
Received December 28, 2020, accepted January 15, 2021, date of publication January 18, 2021, date of current version January 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3052578

Formal Analysis of QUIC Handshake Protocol
Using Symbolic Model Checking

JINGJING ZHANG 1,2, LIN YANG 2, XIANMING GAO 2, GAIGAI TANG 3,
JIYONG ZHANG 4, (Member, IEEE), AND QIANG WANG 2
1College of Command and Control Engineering, Army Engineering University of PLA, Nanjing 210007, China
2National Key Laboratory of Science and Technology on Information System Security, Institute of System Engineering, PLA Academy of Military Science,

Beijing 100039, China
3College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
4School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

Corresponding authors: Qiang Wang (wenjunwang.nudt@gmail.com) and Jiyong Zhang (jzhang@hdu.edu.cn)

This work was supported by the National Key Laboratory of Science and Technology through Information System Security.

ABSTRACT This work presents a security analysis of the QUIC handshake protocol based on symbolic

model checking. As a newly proposed secure transport protocol, the purpose of QUIC is to improve the

transport performance of HTTPS traffic and enable rapid deployment and evolution of transport mechanisms.

QUIC is currently in the IETF standardization process and will potentially carry a significant portion of

Internet traffic in the emerging future. For a better understanding of the essential security properties, we have

developed a formal model of the QUIC handshake protocol and perform a comprehensive formal security

analysis by using two state-of-the-art model checking tools for cryptographic protocols, i.e., ProVeirf and

Verifpal. Our analysis shows that ProVerif is generally more powerful than Verifpal in terms of verifying

authentication properties. Moreover, both tools produce a counterexample to some security properties, which

reveal a design flaw in the current protocol specification. Last but not least, we analyze the root causes of

this counterexample and suggest a possible fix.

INDEX TERMS Model checking, applied pi calculus, cryptographic protocol, QUIC, formal verification,

ProVerif, Verifpal.

I. INTRODUCTION

QUIC [1] is a multiplexed and encrypted transport protocol

recently suggested by Google that allows for both rapid and

reliable Internet connectivity. It is designed on the top of

UDP and employs an encrypted transport to prevent modifi-

cations by middleboxes. It also makes use of a cryptographic

handshake protocol to protect the entities and minimize the

connection latency. QUIC aims at replacing most elements of

the conventional HTTPS stack (as shown in Fig.1). It operates

entirely in the user-space and is currently integrated in the

Chromium web explorer for a rapid configuration and explo-

ration.

QUIC is still under review for standardization, which usu-

ally takes the format of an RFC: a natural language (normally

English) document that offers implementation advice to pro-

tocol engineers. However, a natural language document is

nonetheless ambiguous and open to various interpretations,

some of which are even contradicting. As for the current

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang .

FIGURE 1. QUIC in the traditional HTTPS stack.

QUIC authentication protocol, it is still unclear whether or

not it conforms to the security attributes claimed in the IETF

standardization documents. As reported in [2], a possible

way to resolve the ambiguities and rigorously validate the

protocol design is through formal verification, where a formal

model of the protocol is first constructed and then analyzed

with respect to the specified security properties. Symbolic

model checking [3] has been a popular method for the for-

mal verification of cryptographic protocols. Since the pio-

neering work in [4] that discovered the Needham-Schroeder

protocol’s design flaws, symbolic model checking has been

14836
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-9075-7810
https://orcid.org/0000-0002-6956-8177
https://orcid.org/0000-0001-5797-818X
https://orcid.org/0000-0003-1798-5718
https://orcid.org/0000-0001-9600-8477
https://orcid.org/0000-0001-5649-8694
https://orcid.org/0000-0003-0586-090X


J. Zhang et al.: Formal Analysis of QUIC Handshake Protocol Using Symbolic Model Checking

widely and actively used to formally analyze cryptographic

protocols [5]–[14].

