Forkscan implementation involves a few non-trivial
observations and techniques:

First, it may seem that having a retire call detracts from
the simplicity of the programming model and is not really
necessary. However, our experience shows that the actual
complexity in concurrent programming is not to identify
what objects one wants to free (on what to call retire), but
how to identify that there are no references to this object.
This is because concurrent data-structures may remove ref-
erences asynchronously or lazily, in order to improve perfor-
mance or ensure progress guarantees, and identifying when
all of the asynchronous updates render the node unreachable
is not a trivial task for programmers. Forkscan automates this
task.

Second, it is important to note that having a retired
node list can make collection significantly more efficient.
ForkScan’s implementation exploits this fact to perform a
linear scan of memory (as opposed to tracing) comparing
each memory location against the list via a carefully op-
timized binary search procedure. This is a critical perfor-
mance optimization, since most of the memory is “outside”
the retired node list, and this memory is scanned linearly by
the first phase, which is friendly for the CPU pre-fetching,
caching, and page-fault mechanisms. As a result, the second
phase, which performs an expensive recursive search and
mark and is responsible for detecting cycles (in GC style),
needs to scan much less memory – only memory that is part
of the retired node list.

Third, node de-allocation is carefully piggybacked on top
of allocation calls, to avoid the overheads of bulk deletes
while bounding memory usage. A thread which wants to
perform an allocation must first see if nodes are available
to be freed. This allows the user threads to perform cleanup
without introducing unpredictable wait times.

Finally, Forkscan induces blocking thread behaviour in
theory; however, the handshake mechanism is implemented
through signaling, and each thread must complete handler
code before returning to user-level code. Thus, a thread
is unresponsive only if starved for steps by the operating
system, which only occurs in extreme conditions. Hence, we
argue that in practice, Forkscan preserves the non-blocking
nature of data structures.

Forkscan is allocator-agnostic. Whereas garbage collec-
tors tend to own their allocators, Forkscan will sit on top
of another allocator, such as [22, 27], and malloc() and
free() from it. This provides some flexibility to C and C++
programmers who often choose allocators tailored to their
specific workloads.

1.2 Evaluation Overview
We implemented Forkscan in C on Linux, and tested it on a
machine with 80 hardware threads, to provide memory recla-
mation for a set of classic concurrent data structures: Harris
and Michael’s non-blocking linked list [31, 43], Fraser’s skip
list [25], and a concurrent hash table.

Empirical results on these microbenchmarks show that
Forkscan scales well with the original data structure, with
overhead typically falling somewhere between manual mem-
ory reclamation techniques and conventional garbage collec-
tors. In trials, it is able to handle allocation frequencies of
18.8 million nodes/second, corresponding roughly to 4.4 GB
of allocated memory per second. Further, Forkscan’s over-
head can be divided between snapshot latency and throttling,
where throttling can be ameliorated by increasing memory
allowances. Snapshot latency in Forkscan is low, even for
large applications. At less than 60ms for programs upwards
of 5GB running on 80 hardware threads, this is more than
an order of magnitude lower than with automatic garbage
collection. This feature addresses a core concern of C/C++
programmers regarding automated memory reclamation.

We also tested the limits of our approach, and identi-
fied the “breaking point” allocation frequencies after which
Forkscan fails to keep up with the heap size.

Additionally, memcached [23] was modified, and its
built-in reference counting mechanism was replaced with
Forkscan, demonstrating its real-world applicability. Trials
demonstrated no visible overhead versus the original code.

In sum, we show that it is possible to provide (to the ex-
tent testable on our current 80-way machine) fully scalable
conservative memory reclamation for C/C++, by exploit-
ing parallelism and tailoring it to take advantage of mech-
anisms that are highly optimized in modern operating sys-
tems. Moreover, memcached demonstrated that, without sac-
rificing performance, users need not deal with the complex-
ities of reference counting or the like. Our implementation
is in Linux [15], but we believe the ideas behind it can be
applied to other state-of-the-art operating systems as well.

It is important to note that Forkscan has the following
limitations. First, it is conservative, in that “false positive”
reference detection may prevent it from reclaiming mem-
ory. This appears inherent due to the pointer semantics of
C; moreover, a study by Boehm [7] showed that this space
overhead is limited to an additive constant in most scenar-
ios. Second, Forkscan is tailored towards modern concurrent
data structure designs: it takes advantage of concurrency, and
of the fact that in standard workloads, the majority of oper-
ations do not mutate the data structure. Different access pat-
terns, for example, ones that are mutation-heavy, would not
necessarily allow the same level of scalability. This is made
evident in Section 4.

2. Related Work
The literature on memory reclamation is extremely vast,
and a complete survey is beyond the scope of this paper.
Instead, we focus on two topics: 1) data-structure aware
garbage collection for managed languages, and 2) memory
reclamation and conservative garbage collection for C/C++.
(While interesting recent techniques [16, 47] are able to
provide precise collection for C, they are single-threaded.)



Managed Languages. Recent work by Cohen and Petrank
proposed a data-structure aware (DSA) garbage collector
for Java [14], which takes advantage of structural informa-
tion to improve both collection time (by up to 75%) and
overall running time (by up to 30%) for real applications.
More precisely, DSA requires that 1) Data structure nodes
are identified via class annotations; 2) Remove is called
explicitly on such nodes; 3) The memory allocator is cus-
tomized to allow for optimized placement of such nodes, and
4) A full garbage collector is available for completeness.

By comparison, Forkscan also assumes that nodes be ex-
plicitly retired, but does not require the other three assump-
tions. In particular, we do not annotate data structure nodes,
and Forkscan is allocator-agnostic. As Forkscan is developed
for an unmanaged language, its technical details are funda-
mentally different from DSA. For instance, DSA uses node
co-location to improve tracing, and locality. Since Forkscan
does not control allocation, we developed other techniques
such as the freeze-and-fork mechanism, linear scans, and
piggy-backed allocation to gain efficiency.

C/C++. Arguably, the most well-known line of work on
parallel conservative collection for C is the popular collec-
tor of Boehm, Demers, and Weiser [17]. Developed and im-
proved over the space of two decades, e.g., [7, 8, 10], it has
proved popular among practitioners.

The BDW collector is based on a classic mark-and-sweep
pattern. In each collection phase, the collector thread signals
all other participating threads to write out their register con-
tents. It then marks all objects referenced directly by pointer
variables (roots) and then iterates, each time marking newly
reachable objects. Finally, it performs a sweep, identifying
unmarked (unreachable) objects, adding them to free lists for
use in satisfing allocation requests. Note that objects cannot
be moved, due to the pointer semantics of C/C++.

In a seminal paper [10], Boehm, Demers, and Schenker
gave a way to run the collector thread “mostly concurrently”
with application threads: the collector first stops all threads
while it protects memory pages for writing; then threads
may resume. To maintain consistent marking, threads which
modify memory during collection incur a page write protec-
tion fault, and will re-trace the nodes whose pointers they
modify. They also show that the sweep phase is paralleliz-
able; later work [21] showed that the mark phase is also
parallelizable. Subsequently, Kermany and Petrank [37], and
Barabash, Ossia, and Petrank [37] proposed several opti-
mizations to reduce pause times and memory fragmentation.
In general, this approach can suffer from high overheads due
to the page protection mechanism [20]. The garbage collec-
tion work probably closest to ours is that of Shahriyar et
al. [51], which performs conservative reference counting and
cycle detection, with write barriers on pointer mutations.

