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Abstract

A majority of legacy systems in use in the scientific and engineering 

application domains are coded in imperative languages, specifically, COBOL or 

FORTRAN-77. These systems have an average age o f 15 years or more and have 

undergone years of extensive maintenance. They suffer from either poor 

documentation or no documentation, and antiquated coding practices and paradigms 

[Chik 94] [Osbo 90], The purpose of this research is to develop a reverse- 

engineering methodology to extract an object-oriented design from legacy systems 

written in imperative languages. This research defines a three-phase methodology 

that inputs source code and outputs an object-oriented design.

The three phases of the methodology include: Object Extraction, Class 

Abstraction, and Formation of the Inheritance Hierarchy. Additionally, there is a 

pre-processing phase that involves code structuring, alias resolution, and resolution 

of the COMMON block. Object Extraction is divided into two stages: Attribute 

Identification and Method Identification. The output of phase one is a set of 

candidate objects that will serve as input for phase two, Class Abstraction. The 

Class Abstraction phase uses clustering techniques to form classes and define the 

concept of identical objects. The output of phase two is a set o f classes that will 

serve as input to the third phase, Formation o f the Inheritance Hierarchy. The 

Formation of the Inheritance Hierarchy phase defines a similarity measure which 

determines class similarity and further refines the clustering performed in phase two, 

Class Abstraction. The result of the methodology is an object-oriented design 

including hierarchy diagrams and interaction diagrams. Additionally, the results of 

applying the methodology in two case studies are presented.

ix
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The research has resulted in the development of a unique methodology to 

extract object-oriented designs from imperative legacy systems. The benefits of 

using the methodology include: the ability to capture system functionality which

may not be apparent due to poor system structure, and the reduction of future 

maintenance costs o f the system as a direct effect of accurate system documentation 

and updated programming technologies.

x
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Chapter 1 

Introduction

In recent years, much progress has been made in the area of software 

development. Specifically, the introduction and acceptance of the object-oriented 

paradigm has resulted in software systems exhibiting such desirable properties as 

code reuse, modularity, deferred commitment and a model that closely resembles the 

real world. However, "much of the software we depend on today is, on average, 10 

to 15 years old" and written primarily in imperative languages, specifically COBOL 

or FORTRAN-77. Thus, the above benefits are not realized in these systems. 

Moreover, years of "patching" has resulted in systems that are poorly structured, 

coded and documented. It is clear that these systems will have to be "cleaned-up", 

however, the cost-factor makes it unlikely that these working systems will be simply 

discarded. Therefore, another approach must be taken [Osbo 90].

Reverse-engineering is recognized as a way to migrate old systems to new 

and improved technologies [Ulri 90], By reverse-engineering a legacy system to 

take advantage of new technologies, the resulting system enjoys increased flexibility, 

increased productivity, and accurate system documentation. Additionally, it 

provides a better methodology for maintenance, allows rapid adaptation to changing 

requirements, and utilizes the benefits of new technologies and architectures [Roch

90], The importance of this can be fully appreciated when it is realized that 

software maintenance consumes over 50% of the budget in most data processing

1
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shops [Your 89]. Therefore, the objective of this research is to develop a 

methodology to reverse-engineer such systems into the object-oriented paradigm, 

thereby aiding the migration of the system to newer coding practices and paradigms 

while utilizing system requirement information contained in the source code itself, 

but not appearing in any other documentation source. This research defines a 

reverse-engineering methodology to extract an object-oriented design representation 

from an imperative legacy system.

The remainder of this chapter presents an overview of the problem of 

software maintenance, introduces the relevant concepts and motivations, presents 

the objectives of the research and describes the organization o f this dissertation.

1.1 Overview

The traditional forward-engineering software lifecycle o f imperative systems 

includes several distinguishable stages: requirements analysis and definition, system 

design, implementation and testing, and operation and maintenance. Legacy systems 

are systems that are systems that are, on an average, over 10 years old. They were 

developed under the forward-engineering lifecycle model just described and 

currently exist in the operation and maintenance phase [Somm 89],

Software maintenance not only involves error-correction but also includes 

such activities as modification of requirements and design, thereby requiring further 

implementation. Moreover, what occurs, is that the entire development process is 

repeated many times during system maintenance as system modifications are made 

to the software. Maintenance costs are known to be the greatest cost incurred in
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software development, averaging two to four times the development costs for large 

embedded systems. It is noted that “maintenance costs tend to rise with program 

age.” Although maintenance costs tend to be less for systems that are well 

documented, as maintenance activities continue, the quality and accuracy of system 

documentation drops sharply. Therefore, systems that were well documented at 

release time may be poorly documented 10 years later due to excessive maintenance 

activities [Somm 89], Rather than continue to nurse an antiquated system, 

frequently the decision is made to extract the functionality of the system to utilize 

new technologies while making the changes at a higher level of abstraction (i.e., 

system design or specification). The goal is to improve overall system quality, 

decrease future maintenance costs, and satisfy current user needs. Reverse- 

engineering is the mechanism by which the system functionality is extracted. 

Specifically, it is the part of software maintenance “that helps you understand the 

system so you can make appropriate changes.” [Chik 90]

The purpose of reverse-engineering a system is to increase system 

understanding or comprehensibility for maintenance and development. In addition, 

research in the area o f reverse-engineering addresses at least one of the following six 

key objectives: cope with complexity, generate alternate views, recover lost

information, detect side-effects, synthesize higher abstractions, and facilitate reuse. 

Reverse-engineering involves analyzing a system to “identify the system’s 

components and their interrelationships” and to “create a representation of the 

system in another form or at a higher level o f abstraction [Chik 90].” As the
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connotations of reverse-engineering have changed from negative to necessary, there 

has been a concentration of research in the area. No longer is reverse-engineering 

clouded by the idea that it is an admission of failure because of the “get it right the 

first time” mentality. Today it is realized, and widely accepted that a software 

system is dynamic. “It is not possible to predict what you will want a system to do 

five, or even two years from now [Wate 94].” Therefore, by using the techniques of 

reverse-engineering to achieve an object-oriented design, the benefits o f current 

software technologies can be realized without discarding a working system. 

[Chik 90]

Object-orientation is the amalgamation of three concepts: encapsulation,

polymorphism and inheritance. Of these, only inheritance is unique to the paradigm. 

Encapsulation is realized as a “class” which is the implementation of an abstract data 

type. Classes are instantiated to give “objects” of the type, which form the basic 

run-time entity of the system. . The object, which is the primitive element, can be 

viewed as an abstract data type, encapsulating a set of data (i.e. attributes) and a 

corresponding set of permissible actions on the data (i.e. methods). Each object is 

an autonomous entity which interacts with other objects during the execution of the 

system. Polymorphism is a property that permits a single message to refer, at run

time, to instances of different classes. Inheritance defines a relation between classes 

whereby the definition of a class is based on the definition of existing classes. It 

encourages the reuse of classes that are similar to what the programmer wants by 

allowing the programmer to tailor the inherited class(es) to meet the needs o f the
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inheriting class in a way that will not affect the inherited class(es). Thus, the 

combination o f inheritance, polymorphism and dynamic binding localize required 

changes, thereby minimizing the amount of code that must be modified during 

software maintenance [Somm 89]. Other benefits o f the object-oriented paradigm 

include code reuse, modularity, deferred commitment, and a model that closely 

resembles the real world [Pokk 89].

The research detailed in this dissertation is motivated by the following:

• The majority of scientific and engineering software systems currently in use are 

coded in imperative languages, specifically, FORTRAN-77.

• The object-oriented paradigm is well-suited for large-scale programming 

systems such as scientific and engineering systems, and provides a great 

opportunity for software reuse.

• The reverse-engineering o f software systems allows the utilization of desirable 

system functionality for use in reengineering.

The goal of this research is to develop a methodology that facilitates system 

migration o f legacy systems coded in FORTRAN-77 to the object-oriented 

paradigm. Additionally, the objectives of the research are as follows:

• Issues specific to FORTRAN-77, such as the COMMON block, should be 

addressed.

• Algorithms for each phase o f the methodology should be detailed.
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• A collection of design documents should be developed to represent the extracted 

design, such that the characteristics specific to reverse-engineering are 

addressed.

1.2 Outline of the Dissertation

The outline o f the dissertation is as follows:

Chapter 2 presents related research in the area of reverse-engineering, 

specifically, object recovery. The relevance of the related work to the dissertation, 

as well as the distinction o f the related work from the dissertation is presented.

Chapter 3 details the FORTRAN Object Recovery Methodology (FORM). 

It discusses each phase: pre-processing, object extraction, class abstraction and 

abstraction of the inheritance hierarchy. All necessary algorithms, definitions, and 

lemmas are presented. The representation of the object model is explained and the 

template for each diagram is given. The chapter concludes with a section on the 

validation and evaluation o f FORM.

Chapter 4 presents the results of two case studies. Using two subject 

systems, one small-scale (less than 500 lines o f code) and one medium-scale (1000 - 

5000 lines of code) the FORTRAN Object Recovery Methodology (FORM) is 

demonstrated. Results from each phase of the methodology are presented.

Chapter 5 offers some concluding remarks and discusses possible future 

research directions.
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Chapter 2 

Related Research

In the context of software-engineering, reverse-engineering describes “the 

process of discovering how your own system works.” It involves many activities 

that all relate to the understanding and modification of existing software systems 

including creating high-level descriptions of a system. Because software systems are 

dynamic, it is not possible for a system to be permanently correct. This is evidenced 

in such factors as changing user needs and rapidly advancing hardware technologies. 

The rapid decrease in computer cost is making it possible for great advancements in 

both hardware and software technologies. For this reason, it is impossible to predict 

what users will expect from systems in the distant, and not-so-distant, future. For 

all of these considerations, reverse-engineering has been called “one o f the most 

important areas of software engineering, rather than being a peripheral concern.” It 

is this realization that has sparked interest in the area and fueled the flame of 

research, which has resulted in conferences, such as the Working Conference on 

Reverse Engineering, which are devoted solely to reverse-engineering. The 

widespread appeal of object-oriented programming and the realization of the 

necessity of reverse-engineering as a software maintenance activity have motivated 

research in various aspects of the field [Wate 94].

Research in the area of reverse-engineering, specifically object recovery, is 

classified into five areas: code restructuring, program understanding, structure

7
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identification, design & specification recovery, and system migration [Wate 94]. 

The remainder o f this chapter will present the related research in each of these five 

areas and discuss the relevance of the related research to this research.

2.1 Code Restructuring

Code restructuring marks the beginning of research in the area of reverse- 

engineering. The purpose of code restructuring and the central theme o f all reverse- 

engineering activity is program improvement. Code restructuring seeks to improve 

existing code by improving its understandability. Because unstructured program 

logic results in increased program complexity, code restructuring improves 

intellectual control over programs and makes reliable modification and software 

evolution feasible [Haus 90; Water 94],

The beginning of research in the area is marked by [Haus 90] and [Zimm 90] 

which detail the restructuring of COBOL and FORTRAN code, respectfully. 

Hausler discusses the structuring of COBOL code to improve maintainability. By 

eliminating the constructs o f Alter and Goto, a “top-down hierarchy of structured, 

single-entry, single-exit, procedures” is produced [Haus 90], Zimmer presents a 

method for restructuring FORTRAN code into an object-oriented style. Zimmer’s 

research seeks to increase program clarity by establishing global invariants, reducing 

data cobwebs, and designing single objects. By emphasizing program invariants, the 

program structure is altered towards program function to create object modules. 

The resulting programs are written in object-module style and contain three kinds of 

modules: main, traditional, and object. The main module is the main program,
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traditional modules contain only a single subprogram, and object modules contain 

one or more subprograms with an interface which may contain one or more 

variables. Thus, the object module style implements a particular object as a set of 

subprograms, and are, therefore, less general than data abstractions (which provide 

parameterization or object oriented programming (which provides inheritance). 

Although this method results in code which is not truly object-oriented, it marks the 

beginning of research along that path [Zimm 90],

2.2 Program Understanding

Program understanding, a key issue in reverse engineering, seeks to 

comprehend the underlying functional and data concepts of a system. Program 

understanding involves both syntactic and semantic analysis. Syntactic analysis in 

the most basic level of program understanding. It involves analyzing syntactic units 

such as variables, reserved words, strings and consonants as well as generating 

syntax trees. Semantic analysis provides a much deeper insight into program 

behavior detailing such information as control-flow and data-flow dependencies 

[Baum 93].

Research in the area of programming understanding has resulted in such 

projects as AMES [Baum 93], the Recognizer [Rich 93], COBOL/SRE [Engb 93], 

and DESIRE [Bigg 94], An Extensible Maintenance Engineering System (AMES) 

was developed as a prototype of a semantics-based program understanding system 

for COBOL 74 programs. AMES uses denotational semantics and static program 

analysis techniques to develop tools that aid in semantic program understanding.
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Semantic based tools provide a much deeper level of program understanding than 

syntactic based tools by supporting semantic level understanding through control- 

flow analyzers, data flow analyzers, and program slicers as opposed to parse trees 

and token lists. AMES designs and implements a prototype o f a COBOL 74 

software maintenance environment. It is composed of three parts: the maintenance 

engine, which is coded in Standard ML and consists of all the tools and methods; the 

user interface, which is coded in C++ as a stand-alone application running as a 

separate process; and the data store, which contains the parsed source code in the 

form of an abstract syntax tree extended with “containers” and “annotations” [Baum 

93],

The Recoginzer is a prototype which finds occurrences of commonly used 

data structures and algorithms, defined as cliches, and builds a hierarchical 

description of the program. It was developed at MIT as part of the Programmer’s 

Apprentice project. The program under evaluation is first translated into a 

“language-independent graphical representation”, the Plan Calculus. It is then 

encoded as a flow graph and parsed to produce a design tree. Finally, 

documentation is generated [Rich 93],

The COBOL/SRE (COBOL System Renovation Environment) project is a 

software re-engineering environment for COBOL systems. It was developed by 

Andersen Consulting’s Center for Strategic Technology Research. COBOL/SRE 

was developed as a set of tools to address the problem of “identifying and extracting 

components from large legacy COBOL systems” based on the concepts of reusable
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component recovery. Reusable component recovery represents one of several 

approaches in dealing with legacy systems. In reusable component recovery, 

functional components of the system are “recognized, recovered, adapted, and 

finally reused in new system development.” This approach requires deep analysis 

and understanding of the legacy code. To this end, COBOL/SRE includes such 

components as system level analysis, data model recovery, concept recognition and 

program level analysis. The system-level analysis includes system inventory, system 

analysis, and system browsing capabilities. The data model recovery component 

identifies a virtual data model based on analysis performed on data record mappings, 

data assignments, and data flows. The concept recognition component uses “plans” 

to “describe parts and constraints among parts of concepts to be recognized.” 

Finally, the program-level analysis component assists program analysts in program 

understanding activities by providing parsing and program text browsing, flow 

analysis, complexity analysis and anomaly detection, and program segmentation. 

COBOL/SRE uses such features as condition-based slicing, forward slicing/ripple- 

effect analysis, segment management and composition operations, and knowledge 

based concept recognition to facilitate system level analysis and browsing, syntactic 

analysis, semantic analysis, data model recovery, and distributed execution 

architecture in reusable software component recovery from legacy COBOL systems 

[Ning 94].

The DESIRE (DESign Information Recovery Environment) system is a suite of 

tools that uses informal information (comments, identifier names, design documents)
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rather than formal information (syntax trees and program semantics) to aid in 

program understanding, specifically addressing the concept assignment problem. 

The concept assignment problem is defined as “the problem of discovering these 

human-oriented issues and assigning them to their realizations within a specific 

program or its context.” DESIRE is a program-understanding assistant containing 

facilities to assist the user in addressing the concept assignment problem. These 

facilities include three scenarios: suggestive data names, patterns of relationships, 

and intelligent agent. Scenario one, suggestive data names, assigns key concepts to 

specific program concepts to provide a framework whereby a human reverse 

engineer may perform further detailed analysis. Scenario two, patterns as 

relationships, identifies “clusters of related functions and data that form the 

framework o f the program.” Scenario three, intelligent agent, allows the user to 

browse the code looking for “evidence of key concepts based on the user’s 

experience.” DESIRE has been used for “exploration for debugging or porting,” 

and “documentation for understanding and reporting” [Bigg 94],

2.3 Structure Identification

Structure identification is the process of determining static properties of a 

software system. Research in this area includes such projects as RE2, data-flow- 

diagram (DFD) extraction, program graph models, and the FORTRAN Reverse- 

Engineering package.

Bendusi, et. al. describe the development o f a methodology to extract low 

level design documents from Pascal code using Transformation Analysis. The
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methodology produces structure charts and data-flow diagrams using JSP and 

Wamier-Orr methodologies [Bend92], The RE2 project explores “reverse- 

engineering and re-engineering techniques to facilitate reuse re-engineering.” The 

project uses functional and data abstraction to extract reusable components from 

existing systems. Additionally, it seeks to introduce abstract data types into 

languages that do not make any provisions for the implementation o f abstract data 

types [Canf 93]. Cimitile introduces an algebraic representation of program 

modules to generate program graph models. Using these program graph models, a 

flow-graph, a nesting tree of program control structures, and a tree of program 

paths are produced from software coded in FORTRAN, COBOL or Pascal [Cimi

91], Finally, the Fortran Reverse Engineering package analyzes FORTRAN code 

and produces structure charts and module specifications [Gili 90],

Each of these research efforts extracts static components from source code. 

They do not modify or interpret the extracted data. This extraction process does 

not provide the deeper comprehension that program understanding offers, but rather 

serves as a preliminary stage of program understanding. Additionally, program 

understanding and structure identification serve as preliminary stages to object 

recovery.

2.4 Design & Specification Recovery

A software design is a description of the software system [Pfle 91]. It is the 

process of “producing a description of implementation from which source code can 

be developed [Ruga 90]” A software specification, on the other hand, is a
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description of the systems capabilities [ Pfle 91]. Both software specification and 

design are vital components of the forward engineering lifecycle. They are vital 

documentation that represents the system. However, as previously discussed, 

because legacy systems have undergone years of extensive maintenance, what was 

originally accurate specification and design documentation typically is no longer 

accurate. Therefore, a key objective of reverse engineering is recovery of lost 

information, specifically, system specification and design [Chik 90]. There have 

been numerous research efforts in design and specification recovery including such 

projects as REDO, RECAST, NuMIL and RIGI [Lano 93; Edwa 93; Choi 90; Till 

93].

Choi & Sacchi explore the extraction of the functional and dynamic 

properties o f large systems and develop a process to reverse-engineer system level 

design description. They developed a module interconnection language, NuMIL, 

which is used to represent the extracted design [Choi 90], Liu & Wilde propose a 

methodology to recover object-like features from a non-object oriented system. The 

methodology uses features such as abstract data types to identify object-like 

features using persistent data and formal parameters [Liu 90], Lividas & Roy 

extend this research by introducing the concept of the receiver of a procedure. 

Thus, the research is extended to explore the object-like features in receivers [Livi

92],

Sward & Steigerwald have developed a two-phase methodology to reverse- 

engineer procedural code into natural language. Phase one describes the data
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structures in three steps: list the data structures, list where the data structures are 

defined, and write a natural language description of the data structures. Phase two 

uses a five step procedure to describe the procedures of the system. Phase two 

involves the following steps: list all procedures in the system, list the parameters for 

each of these procedures, consider each data structure individually, list the parts of 

the data structure that each procedure uses and write natural language descriptions 

for each procedure. They claim that by extracting a natural language description of 

the source code, that the forward-engineering process will allow the system to be 

implemented in the object-oriented paradigm [Swar 94].

The RECAST project was carried out at the Centre for Software 

Maintenance, University of Durham, as part of the DTI/ED project under the 

Information and Engineering Advanced Technology program supported by a SERC 

grant. The RECAST (Reverse Engineering into CaSe Technology) methodology 

extracts a SSADM (Structured Systems Analysis and Design Method) from 

COBOL code. Thus, the project extracts a procedural design from legacy COBOL 

code. The RECAST framework has four phases: population of the repository, 

preliminary transformations, logical restructuring, and translation into SSADM 

notation. Phase one parses the source code and generates PSL statements to 

populate the PSL/PSA repisotory of SSADM. Phase two resolves any naming 

difficulties (synonyms and homonyms) and carries out preliminary transformations 

on the source system. Phase three is the heart o f RECAST. During this phase, a set 

of transformations is used to restructure the repository descriptions while
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maintaining system functionality. Finally, phase four translates the meta language 

description of the system into SSADM. The final output is the set o f documents 

required for SSAMD’s Physical Design phase [Edwa 93],

The RIGI project involves such concepts of reverse-engineering as software 

analysis and program understanding to identify software artifacts and form an 

abstract representation of the system. RIGI discovers and analyzes the structure of 

large software systems in two phases. Phase one involves the automatic and 

language-dependent extraction o f software artifacts. This is performed by parsing 

the source code and storing the artifacts in a repository. Phase two involves semi

automatic and language independent “subsystem composition methods that generate 

hierarchies of subsystems.” That is, using the variables, procedures, modules, and 

subsystems to construct software components [Till 93; Mull 94],

Subramaniam and Byrne strive to derive an object model from legacy 

FORTRAN code. Using application domain knowledge and system artifacts 

including documentation and source code they define a nine-step process involving 

both top-down and bottom-up approaches. The process includes identifying 

potential objects and classes, mapping objects to classes, identifying attributes, 

identifying methods, and determining relationships [Subr 96].

In addition to design recovery, there have been several projects dedicated to 

the recovery o f a system specification. Such projects include REDO, REFORM and 

a methodology introduced by Gannod & Cheng. The aim of the REFORM (Reverse 

Engineering using FORmal Methods) project is to develop a formal specification in
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Z from legacy EBM Assembler code. This project was conducted at the Centre for 

Software Maintenance at the University of Durham as part of research funded by 

IBM(UK), DTI, and SERC. The REFORM system uses a three phase methodology 

to transform the source code into a specification. Phase one uses a source to wide- 

spectrum language (WSL) translator to translate the assembler into an intermediate 

form. It produces code modules and the relations among the modules and stores 

this information in a database. Phase two involves using the code stored in the 

database and working interactively with the program transformer to produce a 

specification. Again, the resulting code is stored in the database. The third and final 

phase uses a program integrator to assemble the code in a WSL and translate this 

specification in WSL to a Z specification [Yang 91].

The REDO (Reengineering, Documentation and validation of systems) 

project was conducted at Oxford University by the Programming Research Group 

(PRG) as part of funded research known as the ESPRIT project. The goal of the 

REDO project was to reverse-engineer COBOL to the formal specification 

language, Z. This was done via an intermediate language, Uniform, and a functional 

description language. Further research in the project included the development of 

the object-oriented specification language Z++ and the development of a 

methodology to extract the object-oriented components of COBOL and represent 

those components in Z++ [Lano 93],
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2.5 System Migration

System migration involves the transformation of a software system from one 

language to another. Bryne discusses the development of a methodology to 

develop an Ada implementation from a FORTRAN code and update the 

documentation. The methodology involves extracting detailed design information 

from the FORTRAN source code. From the detailed design, a high level design is 

extracted and represented by data-flow and contrl-flow diagrams. The following 

eight-step procedure to extract the design is presented: collect information, examine 

information, extract the structure, record functionality, record data-flow, record 

control-flow, review recovered design, and generate documentation. The recovered 

design is then implemented in Ada and new documentation is produced [Bryn 91].

Ong & Tsai have developed a methodology to translate FORTRAN code to 

class-based C++ code. They examine aggregated data structures and subprogram 

parameters to help facilitate the translation. Data flow analysis is used to gather 

information on program variables. Using this information, subprograms are 

analyzed for objects in global variables, local variables and formal parameters. 

Methods are extracted based on a heuristic that determines data usage by defining 

three categories: use-only, use-and-set, and define-only. Based on the classification 

of the variables, methods are defined which read the object’s state, create the object 

(constructor), or modify the object’s state [Ong 93].
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2.6 Relevance to the Dissertation

The research presented in the dissertation serves to extend and enhance the 

body o f research discussed in this chapter. It spans several areas of reverse- 

engineering including program understanding and structure identification with major 

emphasis in the area of design and specification recovery. The methodology 

presented in the dissertation has similar theoretical foundations to the research 

presented, however there exists some fundamental differences. These similarities and 

differences are detailed in Figure 2.1. In the related research, only [Liu 90; Liva 92; 

Lano 93; Ong 93; Subr 96] seek to obtain object-oriented characteristics from non

object-oriented code. [Lano 93] focus strictly on COBOL source code, and 

therefore, does not deal with many of the issues encountered with FORTRAN. [Liu 

90; Liva 92; Ong 93] each seek to extract object characteristics from non-object- 

oriented code, but use abstract data types as the basis o f forming these object 

groupings. These methodologies fall short for FORTRAN because of its lack of 

abstract data types and user defined types. Therefore, although other methodologies 

may also take a data-driven approach to extraction of objects, the data elements that 

are considered are vastly different. Thus, the methodology presented in the 

dissertation expands and enhances the current body o f research by increasing the 

domain o f applicability of object recovery methodologies. This is exemplified in 

[Subr 96], which references and is based upon the research contained herein, and 

specifies C++- as the language of implementation.
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Methodology Source Language Data Structures Class Extraction

REDO COBOL required yes

RECAST COBOL required no

Ong & Tsai FORTRAN not required methods only; 
class-based C++

Liu & Wilde COBOL reqired methods only

FORM imperative not required yes

Figure 2.1 
Comparison of Related Research
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Chapter 3

FORM: The FORTRAN Object Recovery Methodology

The methodology detailed in the dissertation is a three phase methodology 

for extracting an object-oriented design from imperative code, specifically 

FORTRAN-77. The FORTRAN Object Recovery Methodology (FORM) consists 

of a pre-processing phase to restructure the source code, resolve the aliases in the 

global variables and actual parameters, and resolve the COMMON block followed 

by Object Extraction, Class Abstraction and Formation o f the Inheritance Hierarchy. 