In the symbolic model checking for cryptographic proto-

cols, protocol behavior, as well as the intruders, are often

symbolically represented by a formal model (e.g. applied pi

calculus [11], [15], constraint systems [16] or horn clauses

[17]), where the protocol messages are modeled by abstract

terms and the cryptographic primitives (such as encryption

and decryption functions) are modeled by function symbols

and assumed to be uncrackable. The security analysis for

the cryptographic protocols reduces to a constraint solving

or unification problem for the formal model. In the event of

termination, model checking can automatically discover if

the protocol model meets the specified security properties.

Moreover, when certain properties are breached, a coun-

terexample can be constructed to show the violation. In the

past decades, various model checking algorithms and proto-

type tools for cryptographic protocols have been developed.

We refer to [3] for a detailed exploration of this research

area.

In this work, we employ two cryptographic protocol model

checking tools to analyze the formalmodel of theQUIC hand-

shake protocol, namely ProVerif [18] and Verifpal [19]. They

both take a formal protocol model detailed in a formal lan-

guage and can automatically checkwhether this formalmodel

satisfies the security properties in the presence of a hos-

tile adversary. The major advantages are as follows. Firstly,

they provide a robust modeling mechanism that enables the

description of a large variety of cryptographic primitives

through the use of rewrite rules and equation theory. They also

support the specification of a variety of security properties,

including both strong and weak confidentiality, authentica-

tion and observational equivalence properties. They can also

deal with an unlimited number of parallel protocol imple-

mentations, which is critical for detecting subtle attacks, such

as man-in-the-middle attacks. Finally, they can automatically

construct counterexamples, when certain properties are vio-

lated.

These two model checkers differ in the way how cryp-

tographic protocols are formally modeled. ProVerif uses

applied pi calculus as the formal modeling language and it

expects that the users are able to reason about the protocol

logic as a calculus process. In contrast, Verifpal offers a

more natural way to model the protocols, as a sequence of

messages exchanges between the explicit principals. Ver-

ifpal’s inner logic continues to rely on the deconstruction

and reconstruction of abstract terms, similar to ProVerif.

However, Verifpal’s modeling language is more close to the

normal way how engineers think about cryptographic proto-

cols, while still being accurate and expressiveness enough.

We would like to compare both the modelling and the

verification capabilities of these two verifiers (i.e., Ver-

ifpal and ProVerif), to understand their strengthens and

weaknesses.

The main contributions we have made in this work are as

follows:

1) We construct from the natural language documents the

first formal model of the QUIC handshake protocol

in applied pi calculus. We also derive a set of secu-

rity properties from the informal standardization docu-

ments and specify them in formal languages. We would

like to point out that the formal modelling of pro-

tocols and security properties is non-trivial, because

it demands a profound understanding of the protocol

logic and the possible attack behaviors.

2) We also construct a formal model of the QUIC hand-

shake protocol in Verifpal and compare it with the

ProVerif’s model to illustrate the characteristics of

these two modeling languages.

3) We carry out a comparative formal analysis of the

QUIC handshake protocol using two state-of-the-art

verifiers: the ProVerif and Verifpal. Our analysis shows

that ProVerif is generally more powerful than Verifpal

in terms of verifying authentication properties. More-

over, both verifiers reveal a design flaw in the current

protocol specification. We also discuss the possible

causes and suggest potential fixes.

The organization of this paper is as follows. Section II gives

the most related works on formal analysis of cryptography

protocols. Section III presents a thorough description of the

QUIC handshake protocol and the set of security properties.

Section IV presents the formal protocol model as well as the

encodings of the security properties. Section V reports the

verification results. Finally, Section VI concludes this paper.

II. RELATED WORKS

Previously, symbolic model checking has been used suc-

cessfully to analyze the security properties of cryptographic

protocols. In this section, we review the most relevant works.

In [12] and [13], the authors use Tamarin [20] to model and

analyze the security properties of the 5GAKA protocol. They

find that the 5G AKA protocol lacks integrity protection for

the identity of the server network. Furthermore, the authors

report in [13] an attack that takes advantage of potential

competition conditions.

In [21], the authors develop a complete symbolic model

of TLS 1.3 specification that takes into account all possible

interactions of the available handshake patterns. They analyze

most of the specified security requirements using the Tamarin

verifier and find a behavior that could cause security prob-

lems in protocol applications.