Forkscan, though automated, does not do garbage collec-
tion, and differs from the above approaches in significant
ways. Instead of tracing objects, we choose to perform a full,

sequential sweep of the heap; thus, it will likely scan more
memory, but will gain much better locality during the scan.
Instead of explicitly enforcing consistent marking via page
protections, it takes advantage of the semantics of fork to en-
sure that the scanner sees a consistent snapshot of memory.
Finally, Forkscan takes hints from the concurrent data struc-
ture developer about when a node is likely to be available for
freeing (when it is removed).

The idea of using the fork semantics to obtain a snap-
shot of memory for the scanner is not new. It is briefly men-
tioned by Boehm, Demers, and Shenker [10], and imple-
mented by Rodriguez-Rivera and Russo [48], where it shows
roughly the same performance as the BDW collector on a
four-processor SPARC machine. We revisit this idea here,
and show that, if used carefully, it can lead to significant
performance improvements on modern operating systems.

A second line of research is concurrent memory recla-
mation methods [34]. These techniques fundamentally rely
on the assumption that nodes which are candidates for recla-
mation are already unreachable in the data structure. Based
on their characteristics, they can be roughly split into four
categories.

The first is that of reference-counting schemes [18, 28],
which associate a reference count with each node. Once this
counter is cleared, the node is safe for reclamation, as no
new references to it may be created. These methods can in
theory be automated, and are the closest to classic garbage
collection. Unfortunately, they suffer from considerable per-
formance degradation, as they induce expensive synchro-
nization on every new node access. Where multiple threads
can read the same data cheaply, reference counting adds
writes that may contend. Put another way, reference count-
ing renders invisible readers visible by adding a potentially-
contending write to every read.

Second, quiescence-based techniques [26, 31, 32] de-
lay reclamation until quiescent periods when threads pass
through states where no shared references are held, such
as when data structure operations return. These schemes
are lightweight, but rely on per-thread progress, as thread
stalls or crashes can significantly delay reclamation. Recent
work [6, 11, 12] showed that such schemes can recover from
thread crashes, in specific instances. Third, pointer-based
schemes [34, 44] require the programmer to explicitly mark
live nodes (which may be accessed) to prevent de-allocation.
Such schemes are data-structure specific, and add an expen-
sive validation step, which exposes marked nodes to other
threads by means of a memory fence.

Additionally, recent work by Cohen and Petrank [13] pre-
sented an automatic reclamation scheme for lock-free data
structures, inspired by mark-and-sweep garbage collection,
which assumes that data structures are written in a specific
normalized form. While many data structures can be re-
written according to this pattern, it is not known whether
this process can be made automatic.



Other recent solutions rely on either hardware or oper-
ating system support. In particular, Dragojevic et al. [19]
and Alistarh et al. [2] proposed schemes based on hard-
ware transactional memory. (The latter scheme is also semi-
automatic, in that it only requires the programmer to specify
a fallback path.)

In the recently proposed ThreadScan mechanism [4], the
reclaiming thread signals all other threads to scan their own
stacks and registers for references to nodes in a delete buffer,
as part of the signal handler. Candidate nodes without such
references are clear for removal. This mechanism is similar
to our first snapshot stage, and to previous garbage collec-
tor mechanisms, e.g. [48]. Because ThreadScan scans only
stacks and an optional range of memory, it restricts where
pointers can be stored. Moreover, its scanning phase must
be completed before any thread returns to work.

3. The Forkscan Algorithm
3.1 Overview
Forkscan uses the following pattern: Each thread maintains
a pool of nodes to be reclaimed. The pool is populated by
concurrent data structures, which call forkscan retire()

on nodes as they are removed. In the pattern of popular
concurrent data structures, these nodes are unlikely to be
seen by other threads. When a thread’s pool becomes full,
it consolidates all thread pools and hands it to a specialized
reclaimer thread from the Forkscan runtime. We call the
consolidated set of pools the delete buffer.

The reclaimer then starts a reclamation phase, attempting
to purge the delete buffer. A reclamation phase consists of
several steps. We describe these steps in detail below, and
present pseudo-code in Algorithm 1.

Step 1: Freeze-and-fork. The first step aims to obtain a
coherent snapshot of the application’s memory. For this, the
reclaimer first broadcasts a signal to all other threads, which
handle the signal by writing out their current stack bound-
aries and register contents. Subsequently, each thread sends
an acknowledgment, and waits for confirmation. Once the
reclaimer has collected acknowledgments from all applica-
tion threads, it forks a new process, whose task will be to
scan memory. As soon as the fork returns, the reclaimer re-
leases all other threads to return to their regular execution,
and waits for the child to complete the scan.

Two observations are important at this point. The first
is that, at the time T when the reclaimer calls fork(), all
threads have written their current stack boundaries and reg-
ister contents to memory, without executing further. Second,
by the semantics of fork(), the child process will observe a
consistent snapshot of the program’s memory at time T , in-
cluding heap, stack, and register contents. Therefore, to de-
termine whether outstanding references to delete candidates
still exist, it is sufficient for this child process to simply scan
the heap, stack, and register contents as it observes them.

Step 2: Scanning. The child process begins by identifying
the memory ranges which need to be scanned, and partitions
them into M disjoint ranges, where M ≥ 1 is a parame-
ter. It then forks M − 1 sibling processes, such that each
has a subrange that can be scanned in parallel. Scanning is
broken into two parts: 1. find roots and 2. recursive mark.
Finding roots means searching through memory for refer-
ences outside of the delete buffer to nodes inside of it. The
processes scan memory, avoiding the nodes in the buffer, for
references, and marking the pointers in the buffer when they
are found. The delete buffer is in shared memory between
the sibling processes, so writes are visible to all siblings.

After the roots have been found, the delete buffer is bro-
ken up into chunks for the sibling processes, and marked
references are recursively searched for further references. At
the end of this phase, all nodes that are visible from the user
program have been discovered and marked. Any unmarked
nodes are no longer known to the user, and are available to
be freed. This marking technique allows cycles to be dis-
covered, so that nodes that point to one another, but are not
pointed to from outside can be freed.

When the scan is complete, the last of the children notifies
the reclaimer thread in the parent (via a pipe) and winds
down. The reclaimer thread runs down the buffer looking
for reachable nodes and preserves them for the next round of
reclamation.

Step 3: Deletion. The previous step identified a set of
nodes which can be safely deleted. It is tempting to free
all these blocks at this time. However, in practice this leads
to poor performance. If freeing is done by the reclaimer,
reclamation iterations are delayed. If it is done by other
internal threads, those threads compete for time and memory
resources with user threads. And if user threads are signaled
again to perform the task, Forkscan introduces high latency
(which is what C/C++ programmers want to avoid).

We therefore delay the free calls by piggybacking them
on future malloc calls, allowing the user threads to perform
the deletion phase without introducing high latency. This
amortizes the free calls via malloc calls, while at the same
time roughly matching the frequency of allocation with that
of de-allocation.

