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Form invariance of differential equations
in general relativity
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Buenos Aires, Ciudad Universitaria, Pabeild, 1428 Buenos Aires, Argentina

(Received 23 July 1996; accepted for publication 3 December)1996

Einstein equations for several matter sources in Robertson—Walker and Bianchi |
type metrics, are shown to reduce to a kind of second-order nonlinear ordinary
differential equationy+ af(y)y+ Bf(y)Sf(y)dy+ yf(y)=0. Also, it appears in

the generalized statistical mechanics for the most interesting wptue 1. The
invariant form of this equation is imposed and the corresponding nonlocal trans-
formation is obtained. The linearization of that equation for anygB, and vy is
presented and for the important calseby"+k with 8=a?(n+1)/(n+2)? its
explicit general solution is found. Moreover, the form invariance is applied to yield
exact solutions of some other differential equations. 1897 American Institute of
Physics[S0022-24887)02603-0

I. INTRODUCTION

Exact solutions of the Einstein equations are difficult to obtain due to their nonlinear nature.
There exist several interesting physical problems where the Einstein field equations for homoge-
neous, isotropic and spatially flat cosmological models with no cosmological can§tand for
a time decaying cosmological constamt; Bianchi | type metri@ with a variety of matter sources,
reduce to particular cases of the second-order nonlinear ordinary differential equation

+ad )Y+ A1) [ 1)ay+ 51 =0 M

wherey=y(x), f(y) is a real function and the dot means differentiation with respect te,
B, andy are constant parameters.

Recently, it was shown that some galactic models of astrophysical relevance, when investi-
gated with the “generalized” statistical mechanfcsan be exactly described by solutions to the
Boltzmann equations that maximize the generalized Tsallis entropy=for 1,1° and it was found
that the corresponding probability distribution function satisfies (Eg**

It is believed that quantum effects played a fundamental role in the early Universe. For
instance, vacuum polarization and particle production arise from a quantum description of matter.
It is known that both of them can be modeled in terms of a classical bulk vis¢dditying the
relativistic second-order theory of nonequilibrium thermodynamics—called extended irreversible
thermodynamics developed in Refs. 13 and 14—it was considered a homogeneous isotropic spa-
tially flat universe, filled with a causal viscous fluid whose equilibrium pressure obeyRwa
equation of state, while the transport equation of the viscous pressure is

0+T&=—3§H—5670
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2566 Luis P. Chimento: Form invariance of differential equations

with e=0.1° Following Ref. 16 foom=1/2, it was shown in Ref. 1 that the expansion rate satisfies
a modified Painlevelnce equation that has the form of Ha4) with f(y)=y andy=0.

Cosmological models with a viscous fluid source have been studied using the full causal
irreversible thermodynamics with the full version of the transport equation for the bulk viscous
pressuré’>6Relating the equilibrium temperatufiewith the energy density in the simplest way
to guarantee a positive heat capacity, it was shown that the expansion rate satisfigsf&q.
m=1/2, withf(y)=y " andy=02 Also, the early time evolution of a dissipative universe leads
to an equation for the expansion rate that has the fdpfi'8in the relaxation dominated regime.

Another interesting example appears when an anisotropic universe, described by a Bianchi
type | metric, is driven by a minimally coupled scalar field with an exponential potential. The
Klein—Gordon equation for the scalar field and the Einstein equations for the metric are expressed
in terms of the semiconformal fact@ and their derivative$® Then, the solutions of this equation
set can be obtained if one is able to solve the following Einstein equatioB for

Gé+( 1)'G+C1 3)
- Cc— — =0C»,
G G 7

which, making the substitutio =y Eq. (3) becomeg1).8 A similar result is obtained in the
particular case when the Bianchi type | metric reduces to a flat Robertson—Walker spate-time.
From the generalized Tsallis entropy, defined as

sq=k<q—1>*12i (pi—pD), (4)

the generalized statistical mechanics can be constructed \khigr positive constang is a real
number that characterizes the statistic and the sum is made over all the microscopic configurations
whose probabilities arp; . It leads to the conventional Boltzmann—Shannon statistic in the limit
g—1 and it is found to be a good framework to study astrophysical problems, as are the gener-
alized Freeman digR and Kalnajs oscillations of a slab of stafsTaking the generalized Fisher

