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Form Invariance and Implicit Parallelism
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Computer Science Department, 107 Ayres Hall, University of Tennessee, Knoxville,
TN 37996-1301,USA

Alden H. Wright wright@cs.umt.edu
Computer Science Department, University of Montana, Missoula, MT 59812-1008,USA

Abstract
Holland’s schema theorem (an inequality) may be viewed as an attempt to understand
genetic search in terms of a coarse graining of the state space. Stephens and Wael-
broeck developed that perspective, sharpening the schema theorem to an equality. Of
particular interest is a “form invariance” of their equations; the form is unchanged by
the degree of coarse graining. This paper establishes a similar form invariance for the
more general model of Vose et al. and uses the attendant machinery as a springboard
for an interpretation and discussion of implicit parallelism.

Keywords
Course graining, form invariance, genetic algorithms, implicit parallelism, intrinsic
parallelism, mixing scheme, schemata.

1 Introduction

Whereas Holland’s schema theorem (Holland, 1975) has been widely appealed to in
theoretical analysis of genetic algorithms, it has severe limitations which call into ques-
tion the logical validity of arguments based upon it (Vose, 1993; Juliany and Vose, 1994).
The �rst attempt to address shortcomings of the schema theorem was by Bridges and
Goldberg (1987) who derived an exact expression for the expected next generation for
a simple binary GA using proportional selection and one-point crossover. Vose (1990)
extended Bridges and Goldberg’s work (using an independent model) to include the
effects of mutation with crossover and proportional selection.1 Whitley (1993) and
Stephens and Waelbroeck (1997) also obtain similar results for one-point crossover (but
no mutation) and binary strings.

What set the work of Stephens et al. apart from results prior to 1997 was the “form
invariance” of their equations. Schemata can be viewed as a means of coarse graining
the state space, and irrespective of that coarse graining, the form of the evolution equa-
tion, as given by Stephens et al., remains the same. Coarse graining may be desirable
as a means to produce a simpli�ed model of reduced complexity in which many states
have been collapsed or aggregated together. For example, population geneticists typ-
ically model higher-level organisms that may have on the order of 100,000 genes with

-locus models, for small .
As explained by Vose (1998, 1999) and Vose and Rowe (2000), coarse graining (re-

ferred to by ) of the representation space is not without peril. Of particular sig-

ni�cance is the consistency of the coarse-grained model, call it , with respect to the
1This model has since been simpli�ed and generalized to include arbitrary mutation types, crossover

types, and selection schemes, as well as multicardinality alphabets (Koehler et al., 1997; Vose, 1999).
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system it is modeling, call it .2 Without some analogue of the following commutative
diagram,

there is no guarantee that predictions made by the coarse-grained model have any
signi�cance to the original system . Vose (1999) has shown that the coarse graining
must be based on schemata if a consistent model of crossover is to be obtained (Vose,
1999, Theorem 17.13), and in that case, the following diagram commutes (Vose, 1999,
Theorem 19.4)

where denotes the mixing scheme. Of particular interest is the fact that the schema-

based model has the same functional form as . Thus the model of Vose et al. has
“form invariance” as well, and since that model includes both mutation and crossover
(by way of arbitrary masks), it is a more general result than Stephens et al. (1997). The
result, however, was proved for the binary case.

This paper extends the result above to arbitrary �nite cardinality alphabets, gen-
eralizing schemata and schema families in terms of quotient rings along the way, and
specializes conclusions about mixing to mutation and crossover separately. A further
contribution is that computational issues are touched upon. Using the ancillary ma-
chinery of previous results, this paper concludes with a discussion and geometric in-
terpretation of “implicit parallelism.”

2 Notation

This section and the next two follow Vose (1999) and are included for completeness.
The search space is the set of length -ary strings. Integers in the interval ,
where , are identi�ed with the elements of through their -ary representations.
Elements of can be regarded as column vectors in with the least signi�cant -ary
digit as the topmost element (here denotes the set of complex numbers). Indexing of
vectors and matrices begins with 0.

The search space can also be regarded as the product group

where the group operation is componentwise addition modulo . Let denote
componentwise subtraction modulo , and let denote componentwise multiplication
modulo . With respect to and , is a commutative ring.