The delete buffer is preserved, and a user thread that
wants to allocate memory will first free some of the nodes
in it. Each thread, when it has no nodes to free, will reserve
a portion of the buffer that it is responsible for freeing. With
each allocation, the thread will traverse part of its range,
identify a small number of unmarked references, and free
them. The delete buffer is reference counted, so when it has
no more ranges to reserve, and when its reference count hits
zero, it can be reused.

3.2 Implementation Details
Allocation and Retirement. forkscan malloc() is pro-
vided as a wrapper for malloc() and has the same profile. If



Algorithm 1 ForkGC Pseudocode.
1: function CONSOLIDATE PTRS

. Called when a user thread pool is full.

. Aggregate pointers from all threads
2: delete-buffer← ∅
3: for th ∈ threads do
4: delete-buffer ∪ = GET PTRS POOL(th)
5: SORT(delete-buffer)
6: SIGNAL-CONDITION-VAR(reclaimer-conditional)

7: function RECLAIMER THREAD(ctx)
8: while 1 do
9: WAIT-ON-CONDITION-VAR(reclaimer-conditional)

. Signal all threads
10: for th ∈ threads do
11: SIGNAL(th, snapshot)
12: wait for ACK from all threads

. At this point, the system is ”frozen,” so we fork
13: pid← FORK()
14: if pid = 0 then

. The child scans the memory snapshot
15: SCAN(ctx)
16: EXIT()

. This is the parent
17: resume all threads via signal . Child got

snapshot
18: wait for child to finish
19: PUSH-BACK(delete-buffer) . Free memory

20: function SCAN(ctx)
21: memory-ranges← GET MAPPED RANGES()
22: Split memory-ranges into M partitions
23: for id ∈ [1..M - 1] do
24: pid← FORK()
25: if pid = 0 then
26: SCAN FOR REFS(memory-ranges[id])
27: EXIT()
28: SCAN FOR REFS(memory-ranges[0])
29: Wait for children to finish

30: function SCAN FOR REFS(memory-ranges)
31: for each word ∈ memory-ranges do

. Check if word is a reference to some object
32: i← BINARY-SEARCH(word, delete-buffer)
33: if i 6= 0 then

. Found a reference→ record it
34: SET-LOW-BIT(delete-buffer[i])
35: SCAN FOR REFS(delete-buffer[i])

36: function SNAPSHOT SIGNAL HANDLER(ctx)
. Executed by thread on snapshot signal

37: Spill registers and stack boundaries to stack
38: Send ACK to reclaimer-thread
39: Wait for resume signal . Freeze point for snapshot

nodes are available to be freed, it will do so before returning
new memory to the user. The main interface to Forkscan is
forkscan retire(), which behaves like free() from the
user’s perspective except that instead of immediately freeing
the node, it adds it to the thread’s pool, checks to see if the
pool is full, and possibly becomes the consolidator. It should
be noted that forkscan retire() is a proper-replacement
for free() in that retiring the same node multiple times or
from multiple threads could have the same unpredictable ef-
fects as a double-free. Likewise, both retiring and freeing a
node will lead to unpredictable behavior.

Forkscan is allocator-agnostic and treats the underly-
ing library as a black box. The je malloc allocator [22]
was selected for experimentation because it had the best
performance in trials on the microbenchmarks. However,
Forkscan only requires the names of malloc(), free(),
and malloc usable size() (the last is a function that,
given a pointer, returns the number of bytes available in that
block). It can be configured at run-time to use any allocator
the application developer prefers, as long as it implements
those three functions.

Thread List Consolidation. The per-thread lists of ad-
dresses are implemented as deques: values are pushed on
one end by the owner as allocations occur, and are popped
from the other by the consolidating thread. The consolidat-
ing thread grabs a global lock before it begins, so deques
are only popped by one thread at any time. This makes them
single-reader, single-writer data structures, even though the
popping thread may be different each time consolidation
happens. The implementation is taken from ThreadScan [4].

Once the thread buffers have been drained by the consol-
idator, the thread pushes the consolidated buffer onto a list
of waiting buffers for the reclamation thread to find. The fi-
nal delete buffer is created by the reclamation thread as an
aggregate of waiting consolidation buffers and leftover ad-
dresses from previous reclamation iterations.

This architecture is highly concurrent, in spite of the
global lock, when thread buffers are big enough to make
consolidation rare. Therefore, contention is low. The thread
buffers have a configurable size, but they default to 65,536
(64K) addresses, a number that was picked based on hand-
tuning.



Capping Memory. Without an unreferenced memory limit,
a process could grow unbounded for data structures with fre-
quent writes if write operations, that might cause fast mem-
ory turnover, are exceedingly fast. Forkscan caps the amount
of unreferenced memory by limiting the number of unref-
erenced pointers. Thus, the cap is proportional to the aver-
age size of allocations. The limit of unreferenced pointers is
enforced by the consolidation system: When a consolidated
buffer is pushed onto the waiting list, the consolidator incre-
ments a counter. If the counter exceeds the waiting limit, the
consolidating thread stalls until the counter is reset by the
collection thread when it starts a new iteration. Memory is
bounded because no other thread can become the consolida-
tor until the current one relinquishes its role, thereby throt-
tling user threads when memory threatens to grow beyond
the (configurable) predetermined limits.

Naturally, a lack of memory can lead to massive throt-
tling, thereby introducing latency. But the user can configure
the size of the thread buffers and maximum number of wait-
ing consolidation buffers, trading off memory for latency.
This is tested in Section 4.

Thread Handling. In order for Forkscan to function, it
must know about all threads that may access the data struc-
tures that use forkscan retire(). To obtain this informa-
tion, Forkscan wraps main() and as well as all user calls to
pthread create(), storing metadata about the thread ID
and stack bounds. At present, it does not allow threads to opt
out. This behavior is similar to that of the classic BDW col-
lector [17]. The Forkscan algorithm does not inherently dis-
allow threads from opting out. But such threads would have
to be restricted from operating on concurrent data structures
or moving pointers to concurrent nodes around in memory,
thereby “hiding” them.

Signaling. Signaling is based on pthread kill(), an
API originally intended for killing threads, which targets
a thread by ID. When the process starts, it registers a sig-
nal handler that catches the signal on the targeted thread. A
thread that receives a signal will be interrupted unless it is in
the midst of a system call, in which case it responds before
it returns to user code. With the ID of all of the threads in
the process, the collector is able to iterate through the list
and force every thread to pause its execution and respond
through the signal handler.

The signaling mechanism additionally forces the thread
to dump its registers to the stack for the purpose of saving
the context. The operating system will use this context to re-
sume the thread after the signal has been handled. However,
having preserved its register contents, the forked process can
see the register contents each thread had at the time it paused.

Forking. When the collector thread forks, the children
need to communicate a potentially large amount of data
with the parent about the reference counts they calculate.
To make this communication efficient, the delete buffer is

allocated on shared pages. Changes to the reference counts
in the delete buffer made by child processes are visible to the
parent without any explicit communication. Since the recla-
mation thread in the parent has no work to do, it waits on a
pipe for notification that the scan has completed. The chil-
dren can exit as they finish scanning their regions of mem-
ory, atomically incrementing a shared scanner completed

counter as they leave. The last child sends a message to the
parent through the pipe, waking it up and allowing it to pro-
ceed.