In [22], the authors present a novel modeling framework

that accounts for all recent attacks on TLS, including those

relying on weak cryptography. They apply ProVerif to per-

form the first symbolic analysis of the Draft-18 of TLS 1.3

standard and the first composite analysis of TLS 1.3 and TLS

1.2. Their analyses uncover both known and new vulnerabil-

ities that influence the final design of Draft-18.

In [23], the authors use ProVerif and CryptoVerif [24] to

perform formal analysis of the variants of signal protocols

against a series of security objectives. They also implement

VOLUME 9, 2021 14837



J. Zhang et al.: Formal Analysis of QUIC Handshake Protocol Using Symbolic Model Checking

the signal protocol in ProScript [23], a new domain-specific

language for writing code for cryptographic protocols. The

implementation in ProScript can be executed in a JavaScript

program or automatically translated into a readable model in

applied pi calculus. Their analysis reveals several weaknesses

in the protocol, including previously unreported replay and

key leak impersonation attacks.

In [25], the authors develop a formal specification for

wireless protocols and use this specification to generate an

automatic randomization test tool. Then they use this tool to

determine whether the implementation of the QUIC protocol

satisfies the formal specification they have developed.

In [19], the author who is developing Verifpal, provides

the first formal model of the DP-3T decentralized pandemic

tracing protocol [26] and analyzes unlinkability, freshness,

confidentiality and message authentication. The author also

claims that Verifpal has been proven to successfully verify

the security properties for TLS 1.3 and Signal.

In [27], the authors propose a novel proxy-based design

for QUIC, called QSOCKS, that can enhance the capabilities

of QUIC. QSOCKS improves the 0-RTT/1-RTT connection

time, enhances the handshake mechanism and transmission

security.

In [28], the authors have applied state machine inference

to analyze the QUIC implementation. This method works in

a fully black-boxed way, which makes it applicable to any

QUIC implementation without the implementation specifics.

They also give the correctness proof of the QUIC implemen-

tation of Google.

In [29], the authors find the denial-of-service attack of the

QUIC protocol and establish a mathematical model based on

the finite state machine to explain the attack principle. They

propose feasible suggestions for preventing such attacks.

In [30], the authors present a new formal security model

for the QUIC protocol. They have found that the QUIC pro-

tocol may not enable 0-RTT (0 round trip time) connections.

An attacker can make QUIC fall-back to TCP/TLS or lead

to client and server handshake views that are inconsistent,

resulting in an inconsistent state and more latency.

Finally, we remark that this work is based on our previous

work [31], where we model and formally analyze the QUIC

handshake protocol in ProVerif. We have extended our pre-

vious work by carrying out a comparative formal analysis of

the QUIC handshake protocol in two state-of-the-art model

checkers, that is ProVerif and Verifpal. First, we build two

complementary formal models of the QUIC handshake pro-

tocol in ProVerif and Verifpal. ProVerif provides a general

modeling language for security protocols based on process

calculus, which requires a deep understanding of the formal

semantics of the protocol. Verifpal offers a more intuitive

language instead. We elicit the essential security properties

from the informal description in the IETF document and

encode them in both ProVerif’s model and Verifpal’s model.

We also discuss the major differences between ProVerif and

Verifpal in both protocol modeling and security property

specification. Second, we compare the formal analysis results

FIGURE 2. A reference architecture model of the QUIC network.

and performances of the two model checkers. The results

show that ProVerif is in general more efficient than Verifpal,

while both of them are consistent in revealing design flaws of

the QUIC handshake protocol.

III. THE QUIC PROTOCOL

A. INTRODUCTION TO QUIC PROTOCOL

In this section, we present a detailed review of the QUIC

protocol described in the IETF document [32].

The typical architecture of the QUIC network is shown

in Fig. 2. The client represents a subscriber’s device (e.g.,

mobile phone or computer) that intends to start a secure

connection to the network. The server is where the client may

connect to obtain a service.We assume that the public channel

through which the client communicates with the server is

under the control of malicious attackers.