2Here it is system dynamics (i.e., how the system transforms state) that is being modeled; thus and
are functions.
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An element of is called binary if all its nonzero components are ones. Let
denote the binary vector of all ones, and let denote . Let denote the number
of nonzero components in . Thus when and are binary.

Given binary , let . Each is an ideal (in the ring
) containing . For example, if and , then

where angle brackets denote a tuple that is regarded as a column vector.
Let , where are integers and . The set

is a basis for the ideal . Integers in the interval are identi�ed
with through the injection corresponding to , determined by the map

given by

Embedding an integer of the interval via amounts to distributing its -ary
digits among the locations where is nonzero. For example, if , , and ,
then determines the function

A schema is a subset of where some string positions are speci�ed (�xed) and
some are unspeci�ed (variable). Schemata have traditionally been denoted by pattern
strings, where a special symbol such as is used to denote an unspeci�ed bit (Holland
used ). Thus, the schema denoted by is the set of strings

Equivalently, a schema is a coset of the ideal (where is binary). Without
loss of generality, since

Given schema , one may regard as a mask for the variable positions and as
determining values for the �xed positions. For example, the schema is the
schema displayed above.

A population is a multiset of cardinality (the population size) of elements of .
A population is represented by a population vector according to the rule

the proportion in the population of
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Thus populations are represented by elements of the simplex

and

The simplex can also be interpreted as the space of probability distributions over .
The indicator function is de�ned by

expr
if expr is true
otherwise.

3 Schema Families and Schema Representation

Given binary , elements of the quotient ring are a family of competing schemata;

they have similar variable positions (indicated by nonzero positions of ) but differ in
their �xed positions (indicated by nonzero positions of ). The ring is naturally
isomorphic to the schema family by the map

The schema family is, therefore, said to be represented by . Let card ,
and let . The linear map

with matrix

is called the operator associated with the family. Here columns are indexed by (i.e.,
) and rows are indexed by (which is interpreted via the injection corresponding

to to mean ). Since is isomorphic to , the operator maps a

population vector such that the components of are in one-to-one correspondence
with the schema family represented by . If , and
are integers, this correspondence is given explicitly by

As the following computation shows, the th component of is simply the proportion
of the population (represented by ) contained in the schema corresponding, as above,
to . Let be identi�ed (via the injection corresponding to ) with . Then
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The previous equality can be expressed more succinctly as

As an example, let , , . Then , , and is represented by
the matrix

The family of competing schemata in pattern-string notation is .

If , then is represented by the matrix

The family of competing schemata in pattern-string notation is .

4 The Simple Genetic Algorithm

Let be a population vector. The selection scheme is determined by

the probability that is selected for the gene pool.

The mixing matrix is determined by

the probability that results from mutation and crossover applied to and .

If mutation is performed before crossover, then

and if mutation is performed after crossover, then

Here is the probability is used as a mutation mask to perform the mutation

and is the probability is used as a crossover mask to perform the crossover

The vectors and are called the mutation distribution and crossover distribution, respec-
tively. In the zero mutation case (meaning that ), both mixing matrices
reduce to
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and in the zero crossover case (meaning that ), they reduce to

The mixing scheme is determined by

and reduces in the zero crossover case to

The heuristic of the simple genetic algorithm is and satis�es

the probability that is produced for the next generation.

Let be the mixing scheme for zero mutation; let be the mixing scheme for zero
crossover; let be the mixing scheme for mutation before crossover; and let
be the mixing scheme for crossover before mutation. The following theorem follows
immediately from the de�nitions by expanding right hand sides and simplifying.

THEOREM 4.1: and .

5 Selection

As demonstrated in Vose (1999), there are problems with commutativity of the sort

Nevertheless, if one was interested in modeling the state space by elements of the
schema family represented by (or by a collection of schema families represented by

), then it might be of interest, given population , to determine . Us-
ing previous notation,

There are at most nonzero terms in the sum to consider, since general selection
schemes satisfy

Let be proportional selection with �tness vector (i.e., �tness of ) and de�ne a
“vector product” denoted by , as opposed to the scalar product , by .
Then
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In terms of this notation, the utility of schema relative to population is

classically de�ned as

(as follows from expanding the right hand side). For example, if , , ,

Expressed in vector form, this can be rearranged to yield

Although this expression for is reminiscent of proportional selection (with the
vector of utilities playing the role of and playing the role of ), form invari-
ance does not follow. Form invariance refers to a situation where if one starts with a
functional form and performs a coarse graining, then the result has the same functional
form but in the new coarse-grained variables. Functional form is not preserved in the
case of proportional selection because the left hand side above is rather than