Finding Memory to Scan. The first fork() generates
a scan child that calculates how much memory needs to
be scanned by reading from the /proc/self/maps file.
It keeps track of memory ranges that might contain refer-
ences to concurrent nodes, excluding regions allocated by
Forkscan, itself. The latter exclusions are easy to detect be-
cause Forkscan does all of its own internal memory manage-
ment.

Expedited Scanning. Comparing a range of memory ad-
dresses, m, to an arbitrary list of delete buffer addresses, d,
is a O(m × d) problem. Forkscan sorts its delete buffer to
make the scan a O(m× log d) problem. However, accessing
the delete buffer is still slow because it can potentially fill
thousands of pages, leading to frequent cache misses.

Performance is improved by creating a minimap of ad-
dresses: a subset of addresses from the bigger pool. The min-
imap is created by striding across the overall delete buffer, a
page at a time, and collecting the first address stored on each
page. Therefore, each entry in the minimap corresponds to
the first entry of each page in the delete buffer. When search-
ing for an address, p, the minimap can be queried for the
closest address without going over, q. Since the delete buffer
is sorted, the location of q in the minimap identifies the exact
page on which p exists, if it is present in the delete buffer.

For 4096-byte pages and 8-byte addresses, this means
the minimap represents a 512-fold reduction in space, or
the equivalent of 9 steps in a binary search. In general, it
also means that the whole minimap fits in cache. The con-
sequence is that a search for a particular address typically
misses the L3 cache exactly once. In practice, this opti-
mization reduced Forkscan’s overhead to negligible levels
in many tests.

Cache-friendly Scanning. In the root finding phase of the
scan, potential references are collected and not searched in
the delete buffer until a threshold has been reached. Once
enough potential references are found, they are sorted, and
searched sequentially. A pointer to the last searched loca-
tion in the delete buffer is retained since the next potential
reference is likely to be very close. The next reference can
be checked against the rest of that cache line in the delete
buffer. This makes binary searches rare during root finding,
and keeps accesses mostly sequential.



Scan Parallelization. The amount of memory to be scanned
determines the number of siblings the first child will fork()
to help. In practice, every extra 128 MB warrants another
scanner, up to a system maximum of 16. This number was
selected based on trials run on three different machines (with
very different architectures) that all gave best performance at
this number. The subsequent fork() calls are cheap, and the
processes are lightweight, because they modify almost no
memory except for what is in the shared buffer. The memory
they scan is treated as read-only, so copy-on-write is never
invoked.

Scan children communicate with one another about what
addresses they have seen using the shared delete buffer. All
manipulation of the reference counts are done with an atomic
increment, which is a Read-Modify-Write (RMW) opera-
tion. The struct at the head of the delete buffer is shared,
itself, and contains the scanner completed counter.

De-allocation. Our experiments show that deallocating
memory via a long sequence of free() calls is expensive
due to the system calls to madvise() (controls page re-
lease/purge to the Linux OS). Therefore, to avoid contention
and latency, nodes which are marked for deletion are not
freed immediately. Instead, the protocol pushes the delete
buffer onto the back of a list of delete buffers from previous
iterations. Threads that want to allocate memory and don’t
have anything to free query this list and reserve a subrange
from the front delete buffer.

Potentially, a thread that only calls forkscan malloc()

once could retain a reference to a delete buffer and keep it
from being reused, but no thread could monopolize more
than one delete buffer. And practically, a thread that mutates
a concurrent object once is likely to do so again.

False positives. Nodes from previous iterations that have
no outstanding references, but are still waiting to be freed,
may contain references to nodes in the current reclamation
iteration. In practice, this is a significant source of false posi-
tives that leads to loss of scalability. The reclaimer, therefore,
creates a list of dead nodes from the previous delete buffer to
give to the forked children for reference. A child, while it is
scanning memory, uses this list and skips scanning anything
from a dead node. List creation is performed after all threads
have acknowledged the signal, but before the fork(), mak-
ing the protocol slightly more costly.

3.3 Correctness Properties
Forkscan makes the following set of assumptions.

1. (No False Negatives) References to memory blocks in
the scanned space are word-aligned, and can be matched
to the interior of allocated blocks by comparison. Addi-
tionally, Forkscan masks off the low 3 bits of any word
it reads when scanning. This covers the common form
of “pointer-hiding” used by many data structures, and it
means those that overload those bits are discovered.

2. (No Thread Crashes) Threads do not crash.

3. (Bounded Allocation Rate) There exists a finite bound on
the allocation rate of the application.

4. (No False Positives) Arbitrary memory words do not
match block addresses.

Under these assumptions, Forkscan provides the follow-
ing guarantee:

THEOREM 1. Forkscan ensures the following.

1. Reachable memory blocks cannot be de-allocated.
2. Every unreachable memory block is eventually de-allocated.
3. There exists a finite bound on the amount of memory

employed by the application at any point in time.

Proof (Sketch). For the proof of the first two statements, con-
sider an arbitrary collection phase, and let T be the time
when the fork() call completes. A key invariant is that al-
located memory nodes which are not referenced (either in
thread stacks and registers or in the heap) at time T cannot
be referenced at later times in the execution (unless first re-
cycled), as they are currently unreachable. Further, we rely
on the fact that the child thread resulting from the fork()

operation receives a consistent snapshot of the entire par-
ent process memory at time T . By assumption (1), every
reachable node will have a non-zero reference count at the
end of the scan. By assumption (2), no unreachable node
can have non-zero reference count at the end of the scan.
These two properties will imply that no reachable memory
blocks can be allocated. Since Forkscan checks for cycles,
every unreachable block is eventually de-allocated. The third
property follows since we assume no false positives, and that
there exists an upper bound on the allocation frequency.

4. Experimental Results
4.1 Microbenchmarks
Setup. Forkscan was tested on an 40-core (4 sockets, 80
threads) Intel Xeon computer at 2.4 GHz with 1TB of RAM
running Ubuntu 15.04 with the 3.13.0-57 kernel. Software
threads were scheduled by the operating system, though
the Linux kernel tended not to migrate threads very often,
but instead scheduled threads on the same cores, generally.
The data structures that were tested were a lock-free linked
list [31, 43], a lock-free hash table from Synchrobench [29],
and a lock-based skip list from StackTrack [2].

For comparison, we used versions of these structures
that leak memory (“Leaky”), the latest Boehm-Demers-
Weiser Garbage Collector 7.4.2 (“BDW-GC”) [9], and sim-
ulated a Hazard Pointers [44] implementation by burdening
reads during list traversals. StackTrack had an actual Haz-
ard Pointer implementation. We compiled BDW-GC with
parallel mark and thread local optimizations. The Leaky,
Forkscan, and Hazard Pointer tests ran with the JEMalloc
3.6 [22] allocator. BDW-GC uses its own internal allocator.