QUIC performs encryption in the transport layer during

the handshake process, reducing the number of round trips

required for setting up a secure connection. QUIC initial

connections are common 1-RTT, meaning that all initial con-

nection data can be sent immediately without waiting for a

reply from the server, which is more efficient compared to

the 3 round trips required for TCP/TLS before application

data can be sent. The timeline of QUIC’s initial 1-RTT hand-

shake and TCP/TLS’s initial 3-RTT handshake are shown in

Fig.3. QUIC is functionally equivalent to TCP/TLS/HTTP2,

but implemented on top of UDP. The key advantages over

TCP/TLS/HTTP2 include:

• Low connection establishment latency

• Flexible congestion control

• Multiplexing without head-of-line blocking

• Authenticated and encrypted payload

• Stream and connection flow control

• Connection migration

QUIC uses encrypted transport handshake to establish

a secure transport connection. After a successful hand-

shake, the client caches the server information including the

hostname and the port number. In subsequent connections

with the same server, the client can establish an encrypted

connection directly with the server without any additional

handshakes. Encrypted packets from the client can be sent

immediately (i.e., 0-RTT).

14838 VOLUME 9, 2021



J. Zhang et al.: Formal Analysis of QUIC Handshake Protocol Using Symbolic Model Checking

FIGURE 3. Comparison of the QUIC initial 1-RTT handshake process and
the TCP/TLS initial 3-RTT handshake process.

In order to perform the 0-RTT handshake, the client needs

to obtain verified configuration and authentication informa-

tion from the server. Initially, we assume that the client con-

tains no server information. Before attempting the first hand-

shake, the client sends a hello message to elicit the configu-

ration and proof of authenticity from the server. There could

be several rounds of client hellos before the client receives all

the information that it needs because the server may refuse to

send entire proof of authenticity to an unvalidated IP address.

Upon a client hello message, the server either sends a

rejectionmessage, or a server hello. The server hello indicates

a successful handshake and can never result from an inchoate

client hello as it doesn’t contain enough information to per-

form a handshake. Rejection messages contain information

that the client can use to perform subsequent better handshake

attempts.

The flow of the QUIC handshake process as defined in the

IETF document [32] is shown in Fig.4.

• Since the client does not cache the server configuration

information in the beginning, the client needs to send

a hello message (CHLO) to the server to get the reject

message (REJ) from the server.

• When the server receives a CHLO message, it sends the

REJ message to the client. The REJ message contains

the following parts: (1) the config information including

the server’s long-termDiffie-Hellman public value, (2) a

certificate chain authenticating the server, (3) a signature

of the server config using the private key from the leaf

certificate of the chain, and (4) a source address token

(as an authenticated encryption block).

• When the client receives the server’s configuration

information, it validates the configuration information

with the server’s certificate and signature, and calcu-

lates its initial secret key using the server’s long-term

Diffie-Hellman public value and its own ephemeral

Diffie-Hellman private key. It then sends the complete

CHLO message to the server, including its ephemeral

Diffie-Hellman public value.

• If the handshake is successful, the server calculates the

initial keys using the client’s ephemeral Diffie-Hellman

FIGURE 4. Initial 1-RTT handshake process of QUIC.

public value and its long-term Diffie-Hellman pri-

vate value. Moreover, it calculates its own ephemeral

Diffie-Hellman public value using its ephemeral

Diffie-Hellman private value and calculates its final

keys using the client’s ephemeral Diffie-Hellman pub-

lic value and its ephemeral Diffie-Hellman private

value. It sends its ephemeral Diffie-Hellman public

value encrypted with the initial secret key as a server

hello message (SHLO) to the client. Finally, the server

encrypts subsequent communication data using its

forward-secure key.

• When the client receives the SHLOmessage, it sends the

packet encrypted with its forward-secure key.

The detailed steps of the QUIC handshake process are

depicted in Fig.5 and Table. 1.

B. REQUIRED SECURITY PROPERTIES

The IETF document [32], [33] provides informal descrip-

tions of the security requirements for the QUIC protocol.

We extract the descriptions that directly affect the QUIC

security properties from the informal specifications.