. Moreover, attempting to force form invariance via de�ning a selection scheme
by

is really nothing more than notational sleight of hand; the utility vector , however
one may attempt to de�ne it, is, in general, not capable of being well-de�ned in the
equation above.3

One might think form invariance would hold if the �tness function were linear.
Even this strong assumption, however, is insuf�cient to imply form invariance, as the
following example shows. The following also clari�es, by way of a concrete example,
the general abstract remarks made in the preceding paragraph.

Let and . A linear �tness function is described by the �tness vector

where and are the �tness coef�cients on the �rst and second ternary digits, respec-
tively. If , then is

If it were possible to de�ne a selection scheme as above, then , which
implies that the displayed vector above (i.e., ) could be written as a function of

, which is an obvious contradiction.
The reader is referred to Vose (1999) for an explanation and discussion of compati-

bility issues as they pertain, in particular, to the compatibility of selection with a coarse
grained model based on schemata, and as they pertain, in general, to the use, design,
and interpretation of approximate models.

3See Vose (1999) for a general discussion, but note in the context of this paper that the utility as displayed
above is de�ned with respect to rather than with respect to ; it has no de�nition in the coarse-grained
model.
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6 Mixing

Unlike selection, mixing does enjoy form invariance. Let be the mixing
scheme corresponding to the search space with mutation distribution and

crossover distribution .

THEOREM 6.1: If mutation is performed after crossover, then

PROOF: The th component of is

The innermost sum above is

Note that the indicator function is equivalent to

The �rst factor of this is equivalent to , which determines
. It follows that the sum above is

Therefore, the The th component of is

COROLLARY 6.2: Whether or not mutation is performed after crossover,

In particular,
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PROOF: Special cases of Theorem 6.1 are and
. Using these together with Theorem 4.1 gives

7 Computational Issues

As discussed in Vose and Wright (1998a, 1998b), calculation of is more ef�cient by
way of the Fourier basis. Since is simply a “reduced cardinality” version of (i.e.,
the dimension of does not exceed the dimension of ), nothing further about this
needs to be said.

It is of interest, however, to further clarify the relationship between the mutation
and crossover distributions and and their counterparts and . It is not gener-
ally true that if the crossover distribution corresponds to -point or -point crossover,
then so does the crossover distribution . When the crossover distribution is very
sparse (as for -point and -point crossover), might be computed for string lengths
approaching a million by summing over schemata. In other cases where that is
infeasible, the components of must be determined analytically. The situation for
mutation and uniform crossover is considerably nicer, as the following theorem shows.

THEOREM 7.1: If the mutation distribution corresponds to a mutation rate, then so does the
mutation distribution . If the crossover distribution is uniform, then so is the crossover
distribution . Moreover, the mutation and crossover rates are unchanged.

PROOF: Consider �rst mutation with rate . Using previous notation, is given by

Next consider uniform crossover with crossover rate .
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8 Implicit Parallelism

The phrase “intrinsic parallelism” was used by Holland (1975) in connection with the
fact that a single population member simultaneously belongs to a plethora of schemata.
Therefore, a sequence of “trials” (i.e., a number of samples from made according to

) “is at the same time a sequence of trials for each of a large number of schemata.”
This phenomenon has a straightforward geometric interpretation as will be developed
below. The reader is cautioned in advance that the notation used in this section may
appear to con�ict with that used previously.

8.1 Schemata

Expressing schemata in functional terms and interpreting the result geometrically clar-
i�es the relationship between populations and schemata. Identify schemata with inte-
gers in the set by regarding a schema as an integer written in base three;

represents zero, represents one, represents two. For example,

Let , and recall that

Note that has one component for each schema. De�ne the linear map
by

if element of is contained in schema
otherwise

Identifying schema with the transpose of the th row of , schemata are seen to be vec-
tors in Euclidean space. Moreover, the components of are simply the inner products
of these vectors with the population .

This formalization of schemata, as vectors, is functional in the sense that any vector
can be interpreted as the function . Moreover, when a schema (i.e.,

vector) is interpreted in this way (as a function), it simply maps a population to the
proportion of contained in the schema.