information for Tsallis statisti¢d
- (d/dx) fqy 2 5

wheref 4(x) is the probability distribution function, and solving the variational problem in order to
find the distribution function that maximizes the Fisher information, a differential equation of type
(1) is obtained fory="f4/f4, wheref(y)=y, a=(2q—1), 8=3q(q—1), andy=0.1* For rel-
evant physical applications the most interesting value of the statistic parameter-i4.,2°in this
case the above equations can be solved explicitly and the general solution will be given in Sec. Ill.
Thus, it turns out to be of great interest to analyze @Eyfrom the physical and mathematical
point of view. The paper is organized as follows, in Section Il we introduce an invariant form and
use it to reduce Eq(l) to a linear, inhomogeneous ordinary second-order differential equation
with constant coefficients, by means of a nonlocal transformation. Then, its parametric general
solution is given. In Section Il we extend the nonlocal transformation and find the explicit general
solution of a modified Painlévence equation fo3=1/92% In Section IV we use the nonlocal
invariance to obtain a new class of differential equations for which the general solution is found.
In Section V the conclusions are stated.

J. Math. Phys., Vol. 38, No. 5, May 1997



Luis P. Chimento: Form invariance of differential equations 2567

II. FORM INVARIANCE

The differential equatiofl), which appears in several interesting physical problems, has been
solved and studied in particular cases using nonlocal transformations, as was previously stated. To
investigate Eq(1) we write it in invariant form

n

y Y A
Wwwaf(y)dyw—f—mwy +Bf f(y)dy+vy, (6)

under the nonlocal transformation group defined by the transformation

B(y)dy=gf(y)dy, (7)
Pipa= it ®)
o
B B
i = 9
Bc+y=pcty, (10)

wheref(y) is a real function ofy = y(x), the prime indicates differentiation with respectxto
a, B, vy are constant parameters, ar(@) is an integration constant provided by the integral on
the lefiright) hand side of Eq(6). By invariant form we mean that the left-hand side of Eg).
transforms into the right-hand side under the nonlocal transformation defined by7Eq$) for
any functionsf,f. The parameters, 8, v, a, andg satisfy Eqs(9 and 10.

___ The form invariance group can be used to linearize @g. In fact, taking the function
f(y)=1,a=a, B=8, andy = v (this means = c¢) in the invariant form(6) and the transfor-
mation (7—10, they become

y : .
m+ay+ﬁff(y)dy+7=y +ay'+By+pety, (11

7= [ toay. 7= [ tpax (12

Without loss of generality we choose=c=0. So, if the invarian{11) vanishes, then, Eq1)
transforms into

y"+ay’+py+y=0, (13

under the transformation of variabl€$2). This is a linear, second-order ordinary differential
equation with constant coefficients. Its general solution is

a,2
(@ B# x

Y= 18X (A 1X)+ CoeXp (A %) — —

3’ (14
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2568 Luis P. Chimento: Form invariance of differential equations

where\; and \, are the roots of the characteristic polynomial of E#3). We indicate the
integration constants with, c,,...,c, andc, c4,...,C,.

012

b) =

y_=(cl+czx_)exp(—§—%. (15)

The real solutions can be classified as follojw® also assume that, 8, andy are rea). For
a>0 andB< a?/4 we have two real, negative roots for a strong damped solution3Fow?/4
we have a double-negative root for a critically damped solution.d5ef andB> «?/4 we have
two complex roots with negative real parts for a weakly damped solution. For theacafe
growing solutions occur.

The transformation of variablg42), relates the general solution of Ed) with y(x) through
Eqg. (14). We find that

y=y(y00), (16

1 .
= ————d 1
§ Jf(y(y(x))) X 1

are the parametric equations forandy in terms ofx. In the particular casé(y)=y we have
shown that a class of nonlinear modified Painlelee equations can be transformed into a linear
second-order ordinary differential equation by a nonlocal transformation.