An overview of the methodology is given in Figure 3.1. The result o f FORM is an 

object-oriented design including hierarchy diagrams and interaction diagrams.

3.1 Pre-processing

The pre-processing phase is necessary to “clean up” the source code so that 

it may be evaluated accurately for object extraction. There are two types of 

preprocessing that must occur: actual parameters and global variables. The actual 

parameters must undergo a pre-processing phase to resolve any aliasing that occurs 

with the formal parameters. The global variables must undergo a pre-processing 

phase to resolve aliasing and to determine which variables serve only as 

placeholders. This pre-processing phase results in code that is ready to be analyzed 

for object extraction.

21
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FORTRAN Source Code

OBJECT-ORIENTED DESIGN

OBJECT EXTRACTION

PRE-PROCESSING PHASE

CLASS ABSTRACTION

ABSTRACTION OF 
THE INHERITANCE HIERARCHY

Figure 3.1 
Overview of FORM
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Input: Call graph of the source code represented as a tree with n levels 

where the formal parameters, and actual parameters for each node 

are maintained in two lists: formal and actual.

Output: Call graph of the source code with aliasing resolved.

1. Begin at the root node and traverse the tree using a depth first traversal.

2. For each node, maintain the following lists:

formaI[i,k]: the list o f  formal parameters

actual[ij]: the list o f  actual parameters

where: i = l..n is the level in the tree

j is the number o f  actual parameters 

k is the number o f formal parameters

3. fo ri=  l..ndo
j = l
while actual[ij] o  eol do 

k=0
while formal[i,k] o  eol do 

if actual[ij] =  formal[i,k] 
then actual[ij] =  actual[i-i j]

od
od

od

Figure 3.2
Algorithm to Resolve Actual Parameter Aliasing
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3.1.1 The Aliasing Problem — Actual Parameters

Because the first phase of the extraction process involves the analysis of the 

actual parameters, it is important that a single name of an actual parameter 

corresponds to a unique data element. That is, when the subroutine calls are 

considered independently of the source code and the call graph, no aliasing should 

occur. This is not the case, however. Because of the scoping rules of FORTRAN, 

as well as most imperative languages, the data element that is referenced in a 

subroutine call is based not only on the subroutine issuing the call, but also the order 

of nesting of the subroutines in the call graph.

There are two instances when the aliasing of parameter names in the 

subroutines occurs: (1) local variables of the same name in different subroutines are 

used as actual parameters, and (2) actual parameters and formal parameters have the 

same names and nested calls occur. Before any type of analysis is performed, the 

calling sequence must be considered. Thus, the call graph is used to give unique 

names to variables referencing a single location.

To solve the problem of local variables of the same name in different 

subroutines used as actual parameters, the name of the subroutine of declaration is 

attached in a dot notation to the beginning of each local variable. The source code 

is updated with the new variable names and uniqueness is guaranteed. To solve the 

problem of aliasing that occurs when actual parameters have the same names as 

formal parameters, the call graph is necessary. Using the call graph, mappings are 

determined as follows: when a call is issued by SUB1 to a subroutine SUB2, and
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SUB2 issues a call to SUB3 where the name of a formal parameter appears in as an 

actual parameter, the actual parameter in SUB2 is replaced by the corresponding 

actual parameter of the calling subroutine, SUB 1. Considering the call graph as a 

tree with the main program as the root, the resolution proceeds in a top-down 

manner. Beginning at the root node, list the mapping of actual parameters to formal 

parameters for each call. Traverse the tree in a depth-first manner. Maintain the 

mapping for all actual parameters to formal parameters. For each node, replace all 

occurrences of formal parameters in the call statements with the corresponding 

actual parameters and derive the actual parameter to formal parameter mapping for 

the next node in the sequence. The algorithm to resolve the actual parameter 

aliasing is given in Figure 3.2.

Thus, the aliases have been resolved, and attribute extraction can proceed. 

Using the resolved call statements the actual parameter lists are evaluated and 

attributes extracted.

3.1.2 Determining Placeholder Variables

To facilitate the identification of objects in the COMMON block, the first 

step is to determine, for each COMMON statement, which variables are actually 

used and which variables are serving as placeholders, i.e. variables not referenced or 

defined in the subroutine. This determination is done by analyzing the program unit 

over which the COMMON statement is valid (for each COMMON statement) using 

data reference analysis techniques. The algorithm to detect placeholders is given in 

Figure 3.3.
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Let P be a FORTRAN program and let C be the COMMON area where 

C = union of all Cj , j = 0 .. k where 

Cq is unnamed

Q  is a uniquely named COMMON, i = I ... k.

Consider all references to the COMMON areas, and assume that there are m>=0 

such references.

Let An , n = l..m , be a reference to the common area, and

Let Bn , n = 1 ..m , be the program block over which An is valid

Let Dn , n = l..m , be the set of placeholders of An .

Define ref[n] = the set of variables of An that are referenced in Bn , n = l..m.

Define def[n] = the set of variables of An that are defined in Bn , n = 1 ..m

Then, Union(ref[n], def[n]) = the set of all variables of An that are referenced

directly in Bn, and

Dn = An \ Union(ref[n], def[n]) = the set of all placeholders of An .

Figure 3.3 
Algorithm to Determine Placeholders

The placeholders are determined using the use and defines lists. For each 

reference to a COMMON area, the union o f both the use and defines lists is
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determined. This represents all COMMON variables that are not placeholders in 

the subroutine for that reference. Using set subtraction, the non-placeholder 

variables are subtracted from the list of all COMMON variables for the reference 

leaving the set of placeholder variables for the reference. Hence, by computing 

variable usage for each COMMON statement, and excluding the set of used 

variables from the set of all variables, the set of variables acting as placeholders is 

determined.

3.1.3 Resolving the Aliases

When a COMMON statement is used there is a risk of aliasing. Variables 

specified to be in the COMMON area are available to all program modules in which 

the corresponding COMMON statement appears. The problem of aliasing occurs 

because the variable names associated with the COMMON area may be different in 

the main program and each subroutine. Because the position of a variable in the 

COMMON statement determines the memory location to which it maps, and 

because unique variable names can be used in each module, it is possible that in each 

module, different names are given to a single memory location, i.e. aliasing. To 

accurately identify the objects, these aliases must be resolved. Therefore, the second 

step is to resolve the aliases to the COMMON block. There are essentially two 

approaches that can be taken to perform the resolution: (1) brute force and (2) 

computational.
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3.1.3.1 The Brute Force Method

One method for resolving the aliases of the COMMON block is simply 

"brute force." This method enumerates each element o f  the COMMON statements 

and proceeds to match variables position by position. This method works, but is 

tedious, slow and not very elegant. Arrays must be enumerated and matched 

element by element.

Example:

Given the following primary COMMON statement:

COMMON rl, r2, A[2, 3], r 3 

and the following candidate COMMON statement:

COMMON si, s2, s3, s4, s5, B[2, 2] 

enumerate as follows:

COMMON rl, r2, A[l,l], A[2,l], A[l,2], A[2,2], A[l,3], A[2,3], 

r3
COMMON si, s2, s3, s4, s5, B[l,l], B[2,l], B[l,2], B[2,2] 

and match the variables position by position:

(si, rl), (s2, r2), (s3, A[l,l]), (s4, A[2,l]), (B [l,l], A[l,2]), ... etc.

3.1.3.2 The Computational Method

The alternative method provides a more elegant solution. This method 

begins matching positions and upon reaching an array, computes the offset required 

for its resolution. This method avoids the enumeration o f each array.

Since the resolution is performed on a syntactically correct program, we can 

assume that there are no type conflicts in the COMMON statements since this
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would result in a syntax error. Let the COMMON statement in the main program 

serve as the COMMON statement to which all others will be resolved, and refer to it 

as the "primary COMMON statement." As resolution is being performed on a 

COMMON statement, it will be referred to as the "candidate COMMON 

statement." Once resolution is performed on a COMMON statement it is referred to 

as a "resolved COMMON statement."

Let the primary COMMON statement be of the form: COMMON vj, V2 ,

..., vp.

Let the candidate COMMON statement be of the form: COMMON W2 ,

..., wc.

A function, £ that will map a variable from the candidate COMMON 

statement to a variable in the primary COMMON statement is defined using 

separation of case. There are four cases that must be considered in alias resolution 

of the COMMON block:

1. No arrays are present in the primary or candidate COMMON statements.

2. Arrays are present in the primary but not the candidate COMMON 

statement.

3. Arrays are present in the candidate but not the primary COMMON 

statement.

4. Arrays are present in both the primary and candidate COMMON 

statements.
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Consider case 1, the case when there are no arrays present in either the 

primary COMMON statement or the candidate COMMON statement. This is the 

most trivial case in that each variable listed in the candidate COMMON statement 

will correspond directly to a variable listed in the primary COMMON statement, 

and, as discussed before, no type consideration is necessary. For all i, l..p, vj is not 

and array and for all j, l..c, wj is not an array. Then for k = l..c, f^w^ ) = v^. Thus,

the mapping is direct, i.e. the variables o f the candidate COMMON statement are 

mapped to the variables in the primary COMMON statement that occupy 

corresponding positions in the statements.

Next, consider cases 2 and 3, when arrays appear in either the primary 

COMMON statement or the candidate COMMON statement but not both. When an 

nxm array is reached in the primary (resp. candidate) COMMON statement, mn 

consecutive locations are assigned in column major manner, i.e. (1,1) (2,1), (3,1) ... 

(1,2), (2, 2) etc. Map the array to nm locations in the candidate (resp. primary) 

COMMON statement. That is to say, if the array is in the primary COMMON 

statement, mn variables in the candidate COMMON statement will be mapped to the 

array name. If the array appears in the candidate COMMON statement, then the 

array will be renamed to the nm corresponding variables in the primary COMMON 

statement.

More specifically, consider case 2, when arrays are present in the primary 

COMMON statement. For some i, l..p, vj is an array, and for all j, l..c, wj is not an

array. Then define a function g such that
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g(vj) = 1 if and only if vj is not an array and

= mn if and only if vj is an nxm array,

Then g(vj) is the number of locations allocated in the primary COMMON

statement. If vj is an array, further note the elements of vj as vj{row, col}. Now

consider w^, the k^1 element in the candidate COMMON statement. Then find a z, 

z > 0, such that g(vj) = k, if such a z exists. If there exists such a z, then = vz 

if vz is not an array, and f(w 0 = vz{n,m} if vz is an array. If  no such z exists, then 

find y such that g(vj) = glb(k), where glb(k) is the greatest integer less than k.. Let 

I = glb(k) and define t = k-1. Since Vy+j is an array, we must define f  such that w^ is 

mapped to a particular element of Vy+j. Let c = TRUNC((t-l),n) and let d = 

MOD((t-l),n). Then f^wjJ = Vy+i {d+1, c+1}.

Now, consider case 3, where arrays are present in the candidate COMMON 

statement, but not the primary COMMON statement. Let w^ be an nxm array and 

vfo is not an array. Then we must define f  such that w^ is mapped to v^, vh+j, ..., 

vj+nm-I- Therefore, ftw jjij} ) = v ^ )  + (j.1)n +{.

Finally, consider case 4, when arrays appear in both the primary and 

candidate COMMON statements, two subcases are possible: (i) the arrays have 

equal dimension, (ii) the dimension of the array in the primary COMMON statement 

is greater than the dimension of the array in the candidate COMMON statement. We 

consider only the case where the array in the candidate COMMON statement does
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not exceed the boundaries o f the array in the primary COMMON statement. If the 

array dimensions are equal, then this reduces to the trivial case. The mapping 

between the two arrays is direct. If the dimensions of the arrays do not match, 

specifically, if the dimension o f the primary array is greater than the dimension of the 

candidate array, then the resolution becomes more complex.

Let A be an array in the primary COMMON statement with dimension mn, 

and let B be an array in the candidate COMMON statement with dimension ij such 

that mn > ij. In the general case, B is an alias to some ij locations of A, not 

necessarily beginning at A[l, 1] or ending with A[n,m]. Thus, B may reference the ij 

"middle" locations of A, such that r+ij+s = mn for some 0 < r <= mn, 0 < s <= mn. 

Pictorially,

|--------------------n m ------------------------- 1 array A[n,m]

|—r — |-------- ij----------- 1----------s ------1 array B[ij] aliases a subset of A.

It is necessary to determine exactly which segment of A is aliased by array B 

because of the possibility o f dummy variables representing a portion of A. The 

algorithm to resolve the COMMON block using the computational method is given 

in Figure 3.4. It should be noted that the resolution method involves two- 

dimensional arrays, but is easily adapted to one-dimensional arrays by letting m =1,

i.e. setting the number of columns equal to 1.
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1. Determine the size of the array in the primary COMMON statement, i.e. mn, and call this value

"sizejjrimary"

2. Determine the size of the array in the candidate COMMON statement and call this value

"sizecandidate"

3. Compute x = TRUNC(r/n), y = MOD(r/n)

4. The variables in the r locations alias A[n,x| A{ l..y, x+ l} (note: the notation { } is used to

denote only a single column of an.array, while [ ] is standard array notation).

5. Compute u = n - y.

(u is the number of locations necessary to complete the column started by the r variables.)

6. If u < ij then A {y+ l.. n, x+ l} denotes the remainder of the column,

(i.e. y+l...n is u rows of column x+l).

Compute the following:

c = TRUNC(ij-u /n), (c = the number of complete columns of A included in B) 

d = MOD(ij-u / n), (d = the remaining number of slots of A included in B)

If c > 0 then the remainder of B aliases A{n, (x+2)... (x+2+c-l) } A{ d, (x+2+c) > 

else (c = 0) B aliases A{d, (x+2) }

7. If u = ij then A{y+l..n, x+l > is the aliased positions of A, i.e. the remainder of the column

8. If u > ij then A{ (y+1)... (y+l+ij), (x+l) } denotes the alias of array B,

i.e. a portion of the x+l column of A.

9. The next s variables in the candidate COMMON statement alias the next s locations of A.
f(wj) = A{(y+l)...n, (x+l)} A{n, (x+2)...(x+2+c-l)} A{d,(x+2+c)}

if and only if u < ij and c > 0 
f(wj) = A{(y+l)...n, (x+l)} A{d, (x+2)} if and only if u < ij and c = 0

f(wj) = A{(y+l)...n, (x+l)} if and only if u = ij 

f(wj) = A{(y+l)...(y+l+ij), (x+l)} if and only if u > ij

and f(wj+]) = A{d+l, x+2+c} if and only if u < ij and c > 0 

f(wj+ i) = A{d+1, x+2} if and only if u < ij and c = 0 

f(wj+i) = A{ 1, x+2} if and only if u = ij 

f(wj+ j) = A{(y+l+ij)+l, x+l} if and only if u > ij
and f(wj+k) = A{((d+k-l) mod n) +1, (x+2+c) + ((k-l)tnmc n)+l} for k = l...s

Figure 3.4
Algorithm for COMMON Block Resolution
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Notation:
A{ 1..2, 3} represents the elements A[l,3], A[2,3]

A{2,3} represents the single element A[2,3]

A[2,2] represents the elements A [l,l], A[2,1] A[ 1,2] A[2,2]

An includes all COMMON statements, both named and unnamed. Since 

alias resolution must be performed on COMMON statements that access the same 

area, i.e. those with the same name or no name at all, it is necessary to partition A 

into k+1 disjoint sets where each set contains all COMMON statements that access 

the same area of the COMMON block. Thus, there will be (k+1) primary 

COMMON statements, one for each of the (k+1) sets. When performing the 

resolution, it is necessary to use the primary COMMON statement for the set to 

which the candidate COMMON statement belongs.

At this point, the preprocessing phase is completed. The placeholders have 

been determined and the aliases have been resolved. The source code is prepared 

for the object extraction phase.

3.2 Object Extraction

The Object Extraction phase is divided into two stages: Attribute

Identification and Method Identification. Attribute Identification uses a data-driven 

bottom up approach to analyze two aspects of the source code: actual parameters 

and global variables. Method Identification uses a new variation of traditional 

program slicing techniques to extract methods based on an object’s attributes. The
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output o f the Object Extraction phase is a set of candidate objects that will serve as 

input to phase two, Class Abstraction.

An object, O, is identified as a two-tuple, (D,M) where D is the set of data 

items (or attributes) and M is the set of methods that act on those data items. Two 

possible approaches to object extraction are top-down or bottom-up. A top-down 

approach begins with all data elements contained in a single object and proceeds to 

divide the object into smaller objects. Although this approach has some merit, the 

margin o f error is on the side of objects whose attribute sets are too small, i.e. they 

do not adequately represent a functionally cohesive unit. The bottom-up approach 

constructs objects by first determining the cohesive strength between each pair of 

data items and proceeds to form groupings based on levels o f cohesion. Because a 

bottom-up approach results in objects that are highly cohesive, this is the approach 

taken by FORM.

The functionality o f a program is viewed at three levels. At the top-level, 

the functionality is that of the entire program. This view is too coarse grained to 

directly aid in object extraction, however, it may provide some insight into the type 

of objects that may be formed. The second level concentrates on the functionality of 

the individual subroutines. The third, and most fine-grained view, considers the 

functionality of each line of code. The view of the subroutine as the unit of 

functionality is the approach taken in this work. The consideration of the subroutine 

as the unit o f functionality o f the analysis facilitates the evaluation of two aspects of 

program variables: actual parameters and global variables.
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3.2.1 Attribute Extraction — Actual Parameter Analysis

By considering each subroutine as a unit of functionality, the actual 

parameters are then necessary to perform the function of the given subroutine. 

Based on these guidelines, FORM seeks to obtain the largest set of parameters 

representing the strongest cohesive unit. The cohesive strength of a pair of 

parameters is measured by determining the frequency in which they are both 

necessary for the execution of a function (where the subroutine is the unit of 

functionality). Measuring the cohesion of a pair parameters for a given subroutine 

results in the consideration of three cases:

(i) both parameters are necessary,

(ii) only one parameter of the pair is necessary, and

(iii) neither parameter is necessary.

The cohesion value of a given pair of parameters is affected by each case as follows: 

case (i) increases the cohesive value, case (ii) decreases the cohesive value, and case 

(iii) does not affect the cohesive value. A cost function, i.e. a function that maps 

each pair of parameters to a real number, is defined for a pair of parameters i and j 

with respect to subroutine f. Using a greedy approach results in a cost function, c, 

that, for a given pair of parameters, weights the necessity of both parameters of the 

pair as a stronger condition than the necessity of only one parameter of the pair. 

Therefore, the cost function is increased by .2 when both parameters are necessary 

for the execution of/ ,  and only reduced by . 1 when only one parameter is necessary 

for the execution of /  By adjusting the amount c is increased or decreased, the
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“greediness” o f the approach is determined. Thus, the cost function, c, for a pair of 

parameters i and j with respect to subroutine / i s  as follows:

c(i,j) = c(ij) if and only if neither i nor j is necessary for the

execution of f

c(i j )  + .2 if and only if both i and j are necessary for the

execution of /

c(ij) - .  1 if and only if either i or j (but not both) is necessary

for the execution of f  

A bottom-up approach is used to construct a graph that maintains the value 

of the cost function, c. This graph is represented as a weighted adjacency matrix, 

M, i.e. an adjacency matrix whose entries are real numbers. M[ij] is assigned a 

value based on the result of the cost function, c(ij). Thus, the value assigned by the 

cost function c(ij) is stored in M[ij] and is proportional to the degree of 

functionality by which i and j are related. Once the matrix. M, is instantiated, a 

threshold table is determined. A threshold table consists of two columns: 

threshold value and data sets. The threshold value is a non-negative real number 

that is determined from M as follows: for each non-negative real number in M, add 

a row to the threshold table with that value as the threshold value. For each 

threshold value, corresponding data sets are computed using the transitive closure 

algorithm. From this table, a “desirable” threshold level is determined by the human 

reverse engineer. In selecting a desirable threshold level, the goal is to find the 

largest data sets with the strongest cohesion, thereby minimizing the number of
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singletons. By setting a threshold on the value necessary to be considered relevant, 

the set of data contained in an object is determined. One benefit of this 

representation is that it facilitates the consideration of various sets o f objects based 

upon varying the threshold.

Step I. Resolve aliasing of local variables
Step 2. Resolve aliasing of actual parameters
Step 3. Perform parameter analysis on the call

statements generated in Step 2 and 
generate a weighted adjacency matrix 
using the cost function, c.

Step 4. Generate the threshold table.

Figure 3.5 
General Algorithm for Attribute Extraction from Actual Parameters

The general algorithm for attribute extraction from actual parameters is 

shown in Figure 3.5. This four-step procedure inputs the raw source code and 

performs two resolution steps: resolve all local variables, and resolve the actual 

parameters. Once the raw source code has been resolved, the resolved source code 

is analyzed and a weighted adjacency matrix, M is generated using the algorithm in 

Figure 3.6. The threshold table is then generated from M using the transitive 

closure algorithm. It is at this point that the human reverse engineer determines an 

appropriate threshold level, thereby determining the data sets for the candidate
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Let P be a structured FORTRAN program
With a subroutine calls
And m (distinct) actual parameters

(i) For i = 1 to n do
CALLi = set of actual parameters of subroutine call I 
If subroutine i is a function
Then CALLi = CALLi union with the function resultant of subroutine I

od
(ii) Let G = (V.E) be a graph

V = the arbitrary ordered set of actual parameters and function resultants.
and denote the elements of V as v l, v2, ...vm /* note |V| = m */

E = {}

(iii) M[l..m. L.m) ARRAY of REAL /* a weighted adjacency matrix */
AP[l..n. l..ml ARRAY of BOOLEAN /* n sets of actual parameters *1
/*  Construct the graph, represented as a weighted adjacency matrix */
/* Initially G consists of only a set of vertices with no edges */
For i = I to m do 

Forj =1 to mdo 
M[i j] = 0

od
od
/* Initialize the sets of actual parameters; AP[i j] = 1 if and only if yj is an element of CALLt

For i = 1 to n do 
Forj = 1 to m do

If yj is an element of CALL [
Then AP[ij] = 1 
Else AP[i j] = 0

od
od
/* Perform the analysis on the sets AP */
For i = 1 to n do 

Forj = I to m do
Fork = j+1 to mdo

If AP[i j] = 1 and AP[i,kJ = I /* both parameters are necessary]
Then M[j,kj = M[j,k] + 0.2
Else if AP[i j] = 0 and AP[j,k] = 0 /* inconclusive *!

Then skip
Else M[j,k] = M[j,k] -  0.1 I* only one is 0 *

od
od

od
(iii) The output is r<n connected graphs. The vertices of each connected graph represents 

the number of attributes for a distinct candidate object

Figure 3.6
Attribute Extraction — Parameter Analysis
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objects. Therefore, the result of the threshold analysis on actual parameters is a 

grouping of the actual parameters into data sets which will represent the attribute 

sets of candidate objects.

3.2.2 Attribute Extraction — Global Variable Analysis

The approach to global variable analysis concentrates on the COMMON 

block in FORTRAN because special considerations must be made for FORTRAN 

that are not necessary in other imperative languages. Specifically, COMMON block 

resolution and the determination of placeholders is not necessary in imperative 

languages such as C, Pascal and COBOL. The approach described in the 

dissertation for attribute extraction based on global variable analysis generalizes to 

these languages readily by using scoping rules and location of globed variable 

declaration. Therefore, the primary focus will be on the COMMON block in 

FORTRAN as it is the most involved.

By considering the subroutine as the unit of functionality, the COMMON 

variables referenced in the COMMON statement of a subroutine are necessary to 

perform the function of the given subroutine. Realizing this, FORM seeks to obtain 

the largest set of global variables that represent the strongest cohesive unit. The 

cohesive strength of a pair of COMMON variables is measured by determining the 

frequency in which they are both necessary for the execution of the subroutine. To 

measure the cohesion of a pair of COMMON variables, three cases must be 

considered:
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(i) both COMMON variables are necessary,

(ii) only one COMMON variable is necessary, and

(iii) neither COMMON variable is necessary.

