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Form invariance of differential equations
in general relativity

Luis P. Chimentoa)
Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, Universidad de
Buenos Aires, Ciudad Universitaria, Pabello´n I, 1428 Buenos Aires, Argentina

~Received 23 July 1996; accepted for publication 3 December 1996!

Einstein equations for several matter sources in Robertson–Walker and Bianchi I
type metrics, are shown to reduce to a kind of second-order nonlinear ordinary
differential equationÿ1a f (y) ẏ1b f (y)* f (y)dy1g f (y)50. Also, it appears in
the generalized statistical mechanics for the most interesting valueq521. The
invariant form of this equation is imposed and the corresponding nonlocal trans-
formation is obtained. The linearization of that equation for anya, b, andg is
presented and for the important casef5byn1k with b5a2 (n11)/(n12)2 its
explicit general solution is found. Moreover, the form invariance is applied to yield
exact solutions of some other differential equations. ©1997 American Institute of
Physics.@S0022-2488~97!02603-0#

I. INTRODUCTION

Exact solutions of the Einstein equations are difficult to obtain due to their nonlinear nature.
There exist several interesting physical problems where the Einstein field equations for homoge-
neous, isotropic and spatially flat cosmological models with no cosmological constant1–6 and for
a time decaying cosmological constant,7 or Bianchi I type metric8 with a variety of matter sources,
reduce to particular cases of the second-order nonlinear ordinary differential equation

ÿ1a f ~y!ẏ1b f ~y!E f ~y!dy1g f ~y!50, ~1!

wherey5y(x), f (y) is a real function and the dot means differentiation with respect tox. a,
b, andg are constant parameters.

Recently, it was shown that some galactic models of astrophysical relevance, when investi-
gated with the ‘‘generalized’’ statistical mechanics,9 can be exactly described by solutions to the
Boltzmann equations that maximize the generalized Tsallis entropy forq521,10 and it was found
that the corresponding probability distribution function satisfies Eq.~1!.11

It is believed that quantum effects played a fundamental role in the early Universe. For
instance, vacuum polarization and particle production arise from a quantum description of matter.
It is known that both of them can be modeled in terms of a classical bulk viscosity.12 Using the
relativistic second-order theory of nonequilibrium thermodynamics—called extended irreversible
thermodynamics developed in Refs. 13 and 14—it was considered a homogeneous isotropic spa-
tially flat universe, filled with a causal viscous fluid whose equilibrium pressure obeys ag-law
equation of state, while the transport equation of the viscous pressure is
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with e50.15 Following Ref. 16 form51/2, it was shown in Ref. 1 that the expansion rate satisfies
a modified Painleve´–Ince equation that has the form of Eq.~1! with f (y)5y andg50.

Cosmological models with a viscous fluid source have been studied using the full causal
irreversible thermodynamics with the full version of the transport equation for the bulk viscous
pressure.17,5,6Relating the equilibrium temperatureT with the energy density in the simplest way
to guarantee a positive heat capacity, it was shown that the expansion rate satisfies Eq.~1! for
m51/2, with f (y)5y21/r andg50.5 Also, the early time evolution of a dissipative universe leads
to an equation for the expansion rate that has the form~1!,4,18 in the relaxation dominated regime.

Another interesting example appears when an anisotropic universe, described by a Bianchi
type I metric, is driven by a minimally coupled scalar field with an exponential potential. The
Klein–Gordon equation for the scalar field and the Einstein equations for the metric are expressed
in terms of the semiconformal factorG and their derivatives.19 Then, the solutions of this equation
set can be obtained if one is able to solve the following Einstein equation forG,

G
G̈

Ġ
1~c21!Ġ1

c1

Ġ
5c2 , ~3!

which, making the substitutionG5y1/c Eq. ~3! becomes~1!.8 A similar result is obtained in the
particular case when the Bianchi type I metric reduces to a flat Robertson–Walker space-time.2

From the generalized Tsallis entropy, defined as9

Sq5k~q21!21(
i

~pi2pi
q!, ~4!