The theory introduced by Lie considers the invariance of the differential equations under point
transformations. He showed that the one-dimensional free particle equation has the eight-
dimensional SI3,R) group of point transformations. This is the maximum number of symmetry
generators for a second-order differential equation of the ¥rm

y+h(y,y,x)=0. (18)

In our case Eq(l) has the form of Eq(18). Then, it has eight or less point symmetries. However,
it becomes Eq(13) under the transformation of variablék?) and can be cast into the free particle
equation by a local point transformation. So, Etp) always has eight symmetry generators. We
conclude this section by observing that the nonlocal transforméfiett) changes the number of
symmetry generators for the class of differential equatidnsand the physics contained in the
original problem.

The nonconstant parameters castere we allow the parameters in E4) and in the trans-
formation (7—10 to be functions of the independent variable, thatds; a(x), 8= B(x), and
y=7y(x). In order to preserve the forfl) we choosex(x) = a(x) andB(x) = B(x). In this case,
the invariant form(6) reads

4

W+a(x)y+ﬁ(x)f f(y)dy+ y(x)=f—(—y_)+a(x)y +B(X)f fiy)dy+y(x), (19

wherex is the transformed of the point Therefore, takingy = y andf(y)=1 we can linearize
the equation

y+ a(X)f(Y)YJrﬁ(X)f(y)f fy)dy+»(x)f(y)=0, (20

J. Math. Phys., Vol. 38, No. 5, May 1997



Luis P. Chimento: Form invariance of differential equations 2569

which transforms into

Y7+ a(x)y’+B(x)y+y(x)=0. (1)

An important physical problem of general relativity, concerning the motion of expanding
shear-free perfect fluids,is governed by the ordinary differential equation

y=F(x)y?, (22

whereF (x) is an arbitrary function from which the equation of state can be computed. A complete
symmetry analysis of this differential equation was given in Ref. 26. Here we see that it is
contained in the set of equation@0) when «(x)=0, B(x)= —3F(x)/2, y(x)=0, and

f(y)=yY2 Then, choosing(y) = (y) *?in Egs.(7—10, the transformation of variables is
3 2
—Y — (¥
=3 x—f3dx, (23
and Eq.(22) becomes
y"=3F(x), (24)
thus
7= f f F(x_)d#dﬂclﬂ &, (25

is the general solution of the simple linear equati@d).

IIl. EXTENDED NONLOCAL TRANSFORMATION

The integral in Eq(17) can be performed analytically and the general solujisry(x) of Eq.
(1) obtained explicitly for a special set of functiorigy). For this purpose we generalize the
nonlocal transformation group defined by E(&-10 extending it to

f1a(y)dy+ F1o(y)dx= f1o(y)dy+ fyo(y)dx, (26)

Foa(y)dy+ fony)dx= oy (y)dy+ oY) dX. 27)

For simplicity we begin our investigations restricting ourselves to the ocase, that is,
fo1=1,1=0, fo,=f5,=1 and requiring the invariant forri6) to be invariant under the remaining
nonlocal transformation group, defined by E{86 and 27 with the above restrictions. Under
these assumptions we can write the nonlocal transformation as

y=p-+ay, 28)

where the functiong andq are expressed in terms of the functiong, fi,, f_ll, andf_lz. So,
they have a specific dependence on the variaplasdy

py,y)=——=———, (29

afy,y)=——. (30
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Inserting Eq.(28) in Eq. (6) we get

3

pap _— . ——
+?—a—_+a[p+qy]+,3 fdy+ Y, (31)
y

X+ay+,8f fdy+ y= f_y+

and comparing the coefficients ja?, we have

aq 49
whose solution is
— y_
aly,y)=: (33

Using Eq.(33) and comparing the coefficients gfwe easily find thatf =y andf_=7 But, the
comparisons of the coefficients gfand the remaining terms give the equations

J y 9 1
Py Pl Y (34)
o’!y yady vy y y
pop _— —__ __
B | ydy+y==—+4ap+B| ydy+y. (39
y dy
The functionp that satisfies Eq(34) is given by
__a __a_,
P(Y.Y)=3Yy~ 3V y 2+h(y,y), (36)
where the functiorh(y,y) satisfies the partial differential equation
oh _gh heo. 3
Yoy Yot (37)