The linked list was initialized with 1024 nodes and ex-
ecuted with 2048 possible values. Nodes were padded to
176 bytes in order to avoid false sharing and prefetching.
This was beneficial for all systems. The skip list was given
12,800,000 nodes and 25,600,000 possible values. Unlike
nodes in serial skip lists, which are only as large as they need
to be, ours were made 256 bytes with a maximum height of
20. Again, eliminating short nodes was necessary to elimi-
nate false sharing. It is worth noting that at that height, guar-
anteed O(lgn) access complexity only allows for 1,048,576
nodes, so accesses were slightly more expensive. The total
size of the skip list was about 3.1GB. Last, to test a high per-
formance structure, the hash table was given 32,000,000 ini-
tial nodes with a range of 64,000,000 possible values. Buck-
ets were implemented using the lock-free linked list, with 32
average list length. The hash table’s size was about 5.4GB.

Forkscan was configured for conservative memory usage:
each thread had a pool capacity of 16K nodes, and no more
than 4 aggregate lists could queue up before Forkscan began
throttling threads trying to allocate memory. No tests were
run with larger per-thread pools because performance was
good with the smaller ones.

Figure 2 shows benchmark results on the data structures.
Results are averaged over 3 executions of 4 minutes each.
The benchmarks were set to perform 20% modify operations
(reads and writes), a very heavy workload, to show perfor-
mance under pressure.

In the linked list case, BDW-GC performed along a sim-
ilar curve to “Leaky” with visible overheads, and the Haz-
ard Pointer simulation showed the cost of adding writes to
every read. However, this structure has slow enough oper-
ations that Forkscan’s performance overheads were almost
unnoticeable. This is also visible in the memory usage graph,
which has no elbow in the curve. Memory usage is expected
to grow linearly with the number of threads, since each
thread has its own pool, and a consolidation buffer size is
proportional to the pool size and the number of threads. A
linear growth shows that Forkscan did not need to allocate
extra consolidation buffers or delete buffers. BDW-GC, on
the other hand, has a roughly fixed overhead and is able to
track all of its pointers because it owns its allocator. Snap-
shot latency was especially low for Forkscan, topping out at
12ms on 80 threads, because the whole application used very
little memory. BDW-GC’s latency was roughly 242x above
Forkscan because collection happens inline with the running
benchmark. The extremely high latency, in this case, was
likely due to the length of the chain.

The skiplist has cheaper operations overall, even though
it is over-filled. Additionally, although StackTrack’s skiplist
takes out locks during add and remove operations, there is
not very much contention and the skiplist beats the linked
list based on its access time. In this case, Hazard Pointers
and Forkscan both outperformed the Leaky implementation.
Leaky performed poorly because, on the 40 and 80 core ex-

ecutions, the large size caused it to have poor cache perfor-
mance. BDW-GC took a hit in about the same place but in
this case, it was probably due to excessive scan times on the
large data structure. Even though Forkscan performed better
than Leaky, it was burdened due to throttling. As we demon-
strate below, the throttling latency can be overcome.

Memory usage is again higher for Forkscan than BDW-
GC, since Forkscan uses extra memory proportional to the
thread count. The elbow in memory usage happens early,
at 10 threads, as the cheaper operations caused Forkscan to
queue consolidation buffers. It never quite found equilibrium
before the queue filled, and throttled user threads. At 80
threads, it reached 60ms, as high as any of Forkscan’s trials.
However, when compared against the average 6.3 second
scan time of BDW-GC, Forkscan’s latency was still very low.

Hash tables have cheaper operations than skiplists. In
general, accesses are expected to be constant-time opera-
tions, so the Hazard Pointer simulation performs very well.
From the outset, Forkscan has a difficult time keeping up
with it, but continues to scale linearly (albeit, linearly with
a small constant multiplier). Again, the overhead can be at-
tributed entirely to throttling of user threads as they perform
allocations. The time it takes to perform a snapshot, even on
this large data set, however, remains low: reaching a max-
imum of 54ms on 80 threads. The BDW-GC collector was
unstable on this workload, even when provided with lots of
extra memory, so it could not be tested.

An additional stress test was run on the hash table to
demonstrate the breaking point of Forkscan. Instead of 20%
updates, a high value for real world applications, 40% up-
dates was specified. The results are shown in fig. 3. As
above, read and write operations are all about the same to
Hazard Pointers. However, Forkscan does not gain appre-
ciably from doubling the number of threads from 40 to 80.
At this point, throttling is significant and almost all of the
overhead is attributable to that, as the snapshot time has not
increased appreciably over the 20% update trials.

High latency due to throttling may not be any more palat-
able to C/C++ users than if the memory reclamation sys-
tem simply stopped the world and did all of its work using
the user threads. However, further tests demonstrate that, un-
like stopping the world and recruiting the user’s threads for
memory scanning, latency due to throttling can be reduced
where additional memory is available. In the cases above,
most overhead was throttling and very little was due to stop-
ping the world to take a snapshot.

Figure 4 shows how memory is used by Forkscan and
how it impacts performance. The first graph shows the to-
tal memory footprint of Forkscan run on the hashtable with
20% updates over a 7 minute execution. Forkscan can queue
up to 4 consolidation buffers (configurable) at a time before
throttling, and delete buffers are only reused after all free-
able nodes are actually freed. These buffers are proportional
to the number of threads and individual thread pool size, and



Figure 2. Performance results on the linked list, skiplist, and hash table data structures. For each: total operations, memory
usage of the application, and average latency per reclamation iteration (logscale for the first two structures, to compare Forkscan
with BDW-GC).

Figure 3. Performance results for a hash table with 40% update operations.



Figure 4. Forkscan memory usage and memory/latency vs. performance tradeoffs.

the total overhead corresponds to the total number of point-
ers times the average size of nodes.

The second graph is based on the skiplist run with 80
threads and shows that performance can be bought with
more memory, as is typical with other automated reclama-
tion systems. The Hazard Pointers result on 80 threads from
fig. 2 is shown for comparison. This tradeoff is the mech-
anism by which the user amortizes the cost of reclamation
over the normal cost of performing operations in the appli-
cation. The third graph, however, shows the snapshot latency
over those same executions. Whereas, in garbage collectors,
increased memory to improve performance increases indi-
vidual thread latency, Forkscan imposes no significant in-
crease in this metric.

This demonstrates that Forkscan is able to provide com-
parable performance to manual memory reclamation schemes
at a fraction of the latency of traditional automatic reclama-
tion systems. A larger process takes longer to fork than a
small one, but the vast bulk of the cost of doing memory
reclamation is invisible to user threads, even when Forkscan
is configured to use large amounts of memory. The max-
imum 155ms (at 64K pointers per thread pool) is human
noticeable, but it is a short duration compared with conven-
tional automatic systems.

The last point regarding latency of concern to C and C++
programmers is the overhead on the burdened allocation.
Since forkscan malloc() attempts to free nodes from pre-
vious iterations, the actual allocation is more costly than in a
serial execution. The overall amount of work is no more than
in a serial application since one free() corresponds to one
malloc() in the underlying allocator in both cases. But a
call to forkscan malloc() attempts to free multiple nodes
per allocation in order to keep memory low.

The Forkscan library was instrumented to capture the
amount of time spent freeing nodes, and the original hash
table trial was rerun with 80 threads. Figure 5 shows a his-
togram of the amount of time (in tens of nanoseconds) spent
on each allocation. The vast majority of allocations were
burdened by no more than 100ns, though there was an ex-

Figure 5. Histogram of overhead per allocation.

tended tail due to differences in operating system schedul-
ing. Calls with overhead of more than half a microsecond
were all collected into the last bucket, causing the apparent
bump.