the generalized statistical mechanics can be constructed wherek is a positive constant,q is a real
number that characterizes the statistic and the sum is made over all the microscopic configurations
whose probabilities arepi . It leads to the conventional Boltzmann–Shannon statistic in the limit
q→1 and it is found to be a good framework to study astrophysical problems, as are the gener-
alized Freeman disk20 and Kalnajs oscillations of a slab of stars.21 Taking the generalized Fisher
information for Tsallis statistics22

I q5 K S ~d/dx! f d
f d~x! D 2L , ~5!

wheref d(x) is the probability distribution function, and solving the variational problem in order to
find the distribution function that maximizes the Fisher information, a differential equation of type
~1! is obtained fory5 ḟ d/ f d , where f (y)5y, a5(2q21), b5 1

2q(q21), andg50.11 For rel-
evant physical applications the most interesting value of the statistic parameter isq521,10 in this
case the above equations can be solved explicitly and the general solution will be given in Sec. III.

Thus, it turns out to be of great interest to analyze Eq.~1! from the physical and mathematical
point of view. The paper is organized as follows, in Section II we introduce an invariant form and
use it to reduce Eq.~1! to a linear, inhomogeneous ordinary second-order differential equation
with constant coefficients, by means of a nonlocal transformation. Then, its parametric general
solution is given. In Section III we extend the nonlocal transformation and find the explicit general
solution of a modified Painleve´–Ince equation forb51/9.23 In Section IV we use the nonlocal
invariance to obtain a new class of differential equations for which the general solution is found.
In Section V the conclusions are stated.
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II. FORM INVARIANCE

The differential equation~1!, which appears in several interesting physical problems, has been
solved and studied in particular cases using nonlocal transformations, as was previously stated. To
investigate Eq.~1! we write it in invariant form

ÿ

f ~y!
1a ẏ1bE f ~y!dy1g5

ȳ 9

f̄ ~ ȳ!
1ā ȳ 81b̄E f̄ ~ ȳ!dȳ1ḡ, ~6!

under the nonlocal transformation group defined by the transformation

b f ~y!dy5b̄ f̄ ~ ȳ!dȳ, ~7!

b

a
f ~y!dx5

b̄

ā
f̄ ~ ȳ!dx̄, ~8!

b

a2 5
b̄

ā 2
, ~9!

bc1g5b̄ c̄1ḡ, ~10!

where f̄ ( ȳ) is a real function ofȳ 5 ȳ( x̄), the prime indicates differentiation with respect tox̄,
ā, b̄, ḡ are constant parameters, andc( c̄) is an integration constant provided by the integral on
the left~right! hand side of Eq.~6!. By invariant form we mean that the left-hand side of Eq.~6!
transforms into the right-hand side under the nonlocal transformation defined by Eqs.~7–10! for
any functionsf , f̄ . The parametersa, b, g, ā, andb̄ satisfy Eqs.~9 and 10!.

The form invariance group can be used to linearize Eq.~1!. In fact, taking the function
f̄ ( ȳ)51, ā5a, b̄5b, andḡ 5 g ~this meansc̄ 5 c) in the invariant form~6! and the transfor-
mation ~7–10!, they become

ÿ

f ~y!
1a ẏ1bE f ~y!dy1g5 ȳ 91a ȳ 81b ȳ1bc1g, ~11!

ȳ5E f ~y!dy, x̄5E f ~y!dx. ~12!

Without loss of generality we choosec̄5c50. So, if the invariant~11! vanishes, then, Eq.~1!
transforms into

ȳ 91a ȳ 81b ȳ1g50, ~13!

under the transformation of variables~12!. This is a linear, second-order ordinary differential
equation with constant coefficients. Its general solution is

~a! bÞ
a2

4

ȳ5c1exp ~l1x̄!1c2exp ~l2x̄!2
g

b
, ~14!
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where l1 and l2 are the roots of the characteristic polynomial of Eq.~13!. We indicate the
integration constants withc, c1, . . . , cn and c̄, c̄1, . . . , c̄n .

~b! b5
a2

4

ȳ5~c11c2x̄! exp S 2
x̄

2D2
g

b
. ~15!

The real solutions can be classified as follows~we also assume thata, b, andg are real!. For
a.0 andb,a2/4 we have two real, negative roots for a strong damped solution. Forb5 a2/4
we have a double-negative root for a critically damped solution. Fora.0 andb.a2/4 we have
two complex roots with negative real parts for a weakly damped solution. For the casea,0
growing solutions occur.