The value o f the cohesive measure of a given pair of COMMON variables is affected 

by each case as follows: case (i) increases the value, case (ii) decreases the value, 

and case (iii) does not modify the value. The greedy approach taken by the 

algorithm results in a cost function that, for a given pair of variables, weights the 

necessity of both variables of a pair as a stronger condition than the necessity of only 

one variable of the pair. Therefore, the cost function, c, is increased by 0.2 when 

both parameters are necessary for the execution o f the subroutine, and only 

decreased by 0.1 when only one variable is necessary for the execution of the 

subroutine. By adjusting the amount that c is increased or decreased, the 

“greediness” of the approach is determined. The values chosen are 0.1 and 0.2, and 

define the necessity of both variables to be twice as important as the necessity of 

only one. Thus, the cost function, c, for a pair of variables i and j with respect to 

COMMON statement/is as follows:

c(ij) = c(ij) if and only if neither i nor j is necessary for the

execution of f

c(ij) + .2 if and only if both i and j are necessary for the

execution of /

c(ij) - . I if and only if either i or j (but not both) is necessary

for the execution of f
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The cohesive strength for the pair of variables is stored in a weighted adjacency 

matrix, M, where M[i,j] is assigned a real number value based on the result of the 

cost function c(Lj). Once the matrix M is instantiated, a threshold table is 

constructed. The threshold table consists of two columns: threshold value and data 

sets. The threshold value is a non-negative real number and is determined from M 

by creating a row in the threshold table for each non-negative value in M. 

Corresponding data sets are computed for each threshold value using the transitive 

closure algorithm. Based upon this threshold table, the human reverse engineer 

selects the appropriate threshold level. The corresponding data sets translate to 

attribute sets of candidate objects.

The general algorithm for attribute extraction based on global variable 

analysis is given in Figure 3.7. This four-step procedure inputs the raw source code 

and performs two resolution steps: resolution of placeholders in the COMMON 

statements and resolution of aliases in the COMMON statements. Once the 

resolution has been performed, the source code is analyzed and a weighted 

adjacency matrix, M, is generated using the algorithm in Figure 3.8. The threshold 

table is then generated from M using the transitive closure algorithm. At this point, 

the human reverse engineer determines an appropriate threshold level, thereby 

determining the attribute sets for the candidate objects. The result of the threshold 

analysis on global variables is a grouping of the global variables into data sets which 

will represent the attribute sets o f the candidate objects.
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Step 1. Determine placeholders COMMON statements '
Step 2. Resolve aliasing of COMMON variables
Step 3. Perform parameter analysis on the COMMON

statements generated in Step 2 and 
generate a weighted adjacency matrix 
using the cost function, c.

Step 4. Generate the threshold table.

Figure 3.7
General Algorithm for Attribute Extraction from COMMON variables

At this point, the attribute extraction phase is completed. Actual parameters and 

global variables have been evaluated independently and attribute sets determined. 

Actual parameter analysis and global variable analysis result in threshold tables that 

are evaluated by a human reverse engineer to determine attribute sets for candidate 

objects. Note that the threshold analysis for actual parameters and global variables 

is performed independently because what may be a desirable threshold value for 

actual parameters is not necessarily a desirable threshold value for global variables.

The object extraction phase is not yet complete. Recall the definition of an 

object, O = (D,M). To this point, the data sets, D, of the candidate objects have 

been defined. Thus, the final step in object extraction is the extraction of the 

methods, M, that correspond with the data sets, D, thereby producing the candidate 

objects.
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Let P be a structured FORTRAN program
With n COMMON statements
And m distinct variables in the COMMON area
(i) Preprocessing Phase

a. Resolve the aliases of the COMMON block
b. Determine R( for each Bi

(ii) Let G = (VJE) be a graph
V = the arbitrary ordered set of all variables in the COMMON area,

and denote the elements of V as vl. v2. ...vm /* note |V| = m */
E = {}

(iii) M[l..m, l..m] ARRAY of REAL /* a weighted adjacency matrix *1 
APfL.n, I..ml ARRAY of BOOLEAN /* n sets of COMMON variables */
/* Construct the graph, represented as a weighted adjacency matrix */
/* Initially G consists of only a set of vertices with no edges */
For i = I to m do 

Forj = I to m do 
M[ij] = 0

od
od
/♦ Initialize the sets of COMMON variables; C[i j l  = 1 if and only if vj is an element of Rt

For i = I to n do 
Forj = 1 to m do

If yj is an element of Ri 
Then C[Lj] = 1 
Else C[i j]  = 0

od
od
/* Perform the analysis on the sets C */
For i = 1 to n do 

Forj = I to m do
For k = j+1 to m do

If C[ij] = I and C[i,k] = 1 /* both parameters are necessary]
Then M[j,k] = M[j,k] + 0.2
Else if C[ij] = 0 and CU,k] = 0 /* inconclusive */

Then skip
Else M[j,k] = M[j,k] -  0.1 /* only one is 0 *

od
od

od
(iii) The output is Kn connected graphs. The vertices of each connected graph represents 

the number of attributes for a distinct candidate object

Figure 3.8
Attribute Extraction -  COMMON Variable Analysis
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3.2.3 Method Extraction

The procedure for extracting methods from the source code identifies 

statements that modify at least one o f the attributes of the object to which it belongs. 

One approach is to first look to extract methods with no concern of the grouping of 

data sets to form object attributes. In this approach, the focus is on obtaining 

groups of statements that constitute some unit of functionality and the entire object 

extraction procedure is then driven by the method extraction. While this approach 

has some merit, to determine reasonable functionality would require extensive 

domain knowledge. Thus, the degree of generality for such an approach is very low 

in that the methodology itself would require major adaptations to adequately extract 

objects from various application domains. FORM takes the alternative approach.

The approach to method extraction is a data-driven approach and has a 

much higher degree of generality. Analysis is performed on the source code and 

results in data groupings that correspond to attributes of candidate objects. The 

nature of the analysis is such that it is domain independent but language dependent, 

however, in most cases this language dependence generalizes further to paradigm 

dependence. That is, the analysis is performed on a given language (e.g. 

FORTRAN, COBOL, C, Pascal, etc.) or a class of languages (i.e. imperative) 

without prior knowledge of the application domain. Thus, methods are extracted 

following the extraction of data sets. Moreover, the data sets drive the method 

extraction algorithm. By performing the object extraction in this manner, a large
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part of the extraction can be automated and the knowledge of a domain expert 

utilized for refinement.

The theoretical foundation of the method extraction procedure is program 

slicing [Weis 84], Program slicing is defined as a “decomposition based on data 

flow and control analysis [Weis 84].” A slicing criterion is defined as the tuple C = 

<i, V> where “i” is a statement number and V is a set of variables. R(0,C,n) is 

defined as the set of relevant variables at statement “n” and is defined as all variables 

“v” such that:

1. n = i and v is in V, or

2. n is an immediate predecessor of a node m such that either

a. v is in REF(n) and there is a w in both DEF(n) and R(0,C,m),

i.e. w is relevant at statement m and v is used to define w at 

the previous statement. Thus, if w is a relevant variable at the 

node following n, and w is given a new value at n, then w is 

no longer relevant and all the variables used to define w’s 

value are relevant, or

b. v is not in DEF(n) and v is in R(0,C,m), i.e. v is relevant at 

statement m and is not defined in the previous statement. Thus, if 

a relevant variable at the next node is not given a value at node n, 

then it is still relevant at node n.

Then S(0,C) is a set of statements, i.e. the slice where S(0,C) is all nodes n such that 

R(0, C, n+1) intersect DEF(n) is not empty. Thus, if a relevant variable is defined in
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a previous statement, than that statement is included in the slice. Additionally, any 

branch statement which can choose to execute or not execute some statement in 

S(0,C) should also be included in the slice [Weis 84],

To use program slicing for method extraction, we defined extensions to the 

program slicing in [Weis 84], First, the slicing criterion, C, is defined as C = <M, V> 

where M is a module, or block of statements, i.e. a subroutine or the main program, 

and V is the set of attributes of a given object. Recall that once the appropriate 

threshold value is chosen, the corresponding data sets represent attributes of 

candidate objects. These data sets are then used to drive the method extraction. 

For each data set, program slicing is performed on a subset of the modules and each 

resultant slice becomes a method in the corresponding object. Because the data sets 

are derived from actual parameters or global variables, the method extraction 

process must be performed with variation in each case. Specifically, when slicing 

for methods corresponding to actual parameters, consideration must be given to the 

formal parameter mapping based upon the CALL statements in which the actual 

parameters appear. Such consideration is not necessary when slicing for methods 

corresponding to global variables.

Method extraction for data sets comprised of actual parameters is driven by 

the system’s CALL statements. Let K be the set of all CALL statements of the 

system. Then for a given data set, D, form the set P, such that P contains all CALL 

statements that contain one or more elements of D as an actual parameter. For each 

element of P, define the slicing criterion C = <M,V> such that M is the called
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subroutine and V is the set of formal parameters that correspond to the elements of 

D appearing in the CALL statement as actual parameters. Note that because P is a 

set and not a bag, redundancy is eliminated. Thus, each data set D has at most |P| 

methods, i.e. one method for each element of P.

Let n = the number of data sets comprised
of COMMON variables, and 

m = the number of subroutines in the
system.

Then,
For i = 1 to n do

Forj = I to m do
Compute the slice on <M j, D*> and let 

Method j of object i equal this slice.
od

od

Figure 3.9
Method Extraction Algorithm for Data Sets 

Comprised of COMMON Variables

Method extraction for data sets comprised of global variables is more 

straightforward than for actual parameters. Each subroutine in the system is sliced 

on the criterion C = <M,V> where M is the module and V is the set of COMMON 

variables in the data set. Thus for data sets comprised o f COMMON variables, the 

extraction algorithm is given in Figure 3.9. For each object there are at most m 

methods which are defined by using program slicing on each subroutine. Using each 

data set that is comprised of COMMON variables as a variable set for a slicing
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criterion and each subroutine as the statement set for a slicing criterion, the methods 

are extracted.

It is important to realize that the method extraction procedure in both the 

actual parameters and COMMON variables does not attempt to assign semantic 

names to the methods. Although this may appear a shortcoming at first, a deeper 

investigation into the area reveals that by not attempting to semantically qualify the 

methods, the scope of the methodology is much broader. That is, an objective of 

the methodology is generality across many application domains. The assignment of 

semantic naming would require a great amount of domain specific knowledge and, 

therefore, restrict the generality of the methodology as a whole.

At this point, the first phase, Object Extraction, of the methodology is 

completed. The result of this phase is a set of candidate objects. These candidate 

objects serve as input to the second phase, Class Abstraction.

3.3 Class Abstraction

In phase one, Object Extraction, candidate objects were extracted from the 

source code. Phase two, Class Abstraction evaluates the candidate objects extracted 

in phase one, and clusters the candidate objects to form classes. To facilitate the 

clustering process, the candidate objects are analyzed to obtain the following 

information: number of attributes, number of methods, type signature of the

attributes, and use and defines lists of each method. Clusters are formed from the 

set of candidate objects based on an identity measure. The classes are determined 

by mapping each object cluster to a unique class.
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Definition 3.1: Identical Objects

Two objects Oi and O2 are defined to be identical objects when the 

following criteria is satisfied:

1. The number o f attributes of Oi equals the number o f 

attributes of O2 .

2. The number of methods o f Oi equals the number of 

methods of O2 .

3. The attribute type signature of Oi is identical to the attribute type 

signature of O2 .

4. The subroutines of derivation of Oi are identical to the 

subroutines of derivation o f O2 .

5. Corresponding methods o f Oi and O2 differ only where attribute 

names are concerned.

If all five criteria are met, the two objects are said to be identical and are 

clustered together. This determination is made for each pair of objects. Thus, for n 

objects, at most C(n,2) tests must be performed because the definition of identical 

objects is transitive and partitions the set of objects into equivalence classes. 

Additionally, at least (n-1) tests must be performed. The upperbound C(n,2) occurs 

when at most two objects are grouped together and those two are the last two 

tested. The lowerbound of (n-l) occurs when a single equivalence class is formed 

that contains all objects, i.e., all objects are identical and a single cluster is formed.
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Once the set o f objects has been partitioned into equivalence classes, the 

mapping to classes is straightforward. Each equivalence class maps to a unique 

class in the object model. Thus, the mapping between object equivalence classes 

and classes in the object model is one-to-one and onto, i.e. isomorphic.

Lemma 3.1 Let C be the set of classes in the object model, E be the set of object 

equivalence classes, and O be the set o f objects. Then |C| = |E| <=|0|.

Proof.

By definition, each element o f E (an object equivalence class) maps to one 

and only one element of C (a class in the object model). Assume |C| o  |E|. Then 

either some element of E maps to more than one element of C (|C| > |E|) or some 

element of E maps to no element of C (|C| < |E|). But this contradicts the definition, 

therefore, |C| = |E|.

By definition, each element o f O maps to one and only one element of E. 

Assume |E| > |0|. Then some element of O maps to more than one element of E. 

but this contradicts the definition, therefore |Ej <= jO|.

Therefore, (C| < |E| <= |0|. (QED)

3.3.1 Attribute Definition

Once the equivalence classes have been defined and mapped to classes in the 

object modeL, it is necessary to determine the set of attributes for each class. Each 

object in the equivalence class has a unique set of attributes. Because the objects of 

an equivalence class are identical, the attributes of the objects in that class are
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identical by Definition 3.1. Using this definition, it is possible to abstract attributes 

for the class.

Consider some object equivalence class, E, and the corresponding class in 

the object model, C. Let O be some object in E and represent the number of 

attributes o f O as na(0). By Definition 3.1, every object in E has an equal number 

of attributes, so denote the number of attributes of any object in E as na(E). Then, 

the corresponding class, C, will have na(E) attributes. Because no consideration is 

given to the semantic nature of these attributes, they are to be designated as atti. att2.

a tt3 , .., attna(E).

Once the attributes are determined, it is necessary to determine the type of 

each attribute. Let O be some object in E, and denote the type signature of the 

attributes o f O as ts(O). Since every object in E has an identical attribute signature 

by Definition 3.1, denote the attribute type signature of any object in as ts(E). Thus, 

the corresponding class, C, will have type signature ts(E). Thus, careful definition 

of identical objects and properly clustering the objects in such a way that the clusters 

represent equivalence classes, the procedure to define attributes of the classes is 

quite elegant.

3.3.2 Method Definition

The final step in the class abstraction phase is to abstract a set of class 

methods from the cluster of objects that corresponds to the class. The definition of 

methods of a class requires the consideration of two factors: number of methods 

and method content. That is, for each class the first step in the method definition
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procedure is to determine the number of methods the class will contain and the 

second procedure is to instantiate the methods. Again, careful definition of identical 

objects and properly forming the object clusters has served to reduce the effort 

required to define the methods of a class.

Lemma 3.2 Let E be some object equivalence class, C be the class in the object 

model that corresponds to E and O be some object in E. Denote the number of 

methods of O as nm(O). Further, denote the number o f methods of E as nm(E) an 

the number of methods of C as nm(C). Then nm(O) = nm(E) = nm(C).

Proof:

nmfO'l = nmfET By Definition 3.1, identical objects have an equivalent number of 

methods. Consider some object equivalence class, E. Then, E is formed through a 

mapping of clusters of identical objects. Moreover, the mapping of object clusters 

to object equivalence classes has been shown to be isomorphic. Therefore, E maps 

to a single object cluster containing objects which all have an equivalent number of 

methods. Therefore, nm(O) = nm(E).

nmfEI = nmfCi: Each object equivalence class, E, maps directly to one and only 

one object class C. Specifically, each method in E maps to a method of C. 

Therefore, nm(E) = nm(C).

Therefore, nm(O) = nm(E) = nm(C). (Q.E.D.)

By Lemma 3.2, each class, C, contains exactly the number of methods of its 

corresponding object equivalence class. Each method is then denoted as Method 1, 

Method2, ...MethodnmfQ. Hence, the first step in method definition, determination
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of the number o f methods of an object class, is straightforward. The next step in the 

method definition procedure is to instantiate the methods.

Consider an object equivalence class, E. Then, the objects contained in the 

cluster of objects, O, that maps to E are identical and by Definition 3.1, their 

methods differ only where attribute names are concerned. So, consider some object 

o in O. Then, each method o f o maps to a method in C such that the attribute 

variable names in the methods of o are replaced with the corresponding attribute 

variable names o f C.

Upon completion of the method definition procedure, the Class Abstraction 

phase of FORM is completed. At this point, objects have been identified and classes 

in the object model have been abstracted. At this point we have an object oriented 

design that consists of a single-level hierarchy. That is, no parent classes are defined 

for the class structure. Therefore, the next phase o f the methodology is to define 

parent classes by Abstraction o f the Inheritance Hierarchy.

3.4 Abstraction of the Inheritance Hierarchy

Abstraction of the Inheritance Hierarchy involves clustering the classes of 

the object model based on similarity measures. Because the classes have two 

components (attributes and methods) two similarity measures are discussed: 

attribute-based similarity and method-based similarity. The flexability and generality 

of the method then allows the human reverse engineer to determine how these 

similarity measures may be used to best serve the needs of the project. Thus, the 

human reverse engineer may choose to utilize the information generated by only one
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similarity measure, or perform the procedure to synthesize the information of both 

measures. Again, in an effort to preserve the generality of the methodology, the 

decision of how best to utilize the information generated is left to the human reverse 

engineer.

The similarity analysis is performed using the five criteria considered for 

class formation: number of attributes, number of methods, type signature of

attributes, and subroutine of derivation of the methods. Consider a class, C, with 

na(C) attributes and nm(C) methods. Then the type signature of the attributes of C 

is represented as a bag, Bt, whose elements are the types of the attributes of C. 

Moreover, |Bi| = na(C). Further, the subroutines of derivation of the methods of C 

are represented as a bag, B2, whose elements are the names of the subroutines that 

were sliced to generate the methods of the class. Additionally, |B2| = nm(C). This 

criteria is used to perform the two types of analysis on the classes: attribute-based 

similarity and method-based similarity. The result of this analysis is a weighted 

adjacency matrix that is further analyzed to produce a threshold table. Based upon 

this threshold table, the set of classes is partitioned into disjoint sets of clusters 

which map to the parent classes of the inheritance hierarchy.

3.4.1 Attribute-Based Similarity

The attribute-based similarity measure determines the similarity of a pair of 

classes based on the similarity of their attributes. For a pair of classes, a similarity 

measure is assigned based on two characteristics of the classes’ attributes: number 

and type signature. This value is stored in a weighted adjacency matrix from which
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a threshold table is constructed using the transitive closure algorithm. The 

algorithm for computing the attribute-based similarity measure for each pair of 

classes in the object model is given in Figure 3.10.

Let n be the number of classes in the object model.

Let M be a nXn weighted adjacency matrix whose rows and columns 
represent the classes of the object model.

Define R to be the row vector such that R, is the i* class of the object 
model.

Define L to be the column vector such that L, is the j111 class of the 
object model.

Let na(C) represent the number of attributes of a class C.
Let as(C) represent the attribute type signature of a class C.

1. Initialize M to the zero matrix.
2. For i = n do
3. Forj = i+1 to n do
4. If na(Ri) = na(Lj)
5. then M[ij] = M[ij] + 0.2
6. else M[Lj] = M[ij] - 0.1.
7. fi
8. id = |as(RJ intersect as(L,)|
9. sim = id / max(na(R), na(Lj))
10. M(Lj] = M[i j ]  + sim
11. od
12. od

Figure 3.10
Algorithm to Compute Attribute-Based Similarity

The algorithm for computing the attribute-based similarity evaluates pairs of 

classes for similarity in number of attributes by determining if the classes have the 

same number of attributes, or they do not, no consideration is given to the difference 

in the number of attributes. This approach is taken because counting the number of 

attributes does not give information as to how they are used. However, because
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objects can not be considered identical without having the same number of 

attributes, it is a necessary consideration. Evaluation of the attribute type is used to 

provide information on how the attributes may be used. By considering the type 

signature of the attributes of a class, it is possible to ascertain a similarity 

relationship between classes. Additionally, it is important to realize that the 

similarity measure is not binary, but serves to provide a measurement of the degree 

of similarity. Through the use of the thresholding concept, the human reverse 

engineer may determine a desirable degree of similarity.

3.4.2 Method-Based Similarity

The method-based similarity measure determines the similarity o f a pair of 

classes based on the similarity of their methods. For a pair of classes, a similarity 

measure is assigned based on two characteristics of the classes’ methods: number 

and subroutine of derivation. This value is stored in a weighted adjacency matrix 

from which a threshold table is constructed using the transitive closure algorithm. 

The algorithm for computing the method-based similarity measure for each pair of 

classes in the object model is given in Figure 3.11.

The algorithm for computing the method-based similarity evaluates pairs of 

classes for similarity in number of methods by determining if the classes have the 

same number of methods. This is a binary consideration, that is either the classes 

have the same number of methods, or they do not, no consideration is given to the 

difference in the number of methods. This approach is taken because counting the
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Let a be the number of classes in the object model.
Let M be a nXn weighted adjacency matrix whose rows and columns 
represent the classes of the object model.
Define R to be the row vector such that R, is the Ith class of the object 
model.
Define L to be the column vector such that Lj is the j* class of the 
object model.
Let nn(C) represent the number of methods of a class C.
Let sd(C) represent the subroutine of derivation of the methods 
of a class C.

1. Initialize M to the zero matrix.
2. For i = n do
3. Forj = i+I to n do
4. If nm(Ri) = nm(Lj)
5. then M [ij] = M[ij] + 0.2
6. else M [ijl = M[ij] - 0.1.
7. fi
8. id = |sd(R0 intersect sd(Lj)|
9. sim = id /  maxfsdfRJ, sd(Lj))
10. M[i j] = M[i j]  + sim
11. od
12. od

Figure 3.11
Algorithm to Compute Method-Based Similarity

number of methods does not give information as to their functionality. However, 

because objects can not be considered identical without having the same number of 

methods, it is a necessary consideration. Evaluation of the subroutine of derivation 

is used to provide information the functionality of the methods. By considering the 

subroutine of derivation of the methods of a class, it is possible to ascertain a 

similarity relationship between classes. As with attribute-based similarity, the 

method-based similarity measure is not binary, but serves to provide a measurement
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o f the degree of similarity. Additionally, the thresholding concept allows the human 

reverse engineer to determine a desirable degree of similarity 

3.4.3 Combining Threshold Tables

Upon completion of the attribute and method based similarity measures, the 

human reverse engineer then determines the most appropriate use of these methods 

for their particular case. The methodology affords them several options: emphasize 

the attribute-based similarity measure, or emphasize the method-based similarity 

measure. This results in the necessity to synthesize the information contained in the 

separate threshold tables.

To combine the information o f both threshold tables, each table is first 

considered independently and a threshold value is chosen for each table. The result 

is two sets of class clusters, one for attribute-based similarity, AC, and a second for 

method-based similarity, MC. These two clusters are combined to form a single 

cluster, CC. The clustering algorithm is given in Figure 3.12.

This analysis results in the set CC of parent classes. The inheritance

hierarchy is formed by creating a parent class as follows: for every powerset PS in 

CC, create a parent class whose child classes are the elements o f the powerset. The 

abstraction of the inheritance hierarchy is the last step in the methodology to extract 

the object model. The final phase of the process involves the representation o f the 

object model.
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1. Let U be the universe o f all classes in the object model.
2. Let FINISHED be a set that is initially empty
3. For each element e in U
4. if e is a singleton in AC, and e is a singleton in MC then
5. e is a singleton in CC
6. add e to FINISHED
7. else
8. for each element f  that is clustered with e in both AC and MC do
9. cluster e and fin OC
10. add e and f  to the set FINISHED
11. od
12. endif
13. for each element e in U/FINISHED do
14. if e is a clustered with f  in (AC or MC)

// the reverse engineer choose AC or MC
15. then cluster e and f  in OC
16. else cluster e as a singleton in OC
17. endif
18. od
19. od

Figure 3.12 
Clustering Algorithm

3.5 Representation of the Object Model

The representation of the object model marks the final phase in the 

methodology. The extracted object-oriented design is represented in two types of 

diagrams and several supporting documents. The two categories of diagrams are 

the hierarchy diagrams and the interaction diagrams. The hierarchy diagrams 

represent the static elements of the design and include such documents as the object
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templates, class templates, and the object/class mapping diagram. The interaction 

diagrams describe the dynamic elements of the design and include such documents 

as the method invocation diagram and the state interrogation diagram.

3.5.1 The Hierarchy Diagrams

The first type of diagrams is the hierarchy diagrams. The hierarchy diagrams 

represent the inheritance hierarchy. These diagrams depict a data view of the 

system. The hierarchy diagrams consist of a set o f object templates, class templates 

and an object/class mapping diagram.