The lack of variance during freeing is expected since the
nodes have been sorted, and for adjacent pointers in the list,
those pointers are likely to have good spacial locality. There-
fore, many calls to free() should not be much more costly
than a single one. Since this experiment is dependent on
the implementation of the underlying allocator (JEMalloc,
in this case), the shape of the graph is more interesting than
the specific numbers.

4.2 Real-world application
Finally, to demonstrate Forkscan’s effectiveness in a real-
world application, memcached [23], was modified to create
Leaky and Forkscan versions, replacing its default reference-
counting. In the altered versions, the builtin slab allocator
was removed and replaced with je malloc for simplicity.

In the Forkscan version, all accesses to individual item
reference counters were eliminated, and when an item was
unlinked from the structure, the thread that succeeded in un-



Threads Default Leaky Forkscan
1 156532 160715 173726
2 233993 276594 227535
4 306870 280548 314001
10 523586 534209 510895
20 245087 277168 259428
40 193803 198706 200100

Table 1. memcached performance in operations/second.

linking it then retired it. The Leaky version differed only in
that the retire call was commented out. Since the memcached
implementation was not changed, apart from how memory
was managed, Leaky was intended to act as an upper-bound
for performance.

To test performance, it was necessary to create a large
enough database that many connections would be supported
without making contention on individual items a bottleneck.
Such a bottleneck would have masked the best-case (for
memcached) scenario limiting factor. However, this had to
be balanced against the ability to fill the database quickly
and force replacements to happen frequently. Therefore,
memcached servers were created with 1GB of memory, stor-
ing items of 1024 bytes, allowing roughly 1 million individ-
ual items.

The memcached servers were configured to run locally,
avoiding network overhead and latency. Trials were run us-
ing memtier benchmark [40] with 16 threads for 12 seconds
with a set/get ratio of 1:4, and using 40 multi-key gets to
inflate the number of requests through a limited number of
connections. Each trial, for each version, was run 3 times
and the average number of operations/second was computed.
Trials above 40 threads were not run because of performance
degradation for all versions.

Table 1 shows the results. Performance was compara-
ble in all cases. The high variance in execution times be-
tween trials indicates that other factors are more important to
performance than memory reclamation (or lack thereof), as
sometimes Leaky was outperformed by Forkscan or the De-
fault reference-counted implementations. A drop-off in op-
erations per second occurred after 10 threads making locks a
likely culprit. The amount of time it took to freeze and fork
was typically around 5ms or less, and never exceeded 9ms.

These results indicate that Forkscan works in a practical
setting, making the code simpler without impeding perfor-
mance. Moreover, the individual data structure benchmarks,
especially the hash table, test Forkscan far more strenuously
than memcached. The simplified application code, which no
longer needs to count references nor carefully needs to ver-
ify correctness, makes Forkscan a valuable alternative for
reclaiming memory from concurrent data structures.

5. Discussion
We have presented Forkscan, a new memory reclamation
system which shows that it is possible to provide fully scal-
able conservative memory reclamation for C/C++ by ex-
ploiting parallelism and tailoring it to take advantage of
mechanisms that are highly optimized in modern operating
systems. Our implementation focuses on the Linux operat-
ing system [15], but we believe the ideas behind it can be
applied to other state-of-the-art operating systems as well.

Performance of Forkscan is competitive with other au-
tomatic reclamation systems such as the popular BDW
garbage collector. On the other hand, although manual appli-
cation of certain memory reclamation systems can eliminate
unpredictable delays, they are often difficult to apply cor-
rectly and impose themselves on the end-programmers who
use the data structure. Forkscan takes a meaningful step in
the direction of reduced latency imposed on user threads,
while maintaining an automated interface. Notably, even in
applications with large data sets Forkscan’s snapshot causes
only brief interruptions.

Our experimental setup was developed for Linux, which
offers an efficient copy-on-write mechanism through fork.
In theory, a similar mechanism can be implemented in Win-
dows via Virtual Memory Functions [45]. An implemen-
tation such a copy-on-write mechanism is described and
benchmarked in [49], to provide concurrent garbage collec-
tion for the D programming language. Although in theory
this implies that Forkscan could work on Windows, its im-
plementation would probably be quite complex.

Forkscan’s interface, requiring a retire call, is a feature
designed to improve performance (both in time and memory)
and give the programmer control over how memory is han-
dled. Memory that is known to be visible to a single thread
can be free’d directly. That memory need never be tracked
by Forkscan, saving time and resources. A programmer can
simulate a GC-style interface by retiring a pointer as soon as
it’s allocated – Forkscan even provides an automalloc()

function as an alternate interface – but we expect that C/C++
programmers prefer the control of the default interface.

5.1 Limitations
Conservative Reclamation. Forkscan is conservative, in
that memory words which could be pointers to a mem-
ory block are automatically treated as references. We share
this limitation with other automatic reclamation systems for
C/C++ [4, 17, 50]. In theory, this assumption could pre-
vent memory from being de-allocated, e.g. in the case of
a list whose head node has a false reference. A study by
Boehm [7] considers this issue in detail, and concludes that,
in most practical scenarios, the space overhead of conser-
vatism is bounded by an additive constant. This analysis gen-
eralizes to Forkscan.

We also assume that references are word-aligned, and that
the programmer does not obfuscate references to memory



blocks. This assumption is also standard for conservative
reclamation. Forkscan mitigates this, slightly, by masking
the low 3 bits when it reads a word, since some data struc-
tures overload those bits to save space. There are, of course,
many ways to hide pointers that are not detectable in a gen-
eral sense, but this is the most common and is easy to catch.

Concurrent Data Structures. Forkscan is tailored towards
concurrent data structures. Specifically, it leverages thread
parallelism for performance, and takes advantage of the fact
that most concurrent operations do not mutate the data struc-
ture. We implicitly exploit this natural workload skew to
avoid high pressure on the copy-on-write mechanism used
during the scan phase. This is by design, and Forkscan
should not be compared to general garbage collectors for
other applications that don’t fit this profile.

Multiple Threads Retiring a Single Node. At present, re-
tiring a node multiple times from different threads might
cause the same node to be tracked (and not found) in two
subsequent iterations, causing a double-free. For this rea-
son, adapting Forkscan to support this usage model would
require fundamental design changes. However, in each of
the microbenchmarks, as well as in memcached, finding the
right place in the code to call forkscan retire() was ob-
vious: the thread that successfully marked the node removed
was responsible for retiring it. A quick look at a variety of
concurrent data structure designs in Herlihy and Shavit [33]
shows that this is a common pattern. Therefore, we think
that finding this place is generally easy, so there is no need
to support multiple threads retiring the same node. That said,
this is a possible avenue of future work if many concurrent
data structures require or are simplified by that interface.

5.2 Future Work
In terms of extensions, we note that our design can be im-
proved to provide several additional features.