Fig.6 shows the description of the authentication property

of the QUIC handshake protocol [32], [33]. The client must

be able to authenticate the identity of the server and the server

should have the ability to authenticate the client. In other

words, the QUIC handshake protocol guarantees that the

client and the server can authenticate each other. Therefore,

authentication can be thought of as the client and server agree-

ing on each other’s identity and security key. We summarize

the authentication properties of the QUIC handshake protocol

as follows:

VOLUME 9, 2021 14839



J. Zhang et al.: Formal Analysis of QUIC Handshake Protocol Using Symbolic Model Checking

FIGURE 5. The detailed steps of the QUIC handshake process.

TABLE 1. Protocol messages and their annotations.

A1 Both the client and the server should agree on the corre-

spondence after successful termination.

A2 Both the client and the server should agree on the request

message ReqM after successful termination.

A3 Both the client and the server should agree on the

response message ResM after successful termination.

For the confidentiality requirement of the QUIC handshake

protocol, we extract and show themost relevant description in

Fig.7. We also assume that the client and the server have the

ability to verify each other’s certificates. The document [32]

specifies the confidentiality of the forward key (F1) and the

session messages (S1, S2). We interpret these requirements

as the following secrecy properties.

FIGURE 6. Definition of authentication (from [33] p.16).

FIGURE 7. Definition of confidentiality (from [32] p.69).

F1 The forward key FSKC or FSKS that is captured in

the current session by the attacher cannot affect the

confidentiality of the other sessions.

S1 The adversary must not be able to obtain the request

message ReqM .

S2 The adversary must not be able to obtain the response

message ResM .

IV. FORMAL MODEL OF THE QUIC HANDSHAKE

PROTOCOL

In this section, we report the formal model of the QUIC

handshake protocol.

14840 VOLUME 9, 2021



J. Zhang et al.: Formal Analysis of QUIC Handshake Protocol Using Symbolic Model Checking

A. ATTACKER MODEL AND THE PERFECT CRYPTOGRAPHY

ASSUMPTION

In our work, we assume that the participants in the agreement

are honest. In other words, the client and server strictly fol-

low the specification of the protocol. We also consider the

existence of an attacker who has complete control over the

message on the public channel. In other words, the attacker

can intercept, tamper and replay the information on the public

channel. However, the attacker cannot decrypt the ciphertext

without knowing the correct secret key. This attacker model

is called the Dolev-Yao model [34].

An important feature of the symbolic model is the assump-

tion of perfect cryptography.We represent symmetric encryp-

tion with a binary constructor senc(). This constructor takes

two arguments, one is of type bitstring and another is of

type key. Its return value is the ciphertext of type bitstring.

Similarly, the decryption function is represented by a destruc-

tor sdec(). The relationship between the encryption function

and the decryption function can be expressed by the for-

mula sdec(senc(m, k), k) = m. The formula shows that the

encryption function senc(m, k) can only get the message m

by decrypting it with the same secret key k .

We define a digital signature as a constructor function

sign(), which relies on a pair of asymmetric keys. We define

the private key as skey and the public key as pk . As a function

to verify the signature, we represent it with a destructor

checksign().

The Diffie-Hellman key agreement algorithm is modeled

as follows:

Where g is the generator, and exp models modular

exponentiation exp(x, y) = xy. The equation means that

(gx)y = (gy)x .

The public channel between client and server is modeled c.

B. QUIC HANDSHAKE PROTOCOL IN APPLIED PI

CALCULUS

1) SYMBOLIC PROTOCOL MODEL

Client process is shown in Fig. 8. First, the client sends an

InchoateCHLO message on the channel c. We remark that

an attacker can access this public channel. Then it waits for

FIGURE 8. The client process in applied pi calculus.

the message including five variables bounded to variables

x1, x2, x3, x4 and pkX respectively. After that, the client

checks if the variables x3 and pkX are respectively certificate

and public key pkS of the server. Then the client checks

the signature of x2 using variable pkX , which is the public

key belonging to the server. If the result of the signature

check is equivalent to x1, then the client calculates its initial

key InitKC using x1 and its ephemeral private value CEPri.