The object template contains all pertinent information about each object in 

the system. For each object extracted from the system, there is a corresponding 

object template. The object template contains the object name, attribute names and 

types, method interface and subroutines of derivation of the methods. The object 

template is given in Figure 3.13.

ObjectName is

Attributes attributel:typel,... attributenrtypei 

Methods method 1, method2,..., methodj 

SubDerivation subroutine 1, subroutine2,..., subroutinek

Figure 3.13 
Object Template

The class templates are similar to the object templates, but represent the 

result of the abstraction of objects into classes. The class template contains the class
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name, parent class(es), attribute names and types, and method interface. The 

object/class mapping diagram is incorporated into the class template and describes 

which objects are clustered to form classes. The class template is given in 

Figure 3.14.

ClassName is {object_namel, object_name2, etc.}

ParentCIass is {ParentClass}

Attributes attributel: ty p e l,.., attributei: typei

Methods method 1, method2,..., methodj

Figure 3.14 
Class Template

3.5.2 The Interaction Diagrams

The interaction diagrams describe class interactions and introduce the 

element of control flow into the object model. There are two considerations in 

forming the interaction diagrams: (a) Call statements in subroutines possibly

perform a computation and pass information back to the calling subroutine. This 

information is possibly used elsewhere in the calling subroutine. This is preserved in 

the object model as a message passed to an object with the corresponding method, 

(b) Messages may need to be passed to an object to interrogate state information. 

These two considerations define under what circumstances messages are passed 

between objects, specifically, method invocation and state interrogation.
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The method invocation diagram is related to subroutine invocation in 

FORTRAN. In FORTRAN, a call statement invokes a subroutine, while, in the 

object model, method A passes a method to methodB. Method A will be determined 

by which subroutine the call statement appears. This is done by the following 

procedure: (1) determine the subroutine of invocation of the call statement, (2) 

determine which objects have a method that was derived from the given subroutine, 

(3) determine the information returned by the call statement, (4) determine which of 

the objects in #2 use the information returned by the call statement. Each of these 

objects is an object that initiates the message, i.e. methodA. MethodB is determined 

as follows: (I) determine which subroutine is invoked by the call statement, (2) 

determine which methods of each object have that subroutine as the subroutine of 

derivation, and (3) each of the corresponding objects will be the object to which the 

message is passed. The method invocation template is given in Figure 3.15.

ClassName
MethodName invokes ClassName.methodnamel

MethodName invokes ClassName. methodnamej

Figure 3.15 
Method Invocation Template

The state interrogation diagram represents which messages are passed 

among the objects to interrogate state information. If objectA references a variable 

which is not an attribute or local variable of objectA, then it is referencing an
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attribute of another object. Therefore, a message must be sent to the object 

containing the variable as an attribute. Each method of every object must be 

evaluated. Because there are no global variables in the object model as were in 

FORTRAN, each reference to a COMMON variable will translate to a state 

interrogation method. The state interrogation template is given in Figure 3.16.

ClassName

MethodNamen interrogates ClassNamei.attributej 

MethodNamem interrogates ClassNamek.attributez

Figure 3.16 
State Interrogation Template

This collection of diagrams comprises the representation o f the object model 

as extracted from the source code. These diagrams represent both static and 

dynamic properties of the system. The diagrams are object-oriented and represent 

the system at a higher level of abstraction than the original source code. This 

representation facilitates the modification of the system’s properties at a  higher level 

of abstraction in an effort to reduce future maintenance costs. Moreover, because 

this is a system design, there are no restrictions placed on the choice of an 

implementation language.

3.6 Validation and Evaluation of FORM

Software quality is a multifaceted concept that can be described from 

different perspectives. Five perspectives, as in [Kite 96] are the transcendental 

view, user view, manufacturing view, product view, and value-based view. The
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definition of software quality is based upon the perspective taken. However, these 

views do not address the design phase of the software lifecycle. Moreover, the 

issues pertinent to forward engineering do not necessarily parallel those pertinent to 

reverse engineering. In the forward engineering process, a design is developed 

based upon a requirements specification which details user expectations and needs. 

Thus, we expect and require that the design meets the requirements specification, 

thereby meeting user needs. The quality of a forward engineered design can be 

discussed in several contexts, such as how well the design represents the 

requirements specification, or how the design evaluates using a given set of metrics, 

as in [Li 95], In reverse engineering, however, this is not the case.

The reverse engineering process begins with source code that has 

undergone extensive maintenance and no longer satisfies the user needs. Rather 

than continue to nurse an antiquated system, the decision is made to extract the 

functionality of the system and utilize new technologies while making the required 

changes at a higher level of abstraction, thereby improving overall system quality, 

decreasing future maintenance costs, and satisfying current user needs. Hence, to 

measure the quality of a reverse engineered design in terms o f current user needs is 

not reasonable. The reverse engineered design necessarily does not satisfy user 

needs. That was the primary motivation for reverse engineering the system. 

Therefore, when evaluating the quality of a reverse engineered design, one cannot 

simply rely on traditional methods.
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There are numerous research efforts which present methodologies to extract 

an object-oriented design from imperative code [Liu 90; Liva 92; Lano 93; Ong 93; 

Subr 96]. Little discussion, however, is given to the issues involved in evaluating 

the quality of an object-oriented design extracted from an imperative language 

because the issues surrounding reverse-engineered designs differ from those 

involved in evaluating a forward-engineered design.

3.6.1 Traditional View of Software Quality

To discuss the quality of a software design, whether forward or reverse 

engineered, the concept o f software quality must be defined. As stated in [Kite 96], 

the definition o f software quality is based on the perspective taken — 

transcendental, user, manufacturing, product, and value-based. The transcendental 

view sees quality as an unattainable goal because it can be recognized, but never 

completely defined. The user view is a very personal and concrete view of how the 

product meets the user’s needs. The manufacturing view focuses on whether or not 

the right product was produced, i.e. it is based on “document what you do and do 

what you say.” The product view considers the inherent characteristics of the 

product. The value-based view measures quality by what the user is willing to pay 

for. Based on the perspective taken, a single product’s quality measure may 

evaluate very differently. This is the underlying issue of the anomalous results 

caused by using forward engineering metrics to measure quality in a reverse 

engineered design.
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The traditional discussion of a “good” design takes the product view. A 

“good” design is classified as having the following characteristics: modifiability, 

modularity, levels of abstraction, loose coupling, high cohesion. Moreover, a good 

design should support understanding and automation. [Pfle 91, Jone 90] Because, 

“there is no definitive way of establishing what is meant by a “good” design,” (e.g., 

allowing efficient code to be produced, a minimal design whose implementation is 

maximally compact, or a design that has maximal maintainability) no single metric 

will suffice, hence, a suite of metrics for measuring the quality of object-oriented 

designs must be considered. [Somm 89, Chid 94]

The following metrics, discussed fully in [Li 95] and [Chid 94], were 

developed to measure the quality of object-oriented designs because metrics related 

to procedural systems are unable to characterize the concepts of inheritance, classes 

and message passing (the core concepts of the object-oriented paradigm): depth of 

the inheritance tree, number of children, response for a class, and lack of cohesion in 

methods [Li 95, Chid 94], Each of these metrics is discussed individually, 

explaining any anomalous values that result in the context of reverse engineering.

Two metrics are related to the inheritance hierarchy, and, therefore, the 

scope o f properties: depth of inheritance and number o f children. The depth of the 

inheritance tree (DIT) for a class is the length of the maximum path from the root 

node to the class node. It defines the depth of the class in the inheritance tree. 

Therefore, a derived (sub)class has a DIT value equal to the DIT of its parent class 

+- 1. The DIT represents the tradeoff between reusability through inheritance and
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simplicity of system understanding. The number o f children (NOC) of a class is the 

number o f immediate descendants of a class. These metrics are collected from a 

reverse-engineered object-oriented design in the same manner as they are collected 

from a forward-engineered design. During the reverse engineering process, the 

criteria used for the formation of the inheritance hierarchy may predetermine the 

depth o f the inheritance tree. Unless some threshold value is determined such that 

the abstraction of the inheritance hierarchy continues until the threshold is reached, 

the maximum DIT will be determined before the process ever begins. Therefore, the 

maximum scope of properties of a class is dependent on the methodology. [Li 95, 

Chid 94]

The response for a class (RFC) is defined as the number o f methods that can 

be invoked in response to a message that is sent to an object of the class. This 

includes not only methods within the class, but also external methods. Because 

objects communicate using message passing, the RFC uses the methods as a 

measure o f communication and, therefore, an indication of the effort required to 

test and debug an object. In the context of reverse engineering, one factor that will 

greatly inflate the value of RFC is the use of global variables. Excessive use of 

global variables will result in increased message passing and method invocation, 

thereby inflating the RFC. [Li 95, Chid 94]

The lack o f cohesion in methods (LCOM) is the number of disjoint sets of 

local methods. The local methods are grouped into sets such that in each set, 

methods in the set share an instance variable with at least one other member of the
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set. Hence, a highly cohesive class will have many methods that share instance 

variables and therefore, a low LCOM value. This promotes encapsulation, and 

reduces complexity. [Li 95, Chid 94] In the context of reverse engineering, the 

classes will necessarily have a high degree of cohesion based on the methodology 

used for object extraction. The methodology defined in [Ache 94] and [Ache 95] 

results in classes that are highly cohesive by extracting the objects based on the 

cohesive strength of the parameters.

The four metrics described above were designed to evaluate a forward- 

engineered object-oriented design. They quantitatively measure the quality of the 

design based on coupling (DIT, NOC), cohesion (LCOM), abstraction (DIT, NOC), 

modifiability (RFC, LCOM), and modularity (DIT, NOC). Each o f these metrics 

measures the quality of the design based on the product view. Because the design is 

forward engineered, these criteria can be used to drive the development and, 

therefore provide a reasonable yardstick to measure the resulting design. In the 

context of reverse engineering, however, the constraints set forth by the source code 

may make it unreasonable to expect to achieve the same design quality when 

measured by these forward-engineering metrics. For this particular reason, an 

alternative view is recommended for the evaluation of the quality of reverse 

engineered designs.

3.6.2 Software Quality — Reverse Engineering Perspective

Because reverse engineering does not involve making modifications to the 

extracted design, the designs that are reverse engineered from legacy systems will
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necessarily evaluate less than optimally using current metrics. However, when 

reengineering activities begin, (i.e., the reverse-engineered design is forward 

engineered to meet the new system requirements), the extracted design will be 

modified to improve the overall quality as per the product view. Thus, evaluating 

the reverse-engineered design requires that a different perspective be adopted.

Based on the definition of reverse engineering, the goal of the reverse 

engineering process is to extract the design of the system under evaluation. This 

means that the view most appropriate to evaluating the quality of the extracted 

design is the manufacturing view. Therefore, the extracted design is to be evaluated 

using the manufacturing view and the reengineered design is to be evaluated using 

the product view. By evaluating the extracted design using the manufacturing view, 

the reverse-engineer can be certain that qualities such as functional equivalence are 

maintained while giving less attention to such qualities as cohesion and coupling. 

Likewise, once the reverse-engineered design is reengineered to meet the new 

requirements o f the system, the design is then evaluated using the product view, 

thereby focusing attention on measuring such qualities as coupling and cohesion 

which become vital considerations.

To evaluate the system under the manufacturing view, two criteria are 

presented: statement coverage and functional equivalence. Although neither of 

these are new metrics, the consideration in the context of reverse engineering is 

novel.
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Let SI be the source code of the legacy system to be reverse-engineered, 

and let D1 be the reverse-engineered design. Then, the statement coverage of the 

D1 is equal to the number o f statements of SI mapped into methods of Dl, divided 

by the total number of statements o f S1.

The statement coverage value is a direct computation. It provides insight 

into functional equivalence and may also aid in the detection of dead code. If the 

statement coverage is not 100%, it implies one of two cases: (i) some of the

system’s functionality may not be preserved or (ii) the statements not extracted 

represent dead code. In either case, it provides the reverse engineer with valuable 

information that wili assist the reengineering process. Case (i) implies that the 

reverse engineering process itself must be reconsidered whereas case (ii) represents 

the detection of dead code. It is not the case, however, that 100% statement 

coverage implies functional equivalence, and vice versa. Therefore, both 

measurements are necessary.

Consider two software systems S1 and S2, where S1 is the legacy system to 

be reengineered and S2 is the implementation of the reverse-engineered design of 

SI. The design of S2 is said to be functionally equivalent to SI if and only if when 

SI and S2 are rim on the same input, the resultant outputs are identical. This 

concept of functional equivalence is most important. It answers the question “did 

we extract the right design.” There is a disadvantage, however, associated with the 

determination of functional equivalence. To make the determination of functional 

equivalence requires that the reverse engineered design be implemented, thereby
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providing the opportunity for errors in the translation from design to code. Hence, a 

functionally equivalent design that is incorrectly translated may appear functionally 

unequivalent, and vice versa. Until developments are made towards guaranteeing 

100% correctness in design implementation, this measurement will be dependent on 

the skill of the programmer that implements the design.

Two case studies were performed on FORTRAN systems. System A 

evaluated to 100% statement coverage with functional equivalence. System B 

evaluated to 94% statement coverage, as a result of dead code, with functional 

equivalence.

3.7 Summary and Concluding Remarks

The FORTRAN Object Recovery Methodology (FORM) is a three phase 

methodology that extracts an object-oriented design from imperative code. Because 

FORTRAN is chosen as the source language, special considerations were required, 

thereby resulting in the development of an extensive pre-processing phase. The pre

processing phase includes alias resolution and determining placeholder values 

resulting from the use of the COMMON block.

The phases of the methodology include object extraction, class abstraction 

and abstraction of the inheritance hierarchy (Figure 3.4). Algorithms are given for 

each phase. The representation of the resulting object-oriented design required the 

development of a series of diagrams to adequately express the features unique to 

reverse-engineered designs.
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The evaluation of reverse-engineered designs require considerations unique 

from those of forward-engineered designs.. Because the original system was 

reverse-engineered for a variety o f reasons, including no longer satisfying user needs 

it is not reasonable to measure the quality o f such designs using metrics formulated 

for forward-engineered designs which, necessarily, satisfy user needs. Therefore, 

the evaluation and validation of FORM required the development o f a new set of 

metrics. The metrics used to evaluate the resulting design include statement 

coverage and functional equivalence. These metrics evaluate the system under the 

manufacturing view. They are not new metrics, however, their use in this context is 

novel. The evaluation resulting from the use o f these metrics ensure the validity of 

the extracted design.
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Chapter 4 

Case Studies

The research detailed in the dissertation develops a methodology that utilizes 

the concepts of reverse engineering to extract an object-oriented design from 

imperative code. This chapter will offer a step-by step demonstration of the 

methodology by performing two case studies. The case studies were chosen for 

several reasons. Firstly, because the majority of scientific and engineering software 

systems currently in use are coded in imperative languages, specifically, 

FORTRAN-77, this language was chosen for the source code. Secondly, because 

the COMMON block in FORTRAN requires such great attention, examples were 

chosen to demonstrate both the complexity involved by extensive use of the 

COMMON block as well as the methodology’s performance.

The first case study is a statistics program to compute the standard deviation 

of two sets of numbers. The second is a program based on graph theory. Both are 

written in FORTRAN.

4.1 Statistics Case Study

The program used in this case study is a statistics program written in 

FORTRAN. It is small in size (less than 500 lines of code), and reads two data sets 

of integers from a file, stores them in arrays and computes the standard deviation of 

each data set. The program makes extensive use of subprogramming but does not 

include any COMMON variables.

74
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Using the algorithm for paramater analysis in Figure 3.6, we have:

P = STATISTICS /* the source program */

n = 5 /* the number of subroutine calls */

m = 6 /* the number of distince actual parameters */

The next step is to form the sets CALL1 - CALL5 and the sets V and E.

CALL1 - CALL5 correspond to the sets of actual parameters o f each subroutine

call. The sets V and E represent the distinct actual parameters and fimciton

resultants. The corresponding sets are as follows:

CALL1 = {m, expa, n, expb,}
CALL2 = {expa, m, stda}
CALL3 = {expa, m, stda, expb, n, stdb}
CALL5 = { }
V = {m, expa, n,expb, stda, stdb} E = {}2

Continuing with the algorithm, construct the weighted adjacency matrix, M. 

The resulting matrix is shown in Figure 4.1.

k L 2 3 4 5 6

j m expa n expb stda stdb
L m 0 0.6 0.2 0.2 0.3 -0.1
2 expa 0 0 0.2 0.2 0.3 - 0.1

3 n 0 0 0 0.6 -0.1 0.3
4 expb 0 0 0 0 -0.1 0.3
5 stda 0 0 0 0 0 0
6 stdb 0 0 0 0 0 0

Figure 4.1 
Weighted Adjacency Matrix, M
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Once the weighted adjacency matrix M has been formed, the next step in 

attribute extraction is the generation of the threshold table. A threshold table is 

generated for M using the transitive closure algorithm on each non-negative value of 

M. The resulting threshold table is shown in Figure 4.2.

Given the threshold table for program P, we must select a desirable threshold to 

complete the attribute analysis. This is done by the human reverse engineer. In 

selecting a threshold level, the goal is to find the largest data sets with the strongest 

cohesion, thereby minimizing the number of singleton data sets. Using this heuristic, 

a threshold value of 0.2 is selected from the threshold table. Selecting a threshold of 

0.2 results in two objects. Object 1 has the attribute set {m, expa, stda}. Object 2 

has the attribute set {n, expb, stdb}. Using the method extraction algorithms, object 

1 has 3 methods and object 2 has 3 methods. The resulting objects templates are 

given in Figure 4.2 and Figure 4.3.

Threshold Values
>0

> 0.2

>0.3
> 0.6

Data Sets
{m, n, expa, expb, stda, stdb}

(m, expa, stda} {□. expb, stdb}
{m, expa} {n, expb} {stda} {stdb} 

{m} {n} {stda} {stdb} {expa} {expb}

Figure 4.2 
Threshold Table for Matrix M
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Objectl is

Attributes
expa; array[14] of integer 
m ; integer 
stda ; real

Methods 
Method 1

begin
Read (5,10, end = 15) m, (expa(i),i=l. 14)

end
Method2

begin
tot = 0.0 
sum = 0.0 
DO 60 i = I, m 

tot = tot + expa©
60 continue

mean = tot / m 
DO 70 j = 1, m 

ind(j) = mean - exp(j) 
sum = sum + ind(j) **2 

70 continue
stda = sqrt(sum/(m-l))

end

Method3
begin

write(6, 80) 'Experiment A ’Measurements ’, ((expa(i),i=l, m) 
80 format I* excluded */

write (3,90) ’Standard Deviation ’, stda 
90 format /* excluded */

return
end

SubDerivation Input, Std, Print

Figure 4.3 
Extracted Object Templates: Object 1
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Object2 is
Attributes

expb ■ array[14J of integer 
n : integer
stdb : real

Methods
Methodl
begin

Read (5.10, end = 15) n. (expb(i),i=i. 14)
end

Method2
begin

tot = 0.0 
sum = 0.0 
DO 60 i = I, n 
tot = tot + expb(i)

60 continue
mean = tot /  n 
DO 70 j = I, n 

ind(j) = mean - exp(j) 
stun = sum + ind(j) **2 

70 continue
stdb = sqrt(sum/(m-l))

end

Method3
begin

write(6, 80) 'Experiment A'Measurements', ((expb(i),i= I, n) 
80 format /* excluded */

write (3,90) 'Standard Deviation stdb 
90 format /*  excluded */

return
end

Figure 4.4 
Extracted Object Templates: Object 2

Hence, two objects were extracted, each with three attributes and three 

methods. Next, we abstract the inheritance hierarchy using the two techniques of 

attribute-based similarity and method-based similarity. Using attribute-based
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similarity, the following statistics are generated: maximum number of attributes is 3, 

number of identical types is 3, and percentage of similarity of attributes is 100%. 

Using method-based similarity, the following statistics are generated: maximum 

number of methods is 3, number of identical subroutines of derivation is 3, and 

percentage similarity of methods is 100%. Based on the similarity measures, we 

can see that object 1 and object 2 are identical objects and are, therefore, combined 

to form a class. The resulting class template follows in Figure 4.5.

A deeper analysis of the result reveals a statement coverage of 100% and 

functional equivalence. That is to say, all o f  the statements of the source code were 

extracted into the object model. Moreover, functional equivalence was determined 

by implementing the extracted design in C++ and comparing the outputs. Because 

the outputs were identical, functional equivalence was extablished. No method 

invocation templates or state interrogation templates were necessary as the example 

doesn’t make use of the COMMOM block.

Thus, the case study demonstrates the methodology’s capability to extract an 

object-oriented design that maintains the functionality of the source code. The 

simplicity of the extracted desgin reflects that of the source code. The two 

extracted objects were identified as identical and mapped into a single class. This 

case study was well defined and well documented. Therefore, the resulting design 

was easily evaluated for functional equivalance and statement coverage. The next 

case study involves a much more complex system with poor documentation.
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Class 1 is {object 1, object2}

ParentClass is {}

Attributes

a 1: array [ 14] of integer

a2: integer

a3: real

Methods

Method 1 
begin

read (a2)
end

Method2:
begin

tot = 0.0 
sum = 0.0 
DO 60 i =  1, a2 
tot = tot + al(i)

60 continue
mean = tot /  a2 
DO 70 j = I, a2 

ind(j) = mean - exp(j) 
sum = sum + ind(j) **2 

70 continue
a3 = sqrt(sum / (a2 - 1))

end

Method3
begin

write 'Experim entM easurem ents(al(j), j=l,a2) 
write' Standard D eviationa3

end

Figure 4.5 
Extracted Class Templates
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4.2 Graph Case Study

The program used in this case study is a medium-sized (500 - 3000 lines of 

code) FORTRAN program. It is a graph reduction program that makes extensive 

use of subprograms and the COMMON block. Extensive use of subprogramming 

required the need for resolving aliases using local variable resolution. Local variable 

resolution using the algorithm given in Figure 3.2 resulted in the 31 distinct actual 

parameters given in Figure 4.6.

main.pnum initial, num

reduce, arc reduce, node

vertex, node 1 vertex, num

wye.num wye.arc(i)

wye.db wye.dc

wye.wc delta, num

delta, da delta, db

delta, wb delta, wc

initial.i reduce, face

loop.facel loop.num

series.num parallel.num

wye.k wye. da

wye.wa wye.wb

delta, arc(i) delta, k

delta.dc delta, wa

loop.num 1

Figure 4.6 
Distinct Actual Parameters

Using the algorithm in Figure 3.6, a weighted adjacency matrix was formed 

and the threshold table in Figure 4.7 was formed.
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Threshold Value
>= 0

> =  0.1

>= 0.3

> =  0.6

> =  1.2

Data Sets
{main.pnum, 101001.00111, ioitial.i. reduce.face, reduce.arc, 
reduce.node, loop.facel, loop.num, loop.numl, vertex.nodel, 
vertex.num, series.num, parallel.num, wye.num, wye.arc(i), wye.k, 
wye.da wye.db, wye.dc, wye.wa wye.wb, wye.wc, deltanum, 
delta.arc(i), deltak, delta.da, deltadb, delta.dc, delta wa delta.wb, 
deltawc}
{main.pnum}{vertex.nodel,vertex.num} {loop.facel, loop.numl, 
loop.num} {reduce.arc, reduce.node, reduce.face, series.num, 
parallel.num}{wye.k, wye.da, wye.db, wye.dc, wye.wa. wye.wb, 
wye. wc} {deltak, delta, da, delta, db. delta, dc, delta.wa, delta.wb. 
delta.wc} {initial-i, initial.num}{wye.num}{deltanum} {wye.arc(i)} 
(delta arc(i)}
{main.pnum}{vertex.nodel,vertex.num} {loop.facel{{loop.numl}{ 
loop.num} {reduce.arc, reduce.node}{reduce.face} {series.num} 
{parallel.num} {wye.k, wye.da wye.db, wye.dc, wye.wa, wye.wb, 
wye.wc} {deltak, delta da, delta db, deltadc, delta, wa delta wb, 
deltawc} {ioitial.i, initial.num}{wye.num}{deltanum} {wye.arc(i)} 
{delta arc(i)}
{main.pnum}{vertex, node 1 }{vertex.num}
{loop.fhcel {{loop.numl}{ loop.num}
{reduce.arc}{reduce.node}{reduce.face} {series.num} 
{parallel.num}{wye.k, wye.da wye.db, wye.dc, wye.wa wye.wb, 
wye.wc}{deltak, delta da delta db, deltadc, delta wa delta wb, 
deltawc} {ioitial.i, initial.num}{wye.num}{deltanum} {wye.arc(i)} 
{deltaarcfi)}
{main.pnum}{vertex.nodel }{vertex.num}
{loop.facel{{loop.numl} { loop.num}
{reduce.arc}{reduce.node}{reduce.face} {series.num} 
{parallel.num}{wye.k, wye.da wye.db, wye.dc, wye.wa wye.wb, 
wye.wc}{deltak, delta da delta db, deltadc, delta wa delta wb, 
deltawc} {ioitial.i} {initial.num}{wye.num}{deitanum} 
{wye.arc(i){ {deltaarc(i)>
{main.pnum}{vertex.nodel }{vertex.num}
{loop.facel {{loop.numl} { loop.num}
{reduce.arc}{reduce.node}{reduce.face} {series.num} 
{parallel.num}{wye.k, wye.da wye.db, wye.dc}{wye.wa}{wye.wb} 
{wye.wc}{deltak, delta da deltadb, deltadc} 
{deltawa}{deltawb}{deltawc} {initial.i} 
{initial.num}{wye.num}{deltanum} {wye.arc(i)} {deltaarc(i)}

Figure 4.7 
Threshold Table For Actual Parameters
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Using the heuristics described for selecting a desirable threshold level, a threshold 

value of 0.3 is selected. Selecting a threshold of 0.3 we get 16 data sets, 

corresponding to 16 objects. Several of the corresponding object templates are 

given in the following Figure 4.8 with the complete set given in Appendix Al. The 

objects shown in Figure 4.8 represent varying complexity: from Object 1, with one 

simple method to Object 10 with multiple, more complicated methods.