The transformation of variables~12!, relates the general solution of Eq.~1! with ȳ( x̄) through
Eq. ~14!. We find that

y5y~ ȳ~ x̄!!, ~16!

x5E 1

f ~y~ ȳ~ x̄!!!
dx̄ ~17!

are the parametric equations forx and y in terms of x̄. In the particular casef (y)5y we have
shown that a class of nonlinear modified Painleve´–Ince equations can be transformed into a linear
second-order ordinary differential equation by a nonlocal transformation.

The theory introduced by Lie considers the invariance of the differential equations under point
transformations. He showed that the one-dimensional free particle equation has the eight-
dimensional SL~3,R! group of point transformations. This is the maximum number of symmetry
generators for a second-order differential equation of the form24

ÿ1h~ ẏ,y,x!50. ~18!

In our case Eq.~1! has the form of Eq.~18!. Then, it has eight or less point symmetries. However,
it becomes Eq.~13! under the transformation of variables~12! and can be cast into the free particle
equation by a local point transformation. So, Eq.~13! always has eight symmetry generators. We
conclude this section by observing that the nonlocal transformation~7–10! changes the number of
symmetry generators for the class of differential equations~1! and the physics contained in the
original problem.

The nonconstant parameters case: Here we allow the parameters in Eq.~1! and in the trans-
formation ~7–10! to be functions of the independent variable, that is,a5a(x), b5b(x), and
g5g(x). In order to preserve the form~1! we chooseā( x̄) 5 a( x̄) andb̄( x̄) 5 b( x̄). In this case,
the invariant form~6! reads

ÿ

f ~y!
1a~x!ẏ1b~x!E f ~y!dy1g~x!5

ȳ 9

f̄ ~ ȳ!
1a~ x̄!ȳ 81b~ x̄!E f̄ ~ ȳ!dȳ1g~ x̄!, ~19!

wherex̄ is the transformed of the pointx. Therefore, takingḡ 5 g and f̄ ( ȳ)51 we can linearize
the equation

ÿ1a~x! f ~y!ẏ1b~x! f ~y!E f ~y!dy1g~x! f ~y!50, ~20!

2568 Luis P. Chimento: Form invariance of differential equations

J. Math. Phys., Vol. 38, No. 5, May 1997



which transforms into

ȳ 91a~ x̄!ȳ 81b~ x̄!ȳ1g~ x̄!50. ~21!

An important physical problem of general relativity, concerning the motion of expanding
shear-free perfect fluids,25 is governed by the ordinary differential equation

ÿ5F~x!y2, ~22!

whereF(x) is an arbitrary function from which the equation of state can be computed. A complete
symmetry analysis of this differential equation was given in Ref. 26. Here we see that it is
contained in the set of equations~20! when a(x)50, b(x)5 23F(x)/2, g(x)50, and
f (y)5y1/2. Then, choosingf̄ ( ȳ) 5 ( ȳ)21/2 in Eqs.~7–10!, the transformation of variables is

ȳ5
y3

9
, x̄5E y2

3
dx, ~23!

and Eq.~22! becomes

ȳ 953F~ x̄!, ~24!

thus

ȳ5E F E F~ x̄!dx̄Gdx̄1c1x̄1c2 , ~25!

is the general solution of the simple linear equation~24!.

III. EXTENDED NONLOCAL TRANSFORMATION

The integral in Eq.~17! can be performed analytically and the general solutiony5y(x) of Eq.
~1! obtained explicitly for a special set of functionsf (y). For this purpose we generalize the
nonlocal transformation group defined by Eqs.~7–10! extending it to

f 11~y!dy1 f 12~y!dx5 f̄ 11~ ȳ!dȳ1 f̄ 12~ ȳ!dx̄, ~26!

f 21~y!dy1 f 22~y!dx5 f̄ 21~ ȳ!dȳ1 f̄ 22~ ȳ!dx̄. ~27!