Subsequently, it sends the ephemeral public value CEPub

(exp(g,CEPri)) and the ciphertext of the request message

(enc(ReqM , InitKC)) on the channel. Then it waits for a mes-

sage of form (x5, x6). When the client captures the message,

it decrypts the variable x5 using its initial key InitKC , and

then bounds the return to variable x7. Normally, the variable

x7 should be the server’s ephemeral public value. Finally, the

client calculates its forward-secure key FSKC using variable

x7 and its ephemeral private value CEPri, and decrypts the

ciphertext x6 using the forward-secure key FSKC . In order to

specify authentication, we add specific events to the protocol

model, which we will explain later.

Server process is shown in Fig. 9. First, the server bounds

the message of its input to variable x1. It checks whether x1

is the legal inchoate client hello (InchoateCHLO). Then the

server sends its certificate (CertServer), the long-term public

value LPub (exp(g,LPri)), the signature of LPub, Token and

its public key pkS on the channel c. Next, the server waits

for the message including two parts which are respectively

bounded to x2 and x3. It obtains its initial key InitKS using

x2 and the long-term private value LPri. The server checks if

the ciphertext x3 is the request message using InitKS. Then

the server calculates the SEPub with SEPri and obtains its

forward-secure key FSKS with x2 and SEPri. Finally, it sends

the ciphertext of SEPub and response message (ResM ) on the

channel c.

The protocol process is shown in Fig. 10. First, the process

declares the initial secret keys of the protocol, such as InitKC

and InitKS, and then generates the privates key skS and sends

VOLUME 9, 2021 14841



J. Zhang et al.: Formal Analysis of QUIC Handshake Protocol Using Symbolic Model Checking

FIGURE 9. The server process in applied pi calculus.

FIGURE 10. The protocol process in applied pi calculus.

the corresponding public keys on the public channel c. Then,

it declares that both the client process and the server process

are the parallel composition of infinite replications.

2) SECURITY PROPERTY SPECIFICATION

In ProVerif, a fact is modeled as a ground term. To prove the

secrecy of a termM , ProVerif essentially solves a reachability

problem, i.e., whether the attacker can reach a state where the

termM is available. In this work, ProVerif takes the following

queries in the protocol model to check the secrecy of the

request message ReqM and the response message ResM .

query attacker(new ReqM )

query attacker(new ResM )

ProVerif is able to verify the forward confidentiality of the

protocol by providing a temporal branch called phase. For

example, we use the following queries to specify the scenario:

when the secret keys of a protocol participant are leaked to the

attacker at phase 1, the attacker cannot use the obtained secret

keys to decrypt messages at phase 0.

query attacker(new FSKC) phase 0

query attacker(new FSKS) phase 0

phase 1; out(c, FSKC)

phase 1; out(c, FSKS)

Authentication properties are captured by correspondence

assertions, which can express the relationships between

events in the form ‘‘if some event has been executed

in the protocol, then some other event has been pre-

viously executed.’’ In ProVerif, events are of the form

event e(M1, . . . ,Mn) and the query of a correspondence

assertion is

query x1 : t1, . . . , xn : tn; event(e(M1, . . . ,Mj))

⇒ event(e′(N1, . . . ,Nk ))

where terms M1, . . . ,Mj, N1, . . . ,Nk are built by applying

constructors to variables x1, . . . , xn. The query is satisfied

if, for each occurrence of event e(M1, . . . ,Mj), there is a

previous execution of event e′(N1, . . . ,Nk ). There is also

a stronger variant of correspondence assertion, where can

capture the one-to-one relationship between events. They are

often called injective correspondence assertions, which take

the form:

query x1 : t1, . . . , xn : tn; inj− event(e(M1, . . . ,Mj))

⇒ inj− event(e′(N1, . . . ,Nk ))

Informally, this correspondence asserts that, for each

occurrence of the event e(M1, . . . ,Mj), there is a distinct

earlier occurrence of the event e′(N1, . . . ,Nk ). This dif-

fers from the previous correspondence assertions in that no

single event e′(N1, . . . ,Nk ) can map to two more events

e1(M1, . . . ,Mj), e2(M
′
1, . . . ,M

′
j ).