Object 1 is
Attributes

main.pnum : real

Methods

Method 1 
begin

READ(*,*) PNUM
end

SubDerivation {Main}

Object8 is
Attributes

series.num : integer

Methods

Method 1 
begin

IF (FNODE(EDGE 1) .EQ. NODE) THEN 
EDGE2 = FLEDGE(EDGE 1)
IF (FNODE(EDGE2) EQ. NODE) THEN 

FLEDGE(EDGE 1) = BREDGE(EDGE2) 
ELSE

Figure 4.8 
Extracted Object Templates
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FLEDGE(EDGE 1) = FLEDGE(EDGE2)
END IF

NUM = FLEDGE(EDGE I)
IF (FREDGE(NUM) EQ. EDGE2) THEN 

FREDGE(NUM) = EDGE1 
ENDEF

NUM = FREDGE(EDGE I)
ELSE

EDGE2 = BLEDGE(EDGE 1)
IF (FNODE(EDGE2) EQ. NODE) THEN 

BREDGE(EDGE 1) = BREDGE(EDGE2) 
BLEDGE(EDGE I) = BLEDGE(EDGE2)

ELSE
BREDGE(EDGE 1) = FLEDGE(EDGE2) 
BLEDGE(EDGE I) = FREDGE(EDGE2)

END IF
NUM = BREDGE(EDGE I)
IF (BLEDGE(NUM) .EQ. EDGE2) THEN 

BLEDGE(NUM) = EDGE1 
END IF
NUM = BLEDGE(EDGE 1)

NUM = RFACE(EDGE1)
IF (NUM .EQ. LFACE(EDGE 1)) THEN 
ELSE

NUM = LF ACE(EDGE I)
END IF

SubDerivation {Series}

Object 10 is
Attributes

wye.k, wye.da, wye.db, wye.dc, wye.wa, wye.wb, wye.wc : real

Methods

Method 1 
begin

ARC(l) = EDGE
IF (BNODE(EDGE) .EQ. NODE) THEN 

ARC(2) = BREDGE(EDGE)
ARC(3) = BLEDGE(EDGE)

(flgure continued)
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ELSE
ARC(2) = FLEDGE(EDGE)
ARC(3) = FREDGE(EDGE)

END IF
DO 110 J =  1,10

D A = 1 -POS(ARC(l),J)
DB = 1- POS(ARC(2),J)
DC = I- POS(ARC(3),J)
RHO = DA*DB*DC - (DA+DB+DC) + 1 
IF (RHO .GT. 0 ) THEN 

K =  1.0 
ELSE 

K— 0.0 
END IF
POS(ARC(l),J) = 1-WC 
POS(ARC(2),J) = l-WA 
POS(ARC(3),J) = 1-WB 
DA = 1-NEG(ARC(l),J)
DB = 1- NEG(ARC(2),J)
DC = I- NEG(ARC(3),J)
RHO = DA*DB*DC - (DA+DB+DC) + 1 
IF (RHO .GT. 0 ) THEN 

K =  0.0  
ELSE 

K= 1.0
END IF 

DA = 1- POINT (ARC( 1), J)
DB = 1- POINT(ARC(2),J)
DC = 1- POINT (ARC(3 ), J)
K = 0.5
POINT (ARC( 1), J) = 1-WC 
POINT(ARC(2),J) □= l-WA 
POINT (ARC(3), J) = 1-WB 

110 CONTINUE

Method2
begin

IF ( K .EQ. 0 ) THEN
A1 = DA + DB*DC - DA*DB*DC

(figure continued)
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B 1 = DB + DA*DC - DA*DB*DC 
Cl = DC + DB*DA- DA*DB*DC 
WA = DSQRT(B 1 *C 1/A1)
WB = DSQRT(A1 *C 1/B1)
WC = DSQRT(BI*A1/C1)

ENDLF
IF (DABS(WA-WB) .LE. 0.00001) THEN 
ELSE

WC = (1 -DC)*(DB-D A)/(W A-WB)
END IF

end

SubDerivation {Wye, Transform}

Object 16 is
Attributes

delta.arc(i) : integer

Methods
Method 1 

begin
ARC(l) = EDGE

IF (RFACE(EDGE) .EQ. FACE) THEN 
ARC(2) = FREDGE(EDGE)
ARC(3) = BREDGE(EDGE)

ELSE
ARC(2) = BLEDGE(EDGE)
ARC(3) = FLEDGE(EDGE)

END IF

end

SubDerivation {Delta}

The next step involves performing analysis on the COMMON variables. 

Using the algorithm given in Figure 3.8, a weighted adjacency matrix is generated, 

and a thresold table is formed. The partial threshold table is shown in Figure 4.9. 

Upon observation of the table, it becomes apparent that as the threshold value
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Threshold
>0

> 0.1

> 0.2

>0.3

> 0.4

>0.5

> 1.7

> 1.8

Data Sets
{fhode, bnode. Iface. rface, dnode, dface. label, fledge, fredge, bredge. bledge, nn. 
na, nf. sore, sink I, flag, facnum, nodnum, arcnum, pcs, ncg, point, stprob, upprob, 
loprob, errpos. errneg, nterm. terml, term2, term3, term4, above, below, incdnt, 
topdel. topwye. topser. toppar, topvert, toploop} {sink2} {oface}
{fhode, bnode, Iface, rface, dnode, dface, label, fledge, fledge, bredge, bledge, nn. 
na, nf. sore, sinkl, flag, facnum, nodnum, arcnum, pos, neg, point, stprob, upprob, 
loprob, errpos, ermeg, nterm, terml, term2, term3, term4, above, below, incdnt, 
topdel, topwye, topser, toppar, topvert, toploop} {sink2} {oface}
{fhode, bnode, Iface, rface, dnode, dface, label, fledge, fredge, bredge, bledge, nn, 
na. nf sore, sinkl. flag, arcnum, pos, neg, point, errpos, ermeg, terml, term2. 
term3, term4. above, below, incdnt, topdel, topwye, topser, toppar, topvert, 
toploop} {stprob, upprob, loprob} {sink2} {oface} {facnum} {nodnum} {nterm}
{fhode, bnode. Iface, rface, dnode, dface, label, fledge, fledge, bredge, bledge, nn, 
na, nf flag, arcnum, pos, neg, point, errpos, ermeg, incdnt} {topdel, topwye, 
topser, toppar, topvert, toploop} {stprob, upprob, loprob} {terml, term2, term3, 
term4} {above, below} {sink2} {oface} {facnum} {nodnum} {nterm} {sore} 
{sinkl}
{fhode, bnode, Iface, rface, dnode, dface, label, fledge, fledge, bredge, bledge, nn, 
na. nf flag, pos, neg, point, incdnt} {errpos, ermeg} {topdel, topwye, topser, 
toppar, topvert, toploop} {stprob, upprob, loprob} {terml} {term2} {term3} 
{term4} {above} {below} {sink2} {oface} {facnum} {nodnum} {nterm} {sore} 
{sinkl} {arcnum}
{fhode, bnode, Iface, rface, dnode, dface, label, fledge, fledge, bredge, bledge, nn, 
na, nf flag, pos, neg, point, incdnt} {errpos, ermeg} {topdel, topser, toppar, 
topvert, toploop} {stprob, upprob, loprob} {terml} {term2} {term3} {term4} 
{above} {below} {sink2} {oface} {facnum} {nodnum} {nterm} {sore} {sinkl} 
{arcnum} {topwye}
{bnode} {rface, dnode} {dface} {incdnt} {label} {fledge} {fledge} {bredge} 
{bledge} {pos} {neg} {point}{errpos} {ermeg} {topdel} {topser} {toppar} 
{topvert} {toploop} {stprob} {upprob} {loprob} {terml} {term2} {term3}
{term4} {above} {below} {sink2} {oface} {facnum} {nodnum} {nterm} {sore} 
{sinkl} {arcnum} {topwye} {nf} {nn} {na} {Iface} {fhode} {flag}
{bnode} {rface} {dnode} {dface} {incdnt} {label} {fledge} {fledge} {bredge} 
{bledge} {pos} {neg} {point}{errpos} {ermeg} {topdel} {topser} {toppar} 
{topvert} {toploop} {stprob} {upprob} {loprob} {terml} {term2} {term3}
{term4} {above} {below} {sink2} {oface} {facnum} {nodnum} {nterm} {sore} 
{sinkl} {arcnum} {topwye} {nf} {nn} {na} {Iface} {fhode} {flag}

Figure 4.9
Threshold Table For COMMON Variables
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increases, so does the number of singleton sets. Thus, after the 0.5 threshold level, 

the number of singleton sets becomes undesirable, and only continues to increase. 

Therefore, using the heuristics outlined for selecting a threshold value, 0.3 is 

selected. Thus, global variable analysis results in the extraction of 12 objects at the 

0.3 threshold level. The complete set of corresponding object templates are given in 

Appendix A2, with a representative subset following in Figure 4.10. The objects in 

Figure 4.10 were chosen to represent varying degrees of complexity. Object 17, the 

more complex object, has nine methods while Object21 has a single method and 

Object 23 has no methods, and serves to detect dead code.

Object 17 is
Attributes fnode, bnode, lface, rface, dnode, dface, label : integer

fledge, fredge, bredge, bledge, nn, na, nf flag, incdnt: integer 
pos, neg, point, errpos, ermeg : real

Methods

Method 1 
begin

IF (BNODE(EDGE) EQ. NODE) THEN 
NODE1 = FNODE(EDGE)
NUM = FLEDGE(EDGE)
IF(FREDGE(NUM).EQ. EDGE) THEN 

FREDGE(NUM) = FREDGE (EDGE)
ELSE

BLEDGE(NUM) = FREDGE(EDGE)
END IF
NUM = FREDGE(EDGE)
EF(FLEDGE(NUM).EQ. EDGE) THEN 

FLEDGE(NUM) = FLEDGE(EDGE)

Figure 4.10 
Extracted Object Templates
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ELSE
BREDGE(NUM) = FLEDGE(EDGE) 

END IF 
ELSE

N0DE1 =BNODE(EDGE)
NUM =BLEDGE(EDGE) 
IF(BREDGE(NUM).EQ. EDGE) THEN 

BREDGE(NUM) = BREDGE(EDGE) 
ELSE

FLEDGE(NUM) = BREDGE(EDGE) 
END IF

NUM = BREDGE(EDGE) 
EF(BLEDGE(NUM).EQ. EDGE) THEN 

BLEDGE(NUM) = BLEDGE(EDGE) 
ELSE

FREDGE(NUM) = BLEDGE(EDGE) 
END IF 

END IF
DNODE(NODE I )= DNODE(NODEl)-l
DFACE(NUM1) = DFACE(NUMl)-2
DNODE(NODE) = 0
LABEL(EDGE) = 0
NN=NN-1
NA=NA-I

end

Method2
begin

IF (RFACE(EDGE) .EQ. FACE) THEN
IF(BLEDGE(NUM).EQ. EDGE) THEN 

BLEDGE(NUM) = BLEDGE(EDGE)
ELSE

FREDGE(NUM) = BLEDGE(EDGE)
END IF
NUM = BLEDGE(EDGE)
IF(FLEDGE(NUM).EQ. EDGE) THEN 

FLEDGE(NUM) = FLEDGE(EDGE)
ELSE

BREDGE(NUM) = FLEDGE(EDGE)
END IF

(figure continued)
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ELSE
NUM = BREDGE(EDGE) 
EF(FREDGE(NUM).EQ. EDGE) THEN 

FREDGE(NUM) = FREDGE(EDGE) 
ELSE

BLEDGE(NUM) = FREDGE(EDGE) 
ENDEF
NUM = FREDGE(EDGE) 
EF(BREDGE(NUM).EQ. EDGE) THEN 

BREDGE(NUM) = BREDGE(EDGE) 
ELSE

FLEDGE(NUM) = BREDGE(EDGE) 
END IF 

END IF
DF ACE(F ACE 1 )= DF ACE(F ACE 1)-1 
DN0DE(NUM1) = DNODE(NUMl)-2 
DFACE(FACE) = 0 

LABEL(EDGE) = 0 
NF=NF-1 
NA=NA-1

Method3
begin

ARC(l) = EDGE
IF (BNODE(EDGE) .EQ. NODE) THEN 

ARC(2) = BREDGE(EDGE)
ARC(3) = BLEDGE(EDGE)

ELSE
ARC(2) = FLEDGE(EDGE)
ARC(3) = FREDGE(EDGE)

END IF 
DO 101=1,3

ROT(I) = MOD(I,3) + 1 
IF (BNODE(ARC(I)) EQ. NODE) THEN 

TEMP(1,1) = FNODE(ARC(I))
TEMP(2,I) = RFACE(ARC(I))
TEMP (3,1) = FREDGE(ARC(I))
TEMP(4,1) = FLEDGE(ARC(I))

ELSE

(flgure continued)
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TEMP(1,I) = BNODE(ARC(I))
TEMP(2,I) = LFACE(ARC(I))
TEMP(3,I) = BLEDGE(ARC(I))
TEMP(4,I) = BREDGE(ARC(I))

END IF
TEMP (5,1) = LABEL(ARC(I))

10 CONTINUE 
DO 20 I = 1,3

RFACE(ARC(I)) = NEWFAC 
BNODE(ARC(I)) = TEMP(I,I)
LFACE(ARC(I)) = TEMP(2,I)
FNODE(ARC(I)) = TEMP(l,ROT(I)) 
BLEDGE(ARC(I)) = TEMP (3,1)
FLEDGE(ARC(I)) = TEMP(4,ROT(I)) 
FREDGE(ARC(I» = ARC(ROT(I» 
BREDGE(ARC(I)) = ARC(ROT(ROT(I))) 

LABEL(ARC(I)) = MIN(TEMP(5,I),TEMP(5,ROT(I))) 
20 CONTINUE

DFACE(NEWFAC) = 3 
DO 25 1= 1,3

NUM = FLEDGE(ARC(I»
IF(LFACE(NUM) EQ. TEMP(2,I)) THEN 

BLEDGE(NUM) = ARC(I)
ELSE

FREDGE(NUM) = ARC(I)
END IF 

25 CONTINUE
DO 301= 1,3 

NUM = LF ACE( ARC(I»
DFACE(NUM) = DFACE(NUM) - 1 

30 CONTINUE
DO 401=1,3

NUM = FNODE(ARC(I))
DNODE(NUM) = DNODE(NUM)+ 1 

40 CONTINUE
DO 110 J=  1,10

DA= 1-POS(ARC(l),J)
DB = 1- POS(ARC(2),J)
DC = 1- POS(ARC(3),J)
POS(ARC(l),J) = 1-WC 
POS(ARC(2),J) = 1-WA

(flgure continued)
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POS(ARC(3),J) = 1-WB 
ERRPOS(J) =

ERRPOS(J)+DABS(WA*WB*WC-DA*DB-DA*DC-DB*DC+2*DA*DB*DC)
D A = 1- NEG(ARC(l),J)
DB = 1- NEG(ARC(2),J)
DC = 1- NEG(ARC(3),J)
NEG(ARC(1),J) = 1-WC 
NEG(ARC(2),J) = 1-WA 
NEG(ARC(3), J) = 1-WB

ERRNEG(J)=ERRNEG(J)+D AB S(WA* WB* WC-D A*DB-D A*DC-DB *DC+2 *D
A*DB*DC)

DA = 1- P0INT(ARC(1),J)
DB = 1- POINT(ARC(2),J)
DC = 1- P0INT(ARC(3),J)
POINT (ARC( 1), J) = 1-WC 
P0INT(ARC(2),J) = 1-WA 
P0INT(ARC(3),J) = 1-WB 

110 CONTINUE
DNODE(NODE) = 0 

NN=NN-1 
NF=NF+1

Method4
begin

ARC(l) = EDGE
IF (RFACE(EDGE) .EQ. FACE) THEN 

ARC(2) = FREDGE(EDGE)
ARC(3) = BREDGE(EDGE)

ELSE
ARC(2) = BLEDGE(EDGE)
ARC(3) = FLEDGE(EDGE)

END IF
DO 101=1,3 

ROT(I) = MOD(I,3) + 1 
IF (RFACE(ARC(I)) EQ. FACE) THEN 

TEMP(1,1) = FNODE(ARC(I))
TEMP(2,I) = LFACE(ARC(I))
TEMP(3,I) = FLEDGE(ARC(I))
TEMP(4,I) = BLEDGE(ARC(I))

(figure continued)
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ELSE
TEMP(1,1) = BNODE(ARC(I))
TEMP (2,1) = RFACE(ARC(I))
TEMPO,I) = BREDGE(ARC(I))
TEMP(4,I) = FREDGE(ARC(I))

END IF
TEMP(5,I) = LABEL(ARC(I))

DO 20 I = 1,3
BNODE(ARC(I)) = NEWNOD 
FNODE(ARC(I)) = TEMP (I, I)
LFACE(ARC(I)) = TEMP(2,I)
RFACE(ARC(I» = TEMP(2,ROT(I)) 
FLEDGE(ARC(I» = TEMP(3,I)
FREDGE(ARC(I)) = TEMP(4,ROT(I)) 
BREDGE(ARC(I)) = ARC(ROT(I)) 
BLEDGE(ARC(I» = ARC(ROT(ROT(I))) 

LABEL(ARCQ)) = MIN(TEMP(5,I),TEMP(5,ROT(I)»
20 CONTINUE

DNODE(NEWNOD) = 3 
DO 25 1=1,3

NUM = FREDGE(ARC(I))
EF(FNODE(NUM) .EQ. TEMPO,I)) THEN 

FLEDGE(NUM) = ARC(I)
ELSE

BREDGE(NUM) = ARC(I)
END IF 

25 CONTINUE 
DO 301=1,3 

NUM = RF ACE( ARC(I))
DFACE(NUM) = DF ACE(NUM)+ I 

30 CONTINUE 
DO 401=1,3

NUM = FNODE(ARC(I))
DNODE(NUM) = DNODE(NUM) - I 

40 CONTINUE 
DO 110J=1,10 
DA = POS(ARC(l),J)
DB =  POS(ARC(2),J)
DC =  POS(ARC(3),J)
POS(ARC(l),J) = WC 
POS(ARC(2),J) = WA

(figure continued)
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P0S(ARC(3),J) = WB

ERRP0S(J)=ERRP0S(J)+DABS(WA*WB*WC-DA*DB-DA*DC-DB*DC+2*DA
*DB*DC)

DA = NEG(ARC(1),J)
DB = NEG(ARC(2),J)
DC = NEG(ARC(3),J)
NEG(ARC(1),J) = WC 
NEG(ARC(2),J) = WA 
NEG(ARC(3),J) = WB 

ERRNEG(J)=ERRNEG(J)+DABS(WA*WB*WC-DA*DB-DA*DC-DB*DC+2*D 
A*DB*DC)

DA = P0ENT(ARC(1),J)
DB = POINT(ARC(2),J)
DC = POINT (ARC(3 ), J)

. POINT(ARC(l),J) = WC 
POINT(ARC(2), J) = WA 
POINT(ARC(3),J) = WB 

110 CONTINUE 
DFACE(FACE) = 0 
NF=NF-1 
NN=NN+1

end

Method5
begin

IF (RFACE(EDGE 1) EQ. FACE) THEN 
EDGE2 = FREDGE(EDGE 1)
IF (RFACE(EDGE2) EQ. FACE) THEN 

FREDGE(EDGE I) = BLEDGE(EDGE2) 
BREDGE(EDGE1) = FLEDGE(EDGE2) 
RFACE(EDGEI) = LF ACE(EDGE2)

ELSE
FREDGE(EDGE I) = FREDGE(EDGE2) 
BREDGE(EDGE1) = BREDGE(EDGE2) 
RFACE(EDGEI) = RFACE(EDGE2)

END IF
NUM = FREDGE(EDGEl)
IF(BREDGE(NUM).EQ. EDGE2) THEN 

BREDGE(NUM) = EDGE1

(figure continued)
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ELSE
FLEDGE(NUM) = EDGE 1 

END IF
NUM = BREDGE(EDGE I)
EF(FREDGE(NUM).EQ. EDGE2) THEN 

FREDGE(NUM) = EDGE 1 
ELSE

BLEDGE(NUM) = EDGE1 
ENDIF 

ELSE
EDGE2 = FLEDGE(EDGE I)
IF (RFACE(EDGE2) .EQ. FACE) THEN 

FLEDGE(EDGE 1) = FLEDGE(EDGE2) 
BLEDGE(EDGE 1) = BLEDGE(EDGE2) 
LFACE(EDGE1) = LFACE(EDGE2)

ELSE
FLEDGE(EDGE 1) = BREDGE(EDGE2) 
BLEDGE(EDGE 1) = FREDGE(EDGE2) 
LFACE(EDGEl) = RF ACE(EDGE2)

END IF
NUM = FLEDGE(EDGE I)
BF(BLEDGE(NUM).EQ. EDGE2) THEN 

BLEDGE(NUM) = EDGE1 
ELSE

FREDGE(NUM) = EDGE1 
ENDIF
NUM = BLEDGE(EDGE 1)
IF(FLEDGE(NUM).EQ. EDGE2) THEN 

FLEDGE (NUM) = EDGE1 
ELSE

BREDGE(NUM) = EDGE1 
ENDIF 

ENDIF
L ABEL(EDGE 1) = MIN(L ABEL(EDGE I ),L ABEL(EDGE2)) 

LABEL(EDGE2) = 0 
NUM = FNODE(EDGE 1)
DNODE(NUM) = DNODE(NUM)-l 

1000 IF (RFACE(EDGE2) .EQ.FACE) THEN 
IF(INCDNT(LFACE(EDGE2)) GT. 0)

INCDNT(LFACE(EDGE2)) = EDGE1
ELSE

(figure continued)
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IF(INCDNT(RFACE(EDGE2)) GT. 0)
INCDNT (RF ACE(EDGE2)) = EDGE1 

ENDIF
DF ACE(F ACE)=0 
DO 110 J =  1,10

POS(EDGEl,J)=
POS(EDGE 1, J)+POS(EDGE2, J)-POS(EDGE 1, J)*POS(EDGE2, J) 

POINT(EDGE 1, J)=POINT (EDGE 1, J)+POINT (EDGE2, J)-
POINT(EDGE 1, J)*POINT(EDGE2, J)

NEG(EDGEl,J) =
NEG(EDGE 1, J)+NEG(EDGE2, J)-NEG(EDGE 1, J) *NEG(EDGE2, J)

110 CONTINUE 
NF=NF-1 
NA=NA-1

Method6
begin

DF (FNODE(EDGE 1) EQ. NODE) THEN 
EDGE2 = FLEDGE(EDGE 1)
IF (FNODE(EDGE2) EQ. NODE) THEN 

FLEDGE(EDGE 1) = BREDGE(EDGE2) 
FREDGE(EDGE 1) = BLEDGE(EDGE2) 
FNODE(EDGE 1) = BNODE(EDGE2)

ELSE
FLEDGE(EDGE1) = FLEDGE(EDGE2) 
FREDGE(EDGE 1) = FREDGE(EDGE2) 
FNODE(EDGE 1) = FNODE(EDGE2)

ENDIF
NUM = FLEDGE(EDGE 1)
IF (FREDGE(NUM) EQ. EDGE2) THEN 

FREDGE(NUM) = EDGE1 
ELSE

BLEDGE(NUM) = EDGE1 
ENDIF
NUM = FREDGE(EDGE 1)
IF (FLEDGE(NUM) .EQ. EDGE2) THEN 

FLEDGE(NUM) = EDGE1 
ELSE

BREDGE(NUM) = EDGE1 
ENDIF

(figure continued)
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ELSE
EDGE2 = BLEDGE(EDGE 1)
IF (FNODE(EDGE2) .EQ. NODE) THEN 