It can be seen that the solutions of H§7) are given byh=h,/y, whereh, is an arbitrary
function of the quotieny/y. So, the form of the solution fop is

a _ « ho(y/y)
PYYI= ZYY~ 5y 2 = (38)

Comparing Eq(30) with Eq. (33) we havef_ll(W= 1y, and comparing Eq29) with Eq. (38), we
obtain

— y Y
ho(y/y)zcl__+ CZ_' (39)
y y

Inserting Eq.(39) in Eq. (35) we find thatc;=c,=0, y+ Bc=Bc+ v, and
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20> — 2a?
P=g FPg 9

Therefore, the final invariant form and the resulting nonlocal transformation are

ZJraer a—y2+ﬁc+y=X_+W+ £ V21 gy, (41)
y a |y a_

In the particular case in which the invariant fofdil) vanishes, the left-hand side gives rise to a
nonlinear differential equation

2
. .«
y+ayy+ gy +yy=0 (43)

(where, without loss of generality we have talenac=0, so that,y= y), that can be solved using
the invariance properties formulated above. To do this, we naak@ on the right-hand side of
Eqg. (41). Then, inserting its solution in E@42), it can be integrated giving the general solution

3  2cixtc,

=2 =0 44
@ CX°+CoX+ ey’ y=0 (44)

y

_ 3 \/;/ ciexp( \/;x) +Ccoexp(— \/;x)
@ ciexp \/;x) —Cyexp(— \Fyx) +C3 ’

It can be seen that E¢43) has eight Lie point symmetries and it is equivalent to a second-order
linear differential equation under a point transformatib@n the other hand, for any other value

of the coefficientd # 2a?/9, Eq.(43) has two point Lie symmetries and we cannot find a point
transformation that cast it in a linear equatfdrHowever, using the invariant forrfil) and the
transformation of variable€l2) for f =y, we have proved that E¢43) can always be linearized
whatever the value of the coefficient gf is. Therefore, using the invariance properties of the
form (6) we have obtained the same results that come by the Lie theory of symmetries. In addition,
we have linearized Eq43) when it has less than eight Lie point symmetries.

v#0. (45)

IV. SOLUTION OF NEW CLASSES OF DIFFERENTIAL EQUATIONS

Now, we are going to investigate the case when the invariant exprgg€sivanishes, and we
shall construct several important classes of solvable second-order nonlinear ordinary differential
equations. To do this, we must seek the nonlocal transformation defined b§2Bosnd(33) with
the condition that the invariari81) vanishes. This leads to the equations that determine it

_y[ep yp p

f=2| = z

yloy yay vy
y| p —— — =

B | fdy+yf=Zlp==arapf+f | fdyT T, (47)
y

J. Math. Phys., Vol. 38, No. 5, May 1997
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and we shall show a set of functith‘_for which the nonlocal transformation exists. The solution
of Eq. (46) can be obtained writing

p(y.y) = aypo(y)+pai(y) +p2AY.y), (48)

where each function satisfies

f=2po+ypp, (49
p1+&+__=o, (50)
y
dp2  —dPs
_+ “Ztp,= 51
Yoy TV Gy T PT (52)

where the prime indicates the derivative with respect to the argument of the function. Solving the
system(49-51 and inserting their solutions in E8), we find the solution of Eq46), that is:

a(—h (y/y)
p(y.y) = a—zfyfdy—; fydy+ —

(52

Comparing Eq(52) with Eq. (29), the functionhy(y/y) is given by Eq.(39), but these terms can
be absorbed in a redefinition of the integration constants provided by the two integrals(62Eq.
Then, without loss of generality we take them equal to zero.

From Egs.(47 and 52 we obtain the difficult integrodifferential equation that satisfies the
functionsf andf. It reads

QZHf d 2+ﬁfffd i ?Uf_d 2+Ejﬁ_+_f_ (53)
ye ) Tyay] +By | Tyt yg=—=| | fydy] +h] fdyi =

In what follows we shall show a set of functiomstthat are solutions of this integrodifferential
equation and construct three sets of nonlinear differential equations that can be linearized and
explicitly solved.