Space Usage. Currently, Forkscan introduces a constant
multiplicative overhead by storing a pointer to each retired
object. This can be eliminated by directly utilizing the node
information stored in the allocator, which subsumes these
lists, by merging Forkscan with the allocator, itself. Many
C/C++ programmers choose an allocator that suits their spe-
cific performance needs, however, and marrying Forkscan to
its allocator makes it less general purpose. For portability,
Forkscan is designed to work with any allocator.

Destructors. To work with classes in C++, the destructor
must be called on objects before they are freed. The common
concurrent data structures tested didn’t need destructors or
cleanup function calls, but user-built structures might. In
particular, pointers to non-inlined objects could recursively
be retired. This is more complicated than it appears because
the destructor could be called when a thread’s pool is nearly
full, and if the destructor adds multiple objects, it could fill
the pool. This would preclude using spare cycles to free

objects while waiting for the aggregator to run, which user
threads do in Forkscan.

Further Reduced Latency. After threads are signalled,
they busy-wait until the fork is complete and they are al-
lowed to continue. There is a cost associated with respond-
ing to the OS signal, as well as time spent waiting. Alto-
gether, this does not impose significant latency, but the la-
tency increases with thread count. On future architectures,
it may begin to impose an unacceptable burden. The la-
tency could be reduced if the fork() procedure, itself, had
knowledge of the Forkscan algorithm. Instead of signalling
the threads, Forkscan could simply fork the process, allow-
ing each thread to continue until it hit a copy-on-write page,
at which point the OS would know to stall it until the fork
is complete. The OS also has access to the contents of the
registers, allowing it to spill them into a special location
known to Forkscan. Any thread that has not performed a
write when the fork is complete can be signalled by the OS,
and its register state recovered. This optimization would al-
low Forkscan to avoid signalling, and threads could run until
the last possible moment.

Acknowledgments
We are grateful to our reviewers for their insightful com-
ments and critiques. The paper is stronger for their input.
William Leiserson, Alexander Matveev, and Nir Shavit were
supported by the NSF under grants IIS-1447786 and CCF-
1563880, and Dan Alistarh was supported by a Swiss Na-
tional Fund Ambizione Fellowship.

References
[1] Y. Afek, H. Kaplan, B. Korenfeld, A. Morrison, and R. E.

Tarjan. Cbtree: A practical concurrent self-adjusting search
tree. In Proceedings of the 26th International Con-
ference on Distributed Computing, DISC’12, pages 1–15,
Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-
642-33650-8. . URL http://dx.doi.org/10.1007/

978-3-642-33651-5_1.

[2] D. Alistarh, P. Eugster, M. Herlihy, A. Matveev, and N. Shavit.
Stacktrack: An automated transactional approach to concur-
rent memory reclamation. In Proceedings of the Ninth Euro-
pean Conference on Computer Systems, EuroSys ’14, pages
25:1–25:14, New York, NY, USA, 2014. ACM. ISBN 978-
1-4503-2704-6. . URL http://doi.acm.org/10.1145/

2592798.2592808.

[3] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The spraylist: A
scalable relaxed priority queue. In 20th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming,
PPoPP 2015, San Francisco, CA, USA, 2015. ACM.

[4] D. Alistarh, W. M. Leiserson, A. Matveev, and N. Shavit.
Threadscan: Automatic and scalable memory reclamation.
In Proceedings of the 27th ACM on Symposium on Paral-
lelism in Algorithms and Architectures, SPAA ’15, pages 123–
132, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-



3588-1. . URL http://doi.acm.org/10.1145/2755573.

2755600.

[5] H. Avni, N. Shavit, and A. Suissa. Leaplist: Lessons learned
in designing tm-supported range queries. In Proceedings
of the 2013 ACM Symposium on Principles of Distributed
Computing, PODC ’13, pages 299–308, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2065-8. . URL http:

//doi.acm.org/10.1145/2484239.2484254.

[6] O. Balmau, R. Guerraoui, M. Herlihy, and I. Zablotchi. Fast
and robust memory reclamation for concurrent data struc-
tures. In Proceedings of the 28th ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA ’16, pages 349–
359, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-
4210-0. . URL http://doi.acm.org/10.1145/2935764.

2935790.

[7] H.-J. Boehm. Bounding space usage of conservative garbage
collectors. In Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’02, pages 93–100, New York, NY, USA, 2002.
ACM. ISBN 1-58113-450-9. .

[8] H. J. Boehm. Space efficient conservative garbage collection.
ACM SIGPLAN Notices, 39(4):490–501, 2004.

[9] H.-J. Boehm. Boehmgc, 2015. Available at
http://www.hboehm.info/gc/.

[10] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly par-
allel garbage collection. In Proceedings of the ACM SIG-
PLAN 1991 Conference on Programming Language Design
and Implementation, PLDI ’91, pages 157–164, New York,
NY, USA, 1991. ACM. ISBN 0-89791-428-7. . URL
http://doi.acm.org/10.1145/113445.113459.

[11] A. Braginsky, A. Kogan, and E. Petrank. Drop the anchor:
lightweight memory management for non-blocking data struc-
tures. In Proceedings of the 25th ACM symposium on Paral-
lelism in algorithms and architectures, SPAA ’13, pages 33–
42, New York, NY, USA, 2013. ACM.

[12] T. A. Brown. Reclaiming memory for lock-free data struc-
tures: There has to be a better way. In Proceedings of the
2015 ACM Symposium on Principles of Distributed Comput-
ing, PODC ’15, pages 261–270, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3617-8. . URL http://doi.acm.

org/10.1145/2767386.2767436.

[13] N. Cohen and E. Petrank. Automatic memory reclamation for
lock-free data structures. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
2015, pages 260–279, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3689-5. . URL http://doi.acm.org/

10.1145/2814270.2814298.

[14] N. Cohen and E. Petrank. Data structure aware garbage collec-
tor. In Proceedings of the 2015 International Symposium on
Memory Management, ISMM ’15, pages 28–40, New York,
NY, USA, 2015. ACM. ISBN 978-1-4503-3589-8. . URL
http://doi.acm.org/10.1145/2754169.2754176.

[15] L. Community. Linux 3.13, 2014. Available at
http://kernelnewbies.org/Linux 3.13.

[16] C. Cutler. Reducing Pause Times With Clustered Collection.
PhD thesis, Massachusetts Institute of Technology, 2014.

[17] A. Demers, M. Weiser, B. Hayes, H. Boehm, D. Bobrow, and
S. Shenker. Combining generational and conservative garbage
collection: Framework and implementations. In Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’90, pages 261–269, New
York, NY, USA, 1990. ACM. ISBN 0-89791-343-4. .

[18] D. Detlefs, P. A. Martin, M. Moir, and G. L. S. Jr. Lock-free
reference counting. Distributed Computing, 15(4):255–271,
2002.

[19] A. Dragojevic, M. Herlihy, Y. Lev, and M. Moir. On the power
of hardware transactional memory to simplify memory man-
agement. In C. Gavoille and P. Fraigniaud, editors, Proceed-
ings of the 30th Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2011, San Jose, CA, USA, June
6-8, 2011, pages 99–108. ACM, 2011. ISBN 978-1-4503-
0719-2. . URL http://doi.acm.org/10.1145/1993806.

1993821.