BREDGE(EDGE I) = BREDGE(EDGE2) 
BLEDGE(EDGE1) = BLEDGE(EDGE2) 
BNODE(EDGE 1) = BNODE(EDGE2)

ELSE
BREDGE(EDGE 1) = FLEDGE(EDGE2) 
BLEDGE(EDGE 1) = FREDGE(EDGE2) 
BNODE(EDGE 1) = FNODE(EDGE2)

ENDIF
NUM = BREDGE(EDGE 1)
IF (BLEDGE(NUM) EQ. EDGE2) THEN 

BLEDGE(NUM) = EDGE I 
ELSE

FREDGE(NUM) = EDGE1 
ENDIF
NUM = BLEDGE(EDGE I)
IF (BREDGE(NUM) EQ. EDGE2) THEN 

BREDGE(NUM) = EDGE I 
ELSE

FLEDGE(NUM) = EDGE1 
ENDIF 

ENDIF
L ABEL(EDGE 1) = MIN(LABEL(EDGE I ),LABEL(EDGE2)) 

LABEL(EDGE2) = 0 
NUM = RF ACE(EDGE 1)
DFACE(NUM) = DFACE(NUM)-I 

1000 IF (BNODE(EDGE2) EQ.NODE) THEN 
IF(INCDNT(FNODE(EDGE2)) GT. 0)

INCDNT (FNODE(EDGE2» = EDGE1 
ELSE

EF(INCDNT(BNODE(EDGE2)) GT. 0)
INCDNT (BNODE(EDGE2)) = EDGE1 

ENDIF
DNODE(NODE) = 0 
DO 110 J= 1,10

POS(EDGEl,J) = POS(EDGEl,J)*POS(EDGE2,J) 
NEG(EDGE1,J) = NEG(EDGE1,J)*NEG(EDGE2,J) 

POINT(EDGE 1, J) = POINT (EDGE 1, J) *POENT (EDGE2, J)
110 CONTINUE

(figure continued)
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NN=NN-1
NA=NA-1

end

Method7
begin

READ(4,*) NN, NA NF 
DO 15 J=l, NA 

READ(4,*) I,BNODE(I),FNODE(I),LFACE(I),RFACE(I) 
READ(4, *) BREDGE(I),BLEDGE(I),FLEDGE©,FREDGE(I) 

ARCNUM(J) = I
15 CONTINUE 

DO 16 J=1,NN
READ(4,*) I, DNODE(I)
NODNUM(J) = I

16 CONTINUE 
DO 17 K= l,NF

READ(4,*) I, DFACE(I)
FACNUM(K) = I

17 CONTINUE 
READ(*,*) PNUM 
DO 110 J = 1,10

DO 47 I = 1,NA 
POS©J) = PNUM + J*0.02 
NEG(I,J) = PNUM + J*0.02 
POINT(I,J) =PNUM + J*0.02 

47 CONTINUE 
110 CONTINUE 

LABEL(START) = 1 
EBOT = START 
OCURR=ST ART 

1111 IF (BNODE(OCURR) .EQ. SORE) THEN 
SFACE(OCURR) = RFACE(OCURR)
OCURR = BREDGE(OCURR)

ELSE
SF ACE(OCURR) = LFACE(OCURR)
OCURR = FLEDGE(OCURR)

ENDIF
IF (OCURR .NE. START) THEN 

LABEL(OCURR) = 1 
NCOUNT = NCOUNT + I

(figure continued)
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NEXT(EBOT) =OCURR 
EBOT = OCURR 
NEXT(EBOT) = 0 
GOTO 1111 

ENDIF 
137 ESCAN = ETOP

CFACE = SFACE(ESCAN)
WRITE(*,*) 'SCANNING EDGE ESCAN 
ECURR = ESCAN 

122 IF (CFACE .EQ. RFACE(ECURR» THEN 
NUM = FNODE(ECURR)
ECURR = FREDGE(ECURR)

ELSE
NUM = BNODE(ECURR)
ECURR = BLEDGE(ECURR)

ENDIF
. IF (LABEL(ECURR) .EQ. 0) THEN

LABEL(ECURR) = LABEL(ESCAN) + 1 
NCOUNT = NCOUNT + 1 

WRITE(*,*) 'labelling edge #', ECURI^by label', LABEL(ECURR) 
IF (NCOUNT EQ. NA) GOTO 1333 
SNODE(ECURR) = NUM 
IF (OTOP .EQ. 0 ) THEN 

OTOP = ECURR 
ELSE

NEXT(OBOT) = ECURR 
ENDIF
OBOT = ECURR 
NEXT(OBOT) = 0 

ENDIF
IF (LABEL(ECURR) EQ. LABEL(ESCAN)) THEN 

ETOP = NEXT(ETOP)
IF (ETOP .EQ. 0) THEN 

EF(OTOP EQ. 0) THEN 
GOTO 1333 

ELSE 
GOTO 237 

ENDIF 
ENDIF 

GOTO 137 
ENDIF

(figure continued)
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GOTO 122 
237 OSCAN = OTOP

CNODE = SNODE(OSCAN)
OCURR = OSCAN 

222 IF (CNODE .EQ. BNODE(OCURR)) THEN 
NUM = LF ACE(OCURR)
OCURR = BLEDGE(OCURR)

ELSE
NUM-= RFACE(OCURR)
OCURR = FREDGE(OCURR)

ENDIF
IF (LABEL(OCURR) EQ. 0) THEN 

NCOUNT = NCOUNT + 1 
LABEL(OCURR) = LABEL(OSCAN) + I 

WRITE(*,*) 'labelling edge OCURR^y label', LABEL(OCURR) 
IF (NCOUNT EQ. NA) GOTO 1333 
SFACE(OCURR) = NUM 
IF (ETOP EQ. 0 ) THEN 

ETOP = OCURR 
ELSE

NEXT(EBOT) = OCURR 
ENDIF
EBOT = OCURR 
NEXT(EBOT) = 0 

ENDIF
IF (LABEL(OCURR) EQ. LABEL(OSCAN)) THEN 

OTOP = NEXT(OTOP)
NEXT(OSCAN) = 0 

IF (OTOP EQ. 0) THEN 
EF(ETOP EQ. 0) THEN 
GOTO 1333 

ELSE
GOTO 137 

ENDIF 
ENDIF 
GOTO 237 

ENDIF 
GOTO 222

(figure continued)
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Method8
begin

INCDNT(NUM) = 0
ABOVE (BELOW(NUM)) = ABOVE (NUM) 
BELOW(ABOVE(NUM» = BELOW(NUM) 
ABOVE (NUM) = 0 
BELOW(NUM) = 0

Method9
begin

IF (FLAG .EQ. 1) THEN 
FACE = NUM
IF(DFACE(FACE) .EQ. 1) THEN 

IF(TOPLOOP GT. 0) THEN 
ABOVE(TOPLOOP)=FACE 
BELOW(FACE) =TOPLOOP 

ENDIF
TOPLOOP = FACE 
INCDNT(FACE) = ARC 
GOTO 1000 

ENDIF
EF(DFACE(FACE) EQ. 2) THEN 

EF(TOPPAR GT. 0) THEN 
ABOVE(TOPPAR)=FACE 
BELOW(FACE) =TOPPAR 

ENDIF
TOPPAR = FACE 
INCDNT (FACE) = ARC 
GOTO 1000 

ENDIF
EDGE1= ARC
IF (RFACE(EDGE 1) EQ. FACE) THEN 

EDGE2 = FREDGE(EDGE 1)
EDGE3 = BREDGE(EDGE 1)

ELSE
EDGE2 = BLEDGE(EDGE 1)
EDGE3 = FLEDGE(EDGE1)

ENDIF
NCHECK = MIN(LABEL(EDGE1),LABEL(EDGE2),LABEL(EDGE3))

(figure continued)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



102

NSUM =LABEL(£DGE 1)+LABEL(EDGE2)+L ABEL(EDGE3)
IF (NSUM .EQ. (3 *NCHECK+2)) THEN 

INCDNT (FACE) = EDGE1 
IF (TOPDEL .GT. 0) THEN 

ABOVE(TOPDEL)=FACE 
BELOW(FACE) =TOPDEL 

ENDIF
TOPDEL = FACE 

ENDEF 
GOTO 1000 

ENDIF
NODE = NUM
IF(NODE EQ. SORE) GOTO 1000 
IF(NODE EQ. TERM1) GOTO 1000 
DF(NODE EQ. TERM2) GOTO 1000 
IF(NODE EQ. TERM3) GOTO 1000 
IF(NODE EQ. TERM4 ) GOTO 1000 
IF (DNODE(NODE) .EQ. 0) GOTO 1000 
IF(DNODE(NODE) EQ. 1) THEN 

IF(TOPVERT GT. 0) THEN 
ABOVE(TOPVERT)=NODE 
BELOW(NODE) =TOPVERT 

ENDIF
TOPVERT = NODE 
INCDNT(NODE) = ARC 
GOTO 1000 

ENDIF
EF(DNODE(NODE) .EQ. 2) THEN 

EF(TOPSER GT. 0) THEN 
ABOVE(TOPSER)=NODE 
BELOW(NODE) =TOPSER 

ENDIF
TOPSER = NODE 
INCDNT(NODE) = ARC 
GOTO 1000 

ENDIF 
EDGE1= ARC
IF (BNODE(EDGE 1) EQ. NODE) THEN 

EDGE2 = BREDGE(EDGE 1)
EDGE3 = BLEDGE(EDGE 1)

ELSE

(figure continued)
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EDGE2 = FLEDGE(EDGE 1)
EDGE3 =FREDGE(EDGE1)

END IF
NCHECK = MIN(LABEL(EDGE1),LABEL(EDGE2),LABEL(EDGE3)) 
NSUM =LABEL(EDGE I )+LABEL(EDGE2)+L ABEL(EDGE3 )

IF (NSUM .EQ. (3 *NCHECK+2)) THEN 
INCDNT(NODE) = EDGE I 

IF (TOPWYE .GT. 0) THEN 
ABOVE(TOPWYE)=NODE 
BELOW(NODE) =TOPWYE 

ENDIF
TOPWYE = NODE 

ENDIF

SubDerivation {vertex, loop, wye, delta, parallel, series,remove, positive, main}

Object21 is
Attributes

above, below : integer

Methods

Method 1 
begin

EF(DFACE(FACE) .EQ. 1) THEN 
IF(TOPLOOP .GT. 0) THEN 

ABOVE(TOPLOOP)=FACE 
BELOW(FACE) =TOPLOOP 

ENDIF
ENDIF
IF(DFACE(FACE) EQ. 2) THEN 

IF(TOPPAR .GT. 0) THEN 
ABOVE(TOPPAR)=FACE 
BELOW(FACE) =TOPPAR 

ENDIF
ENDIF
IF (NSUM .EQ. (3 *NCHECK+2)) THEN 

IF (TOPDEL .GT. 0) THEN 
ABOVE(TOPDEL)=FACE 
BELOW(FACE) =TOPDEL

(figure continued)
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ENDIF
ENDIF
NODE = NUM

IF(DNODE(NODE) EQ. I) THEN 
EF(TOPVERT GT. 0) THEN 

ABOVE(TOPVERT)=NODE 
BELOW(NODE) =TOPVERT 

ENDIF 
ENDIF
EF(DNODE(NODE) EQ. 2) THEN 

IF(TOPSER .GT. 0) THEN 
ABOVE(TOPSER)=NODE 
BELOW(NODE) =TOPSER 

ENDIF 
ENDIF
IF (NSUM .EQ. (3*NCHECK+2)> THEN 

. IF (TOPWYE .GT. 0) THEN 
ABOVE(TOPWYE)=NODE 
BELOW(NODE) =TOPWYE 

ENDIF 
ENDIF

end

SubDerivation {positive}

Object23 is
Attributes

oface : integer 
Methods

SubDerivation {}

Because object 22 and object 23 have no methods, a more in depth analysis is 

performed. These objects were determined to contain attributes that correspond to 

variables in the source code which are never used. That is, the attributes of object 

22 and object 23 are never defined or referenced in the source code. Thus, the
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declaration of these variables in the source code is unnecessary. It is in this manner 

that "dead code" can be detected during object extraction.

At this point, the object extraction process is completed. A total of 28 

objects were extracted from the source code. Upon reviewing the extracted objects, 

two cases of dead code were detected. These two objects are then dropped from 

further consideration. Thus, class abstraction and instantiation of the inheritance 

hierarchy are performed on the remaining 26 objects. At this point, we begin class 

abstraction and inheritance hierarchy instantiation using the similarity technique. 

Similarity is measured in two distinct areas: attributes and methods. Then, the

results are compiled and a class hierarchy is reported.

Attribute-based similarity is computed for the actual parameters using the

algorithm given in Figure 3.10. The results are given in Figure 4.11.

Threshold Value Clusters

>= 0.0 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)

>= 0.2 (1, 10, 11) (2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16)

> = 0.4 (1, 10, 11) (2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16)

>= 0.6 (1) (10, 11) (2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16)

>= 0.7 (1) (10, 11) (2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16)

>=0.9 (1) (2, 6, 12) (10, 11) (3, 4, 5, 7, 8, 9, 13, 14, 15, 16)

Figure 4.11
Attribute-Based Similarity of Actual Parameters
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Next, method based similarity is computed using the algorithm in Figure 3.11. The 

results are shown in Figure 4.12.

Threshold value Clusters

>= 0.0 (1, 2, 3, 4, 5, 6, 7, 8. 9. 10, II, 12, 13, 14. 15, 16)

>= 0.2 (1) (2) (3.4,5) (6, 7) (8) (9) (12)

(10, 11, 13, 14, 15. 16)

** >= 0.4 (1) (2) (3,4,5) (6, 7) (8) (9) (10, II) (12)

( 13, 15) (14, 16)

>= 0.7 (I) (2) (3.4.5) (6, 7) (8) (9) (10) (11) (12)

( 13, 15) (14, 16)

Figure 4.12
Method-Based Similarity of Actual Parameters

The results of the attribute-based similarity analysis and the method-based 

similarity analysis are used in the algorithm given in Figure 3.12 to generate clusters. 

Using either attribute clustering or method clustering techniques, two distinct sets of 

clusters are obtained from which the human reverse engineer selects to give the 

inheritance model. The clusters formed using attribute clustering are {(1) (2, 6, 12) 

(3, 4, 5) (7, 8, 9) (10, 11) (13, 15) (14, 16)}. The clusters formed using method 

clustering are { (1) (2) (3, 4, 5) (6, 7) (8) (9) (10, 11) (12) (13, 15) (14, 16)}. Next 

attribute based similarity analysis is performed for the COMMON variables. The 

results are given in Figure 4.13.
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Threshold value Clusters

> 0 (19) (21) (17, 18, 20, 24, 25, 26, 27, 28)

>0.1 (17) (19) (21) (18, 20, 24, 25, 26, 27, 28)

** > 0.2 (17) (19) (21) (18, 20) (24, 25, 26, 27, 28)

>0.6 (17)(18) (19)(20) (21) (24, 25) (26, 27, 28)

Figure 4.13
Attribute-Based Similarity of COMMON variables

Next, method-based similarity is computed. The results are given in Figure

4.14.

Threshold value Clusters

> 0 (17, 18, 19, 20, 21, 20, 24, 25, 26, 27, 28)

>0.1 (17, 18, 19, 20, 21, 20, 24, 25, 26, 27, 28)

>0.2 (17) (18, 21) (19, 28) (20, 24, 25, 26, 27)

** > 0.4 (17) (18) (21) (19, 28) (20, 24, 25, 26, 27)

>0.9 (17) (18) (19) (21) (28) (20, 24, 25, 26, 27)

Figure 4.14
Method-Based Similarity of COMMON variables

Using the attribute clustering techniques the following clusters are formed: 

(17) (19) (21) (18, 20) (24, 25) (26, 27,28). Using the method clustering
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techniques, the following clusters are formed: (17) (18) (21) (19, 28) (24, 25) (20, 

26, 27).

Because there are no identical objects, each of the objects extracted is 

abstracted as a class. The clusters obtained from combining threshold tables 

represent the clustering of the classes into the inheritance hierarchy. Either 

attribute-based clustering or method-based clustering is chosen and the 

corresponding clusters are used in the formation of the inheritance hierarchy. So, 

based on the clusters formed using method-based clustering, a parent class, say PI, 

is formed from classes 19 and 28. Likewise, P2 is formed from classes 24 and 25, 

and P3 is formed from classes 20, 26 and 27. Similarly for the clusters formed using 

attribute-based clustering.

After class abstraction is performed, the human reverse-engineer is given the 

option of attribute-based clustering or method-based clustering for the instantiation 

of the inheritance hierarchy. Choosing the attribute-based clustering for both 

parameter and global variable analysis results in the following inheritance hierarchy: 

(I) (2,6,12) (3,4,5) (7,8,9) (10,11) (13,15) (14,16) (17) (19) (21) (18, 20) (24, 25) 

(26, 27, 28). This means that classes (1) (17) (19) have no parent class. However, 

a parent class is abstracted for classes (2) (6) (12), namely, (2, 6, 12). Likewise, 

seven other parent classes are abstracted: (7, 8, 9) (10, 11) (13, 15) (14, 16) (18, 

20) (24, 25) (26, 27, 28). A representative selection of the corresponding class 

templates follow in Figure 4.15. Classes were chosen to represent those that are 

formed of single objects (Class 1 and Class2), as well as multiple objects
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(Class2-6-12). Similarly, classes were chosen that have no parent class (Classl, 

Classl7, and Class2-6-12) as well as that have a parent class (Class2). Additionally, 

the classes were chosen which represent varying numbers of attributes and methods.

Classl is {object 1}

ParentClass {}

Attributes
main.pnum : real

Methods

Method 1 
begin

READ(*,*) PNUM
end

Class2 is {object2}
ParentClass is {Class2-6-12}

Attributes
vertex, node 1, vertex, num : integer 

Methods

Method 1 
begin

EF (BNODE(EDGE) EQ. NODE) THEN 
NODE1 = FNODE(EDGE)

NUM = FLEDGE(EDGE) 
IF(FREDGE(NUM).EQ. EDGE) THEN 

FREDGE(NUM) = FREDGE(EDGE) 
ENDIF
NUM = FREDGE(EDGE) 
IF(FLEDGE(NUM).EQ. EDGE) THEN 

FLEDGE(NUM) = FLEDGE(EDGE)

Figure 4. IS 
Class Templates
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ENDIF
ELSE

NODE1 = BNODE(EDGE)
NUM =BLEDGE(EDGE)
IF(BREDGE(NUM).EQ. EDGE) THEN 

BREDGE(NUM) = BREDGE(EDGE)
ENDIF

NUM = BREDGE(EDGE)
ENDIF

end

CIass2-6-12 is {object2, object6, object 12}
ParentClass is {}

Attributes
vertex.nodel, vertex, num : integer 
reduce.arc, reduce.node : integer 
initial.i, initial.num : integer

Methods

*** see object templates for object2, object6 and object 12 ***

Classl7 is {objectl7}

ParentClass {}

Attributes
fnode, bnode, Iface, rface, dnode, dface, label : integer 
fledge, fredge, bredge, bledge, nn, na, n£ flag, incdnt: integer 
pos, neg, point, errpos, ermeg : real

Methods

*** see objectl7 object template ***
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The state interrogation templates represent which messages are passed 

among objects to interrogate state information. If an class references an attribute 

which is not an attribute or local variable of the class, then it is interrogating another 

class. Each method of every class is evaluated. The state interrogation templates 

are given in Figure 4.16.

A deeper analysis of the design indicates a statement coverage of 97% and 

displays the methodology’s ability to detect dead code. Hence, the extraction 

process is complete and the object-oriented design and related design documents 

have been extracted from the FORTRAN source code.

Thus, the methodology is demonstrated successful for a system of moderate 

complexity. As expected, the objects and classes in this case study were more 

complex than those o f the statistics case study. This is due to the increased

Class L7
Method9 interrogates CIassl8.toppar 
Method9 interrogates ClassI8.topser 
Method9 interrogates ClassL8.topvert 
Method9 interrogates CLassL8.toploop

Classl 8
Method L interrogates Class2L.below 
Method2 interrogates Class L7.dface 
Method2 interrogates Classl7.dnode

Classl9
Methodl interrogates ClassL7.pos 
Methodl interrogates ClassL7.neg 
Methodl interrogates Classl7.point 
Method! interrogates Class 17.pos

Figure 4.16 
State Interrogation Templates
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Method3 interrogates Classl7.neg 
Method3 interrogates Classl7.point

Class20
Method2 interrogates Class27.sore

Class2l
Methodl interrogates Classl7.dface 
Methodl interrogates Classl7.dnode 
Methodl interrogates Classl8.topdel 
Methodl interrogates CIassl8.toppar 
Methodl interrogates Classl8.topser 
Methodl interrogates Classl8.topwye 
Methodl interrogates Classl8.toploop

Class24
Methodl interrogates Class 17.nf

Class25
Methodl interrogates Classl7.nn

Class28
Methodl interrogates Classl7.bnode 
Methodl interrogates CIassl7.finode

complexity in the original system itselfj which the diagrams resulting from the 

methodology mirror accurately. One major factor in this complexity is the extensive 

use of COMMON variables. Their influence can be clearly seen in the state 

interrogation templates which tell when a class must interrogate the state of another 

class. This type of message passing is greatly increased by the use of COMMON 

variables in the original system. Additionally, the methodology was able to detect 

dead code in the system. Due to the magnitude of the original system, and the lack 

o f documentation, there is a high probability that the dead code would have 

continued to go undetected under routine maintenance. Finally, the class hierarchy
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is also demonstrative of the complexity of the system. In a system of little or no 

complexity, there would have been fewer classes with a small or no hierarchy.

4.3 Summary

The two case studies in this chapter demonstrate varying degrees of 

difficulty. The statistics case study demonstrates the accuracy of the methodology 

for small systems. In addition to the validation o f the extracted design using the 

metrics o f statement coverage and functional equivalence, evaluation of the 

extracted design indicates that it exhibits the qualities expected. The graph case 

study demonstrates the scaleability of the methodology. This system is more 

complex because of increased lines of code and extensive use of global variables in 

the form o f the COMMON block. Again, the results of the methodology are as 

expected. The extracted design includes a more sophisticated inheritance hierarchy. 

The extensive use of COMMON variables results in the necessity for numerous state 

interrogations, which is portrayed in the state interrogation diagrams. Thus, through 

the case studies, we have demonstrated that the methodology successfully extracts 

an object-oriented design from systems of varying complexity.
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Chapter 5

Conclusions and Future Research

The goal of this research was to study the issues related to migrating legacy 

systems coded in imperative languages to the object-oriented paradigm and to 

develop reverse-engineering techniques to facilitate the migration. Section 5.1 

summarizes the contributions resulting from this work. Section 5.2 describes future 

work.

5.1 Contributions

FORM facilitates the extraction of an object-oriented design from imperative 

FORTRAN code using graph theory combined with a data-driven approach. The 

contributions of the work include:

• The simultaneous paradigm shift and design extraction facilitates the migration 

of legacy systems to updated technologies, specifically the object-oriented 

paradigm.

• The extraction of a design from legacy code allows necessary maintenance to be 

performed at a higher level of abstraction, specifically the design level, thereby 

reducing current and future maintenance costs.

• System functionalities which are otherwise lost due to incomplete or inaccurate 

documentation are recovered.
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• Issues related to the necessity of the development o f software metrics 

specifically for reverse engineering are identified.

Thus, the research results in a comprehensive methodology, the development 

of which identified several open problems in the area o f reverse engineering. 

Throughout the development of FORM are various contributions to the area of 

reverse engineering including the following:

• The construction of new algorithms, including algorithms to resolve 

actual parameter aliasing, determine placeholders in the COMMON 

block of FORTRAN, resolve the COMMON block o f FORTRAN, 

extract attributes from formal parameters and global variables, extract 

methods for candidate objects, and form class clusters to abstract an 

inheritance hierarchy.

• The formulation and proof of lemmas which determine the class 

cardinality in the object model and the method cardinality for each class.

These contributions will now be related to the various phases of the 

methodology. The preprocessing phase, which prepares the code for extraction, 

required the development of algorithms to resolve the aliases in the actual 

parameters and the COMMON block.

The first phase of the methodology, Object Extraction, uses a data-driven 

approach to define candidate objects in the imperative code. This required the 

development and definition of such concepts as weighted adjacency matrix and
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thresholding. Additionally, modifications to the traditional program slicing were 

required to facilitate the definition of methods of the candidate objects.

Phase two, Class Abstraction, uses the concept o f identical objects to 

facilitate the forming of classes from the candidate objects. The classes are 

partitioned into equivalence classes which are mapped into unique classes in the 

object model. This results in Lemma 3.1 which describes the relationship among the 

cardinality of the set of classes in the object model, the set o f object equivalence 

classes, and the set of objects. To complete phase two, the methods are extracted. 