The previous paragraphs imply that schemata, collectively represented by the ma-
trix , are simply directions in Euclidean space and therefore form an alternate coor-
dinate system. To explain this clearly, the concept of a generalized coordinate system
will �rst be presented. Before doing so, however, a few remarks will be made to make
contact with previous sections.

Whereas the formalism above is clean and simple, it appears to con�ict with pre-
viously used notation. Because low-level detail was important to results in previous
sections, there schema were grouped into schema families, and was de�ned in as-
sociation with a family. Here, however, the subject of concern is schemata in general,
thus is de�ned in terms of all schemata. Note that is nevertheless the same type of
object here as it was in previous sections; just as before,
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Figure 1: Standard coordinates.

is a binary matrix.

Rows of correspond to schemata.

(the schema corresponding to) .

the proportion of (the population represented by) contained in (the
schema corresponding to) .

8.2 Generalized Coordinates

Consider a point that we choose to coordinatize. In the two-dimensional diagram
above (Figure 1), and are mutually orthogonal unit vectors that are used to de-
termine the coordinates of the point . The component of the vector from the
origin to in the direction of has magnitude , and the component of the vector
from the origin to in the direction of has magnitude . If these objects have al-
gebraic form, say they are represented by matrices, then the coordinates of are
given by

However, the vectors and need not have unit length, neither must they be
mutually orthogonal, neither must there be only two of them to represent the two-
dimensional situation above. All that is necessary to determine the two-dimensional
point from the “generalized coordinates” is that the matrix with th
row has left inverse :

Moreover, the generalized coordinate represents the component in the direction of
in any case; when is not a unit vector, the quantity is simply that component

measured to a different scale (i.e., with respect to a different choice of unit).
In general, there are no requirements placed on the rows of . Left multiplication

of a column vector by a matrix simply computes the generalized coordinates of
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with respect to , and those generalized coordinates are, for suitable choice of units,
components in the directions of (the transpose of) the rows of . If a left inverse
does not exist, that simply indicates the generalized coordinates contain insuf�-
cient information to recover . This occurs exactly when the rows of do not span,
as would be the case if there were fewer rows than columns. If has more rows than
columns, they cannot be independent since row rank equals column rank. In that case,

has fewer coordinates than generalized coordinates, and some generalized coordi-
nates therefore will be redundant.

Returning to schemata, is simply the vector of generalized coordinates of
expressed with respect to the vectors that represent schemata. To illustrate with a

small example, take , so and .

integer schema vector
0
1
2
3
4
5
6
7
8

Let, for example, then

Hence expressed in generalized coordinates (with respect to the matrix ) is

Letting denote a left inverse of , the original components of can be recovered
from the generalized components via left multiplication by
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Figure 2: Generalized coordinates.

In the example above, bold font is used to emphasize how the original components of
are injected into the generalized components by way of the trivial schema – those

schema that correspond exactly to elements of . The other generalized components –
those not in bold font (i.e., those corresponding to nontrivial schema) – are simply
redundant coordinates of .

It is to some extent dif�cult to visualize geometrically what is going on in the ex-
ample because of the dimension involved. By way of analogy, Figure 2 (which is an
augmentation of Figure 1 – super�uous vectors and have been added) may help
clarify the situation. In the two-dimensional diagram above, the two-dimensional point

has four generalized coordinates with respect to the matrix having
rows . The component of the vector from the origin to in the direction of

has magnitude ; the component of the vector from the origin to in the direction of
has magnitude ; the component of the vector from the origin to in the direction of
has magnitude ; and the component of the vector from the origin to in the direc-

tion of has magnitude . Of course, the latter coordinates of the two-dimensional
point are super�uous; all coordinates beyond are redundant.

In the case of schemata, exponentially many super�uous coordinates beyond those
corresponding to the standard basis vectors occur. They number

8.3 Processing Leverage

Another use of “intrinsic parallelism” by Holland (1975) was to describe the “tremen-
dous power” crossover had by virtue of the fact that “each crossing-over affects great
numbers of schemata.” This has also a straightforward geometric interpretation.