For simplicity we begin our investigations restricting ourselves to the casex5 x̄, that is,
f 215 f̄ 2150, f 225 f̄ 2251 and requiring the invariant form~6! to be invariant under the remaining
nonlocal transformation group, defined by Eqs.~26 and 27! with the above restrictions. Under
these assumptions we can write the nonlocal transformation as

ẏ̄5p1qẏ, ~28!

where the functionsp andq are expressed in terms of the functionsf 11, f 12, f̄ 11, and f̄ 12. So,
they have a specific dependence on the variablesy and ȳ

p~y,ȳ!5
f 12~y!

f̄ 11~ ȳ!
2
f̄ 12~ ȳ!

f̄ 11~ ȳ!
, ~29!

q~y,ȳ!5
f 11~y!

f̄ 11~ ȳ!
. ~30!
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Inserting Eq.~28! in Eq. ~6! we get

ÿ

f
1a ẏ1bE f dy1g5

q

f̄
ÿ1F]q]y

1q
]q

] ȳG ẏ
2

f̄
1F]p]y

1q
]p

] ȳ
1p

]q

] ȳG ẏf̄
1
p

f̄

]p

] ȳ
1ā@p1qẏ#1b̄E f̄ d ȳ1ḡ, ~31!

and comparing the coefficients ofẏ2, we have

]q

]y
1q

]q

] ȳ
50, ~32!

whose solution is

q~y,ȳ!5
ȳ

y
. ~33!

Using Eq.~33! and comparing the coefficients ofÿ we easily find thatf5y and f̄5 ȳ. But, the
comparisons of the coefficients ofẏ and the remaining terms give the equations

a5F]p]y
1
ȳ

y

]p

] ȳ
1
p

yG1ȳ1ā
ȳ

y
, ~34!

bE ydy1g5
p

ȳ

]p

] ȳ
1āp1b̄E ȳdȳ1ḡ. ~35!

The functionp that satisfies Eq.~34! is given by

p~y,ȳ!5
a

3
yȳ2

ā

3
ȳ 21h~y,ȳ!, ~36!

where the functionh(y,ȳ) satisfies the partial differential equation

y
]h

]y
1 ȳ

]h

] ȳ
1h50. ~37!

It can be seen that the solutions of Eq.~37! are given byh5h0 /y, whereh0 is an arbitrary
function of the quotientȳ/y. So, the form of the solution forp is

p~y,ȳ!5
a

3
yȳ2

ā

3
ȳ 21

h0~ ȳ/y!

y
. ~38!

Comparing Eq.~30! with Eq. ~33! we havef̄ 11( ȳ)51/ȳ, and comparing Eq.~29! with Eq. ~38!, we
obtain

h0~ ȳ/y!5c1
y

ȳ
1c2

ȳ

y
. ~39!

Inserting Eq.~39! in Eq. ~35! we find thatc15c250, g1bc5b̄ c̄1ḡ, and
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b5
2a2

9
, b̄5

2ā 2

9
. ~40!

Therefore, the final invariant form and the resulting nonlocal transformation are

ÿ

y
1a ẏ1

a2

9
y21bc1g5

ÿ̄

ȳ
1ā ẏ̄1

ā 2

9
ȳ 21b̄ c̄1ḡ, ~41!

ẏ

y
1

a

3
y5

ẏ̄

ȳ
1

ā

3
ȳ. ~42!

In the particular case in which the invariant form~41! vanishes, the left-hand side gives rise to a
nonlinear differential equation

ÿ1ayẏ1
a2

9
y31gy50 ~43!

~where, without loss of generality we have takenc5 c̄50, so that,g5ḡ), that can be solved using
the invariance properties formulated above. To do this, we makeā50 on the right-hand side of
Eq. ~41!. Then, inserting its solution in Eq.~42!, it can be integrated giving the general solution

y5
3

a

2c1x1c2
c1x

21c2x1c3
, g50. ~44!

y5
3Ag

a

c1exp~Agx!1c2exp~2Agx!

c1exp~Agx!2c2exp~2Agx!1c3
, gÞ0. ~45!