This is done by first determining the number of methods contained in a class and 

then instantiating the methods. This results in the development of Lemma 3.2 which 

describes the relationship between the number of methods o f a class in the object 

model and a class in the object equivalence class. The corresponding lemmas are 

stated and proved.

Phase three, Abstraction of the Inheritance Hierarchy, defines the concept of 

similarity analysis of object classes and uses this analysis to develop a class 

clustering technique. The definition of these techniques involved the development 

of algorithms to calculate both attribute-based similarity and method-based 

similarity.

Thus, the research has resulted in the development of a methodology to 

extract object-oriented designs from imperative legacy systems, with specific 

attention given to FORTRAN. The benefits of using the methodology include: the 

ability to capture system functionality which may not be apparent due to poor
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system structure, and the reduction of future maintenance costs of the system as a 

direct effect o f accurate system documentation and updated programming 

techniques.

5.2 Future Research

The research described in this dissertation has numerous potential future 

directions. At this point several research opportunities exist:

• The next phase in the reverse-engineering process involves the abstraction of the 

object-oriented design into a formal specification. This phase requires the 

investigation of the current formal specification languages for the object- 

oriented paradigm and possible extension of such languages.

• The development of techniques to translate the design into an object-oriented 

implementation would be a valuable extension.

• The research could be further extended by formulating an adaptation of the 

methodology to other imperative languages (such as COBOL) or to other 

paradigms.

• The development of metrics to measure features specifically related to reverse- 

engineered systems is a possible area of research.

• Related to the research of reverse-engineered system metrics is that of 

refinement. With a suite of metrics defined for a reverse-engineered design, the 

area of refinement of a design with respect to the metrics is envisioned as future 

research.
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Appendix A1 
Object Templates for Actual Parameters

Object 1 is
Attributes

main.pnum : real

Methods

Method 1 
begin

REA D (V ) PNUM
end

SubDerivation {Main}

0bject2 is
Attributes

vertex.node 1, vertex.num : integer

Methods

Method 1 
begin

IF (BNODE(EDGE) .EQ. NODE) THEN 
NODE1 =  FNODE(EDGE)

NUM =  FLEDGE(EDGE) 
IF(FREDGE(NUM). EQ. EDGE) THEN 

FREDGE(NUM) =  FREDGE(EDGE) 
ENDBF
NUM =  FREDGE(EDGE) 
IF(FLEDGE(NUM).EQ. EDGE) THEN 

FLEDGE(NUM) =  FLEDGE(EDGE) 
ENDIF

ELSE
NODE1 =  BNODE(EDGE)
NUM =BLEDGE(EDGE) 
IF(BREDGE(NUM).EQ. EDGE) THEN 

BREDGE(NUM) =  BREDGE(EDGE) 
ENDIF

123
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NUM =  BREDGE(EDGE)
ENDIF 

SubDerivation {Vertex}

0bject3 is
Attributes

loop.face 1 : integer

Methods

Method I 
begin

IF (RFACE(EDGE) .EQ. FACE) THEN 
FACE I =  LFACE(EDGE)

ELSE
FACE I =  RFACE(EDGE) 

ENDIF
end

SubDerivation {Loop}

Object4 is
Attributes

loop, num 1 : integer

Methods

Method I 
begin

NUM1= BNODE(EDGE)
end

SubDerivation {Loop}

Object5 is
Attributes

loop, num : integer

Methods
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Method 1 
begin

IF (RFACE(EDGE) .EQ. FACE) THEN 
NUM =  FLEDGE(EDGE) 
IF(BLEDGE(NUM).EQ. EDGE) THEN 

BLEDGE(NUM) =  BLEDGE(EDGE) 
ENDIF

NUM =  BLEDGE(EDGE)
ELSE

NUM =  BREDGE(EDGE) 
IF(FREDGE(NUM).EQ. EDGE) THEN 

FREDGE(NUM) =  FREDGE(EDGE) 
ENDIF
NUM =  FREDGE(EDGE)

ENDIF
end

SubDerivation {Loop}

0bject6 is
Attributes

reduce.arc, reduce.node : integer

Methods

Method 1 
begin

10 IF (TOPLOOP .GT. 0) THEN 
ARC =  INCDNT (TOPLOOP)
GOTO 10 

ENDIF
IF (TOPVERT .GT. 0) THEN 

NODE =  TOPVERT 
ARC =  INCDNT (TOPVERT)
GOTO 10 

ENDIF
IF (TOPSER .GT. 0) THEN 

NODE =  TOPSER 
ARC =  INCDNT(TOPSER)

GOTO 10 
ENDIF

20 IF (TOPPAR .GT. 0) THEN
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ARC =  INCDNT(TOPPAR) 
GOTO 10 

ENDIF
30 IF (TOPWYE .GT. 0) THEN 

NODE =  TOPWYE 
ARC =  INCDNT(TOPWYE) 
GOTO 10 

ENDIF
40 IF (TOPDEL .GT. 0) THEN 

ARC =  INCDNT(TOPDEL) 
GOTO 10 

ENDIF
end

SubDerivation {Reduce}

Object7 is
Attributes

reduce, face : integer

Methods

Method 1 
begin

10 IF (TOPLOOP .GT. 0) THEN 
FACE =  TOPLOOP 
GOTO 10 

ENDIF
20 IF (TOPPAR .GT. 0) THEN 

FACE =  TOPPAR 
GOTO 10 

ENDIF
40 IF (TOPDEL .GT. 0) THEN 

FACE =  TOPDEL 
GOTO 10 

ENDIF
end

SubDerivation {Reduce}

Object8 is
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Attributes
series.num : integer

Methods

Method 1 
begin

IF (FNODE(EDGE 1) .EQ. NODE) THEN 
EDGE2 =  FLEDGE(EDGE 1)
IF (FNODE(EDGE2) .EQ. NODE) THEN 

FLEDGE(EDGEl) =  BREDGE(EDGE2) 
ELSE

FLEDGE(EDGEl) =  FLEDGE(EDGE2) 
ENDIF

NUM =  FLEDGE(EDGE1)
IF (FREDGE(NUM) .EQ. EDGE2) THEN 

FREDGE(NUM) =  EDGE1 
ENDIF

NUM =  FREDGE(EDGEl)
ELSE

EDGE2 =  BLEDGE(EDGE 1)
IF (FNODE(EDGE2) .EQ. NODE) THEN 

BREDGE(EDGE1) =  BREDGE(EDGE2) 
BLEDGE(EDGEl) =  BLEDGE(EDGE2) 

ELSE
BREDGE(EDGEI) =  FLEDGE(EDGE2) 
BLEDGE(EDGEl) =  FREDGE(EDGE2) 

ENDIF
NUM =  BREDGE(EDGEl)
IF (BLEDGE(NUM) .EQ. EDGE2) THEN 

BLEDGE(NUM) =  EDGE1 
ENDIF
NUM =  BLEDGE(EDGE I)

NUM =  RFACE(EDGE1)
IF (NUM .EQ. LFACE(EDGE1)) THEN 
ELSE

NUM =  LFACE(EDGEl)
ENDIF

SubDerivation {Series}

Object9 is
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Attributes
parallel.num : integer

Methods

Method 1 
begin

IF (RFACE(EDGE1) .EQ. FACE) THEN 
EDGE2 = FREDGE(EDGEl)
IF (RFACE(EDGE2) .EQ. FACE) THEN 

FREDGE(EDGE1) =  BLEDGE(EDGE2) 
BREDGE(EDGE1) =  FLEDGE(EDGE2) 

ELSE
FREDGE(EDGE1) =  FREDGE(EDGE2) 
BREDGE(EDGE1) =  BREDGE(EDGE2) 

ENDIF
NUM = FREDGE(EDGEl) 
IF(BREDGE(NUM).EQ. EDGE2) THEN 

BREDGE(NUM) =  EDGE1 
ENDIF
NUM = BREDGE(EDGEl)

ELSE
EDGE2 =  FLEDGE(EDGE 1)
IF (RFACE(EDGE2) .EQ. FACE) THEN 

FLEDGE(EDGEl) =  FLEDGE(EDGE2) 
BLEDGE(EDGEl) =  BLEDGE(EDGE2) 

ELSE
FLEDGE(EDGEl) =  BREDGE(EDGE2) 
BLEDGE(EDGEl) =  FREDGE(EDGE2) 

ENDIF
NUM = FLEDGE(EDGE 1) 
IF(BLEDGE(NUM).EQ. EDGE2) THEN 

BLEDGE(NUM) =  EDGE I 
ENDIF
NUM = BLEDGE(EDGE I)

ENDIF
NUM =  FN0DE(EDGE1)
IF (NUM .EQ. BNODE(EDGEl)) THEN 
ELSE

NUM = BNODE(EDGEl)
ENDIF
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SubDerivation {Parallell}

Object 10 is
Attributes

wye.k, wye.da, wye.db, wye.dc, wye.wa, wye.wb, wye.wc : real 

Methods

Method 1 
begin

ARC(l) =  EDGE
IF (BNODE(EDGE) .EQ. NODE) THEN 

ARC(2) =  BREDGE(EDGE)
ARC(3) =  BLEDGE(EDGE)

ELSE
ARC(2) =  FLEDGE(EDGE)
ARC(3) =  FREDGE(EDGE)

ENDIF
DO 110 J =  1,10

DA =  1- POS(ARC(l),J)
DB =  1- POS(ARC(2),J)
DC =  1- POS(ARC(3),J)
RHO =  DA*DB*DC - (DA+DB+DC) +  I 
IF (RHO .GT. 0 ) THEN 

K =  1.0 
ELSE 

K= 0.0 
ENDIF
POS(ARC(l),J) =  l-WC 
POS(ARC(2),J) =  1-WA 
POS(ARC(3),J) =  1-WB 
DA =  1- NEG(ARC(1),J)
DB =  1- NEG(ARC(2),J)
DC =  1- NEG(ARC(3),J)
RHO =  DA*DB*DC - (DA+DB+DC) +  I 
IF (RHO .GT. 0 ) THEN 

K =  0.0 
ELSE 

K= 1.0 
ENDIF 

DA =  1- POINT(ARC(1),J)
DB =  1- POINT(ARC(2),J)
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DC =  1- POINT(ARC(3),J)
K =  0.5
POINT(ARC(l),J) =  1-WC 
POINT(ARC(2),J) 1-WA 
POINT (ARC(3), J) =  1-WB 

110 CONTINUE
end

Method2
begin

IF ( K .EQ. 0 ) THEN
A1 =  DA +  DB*DC - DA*DB*DC 
B1 =  DB +  DA*DC - DA*DB*DC 
C l =  DC +  DB*DA - DA*DB*DC 
WA =  DSQRT(B1*C1/A1)
WB =  DSQRT(A1*C1/B1)
WC = DSQRT(B1*A1/C1)

ENDIF
IF (DABS(WA-WB) .LE. 0.00001) THEN
ELSE

WC = (1-DC)*(DB-DA)/(WA-WB)
ENDIF

end

SubDerivation {Wye, Transform}

Object 11 is
Attributes

delta.k, delta.da, delta.db, delta.dc, delta.wa, delta.wb, delta.wc: real 

Methods

Method 1 
begin

IF ( K .EQ. 0 ) THEN
A1 =  DA +  DB*DC - DA*DB*DC 
B1 =  DB +  DA*DC - DA*DB*DC 
C l =  DC +  DB*DA - DA*DB*DC 
WA =  DSQRT(B1*CI/A1)
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WB = DSQRT(AI*C1/B1)
WC =  DSQRT(B1*A1/C1)

ENDIF
IF (DABS(WA-WB) .LE. 0.00001) THEN 
ELSE

WC = (1 -DC) *(DB-D A)/(W A-WB)
ENDIF

Method2
begin

ARC(l) =  EDGE
IF (RFACE(EDGE) .EQ. FACE) THEN 

ARC(2) =  FREDGE(EDGE)
ARC(3) =  BREDGE(EDGE)

ELSE
ARC(2) =  BLEDGE(EDGE)
ARC(3) =  FLEDGE(EDGE)

ENDIF 
DO 110 J =1,10

DA =  POS(ARC(l),J)
DB =  POS(ARC(2),J)
DC =  POS(ARC(3),J)
RHO =  DA*DB*DC - (DA+DB+DC) +  1 
IF (RHO .GT. 0 ) THEN 

K =  0.0 
ELSE 

K = 1.0 
ENDIF

POS(ARC(l),J) =  WC 
POS(ARC(2),J) =  WA 
POS(ARC(3),J) =  WB 
DA =  NEG(ARC(1),J)
DB =  NEG(ARC(2),J)
DC =  NEG(ARC(3),J)
RHO =  DA*DB*DC - (DA+DB+DC) +  1 
IF (RHO .GT. 0 ) THEN 

K =  1.0 
ELSE 

K = 0.0 
ENDIF
NEG(ARC(1),J) =  WC 
NEG(ARC(2),J) =  WA
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NEG(ARC(3),J) =  WB 
DA =  P0INT(ARC(1),J)
DB = POINT (ARC(2), J)
DC = POINT(ARC(3),J^
K =  0.5
POINT(ARC(I),J) =  WC 
POINT(ARC(2),J) = WA 
POINT(ARC(3),J) = WB 

110 CONTINUE
end

SubDerivation {Transform, Delta}

Objectl2 is
Attributes

initial, i, initial.num : integer

Methods

Method 1 
begin

DO 10 J=  1,NA
I = ARCNUM(J)
NUM =  BNODE(I)
IF (INCDNT(NUM) .NE. 0) GOTO 20 

20 NUM =  FNODE(I)
IF (INCDNT(NUM) .NE. 0) GOTO 30 

30 NUM =  LFACE(I)
IF (INCDNT(NUM) .NE. 0) GOTO 40 

40 NUM =  RFACEd)
10 CONTINUE

end

SubDerivation {Initial}

Objectl3 is
Attributes

wye. num : integer

Methods

Method 1
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begin
ARC(l) =  EDGE

IF (BNODEOEDGE) .EQ. NODE) THEN 
ARC(2) = BREDGE(EDGE)
ARC(3) = BLEDGE(EDGE)

ELSE
ARC(2) = FLEDGE(EDGE)
ARC(3) = FREDGE(EDGE)

ENDIF 
DO 10 I =  1,3

ROT(I) =  MOD(I,3) +  1 
IF (BNODE(ARC(I)) .EQ. NODE) THEN 

TEMP(1,I) =  FNODE(ARC(I)) 
TEMP(2,I) =  RFACE(ARC(I)) 
TEMP(3,I) =  FREDGE(ARC(I)) 
TEMP(4,I) =  FLEDGE(ARC(I)) 

ELSE
TEMP(1,I) =  BNODE(ARC(I)) 
TEMP(2,Q =  LFACE(ARC(I)) 
TEMP(3,I) =  BLEDGE(ARC(I)) 
TEMP(4,I) =  BREDGE(ARC(I)) 

ENDIF
TEMP(5,Q =  LABEL(ARC(I))

10 CONTINUE 
DO 20 I = 1,3

LFACE(ARC(I)) =  TEMP(2,I) 
FNODE(ARC(I)) =  TEMP(l,ROT(I)) 

FLEDGE(ARC(I)) =  TEMP(4,ROT(I))
20 CONTINUE

DO 30 I = 1,3
NUM = LFACE(ARC(I))

30 CONTINUE 
DO 401 = 1,3

NUM = FNODE(ARC(I))
40 CONTINUE

SubDerivation {Wye}

Object 14
Attributes

delta, num : integer
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Methods

Method 1 
begin

ARC(l) =  EDGE
IF (RFACE(EDGE) .EQ. FACE) THEN 

ARC(2) =  FREDGE(EDGE)
ARC(3) =  BREDGE(EDGE)

ELSE
ARC(2) =  BLEDGE(EDGE)
ARC(3) =  FLEDGE(EDGE)

ENDIF
DO 10 I =  1,3

IF (RFACE(ARC(D) .EQ. FACE) THEN 
TEMP( 1,1) =  FNODE(ARC(D) 
TEMP(2,I) =  LFACE(ARC(I)) 
TEMP(3,I) =  FLEDGE(ARC(I)) 
TEMP(4,I) =  BLEDGE(ARC(I)) 

ELSE
TEMP(1,I) =  BNODE(ARCO)) 
TEMP(2,I) =  RFACE(ARC(I)) 
TEMP(3,D =  BREDGE(ARC(I)) 
TEMP(4,I) =  FREDGE(ARC(I)) 

ENDIF
TEMP(5,I) =  LABEL(ARCa))

10 CONTINUE
DO 20 I =  1,3

FNODE(ARCd)) =  TEMP(1,I) 
RFACE(ARC(I)) =  TEMP(2,ROT(I)) 
FREDGE(ARC(I)) = TEMP(4,ROTd)) 

20 CONTINUE 
DO 25 I =  1,3

NUM =RFACE(ARC(I))
25 CONTINUE

DO 30 I =  1,3 
NUM =  RFACE(ARCd))

30 CONTINUE 
DO 40 I =  1,3

NUM =  FNODE(ARC(I))
40 CONTINUE

end
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SubDerivation {Delta}

Object 15 is
Attributes

wye.arc(i) : integer

Methods

Method 1 
begin

ARC(l) =  EDGE
IF (BNODE(EDGE) .EQ. NODE) THEN 

ARC(2) =  BREDGE(EDGE)
ARC(3) =  BLEDGE(EDGE)

ELSE
ARC(2) =  FLEDGE(EDGE)
ARC(3) =  FREDGE(EDGE)

ENDIF
end

SubDerivation {Wye}

Object 16 is
Attributes

delta, arc(i) : integer

Methods
Method 1 

begin
ARC(l) =  EDGE

IF (RFACE(EDGE) .EQ. FACE) THEN 
ARC(2) =  FREDGE(EDGE)
ARC(3) =  BREDGE(EDGE)

ELSE
ARC(2) =  BLEDGE(EDGE)
ARC(3) =  FLEDGE(EDGE)

ENDIF

end

SubDerivation {Delta}
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Appendix A2 
Object Templates for COMMON Variables

Object 17 is
Attributes fnode, bnode, I face, rface, dnode, dfoce, label : integer

fledge, fredge, bredge, bledge, nn, na, nf, flag, incdnt: integer 
pos, neg, point, errpos, errneg : real

Methods

Method 1 
begin

IF (BNODE(EDGE) .EQ. NODE) THEN 
NODE1 =  FNODE(EDGE)
NUM =  FLEDGE(EDGE)
IF(FREDGE(NUM). EQ. EDGE) THEN 

FREDGE(NUM) =  FREDGE(EDGE)
ELSE

BLEDGE(NUM) =  FREDGE(EDGE)
ENDIF
NUM =  FREDGE(EDGE)
IF(FLEDGE(NUM).EQ. EDGE) THEN 

FLEDGE(NUM) =  FLEDGE(EDGE)
ELSE

BREDGE(NUM) =  FLEDGE(EDGE)
ENDIF

ELSE
NODE1 =  BNODE(EDGE)
NUM =  BLEDGE(EDGE)
IF(BREDGE(NUM).EQ. EDGE) THEN 

BREDGE(NUM) =  BREDGE(EDGE)
ELSE

FLEDGE(NUM) =  BREDGE(EDGE)
ENDIF

NUM =  BREDGE(EDGE)
IF(BLEDGE(NUM). EQ. EDGE) THEN 

BLEDGE(NUM) =  BLEDGE(EDGE)
ELSE

FREDGE(NUM) =  BLEDGE(EDGE)
ENDIF

136
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ENDIF
DNODE(NODEl)= DNODE(NODEl)-!
DFACE(NUMl) = DFACE(NUMl)-2
DNODE(NODE) =  0
LABEL(EDGE) = 0
NN=NN-1
NA=NA-1

Method2
begin

IF (RFACE(EDGE) .EQ. FACE) THEN
IF(BLEDGE(NUM).EQ. EDGE) THEN 

BLEDGE(NUM) =  BLEDGE(EDGE) 
ELSE

FREDGE(NUM) =  BLEDGE(EDGE) 
ENDIF
NUM =  BLEDGE(EDGE) 
IF(FLEDGE(NUM). EQ. EDGE) THEN 

FLEDGE(NUM) =  FLEDGE(EDGE) 
ELSE

BREDGE(NUM) =  FLEDGE(EDGE) 
ENDIF 

ELSE
NUM = BREDGE(EDGE) 
IF(FREDGE(NUM).EQ. EDGE) THEN 

FREDGE(NUM) =  FREDGE(EDGE) 
ELSE

BLEDGE(NUM) =  FREDGE(EDGE) 
ENDIF
NUM =  FREDGE(EDGE) 
IF(BREDGE(NUM).EQ. EDGE) THEN 

BREDGE(NUM) =  BREDGE(EDGE) 
ELSE

FLEDGE(NUM) =  BREDGE(EDGE) 
ENDIF 

ENDIF
DFACE(FACE I) =  DFACE(FACE1)-1 
DNODE(NUMl) =  DNODE(NUMl)-2 
DFACE(FACE) =  0 

LABEL(EDGE) =  0 
NF=NF-1
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NA=NA-1

Method3
begin

ARC(l) =  EDGE
IF (BNODE(EDGE) .EQ. NODE) THEN 

ARC(2) =  BREDGE(EDGE)
ARC(3) =  BLEDGE(EDGE)

ELSE
ARC(2) =  FLEDGE(EDGE)
ARC(3) =  FREDGE(EDGE)

END IF 
DO 10 I =  1,3

ROT(I) =  MOD(I,3) +  1 
IF (BNODE(ARC(D) -EQ. NODE) THEN 

TEMP(1, D =  FNODE(ARC(I))
TEMP(2,I)= RFACE(ARC(I))
TEMP(3,Q =  FREDGE(ARC(I))
TEMP(4,I) =  FLEDGE(ARC(I))

ELSE
TEMP(1,I) =  BNODE(ARC(I))
TEMP(2,I) =  LFACE(ARCd))
TEMP(3,I) =  B LEDGE( ARC(I))
TEMP(4,I) =  BREDGE(ARC(I))

ENDIF
TEMP(5,I) =  LABEL(ARC(I))

10 CONTINUE 
DO 20 I =  1,3

RFACE(ARC(I)) =  NEWFAC 
BNODE(ARCd)) =  TEMP(1, D 
LFACE(ARC(I)) =  TEMP(2,I)
FNODE(ARCd)) =  TEMPO,ROT(I)) 
BLEDGE(ARCd)) =  TEMP(3,I)
FLEDGE(ARCd)) =  TEMP(4,ROT(I)) 
FREDGE(ARC(I)) =  ARC(ROTd))
BREDGE(ARCd)) =  ARC(ROT (ROT d))) 

LABEL(ARCd)) =  MIN(TEMP(5,I),TEMP(5,ROT(D)) 
20 CONTINUE

DFACE(NEWFAC) =  3 
DO 25 I =  1,3

NUM =  FLEDGE(ARC(I))
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IF(LFACE(NUM) .EQ. TEMP(2,I)) THEN 
BLEDGE(NUM) =  ARC(I)

ELSE
FREDGE(NUM) =  ARC(I)

ENDIF 
25 CONTINUE

DO 30 I =  1,3
NUM =  LFACE(ARC(I))

DFACE(NUM) =  DFACE(NUM) - I 
30 CONTINUE

DO 40 1=1,3
NUM =  FNODE(ARC(D)
DNODE(NUM) =  DNODE(NUM)+ 1 

40 CONTINUE
DO 110 J =  1,10

DA =  1- POS(ARC(l),J)
DB = 1- POS(ARC(2),J)
DC =  1- POS(ARC(3),J)
POS(ARC(l),J) =  l-WC 
POS(ARC(2),J) =  1-WA 
POS(ARC(3),J) =  1-WB 
ERRPOS(J) =

ERRPOS(J)+ D ABS(WA*WB*WC-D A*DB-D A*DC-DB*DC+ 2*D A*DB*DC)
DA =  1- NEG(ARC(1),J)
DB =  1- NEG(ARC(2),J)
DC =  1- NEG(ARC(3),J)
NEG(ARC(1),J) =  l-WC 
NEG(ARC(2),J) =  1-WA 
NEG(ARC(3),J) =  1-WB

ERRNEG(J) =  ERRNEG(J)+ D ABS(W A*WB*WC-D A*DB-D A*DC-DB*DC+2*D A*
DB*DC)

DA =  1- POINT(ARC(l),J)
DB =  I- POINT(ARC(2),J)
DC =  I- POINT(ARC(3),J)
POINT(ARC(l),J) =  i-WC 
POINT (ARC(2), J) =  1-WA 
POINT (ARC(3) ,1) =  1-WB 

110 CONTINUE
DNODE(NODE) =  0 

NN=NN-1 
N F=N F+1
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Method4
begin

ARC(l) =  EDGE
IF (RFACE(EDGE) .EQ. FACE) THEN 

ARC(2) =  FREDGE(EDGE)
ARC(3) =  BREDGE(EDGE)