A. Case a
An interesting solvable equation set can be obtained when we choose the furﬁc?tms
f=by"+k, f=by"+k. (54)

Taking into account that the left-hand side of E§3) depends ory and its right hand side
depends oy, it must be a constant. So, inserting the functions given by(¥4).in Eq.(53) and
after some algebra, it provides the constraints satisfied by the parameters

n+1 — n+1
ﬂ:az(n+2)7’ B:?(_Jrz)z’ 9
2 —2
ﬂkZ—aZkZ=gT—sz. (56)

In addition, the functiorp(y,y) is given by

J. Math. Phys., Vol. 38, No. 5, May 1997
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b k
STy =Y "+ (57)
n+2 2|

Finally inserting Eqs(54)—(56) in the invariant form(6), we have

—_Ib ok
p(y!y)_ Oly n+2y

2n+1

. . n+2

I+ a [by"™+K]y+B| b2 +bk——y" 1+ kPy | =0, (59)

y+ab “+k]y+,8 +bk——y "*1+k y[=0. (59)
n+1 n+1

Besides, from Eqs(28), (33), and (57) we obtain the nonlocal transformatid®6) in invariant
form

y nt2 2 y nt2 2°

y aby" ak y aby" ak
Lt AN e A (60)
that links Eqs.(58) and (59). To integrate these equations we use their invariant property along
with Egs. (55 and (56) and analyze two different cases. In the first case, we chbese,
a=a, k=k, andn=n. Then, 3= by Egs.(56) and (59 reduces to a linear second-order
differential equation foly=y with constant coefficients

2,2 n+1 .

(n+2)2y:0' (61)

§/+ aky+a
Integrating Eq.(60) for the above value of the parameter, we obtain the general solution of Eq.

(58)

yn_n+2 §/”

bn [ . '
“ fy”dx

where§/ is any solution of Eq(61). In the second case, when we chobse0, a = a_,k=k_, and
n=n, Eq. (58) reduces to Eq(61) for y=y and the general solution of E(9) is

(62

(63

Where§/_is any other solution of Eq61). Inserting the general solution of the E¢58) and(59),
given by Eqs(62) and(63), in the nonlocal transformatiof60), it can be integrated and the final
relation between the variablgsandy, that transforms Eqg58) and (59) one on each other, is

1/n lin~ -
- ak ~— ak
f y'dx| ex - X|=y j yhdx| ex - X/ (64
For the particular case=n=—1, we obtainy= o?b andy=«a a?b. All the remaining equa-

tions (60)—(64) can be applied fon=—1 andn=—1 because they do not depend explicitly of
the parameterg, 3, y, andy.

y
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2574 Luis P. Chimento: Form invariance of differential equations

In the next subsections we investigate other generalizations of(E)sand (59), that can be
linearized and solved.

B. Case b

Writing the equations s€68) and(59) as
F(37.y.¥)=0, Fly.yy)=0, (65
a generalization of both equations can be done expressing them in the following way,
1 .. 1— -
yF(y,y.y)=§F(y,y,y), (66)

which is invariant under the nonlocal transformation given by (E6). It is easy to prove that the
new functions

Fy ) =F@y.y)+dy, Fyyy)=F(.y.y)+dy, (67)
where § is a constant parameter, also satisfy the invariant cond{86én
;F(y,y,y)=;_F(y,y,y). (68)

This gauge symmetrgenerates a new nonlinear equation that can be linearized and solved. In fact,
when the invariant in Eq(68) vanishes, it gives rise to a set of equations that transform one on
each other under the same nonlocal transformation, these are:

. 2n+1 n+2
S n 2 n+1, .2 —
y+a[by"+k]y+ 8| b n+1+bkn+1y +key |+ 8y=0, (69)
y+a [by"+k]y+B8/b =——+bk ——y ""l+k y[+y=0. (70)
n+1 n+1

In particular, to solve Eq69) we choosé=0, = a, k=k, andn=n (8 = 8 by Eq.(56)) in Eq.
(70). Then, it reduces to

Y akyF | a2 4 sly=0 (71)
ytakyT| a (n+2)? y=0.
Inserting the solutions of Eq71) in Eq. (60) and integrating it for the selected parameters, we
reduce Eq(69) to quadratures

n+2 yn tn

y= abn [
Jy“dx

For the particular case=b=1, k=k=0, n=n=1, andé=y, Eqs.(69) and(70) reduce to Eq.
(43), the variable transformatiof®0) reduces to Eq(42), and Eq.(64) gives the relation between
the variablesy andy that leaves invariani41).