In order to get at the heart of the matter, consider a two-dimensional example
where an operator moves from point in the state space to point . In the two-
dimensional diagram above (Figure 3), the operator might be said to process the in-
formation so as to produce the new state . Here is the matrix with
rows and , and the generalized coordinates of and are and ,
respectively; the processing is expressed with respect to .

Next consider the same operator on the same two-dimensional state space, except
that a large number of super�uous rows are added to so that the same
two-dimensional points and have now generalized coordinates and

, respectively, where, of course, the newly gained generalized coordinates
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Figure 3: “Processing” coordinates.

and are redundant. If is tremendously large, is it reasonable to
assert that the operator has now somehow acquired “tremendous power” by virtue of
the fact that it processes a great number of generalized components?

The situation for is similar. When described in terms of elements of , mixing
simply processes strings, where the processing is expressed with respect to the
identity matrix,

If a large number of super�uous rows are added to enlarge the identity matrix to , then
when expressed with respect to , it is true that crossover processes4 a tremendous
number of generalized components (i.e., schemata)

However, all components beyond those corresponding to the identity matrix – all com-
ponents corresponding to nontrivial schemata families – are not independently pro-
cessed; they provide no additional information, and from a geometric point of view,
they simply clutter the representation with redundant, useless components.

Holland (1975) asserts that intrinsic parallelism provides genetic algorithms with
“critical advantages” over enumerative processes. Goldberg (1989) uses the term “im-
plicit parallelism,” as opposed to intrinsic parallelism, to describe “process leverage”
arising from the fact that “genetic algorithms inherently process a large quantity of
schemata while processing a relatively small quantity of strings.”

Observe that some representations are more compact than others. A population
is a point of , and because of its relatively small size – the population size is typically
much smaller than – there are many zero terms in its representation with respect to
the standard basis

In fact, there are at most nonzero terms. Therefore, by the convention that zero terms
need not be mentioned, describing a population in terms of the elements it contains is
fairly compact. If one introduces exponentially many redundant special directions (i.e.,
schemata) with corresponding exponentially many super�uous coordinates (i.e., pro-
portions of represented by schemata), then one can have exponentially many nonzero
generalized components and one might declare: “genetic algorithms inherently process

4If “process” is interpreted in the benign sense as used in discussing Figure 3.
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a large quantity of schemata while processing a relatively small quantity of strings.”
Okay, but so what?

The notion that “leverage” or “critical advantages” are gained by contemplating a
large number of redundant coordinates is dubious at best. The widespread belief that
genetic algorithms are robust by virtue of their schema processing is, in view of the
observations made in this paper, more the result of salesmanship than logical analysis.
In fact, the no free lunch theorem (Wolpert and Macready, 1995) shows that genetic
algorithms are on average worse than enumeration.5

Nevertheless, schema can be said to be processed by a genetic algorithm (if “pro-
cessed” is interpreted in the benign sense as used in discussing Figure 3), and this paper
shows, for mixing at least, that the processing of a schemata family takes the same functional
form independent of which family is being considered. Moreover, taking shows the
functional form is that for strings.

One may further observe (Corollary 6.2) that the following commutative diagram
holds, in parallel, for every choice of schema family, simultaneously.

Because this latter result does speak to parallelism and schemata – subjects which im-
plicit parallelism has classically dealt with – Vose (1999) has rede�ned the phrase “im-
plicit parallelism” to refer to it.6 The reader is cautioned, however, that even though
the commutative diagram holds, in parallel, for every choice of schema family, si-
multaneously, there is no “processing leverage” resulting from that fact which confers
“tremendous power” or “critical advantages” to genetic algorithms over enumerative
processes.

In view of implicit parallelism as (re)de�ned above, one might wonder whether a
change of basis (from standard coordinates to coordinates that are somehow associated
with schemata) could shed light on mixing. That is indeed the case, as is explained in
Vose (1999).7

9 Conclusion

The main contributions of this paper are

generalizing schemata and schema families in terms of quotient rings,

proving, in general, the commutativity relation ,

establishing, in general, the implicit parallelism result of Vose,

discussing “implicit parallelism” and interpreting it geometrically.

5They are worse because of time spent resampling already seen points, and even when using a metric of
online performance, a genetic algorithm is (on average) not superior to enumeration.

6 in the binary case. This paper establishes the result more generally.
7See, in particular, chapters 6,16,17,19.
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