In this work, we declare the following events in the formal

model:

• event InitC(x), indicating the client believes that she

has accepted to run the protocol with the server and the

supplied parameter;

• event InitS(x), indicating the server believes that she

has accepted to run the protocol with the client and the

supplied parameter;

• event EndC(x), indicating the client believes that she

has terminated a protocol run using the given parameter;

• event EndS(x), indicating the server believes that she

has terminated a protocol run using the given parameter;

• event sendReqM (x), indicating the client believes that

she has transmitted the request message to the server

given as the parameter;

• event acceptReqM (x), indicating the server believes

that she has accepted the request message from the client

given as the parameter.

• event sendResM (x), indicating the server believes that

she has transmitted the response message to the client

given as the parameter;

• event acceptResM (x), indicating the client believes that

she has accepted the response message from the server

given as the parameter.

Therefore, we consider the following correspondence

assertions to prove authentication properties.

• query x : bitstring; inj−event(acceptReqM (x))⇒ inj−

event(sendReqM (x)).

• query x : bitstring; inj−event(acceptResM (x)) ⇒ inj−

event(sendResM (x)).

14842 VOLUME 9, 2021



J. Zhang et al.: Formal Analysis of QUIC Handshake Protocol Using Symbolic Model Checking

FIGURE 11. The Verifpal model of the QUIC handshake protocol.

• query x : bitstring; inj − event(EndS(x)) ⇒ inj −

event(InitC(x)).

• query x : G; inj − event(EndC(x)) ⇒ inj −

event(InitS(x)).

C. QUIC HANDSHAKE PROTOCOL IN VERIFPAL

1) SYMBOLIC PROTOCOL MODEL

Verifpal also follows the perfect cryptography assumption.

It offers a rich set of primitives to capture cryptographic func-

tions. In the following, we show the declaration of symmetric

encryption and decryption in Verifpal.

Verifpal supports both classic signature primitive and

authenticated signature with a corresponding signature ver-

ification function as shown in the following.

The Diffie-Hellman arithmetic is declared as follows,

whereG is the root and gxy and gyx are considered equivalent

according to the property of discreate logarithm.

Verifpal considers both passive and active attackers. In the

passive mode, the attacker can only obtain the messages on

the public channel but cannot tamper or inject the messages.

For the active model, the attacker is able to modify messages

in a certain manner and inject the new messages into the

protocol executions. We use the same parameters as in IV-B

and present the QUIC handshake protocol model in Verifpal

as shown in Fig. 11. Unlike ProVerif, Verifpal models the

protocol in a way that is closer to the flowchart of the pro-

tocol interaction. Therefore, we can directly map the QUIC

handshake protocol model in Verifpal to the protocol steps in

Fig.5 and the revised protocol model is shown in Fig.12.

Verifpal uses principal to represent the actions of each pro-

tocol participant. The transmission of messages is described

in the following way:

RoleA− > RoleB : message1, [message2].

This expression means that the protocol role RoleA sends

messages message1 and message2 to another role RoleB.

Notice that, message2 is surrounded by brackets []. This

makes the message2 a guarded constant, meaning that while

an active attacker can still read it, they cannot tamper with

it. This approach satisfies the protection of consensus mes-

sages. We use it to ensure that an honest participant agrees

that the message is not compromised by an attacker. In our

work, we add the bracket for the message CHLO, the server’s

certification CertServer and the server’s public key pkS. The

reason is that CHLO is the specific message at the beginning

of the protocol and this message should be consensual by both

the client and the server. Also, we assume that the client has

obtained CertServer and pkS before the protocol execution.

In the beginning, we define a variable CHLO as the client

hello message through the keyword generates in the first

principal. This keyword allows a principal to describe a fresh

value, i.e. a value that is regenerated every time the protocol

is executed. Verifpal provides another keyword knows to

define constants. In this principal, we define a public constant

c0 with the keyword knows. This constant c0 represents an

additional payload that is not encrypted, but provided exactly

in the decryption function for a successful decryption.We use

client− > server : [CHLO] to indicate that the client sends

the message CHLO to the server.