[20] T. Endo and K. Taura. Reducing pause time of conservative
collectors. In Proceedings of the 3rd International Symposium
on Memory Management, ISMM ’02, pages 119–131, New
York, NY, USA, 2002. ACM. ISBN 1-58113-539-4. . URL
http://doi.acm.org/10.1145/512429.512432.

[21] T. Endo, K. Taura, and A. Yonezawa. A scalable mark-sweep
garbage collector on large-scale shared-memory machines. In
Supercomputing, ACM/IEEE 1997 Conference, pages 48–48.
IEEE, 1997.

[22] J. Evans. Jemalloc, 2015. Available at
http://www.canonware.com/jemalloc/.

[23] Fitzpatrick. Distributed caching with memcached. Linux
Journal, 124:5, Aug. 2004. URL http://dl.acm.org/

citation.cfm?id=1012894.

[24] M. Fomitchev and E. Ruppert. Lock-free linked lists and skip
lists. In Proceedings of the 23rd annual ACM symposium on
Principles of Distributed Computing (PODC’ 04), pages 50–
59, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-
802-4.

[25] K. Fraser. Practical lock-freedom. Technical Report UCAM-
CL-TR-579, University of Cambridge, Computer Laboratory,
Feb. 2004.

[26] K. Fraser and T. L. Harris. Concurrent programming without
locks. ACM Trans. Comput. Syst., 25(2), 2007.

[27] S. Ghemawat and P. Menage. Tcmalloc,
Retrieved 2015. Available at http://goog-
perftools.sourceforge.net/doc/tcmalloc.html.

[28] A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas.
Efficient and reliable lock-free memory reclamation based on
reference counting. IEEE Trans. Parallel Distrib. Syst., 20(8):
1173–1187, 2009.

[29] V. Gramoli. More than you ever wanted to know about syn-
chronization: Synchrobench. In Proceedings of the 20th An-
nual ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), 2015.

[30] S. Hanke. The performance of concurrent red-black tree
algorithms. In J. Vitter and C. Zaroliagis, editors, Algo-



rithm Engineering, volume 1668 of Lecture Notes in Com-
puter Science, pages 286–300. Springer Berlin / Heidelberg,
1999. ISBN 978-3-540-66427-7. http://citeseer.ist.

psu.edu/viewdoc/summary?doi=10.1.1.25.6504.

[31] T. L. Harris. A pragmatic implementation of non-blocking
linked-lists. In Proceedings of the International Conference
on Distributed Computing (DISC), pages 300–314, 2001.

[32] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Per-
formance of memory reclamation for lockless synchroniza-
tion. J. Parallel Distrib. Comput., 67(12):1270–1285, 2007.

[33] M. Herlihy and N. Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008. ISBN 0123705916, 9780123705914.

[34] M. Herlihy, V. Luchangco, and M. Moir. The repeat offender
problem: A mechanism for supporting dynamic-sized, lock-
free data structures. In Proceedings of the 16th International
Conference on Distributed Computing (DISC), pages 339–
353, 2002.

[35] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A sim-
ple optimistic skiplist algorithm. In Proceedings of the
14th international conference on Structural information and
communication complexity, SIROCCO’07, pages 124–138,
Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-
540-72918-1. URL http://dl.acm.org/citation.cfm?

id=1760631.1760646. http://dl.acm.org/citation.

cfm?id=1760631.1760646.

[36] M. Herlihy, N. Shavit, and M. Tzafrir. Hopscotch hash-
ing. In Proceedings of the 22nd international sympo-
sium on Distributed Computing, DISC ’08, pages 350–364,
Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-
540-87778-3. URL http://dl.acm.org/citation.cfm?

id=1432316. http://dl.acm.org/citation.cfm?id=

1432316.

[37] H. Kermany and E. Petrank. The compressor: concurrent,
incremental, and parallel compaction. In Proceedings of the
ACM SIGPLAN 2006 Conference on Programming Language
Design and Implementation, Ottawa, Ontario, Canada, June
11-14, 2006, pages 354–363, 2006. . URL http://doi.

acm.org/10.1145/1133981.1134023.

[38] D. Lea, 2007. http://java.sun.com/

javase/6/docs/api/java/util/concurrent/

ConcurrentSkipListMap.html.

[39] D. Lea, 2007. http://g.oswego.edu/dl/jsr166/dist/

docs/java/util/concurrent/ConcurrentHashMap.

html.

[40] R. L. Ltd. Memtier benchmark, Retrieved 2016. Available at
https://github.com/RedisLabs/memtier benchmark.

[41] A. Matveev, N. Shavit, P. Felber, and P. Marlier. Read-log-
update: A lightweight synchronization mechanism for concur-
rent programming. In SOSP, 2015.

[42] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell,
D. Sarma, , and M. Soni. Read-copy update. In In Proc. of the
Ottawa Linux Symposium, page 338?367, 2001.

[43] M. M. Michael. High performance dynamic lock-free hash
tables and list-based sets. In Proceedings of the fourteenth

annual ACM symposium on Parallel algorithms and architec-
tures, pages 73–82. ACM, 2002.

[44] M. M. Michael. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Trans. Parallel Distrib. Syst., 15
(6):491–504, 2004.

[45] Microsoft. Windows virtual memory functions.
https://msdn.microsoft.com/en-us/library/

windows/desktop/aa366781(v=vs.85).aspx#

virtual_memory_functions, Accessed: 2017-02-28.

[46] F. Pizlo, E. Petrank, and B. Steensgaard. A study of concurrent
real-time garbage collectors. SIGPLAN Not., 43(6):33–44,
June 2008. ISSN 0362-1340. . URL http://doi.acm.

org/10.1145/1379022.1375587.

[47] J. Rafkind, A. Wick, J. Regehr, and M. Flatt. Precise garbage
collection for c. In Proceedings of the 2009 international sym-
posium on Memory management, pages 39–48. ACM, 2009.

[48] G. Rodriguez-Rivera and V. F. Russo. Nonintrusive cloning
garbage collection with stock operating system support.
Softw., Pract. Exper., 27(8):885–904, 1997.

[49] R. Schuetze. Concurrent garbage collection in D.
http://rainers.github.io/visuald/druntime/

concurrentgc.html, Accessed: 2017-02-28.

[50] R. Shahriyar, S. M. Blackburn, and K. S. McKinley. Fast con-
servative garbage collection. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming
Systems Languages & Applications, pages 121–139. ACM,
2014.

[51] R. Shahriyar, S. M. Blackburn, and K. S. McKinley. Fast
conservative garbage collection. In Proceedings of the 2014
ACM International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA 2014, part
of SPLASH 2014, Portland, OR, USA, October 20-24, 2014,
pages 121–139, 2014. . URL http://doi.acm.org/10.

1145/2660193.2660198.

[52] O. Shalev and N. Shavit. Split-ordered lists: Lock-
free extensible hash tables. J. ACM, 53:379–405, May
2006. ISSN 0004-5411. . URL http://doi.acm.org/

10.1145/1147954.1147958. http://doi.acm.org/10.

1145/1147954.1147958.

[53] N. Shavit and I. Lotan. Skiplist-based concurrent priority
queues. In Parallel and Distributed Processing Symposium,
2000. IPDPS 2000. Proceedings. 14th International, pages
263–268. IEEE, 2000.