ELSE
ARC(2) =  BLEDGE(EDGE)
ARC(3) =  FLEDGE(EDGE)

END IF
DO 10 I =  1,3

ROT(I) =  MOD(I,3) +  1 
IF (RFACE(ARC(I)) .HQ. FACE) THEN 

TEMP(1,I) =  FNODE(ARC(I))
TEMP(2,Q =  LFACE(ARCG))
TEMP(3,I)= FLEDGE(ARC(D)
TEMP(4,I) =  BLEDGE(ARC(I))

ELSE
TEMP(1,I) =  BNODE(ARC(I))
TEMP(2,I) =  RFACE(ARC(I))
TEMP(3,I) =  BREDGE(ARC(I)) 
TEMP(4,I) =  FREDGE(ARC(I»

ENDIF
TEMP(5,I) =  LABEL(ARC(I))

DO 20 I =  1,3
BNODE(ARC(I)) =  NEWNOD 
FNODE(ARC(I)) =  TEMP(1,I)
LFACE(ARC(I)) =  TEMP(2,I)
RFACE(ARCO)) =  TEMP(2,ROT(I)) 
FLEDGE(ARCO)) =  TEMP(3,I) 
FREDGE(ARC(I)) =  TEMP(4,ROTa» 
BREDGE(ARC(I)) =  ARC(ROT(I» 
BLEDGE(ARCd)) =  ARC(ROT(ROT(I») 

LABEL(ARC(I)) =  MIN(TEMP(5, D ,TEMP(5, ROT(I))) 
20 CONTINUE

DNODE(NEWNOD) =  3 
DO 25 I = 1,3

NUM = FREDGE(ARC(I))
IF(FNODE(NUM) .EQ. TEMP(1,I)) THEN 

FLEDGE(NUM) =  ARC(I)
ELSE

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



141

BREDGE(NUM) =  ARC(I) 
ENDIF 

25 CONTINUE 
DO 30 I =  1,3 

NUM =  RFACE(ARCfl)) 
DFACE(NUM) = DFACE(NUM) +  1 

30 CONTINUE 
DO 40 I =  1,3

NUM =  FNODE(ARC(I)) 
DNODE(NUM) =  DNODE(NUM) - I 

40 CONTINUE 
DO 110 J =1,10 
DA =  POS(ARC(l),J)
DB =  POS(ARC(2),J)
DC = POS(ARC(3),J)
POS(ARC(l),J) =  WC 
POS(ARC(2),J) =  WA 
POS(ARC(3),J) =  WB

ERRPOS(J)=ERRPOS(J)+DABS(WA*WB*WC-DA*DB-DA*DC-DB*DC+2*DA*
DB*DC)

DA = NEG(ARC(1),J)
DB =  NEG(ARC(2),J)
DC =  NEG(ARC(3),I)
NEG(ARC(1),J) =  WC 
NEG(ARC(2),J) =  WA 
NEG(ARC(3),J) =  WB 

ERRNEG(J)= ERRNEG(J)+ DABS(WA*WB*WC-DA*DB-DA*DC-DB*DC+2*DA* 
DB*DC)

DA =  POINT(ARC(l),J)
DB =  POINT (ARC(2), J)
DC =  POINT (ARC(3), J)
POINT(ARC(l),J) = WC 
POINT (ARC(2), J) = WA 
POINT (ARC(3), J) =  WB 

110 CONTINUE 
DFACE(FACE) =  0 
NF=NF-1 
NN=NN+1

end
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Method5
begin

IF (RFACE(EDGE1) .EQ. FACE) THEN 
EDGE2 =  FREDGE(EDGEl)
IF (RFACE(EDGE2) .EQ. FACE) THEN 

FREDGE(EDGE 1) =  B LEDGE(EDGE2) 
BREDGE(EDGE I) =  FLEDGE(EDGE2) 
RFACE(EDGEl) =  LFACE(EDGE2) 

ELSE
FREDGE(EDGE I) =  FREDGE(EDGE2) 
B REDGE(EDGE I) =  BREDGE(EDGE2) 
RFACE(EDGEl) =  RFACE(EDGE2) 

ENDIF
NUM =  FREDGE(EDGEI) 
IF(BREDGE(NUM).EQ. EDGE2) THEN 

BREDGE(NUM) =  EDGE1 
ELSE

FLEDGE(NUM) =  EDGE I 
ENDIF
NUM =  BREDGE(EDGEI) 
IF(FREDGE(NUM). EQ. EDGE2) THEN 

FREDGE(NUM) =  EDGE I 
ELSE

BLEDGE(NUM) =  EDGE I 
ENDIF 

ELSE
EDGE2 =  FLEDGE(EDGE 1)
IF (RFACE(EDGE2) .EQ. FACE) THEN 

FLEDGE(EDGEl) =  FLEDGE(EDGE2) 
BLEDGE(EDGEl) =  BLEDGE(EDGE2) 
LFACE(EDGE1) =  LFACE(EDGE2) 

ELSE
FLEDGE(EDGEl) =  BREDGE(EDGE2) 
BLEDGE(EDGEl) =  FREDGE(EDGE2) 
LFACE(EDGE1) =  RFACE(EDGE2) 

ENDIF
NUM =  FLEDGE(EDGE I) 
IF(BLEDGE(NUM).EQ. EDGE2) THEN 

BLEDGE(NUM) =  EDGE1 
ELSE

FREDGE(NUM) =  EDGE I 
ENDIF
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NUM =  BLEDGE(EDGEl) 
IF(FLEDGE(NUM).EQ. EDGE2) THEN 

FLEDGE(NUM) =  EDGE1 
ELSE

BREDGE(NUM) =  EDGE1 
ENDIF 

ENDIF
LABEL(EDGEl) =  MIN(L AB EL(EDGE 1), L ABEL(EDGE2)) 

LABEL(EDGE2) =  0 
NUM =  FN0DE(EDGE1)
DNODE(NUM) =  DN0DE(NUM)-1 

1000 IF (RFACE(EDGE2) .EQ.FACE) THEN 
IF(INCDNT(LFACE(EDGE2)) .GT. 0)

INCDNT(LFACE(EDGE2)) =  EDGE1
ELSE

IF(INCDNT(RFACE(EDGE2)) .GT. 0) 
INCDNT(RFACE(EDGE2)) =  EDGE1 

ENDIF
DF ACE(FACE)= 0  
DO 110 J =  1,10

POS(EDGE 1, J) =
POS(EDGE 1 ,J)+ POS(EDGE2,J)-POS(EDGE 1, J)*POS(EDGE2, J) 

POINT(EDGE 1, J )= POINT(EDGE 1, J)+ POINT(EDGE2,J)-
POINT(EDGE 1, J) *POINT(EDGE2, J)

NEG(EDGEl.J) =
NEG(EDGE 1, J)+ NEG(EDGE2,J)-NEG(EDGE 1 ,J)*NEG(EDGE2, J)

110 CONTINUE 
NF=NF-1 
NA=NA-1

Method6
begin

IF (FNODE(EDGEl) .EQ. NODE) THEN 
EDGE2 =  FLEDGE(EDGE1)
IF (FNODE(EDGE2) .EQ. NODE) THEN 

FLEDGE(EDGEl) =  BREDGE(EDGE2) 
FREDGE(EDGE1) = BLEDGE(EDGE2) 
FNODE(EDGEl) = BNODE(EDGE2) 

ELSE
FLEDGE(EDGE 1) = FLEDGE(EDGE2) 
FREDGE(EDGE1) =  FREDGE(EDGE2)
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FNODE(EDGEl) =  FNODE(EDGE2)
ENDIF
NUM = FLEDGE(EDGEl)
IF (FREDGE(NUM) .EQ. EDGE2) THEN 

FREDGE(NUM) =  EDGE I 
ELSE

BLEDGE(NUM) =  EDGE I 
ENDIF
NUM =  FREDGE(EDGEI)
IF (FLEDGE(NUM) .EQ. EDGE2) THEN 

FLEDGE(NUM) =  EDGE1 
ELSE

BREDGE(NUM) =  EDGE I 
ENDIF 

ELSE
EDGE2 =  BLEDGE(EDGE 1)
IF (FNODE(EDGE2) .EQ. NODE) THEN 

BREDGE(EDGE1) =  B REDGE(EDGE2) 
BLEDGE(EDGEI) =  BLEDGE(EDGE2) 
BNODE(EDGEl) =  BNODE(EDGE2)

ELSE
BREDGE(EDGE1) =  FLEDGE(EDGE2) 
BLEDGE(EDGE1) =  FREDGE(EDGE2) 
BNODE(EDGEl) =  FNODE(EDGE2)

ENDIF
NUM =  BREDGE(EDGEl)
IF (BLEDGE(NUM) .EQ. EDGE2) THEN 

BLEDGE(NUM) =  EDGE1 
ELSE

FREDGE(NUM) =  EDGE1 
ENDIF
NUM = BLEDGE(EDGE I)
IF (BREDGE(NUM) .EQ. EDGE2) THEN 

BREDGE(NUM) =  EDGE I 
ELSE

FLEDGE(NUM) =  EDGE I 
ENDIF 

ENDIF
LABEL(EDGEl) =  MIN(LABEL(EDGE1),LABEL(EDGE2)) 

LABEL(EDGE2) =  0 
NUM =  RFACE(EDGE1)
DFACE(NUM) =  DFACE(NUM)-!

1000 IF (BNODE(EDGE2) .EQ.NODE) THEN
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IF(INCDNT(FNODE(EDGE2)) .GT. 0) 
INCDNT(FNODE(EDGE2)) =  EDGE1 

ELSE
IF(INCDNT(BNODE(EDGE2» .GT. 0) 
INCDNT(BNODE(EDGE2)) =  EDGE1 

ENDIF
DNODE(NODE) =  0 
DO 110 J =  1,10

POS(EDGEIJ) =  POS(EDGEl,J)*POS(EDGE2,J) 
NEG(EDGEI,J) =  NEG(EDGE I , J) *NEG(EDGE2, J) 

POINT (EDGE 1, J) =  POINT (EDGE I , J) *POINT(EDGE2, J)
110 CONTINUE 

NN=NN-1 
NA=NA-1

Method7
begin

READ(4,*) NN, NA, NF 
DO 15 J =  l , NA

READ(4,*) I,BNODE(I),FNODE(I),LFACE(I),RFACE(I) 
READ(4, *) BREDGE(I),BLEDGE(I),FLEDGE(I),FREDGE(I) 

ARCNUM(J) =  I
15 CONTINUE 

DO 16 J =  1,NN
READ(4,*) I, DNODE(I)
NODNUM(J) =  I

16 CONTINUE 
DO 17 K =  1,NF

READ(4,*) I, DFACE(I)
FACNUM(K) =  I

17 CONTINUE 
READ(*,*) PNUM 
DO 110 J = 1,10

DO 47 I =  1,NA 
POS(I,J) =  PNUM +  J*0.02 
NEG(I,I) =  PNUM +  J*0.02 
POINT(I,J) =PNUM +  J*0.02 

47 CONTINUE 
110 CONTINUE 

LABEL(START) =  1
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EBOT =  START 
OCURR= ST ART 

1111 IF (BNODE(OCURR) .EQ. SORE) THEN 
SFACE(OCURR) =  RFACE(OCURR)
OCURR =  BREDGE(OCURR)

ELSE
SFACE(OCURR) =  LFACE(OCURR)
OCURR =  FLEDGE(OCURR)

ENDIF
IF (OCURR .NE. START) THEN 

LABEL(OCURR) =  1 
NCOUNT =  NCOUNT +  I 
NEXT(EBOT) =  OCURR 
EBOT =  OCURR 
NEXT(EBOT) =  0 
GOTO 1111 

• ENDIF 
137 ESCAN =  ETOP

CFACE =  SFACE(ESCAN)
WRITE(*,*) ’SCANNING EDGE # ’, ESCAN 
ECURR =  ESCAN 

122 IF (CFACE .EQ. RFACE(ECURR)) THEN 
NUM =  FNODE(ECURR)
ECURR =  FREDGE(ECURR)

ELSE
NUM =  BNODE(ECURR)
ECURR =  BLEDGE(ECURR)

ENDIF
IF (LABEL(ECURR) .EQ. 0) THEN

LABEL(ECURR) =  LABEL(ESCAN) +  1 
NCOUNT =  NCOUNT +  1 

WRITE(*,*) ’labelling edge ECURR,’by label’, LABEL(ECURR) 
IF (NCOUNT .EQ. NA) GOTO 1333 
SNODE(ECURR) =  NUM 
IF (OTOP .EQ. 0 ) THEN 

OTOP =  ECURR 
ELSE

NEXT(OBOT) =  ECURR 
ENDIF
OBOT =  ECURR 
NEXT(OBOT) =  0 

ENDIF
IF (LABEL(ECURR) .EQ. LABEL(ESCAN)) THEN
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ETOP = NEXT(ETOP)
IF (ETOP .EQ. 0) THEN 

IF(OTOP .EQ. 0) THEN 
GOTO 1333 

ELSE
GOTO 237 

ENDIF 
ENDIF 

GOTO 137 
ENDIF 
GOTO 122 

237 OSCAN = OTOP
CNODE =  SNODE(OSCAN)
OCURR = OSCAN 

222 IF (CNODE .EQ. BNODE(OCURR)) THEN 
NUM = LFACE(OCURR)
OCURR =  BLEDGE(OCURR)

ELSE
NUM = RFACE(OCURR)
OCURR = FREDGE(OCURR)

ENDIF
IF (LABEL(OCURR) .EQ. 0) THEN 

NCOUNT =  NCOUNT +  1 
LABEL(OCURR) =  LABEL(OSCAN) +  1 

WRITE(*,*) ’labelling edge OCURR,'by label’, LABEL(OCURR) 
IF (NCOUNT .EQ. NA) GOTO 1333 
SFACE(OCURR) =  NUM 
IF (ETOP .EQ. 0 ) THEN 

ETOP =  OCURR 
ELSE

NEXT(EBOT) =  OCURR 
ENDIF
EBOT = OCURR 
NEXT(EBOT) =  0 

ENDIF
IF (LABEL(OCURR) .EQ. LABEL(OSCAN)) THEN 

OTOP =  NEXT(OTOP)
NEXT(OSCAN) =  0 

IF (OTOP .EQ. 0) THEN 
IF(ETOP .EQ. 0) THEN 
GOTO 1333 

ELSE
GOTO 137
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ENDIF 
ENDIF 
GOTO 237 

ENDIF 
GOTO 222

end

Method8
begin

INCDNT(NUM) =  0
ABOVE(BELOW(NUM)) = ABOVE(NUM) 
BELOW(ABOVE(NUM)) = BELOW(NUM) 
ABOVE(NUM) =  0 
BELOW(NUM) =  0

Method9
begin

IF (FLAG .EQ. I) THEN 
FACE =  NUM
IF(DFACE(FACE) .EQ. 1) THEN 

IF(TOPLOOP .GT. 0) THEN 
ABOVE(TOPLOOP)= FACE 
BELOW(FACE) =TOPLOOP 

ENDIF
TOPLOOP =  FACE 
INCDNT(FACE) =  ARC 
GOTO 1000 

ENDIF
IF(DFACE(FACE) .EQ. 2) THEN 

IF(TOPPAR .GT. 0) THEN 
ABOVE(TOPPAR)=FACE 
BELOW(FACE) =TOPPAR 

ENDIF
TOPPAR =  FACE 
INCDNT(FACE) =  ARC 
GOTO 1000 

ENDIF
EDGE1= ARC
IF (RFACE(EDGEI) .EQ. FACE) THEN
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EDGE2 =  FREDGE(EDGEl)
EDGE3 =  BREDGE(EDGEl)

ELSE
EDGE2 =  BLEDGE(EDGE1)
EDGE3 =  FLEDGE(EDGE1)

ENDIF
NCHECK =  MIN(LABEL(EDGE1),LABEL(EDGE2),LABEL(EDGE3)) 
NSUM =  LABEL(EDGE 1 )+ LABEL(EDGE2)+ LABEL(EDGE3)

IF (NSUM .EQ. (3*NCHECK+2)) THEN 
INCDNT(FACE) =  EDGE1 
IF (TOPDEL .GT. 0) THEN 

ABOVE(TOPDEL)= FACE 
BELOW(FACE) =TOPDEL 

ENDIF
TOPDEL = FACE 

ENDIF 
GOTO 1000 

ENDIF
NODE =  NUM
IF(NODE .EQ. SORE) GOTO 1000 
IF(NODE .EQ. TERM I) GOTO 1000 
IF(NODE .EQ. TERM2) GOTO 1000 
IF(NODE .EQ. TERM3) GOTO 1000 
IF(NODE .EQ. TERM4 ) GOTO 1000 
IF (DNODE(NODE) .EQ. 0) GOTO 1000 
IF(DNODE(NODE) .EQ. 1) THEN 

IF(TOPVERT .GT. 0) THEN 
ABOVE(TOPVERT)= NODE 
BELOW(NODE) =TOPVERT 

ENDIF
TOPVERT = NODE 
INCDNT(NODE) =  ARC 
GOTO 1000 

ENDIF
IF(DNODE(NODE) .EQ. 2) THEN 

IF(TOPSER .GT. 0) THEN 
ABOVE(TOPSER)= NODE 
BELOW(NODE) =TOPSER 

ENDIF
TOPSER =  NODE 
INCDNT(NODE) =  ARC 
GOTO 1000 

ENDIF

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



150

EDGE1= ARC
IF (BNODE(EDGE 1) .EQ. NODE) THEN 

EDGE2 =  BRJEDGE(EDGEl)
EDGE3 =  BLEDGE(EDGE 1)

ELSE
EDGE2 =  FLEDGE(EDGE1)
EDGE3 =  FREDGE(EDGEl)

ENDIF
NCHECK = MIN(L ABEL(EDGE 1), LABEL(EDGE2) ,LABEL(EDGE3)) 
NSUM =  LABEL(EDGE 1)+LABEL(EDGE2)+ LABEL(EDGE3)

IF (NSUM .EQ. (3*NCHECK+2)) THEN 
INCDNT(NODE) =  EDGE1 

IF (TOPWYE .GT. 0) THEN 
ABOVE(TOPWYE)= NODE 
BELOW(NODE) =  TOPWYE 

ENDIF
TOPWYE =  NODE 

ENDIF
end

SubDerivation {vertex, loop, wye, delta, parallel, series,remove, positive, main}

Object 18 is
Attributes

topdel, topser, toppar, topvert, toploop : integer

Methods

Method 1 
begin

IF (TOPPAR .EQ. NUM) TOPPAR =  BELOW(NUM)
IF (TOPDEL .EQ. NUM) TOPDEL =  BELOW(NUM)
IF (TOPLOOP .EQ. NUM) TOPLOOP =  BELOW(NUM) 
IF (TOPSER .EQ. NUM) TOPSER =  BELOW(NUM)
IF (TOPWYE .EQ. NUM) TOPWYE = BELOW(NUM) 
IF (TOPVERT .EQ. NUM) TOPVERT =  BELOW(NUM)

end

Method2
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begin
IF (FLAG .EQ. 1) THEN 

FACE =  NUM 
IF (DFACE(FACE) .EQ. 1) THEN 

TOPLOOP =  FACE 
GOTO 1000 

ENDIF
IF(DFACE(FACE) .EQ. 2) THEN 

TOPPAR =  FACE 
GOTO 1000 

ENDIF 
ENDIF
IF (NSUM .EQ. (3*NCHECK+2)) THEN 

TOPDEL =  FACE 
ENDIF 
GOTO 1000 

• ENDIF
TOPVERT = NODE 
GOTO 1000 

IF(DNODE(NODE) .EQ. 2) THEN 
TOPSER =  NODE 
GOTO 1000 

ENDIF
IF (NSUM .EQ. (3*NCHECK+2)) THEN 

TOPWYE =  NODE 
ENDIF 

1000 RETURN
end

SubDerivation {remove, positive}

Object 19 is
Attributes

stprob, upprob, loprob : real

Methods

Method 1 
begin

IF (SINK1 .EQ. NODE) THEN 
DO 10 J=  1,10 

UPPROB (J) =  POS(EDGE,J)* UPPROB(J)
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LOPROB(J) =  NEG(EDGE,J>* LOPROB(J) 
STPROB(J) =  POINT(EDGE,J) * STPROB(J) 

10 CONTINUE 
ENDIF

end

Method2
begin

DO 110 J =  1,10 
LOPROB(J) =  1.0 
UPPROB(J) =  1.0 
STPROB(J) =  1.0 

110 CONTINUE 
end

Method3
begin

DO 110 J =  1,10
LOPROB(J) =  LOPROB(J)*POS(ARC,J)
UPPROB(J) =  UPPROB(J)*NEG(ARC,J)
STPROB(J) =  STPROB(J) *POINT (ARC, J) 

WRITE(8,174) OPERPROB, LOPROB(J), STPROB(J), 
UPPROB(J)

174 FORMAT 
110 CONTINUE

end

Sub Derivation (vertex, main, reduce}

Object20 is
Attributes

terml, term2, term3, term4 : integer

Methods

Method 1 
begin

READ(4,*) NTERM, TERM1, TERM2,TERM3,TERM4
end
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Method2
begin

NODE =  NUM
IF(NODE .EQ. SORE) GOTO 1000 
IF(NODE .EQ. TERM1) GOTO 1000 
IF(NODE .EQ. TERM2) GOTO 1000 
IF(NODE .EQ. TERM3) GOTO 1000 
IF(NODE .EQ. TERM4 ) GOTO 1000 

1000 RETURN 
end

SubDerivation { main, positive}

Object! 1 is
Attributes

above, below : integer

Methods

Method 1 
begin

IF(DFACE(FACE) .EQ. 1) THEN 
IF(TOPLOOP .GT. 0) THEN 

ABOV*E(TOPLOOP)= FACE 
BELOW(FACE) =TOPLOOP 

ENDIF 
ENDIF
IF(DFACE(FACE) .EQ. 2) THEN 

IF(TOPPAR .GT. 0) THEN 
ABOVE(TOPPAR)= FACE 
BELOW(FACE) =TOPPAR 

ENDIF 
ENDIF

IF (NSUM .EQ. (3*NCHECK+2)) THEN 
IF (TOPDEL .GT. 0) THEN 

ABOVE(TOPDEL)= FACE 
BELOW(FACE) =TOPDEL 

ENDIF 
ENDIF 

NODE = NUM
IF(DNODE(NODE) .EQ. 1) THEN 

IF(TOPVERT .GT. 0) THEN 
ABO VE(TOPVERT)= NODE
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BELOW(NODE) =TOPVERT 
ENDIF 

ENDIF
IF(DNODE(NODE) .EQ. 2) THEN 

IF(TOPSER .GT. 0) THEN 
ABOVE(TOPSER)= NODE 
BELOW(NODE) =  TOPSER 

ENDIF 
ENDIF

IF (NSUM .EQ. (3*NCHECK+2)) THEN 
IF (TOPWYE .GT. 0) THEN 

ABOVE(TOPWYE) =NODE 
BELOW(NODE) =TOPWYE 

ENDIF 
ENDIF

end

SubDerivation {positive}

Object22 is
Attributes

sink2 : integer 
Methods

SubDerivation {}

Object23 is
Attributes

oface : integer 
Methods

SubDerivation {}

Object24 is
Attributes

facnum : integer

Methods

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



155

Method 1 
begin

DO 17 K = 1,NF
READ(4,*) I, DFACE(I)
FACNUM(K) =  I 

17 CONTINUE
end

SubDerivation {main}

Object25 is
Attributes

nodnum : integer

Methods

Method 1 
begin

DO 16 J =  1,NN 
READ(4,*) I, DNODE(I)
NODNUM(J) = I 

16 CONTINUE 
end

SubDerivation { main}

Object26 is
Attributes

nterm : integer

Methods

Method 1 
begin

READ(4,*) NTERM, TERM1, TERM2,TERM3,TERM4
end

SubDerivation {main}

Object27 is
Attributes

sore : integer
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Methods

Method 1 
begin

READ(4,*) SORE,SINKl, START 
PRINT * '’SOURCE:’,SORE,' SINK1:’,SINKI 

end

SubDerivation {main}

Object28 is
Attributes

sinkl : integer

Methods

Method 1 • 
begin

IF BNODE(EDGE) .EQ. NODE) THEN 
NODE1 =  FNODE(EDGE)

ELSE
NODE1 =  BNODE(EDGE)

ENDIF
IF (SINKI .EQ. NODE) THEN 

SINK1 =  NODE1 
WRITE(*, 11) SINK I 

11 FORMAT(’THE NEW SINK1 NODE IS’,14)
ENDIF

end

Method2
begin

READ(4,*) SORE,SINKl, START 
PRINT SOURCE:',SORE,' SINK1:’,SINKI

end
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Method3
begin

NODE =  NUM
IF (NODE..EQ. SINK I) GOTO 1000 
1000 RETURN

SubDerivation {vertex, main, positive}
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