(72
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C.Casec

There is an important result that can be deduced from(&@).whena= « andk= k, in this
case the nonlocal transformati¢®0) is k-independent,
\ by" v b__n_
.oy :X_+ a_y , (73
y n+t2 Yy n+2

and by Eqgs(55) and(56)

n=n, n=—-. (74

So, if we takek(x) and §(x) as functions of the independent variableinstead of constant
parameters, then, there is no change in the deduction of the variable transforf@@®iothat
comes from Eqgs(46) and(47). This means that the set of equations E§S) and (70) give rise
to new solvable equations that transform between them by the nonlocal transforf7&ion
y2n+1

2
b n+1

y+a[by"+k(x)]y+ B +8(x)y=0, (75)

n+2
+bk(x) my”*lJr k?(X)y

v 2n+1 o

y —  n+2 _
b =——+bk(x)——y ”+1+k2(x)7}+5(x)y=0. (76)
n+1 n+1

Y+ alby "+k(x)Ty+ B8

For instance, to obtain the solutions of Ed5) we takeb=0 andn=n in Eq.(76) and it becomes
a general homogeneous linear second-order differential equation

YT ak(x)y+ y=0, (77)

22(x) n+1 8
o (X (I’I‘I‘—Z)Z (X
then, inserting the solutions of this equation in EZR), we reduce Eq(75) to quadratures.

V. CONCLUSIONS

We have introduced a new invariance concept that leads to classes of second-order nonlinear
ordinary differential equations which are equivalent under nonlocal transformations. These classes
contain a second-order linear ordinary differential equation with constant coefficients. The para-
metric expression of the solutions for an arbitrary functigyn) and any values of the parameters
«, B, and vy, has been found. Also, the case in which these parameters are functions of the
independent variable has been investigated. Several important physical problems are mathemati-
cally described by these equation classes. Many of these arise in general relativity when the
Einstein field equations are investigated for homogeneous, isotropic, and spatially flat cosmologi-
cal models with no cosmological constant, or Bianchi | type metric with a variety of matter
sources. Also, the probability distribution function, which maximizes the Fisher's information
measure in the generalized statistical mechanics, was found to satisfiA8gfor the most
interesting valug= —1.1*

Takingx=x in the nonlocal transformation, and imposing the form invariance of the general
expressior(6), we have obtained a modified Painlesace equatior{43). The nonlocal transfor-
mation of variables and the general solution of these equations has been found. In this case the
equation has the eight-dimensional group of Lie point group symmetri€3Bland this is the
maximum number of point symmetries that a second-order differential equation can have. Other
sets of new nonlinear second-order differential equations are generated, that can be linearized and
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2576 Luis P. Chimento: Form invariance of differential equations

solved explicitly (58,69,75. It is also to be remarked that the use and application of the form
invariance have led to exact solution of differential equations whose solution were unknown, in
particular for modified Painlevence equations and polynomical differential equations, which
usually appear in problems related with quantum effects in the very early Universe, originated by
the vacuum polarization terms and particle production arising from a quantum description of
matter, or when both of them are modeled in terms of a classical bulk viscosity.

In general, the problem of finding solutions of nonlinear ordinary differential equations re-
mains open. One direction along which one can proceed is to reduce them to a linear ordinary
differential equation. For instance, when Eif) possesses eight-parameter Lie group it is linear-
izable by a point transformation. On the other hand, the nonlocal transforn{@td@) linearizes
Eqg. (1) even when it has less symmetries. Thus, it could mean that it has more nonlocal symme-
tries. We conclude that it is very interesting to study this kind of nonlocal transformations of
variables and their associated nonlocal symmetries, which have received up to now little attention.
We shall continue exploring this subject in future papers.
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