It can be seen that Eq.~43! has eight Lie point symmetries and it is equivalent to a second-order
linear differential equation under a point transformation.27 On the other hand, for any other value
of the coefficientb Þ 2a2/9, Eq.~43! has two point Lie symmetries and we cannot find a point
transformation that cast it in a linear equation.27 However, using the invariant form~11! and the
transformation of variables~12! for f5y, we have proved that Eq.~43! can always be linearized
whatever the value of the coefficient ofy3 is. Therefore, using the invariance properties of the
form ~6! we have obtained the same results that come by the Lie theory of symmetries. In addition,
we have linearized Eq.~43! when it has less than eight Lie point symmetries.

IV. SOLUTION OF NEW CLASSES OF DIFFERENTIAL EQUATIONS

Now, we are going to investigate the case when the invariant expression~6! vanishes, and we
shall construct several important classes of solvable second-order nonlinear ordinary differential
equations. To do this, we must seek the nonlocal transformation defined by Eqs.~28! and~33! with
the condition that the invariant~31! vanishes. This leads to the equations that determine it

a f5
y

ȳ
F]p]y

1
ȳ

y

]p

] ȳ
1
p

yG1ā f̄ , ~46!

b f E f dy1g f5
y

ȳ
Fp ]p

] ȳ
1āp f̄1b̄ f̄ E f̄ d ȳ1ḡ f̄ G , ~47!

2571Luis P. Chimento: Form invariance of differential equations

J. Math. Phys., Vol. 38, No. 5, May 1997



and we shall show a set of functionsf , f̄ for which the nonlocal transformation exists. The solution
of Eq. ~46! can be obtained writing

p~y,ȳ!5a ȳp0~y!1p1~ ȳ!1p2~y,ȳ!, ~48!

where each function satisfies

f52p01yp08 , ~49!

p181
p1

ȳ
1ā f̄50, ~50!

y
]p2
]y

1 ȳ
]p2
] ȳ

1p150, ~51!

where the prime indicates the derivative with respect to the argument of the function. Solving the
system~49–51! and inserting their solutions in Eq.~48!, we find the solution of Eq.~46!, that is:

p~y,ȳ!5a
ȳ

y2E y fdy2
ā

ȳ
E f̄ ȳdȳ1

h0~ ȳ/y!

y
. ~52!

Comparing Eq.~52! with Eq. ~29!, the functionh0( ȳ/y) is given by Eq.~39!, but these terms can
be absorbed in a redefinition of the integration constants provided by the two integrals of Eq.~52!.
Then, without loss of generality we take them equal to zero.

From Eqs.~47 and 52! we obtain the difficult integrodifferential equation that satisfies the
functions f and f̄ . It reads

2
a2

y4 F E f ydyG21b
f

yE f dy1g
f

y
52

ā 2

ȳ 4 F E f̄ ȳdȳG21b̄
f̄

ȳ
E f̄ d ȳ1ḡ

f̄

ȳ
. ~53!

In what follows we shall show a set of functionsf , f̄ that are solutions of this integrodifferential
equation and construct three sets of nonlinear differential equations that can be linearized and
explicitly solved.

A. Case a

An interesting solvable equation set can be obtained when we choose the functionsf , f̄ as:

f5byn1k, f̄5b̄ȳ n̄1 k̄. ~54!

Taking into account that the left-hand side of Eq.~53! depends ony and its right hand side
depends onȳ, it must be a constant. So, inserting the functions given by Eq.~54! in Eq.~53! and
after some algebra, it provides the constraints satisfied by the parameters

b5a2
n11

~n12!2
, b̄5ā 2

n̄11

~ n̄12!2
, ~55!

bk22a2
k2

4
5b̄ k̄

2
2ā 2

k̄
2

4
. ~56!

In addition, the functionp(y,ȳ) is given by
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p~y,ȳ!5a ȳF b

n12
yn1

k

2G2ā ȳF b̄

n̄12
ȳ n̄1

k̄

2G . ~57!

Finally inserting Eqs.~54!–~56! in the invariant form~6!, we have

ÿ1a @byn1k# ẏ1bFb 2
y2n11

n11
1bk

n12

n11
yn111k2yG50, ~58!

ÿ̄1ā @ b̄ȳ n̄1 k̄# ẏ̄1b̄F b̄ 2 ȳ 2n̄11

n̄11
1b̄k̄

n̄12

n̄11
ȳ n̄111 k̄

2
ȳG50. ~59!

Besides, from Eqs.~28!, ~33!, and ~57! we obtain the nonlocal transformation~26! in invariant
form

ẏ

y
1

abyn

n12
1

ak

2
5
ẏ̄

ȳ
1

āb̄ȳ n̄

n̄12
1

ā k̄

2
, ~60!

that links Eqs.~58! and ~59!. To integrate these equations we use their invariant property along
with Eqs. ~55! and ~56! and analyze two different cases. In the first case, we chooseb̄50,
ā5a, k̄5k, and n̄5n. Then, b̄5b by Eqs. ~56! and ~59! reduces to a linear second-order
differential equation forȳ5 ŷ with constant coefficients

ÿ̂1akŷ
˙
1a2k2

n11

~n12!2
ŷ50. ~61!

Integrating Eq.~60! for the above value of the parameter, we obtain the general solution of Eq.
~58!

yn5
n12

abn

ŷn

E ŷndx

, ~62!

whereŷ is any solution of Eq.~61!. In the second case, when we chooseb50, a 5 ā, k5 k̄, and
n5n̄, Eq. ~58! reduces to Eq.~61! for y5 ŷ and the general solution of Eq.~59! is

ȳ n̄5
n̄12

āb̄n̄

ŷ n̄

E ŷ n̄dx

, ~63!

whereȳ̂ is any other solution of Eq.~61!. Inserting the general solution of the Eqs.~58! and~59!,
given by Eqs.~62! and~63!, in the nonlocal transformation~60!, it can be integrated and the final
relation between the variablesy and ȳ, that transforms Eqs.~58! and ~59! one on each other, is

yF E ŷndxG1/nexpS ak

2
xD 5 ȳF E ŷ n̄dxG1/n̄expS ā k̄

2
xD . ~64!

For the particular casen5n̄521, we obtaing5a2b and ḡ5ā 2b̄. All the remaining equa-
tions ~60!–~64! can be applied forn521 andn̄521 because they do not depend explicitly of
the parametersb, b̄, g, andḡ.
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In the next subsections we investigate other generalizations of Eqs.~58! and~59!, that can be
linearized and solved.

B. Case b

Writing the equations set~58! and ~59! as

F~ ÿ,ẏ,y!50, F̄~ÿ̄,ẏ̄,ȳ!50, ~65!

a generalization of both equations can be done expressing them in the following way,

1

y
F~ ÿ,ẏ,y!5

1

ȳ
F̄~ ÿ̄, ẏ̄,ȳ!, ~66!

which is invariant under the nonlocal transformation given by Eq.~60!. It is easy to prove that the
new functions

F̃~ ÿ,ẏ,y!5F~ ÿ,ẏ,y!1dy, F̄
˜

~ ÿ̄, ẏ̄,ȳ!5F̄~ ÿ̄, ẏ̄,ȳ!1d ȳ, ~67!

whered is a constant parameter, also satisfy the invariant condition~66!

1

y
F̃~ ÿ,ẏ,y!5

1

ȳ
F̄
˜

~ ÿ̄, ẏ̄,ȳ!. ~68!

Thisgauge symmetrygenerates a new nonlinear equation that can be linearized and solved. In fact,
when the invariant in Eq.~68! vanishes, it gives rise to a set of equations that transform one on
each other under the same nonlocal transformation, these are:

ÿ1a@byn1k# ẏ1bFb2 y2n11

n11
1bk

n12

n11
yn111k2yG1dy50, ~69!

ÿ̄1ā @ b̄ȳ n̄1 k̄# ẏ̄1b̄F b̄ 2 ȳ 2n̄11

n̄11
1b̄k̄

n̄12

n̄11
ȳ n̄111 k̄

2
ȳG1d ȳ50. ~70!

In particular, to solve Eq.~69! we chooseb̄50, ā5a, k̄5k, andn̄5n (b̄ 5 b by Eq.~56!! in Eq.
~70!. Then, it reduces to

ÿ̄1akẏ̄1Fa2k2
n11

~n12!2
1dG ȳ50. ~71!

Inserting the solutions of Eq.~71! in Eq. ~60! and integrating it for the selected parameters, we
reduce Eq.~69! to quadratures

y5F n12

abn

ȳ n

E ȳ ndxG 1/n. ~72!

For the particular caseb̄5b51, k5 k̄50, n5n̄51, andd5g, Eqs.~69! and~70! reduce to Eq.
~43!, the variable transformation~60! reduces to Eq.~42!, and Eq.~64! gives the relation between
the variablesy and ȳ that leaves invariant~41!.
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C. Case c

There is an important result that can be deduced from Eq.~60! whenā5a and k̄5k, in this
case the nonlocal transformation~60! is k-independent,

ẏ

y
1

abyn

n12
5
ẏ̄

ȳ
1

ab̄ȳ n̄

n̄12
, ~73!

and by Eqs.~55! and ~56!

n̄5n, n̄5
2n

n11
. ~74!

So, if we takek(x) and d(x) as functions of the independent variablex instead of constant
parameters, then, there is no change in the deduction of the variable transformation~73!, that
comes from Eqs.~46! and~47!. This means that the set of equations Eqs.~69! and~70! give rise
to new solvable equations that transform between them by the nonlocal transformation~73!

ÿ1a@byn1k~x!# ẏ1bFb2 y2n11

n11
1bk~x!

n12

n11
yn111k2~x!yG1d~x!y50, ~75!

ÿ̄1a@ b̄ȳ n̄1k~x!# ẏ̄1bF b̄ 2 ȳ 2n̄11

n̄11
1b̄k~x!

n̄12

n̄11
ȳ n̄111k2~x!ȳG1d~x!ȳ50. ~76!

For instance, to obtain the solutions of Eq.~75! we takeb̄50 andn̄5n in Eq. ~76! and it becomes
a general homogeneous linear second-order differential equation

ÿ̄1ak~x! ẏ̄1Fa2k2~x!
n11

~n12!2
1d~x!G ȳ50, ~77!

then, inserting the solutions of this equation in Eq.~72!, we reduce Eq.~75! to quadratures.

V. CONCLUSIONS

We have introduced a new invariance concept that leads to classes of second-order nonlinear
ordinary differential equations which are equivalent under nonlocal transformations. These classes
contain a second-order linear ordinary differential equation with constant coefficients. The para-
metric expression of the solutions for an arbitrary functionf (y) and any values of the parameters
a, b, and g, has been found. Also, the case in which these parameters are functions of the
independent variable has been investigated. Several important physical problems are mathemati-
cally described by these equation classes. Many of these arise in general relativity when the
Einstein field equations are investigated for homogeneous, isotropic, and spatially flat cosmologi-
cal models with no cosmological constant, or Bianchi I type metric with a variety of matter
sources. Also, the probability distribution function, which maximizes the Fisher’s information
measure in the generalized statistical mechanics, was found to satisfy Eq.~43! for the most
interesting valueq521.11

Takingx5 x̄ in the nonlocal transformation, and imposing the form invariance of the general
expression~6!, we have obtained a modified Painleve´–Ince equation~43!. The nonlocal transfor-
mation of variables and the general solution of these equations has been found. In this case the
equation has the eight-dimensional group of Lie point group symmetries SL~3,R! and this is the
maximum number of point symmetries that a second-order differential equation can have. Other
sets of new nonlinear second-order differential equations are generated, that can be linearized and
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solved explicitly ~58,69,75!. It is also to be remarked that the use and application of the form
invariance have led to exact solution of differential equations whose solution were unknown, in
particular for modified Painleve´–Ince equations and polynomical differential equations, which
usually appear in problems related with quantum effects in the very early Universe, originated by
the vacuum polarization terms and particle production arising from a quantum description of
matter, or when both of them are modeled in terms of a classical bulk viscosity.

In general, the problem of finding solutions of nonlinear ordinary differential equations re-
mains open. One direction along which one can proceed is to reduce them to a linear ordinary
differential equation. For instance, when Eq.~1! possesses eight-parameter Lie group it is linear-
izable by a point transformation. On the other hand, the nonlocal transformation~7–10! linearizes
Eq. ~1! even when it has less symmetries. Thus, it could mean that it has more nonlocal symme-
tries. We conclude that it is very interesting to study this kind of nonlocal transformations of
variables and their associated nonlocal symmetries, which have received up to now little attention.
We shall continue exploring this subject in future papers.
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