In the next principal, we define the server’s certificate

(CertServer), token (Token), and long-term private value

(LPri) as three variables. In addition to defining the con-

stant c0, we also define a server’s private key skS. Through

equation pkS = G ˆ skS, we bind the server’s public key pk

VOLUME 9, 2021 14843



J. Zhang et al.: Formal Analysis of QUIC Handshake Protocol Using Symbolic Model Checking

FIGURE 12. The detailed steps of the QUIC handshake protocol in Verifpal.

to its private key skS. Similar to the asymmetric secret key,

we bind the server’s long-term private value to its long-term

public value using LPub = G ˆ LPri. For the signature of

the server’s config, we use the specific constructor sign() to

sign the long-term public value of the server with the server’s

private key skS, and bind the return to the value ssign. We use

server− > client : [CertServer],Token,LPub, ssign, [pkS]

to indicate that the server sends messages to the client.

As the next step in the protocol execution, the client

can verify the received signature by using the pub-

lic key pkS of the server, which is defined as _ =

SIGNVERIF(pkS,LPub, ssign)?. This definition means that

the execution will abort when SIGNVERIF fails to verify

the signature ssign against the provided message LPub and

the public key pkS. The behavior of the client calculating

the initial secret key InitKC is defined as InitKC = LPub ˆ

CEPri. We use e_ReqM = AEAD_ENC(InitKC,ReqM , c0)

to express the symmetric encryption where e_ReqM rep-

resents the value of the ciphertext, InitKC represents the

encryption key, ReqM represents the encrypted message

and c0 is the public constant of the encryption. We use

client− > server : CEPub, e_ReqM to indicate the sending

from the client.

In the next principal, the server calculates the initial

key InitKS and the forward-secure key FSKS. We use

e_ReqMx = AEAD_DEC(InitKS, e_ReqM , c0)? to express

the symmetric decryption where e_ReqMx is the plaintext

obtained after decryption and InitKS is the decryption key.

The server then sends the ciphertext e_ReqM and e_SEPub

to the client: server− > client : e_ResM , e_SEPub.

In the last principal, the client decrypts the ciphertext

e_SEPub and calculates its forward-secure key FSKC . The

expression _ = AEAD_DEC(FSKC, e_ResM , c0)? means

whether the client can correctly decrypt e_ResM by using

FSKC and c0.

2) SECURITY PROPERTY SPECIFICATION

Verifpal takes a different approach to specify the security

properties: while is being analyzed the model, the outputs

note which values can deconstruct, conceive of, or recon-

struct. When a contradiction is found for a query, the result is

related in a readable format that ties the attack to a real-world

scenario. This is done by using some terminology to indicate

how the attack could have been possible, such as through a

man-in-the-middle attack on ephemeral keys [19].

To prove the secrecy of a message, Verifpal provides con-

fidentiality queries check:

confidentiality? ResM

confidentiality? ReqM

The above check asks: ‘‘can the attacker obtain the request

message ReqM and the response message ReqM?’’, where

ReqM and ResM are the sensitive messages. If the attacker

satisfies the above query, it can obtain the messages.

Similar to ProVerif, Verifpal uses phases to simulate the

leaking of secret keys at the different temporal branch. There-

fore, it is also able to verify the forward confidentiality of the

protocol participant’s secret key. For example, Verifpal can

leak the principal’s secret key FSKC and FSKS to the attacker

in phase 1, the attacker cannot use the obtained secret keys to

decrypt messages in phase 0.

phase[1]

principal client [leaks FSKC]

principal server [leaks FSKS]

In Verifpal, the authentication queries are more complex

than the confidential queries. For instance, the following

queries ask: ‘‘if the client (or server) successfully decrypts

and authenticates the ciphertext ofResM (orReqM ), does that

necessarily mean that the server (or client) sent the ciphertext

e_ResM (or e_ReqM ) to the client (or server)?’’.

authentication?client− > server : e_ReqM

authentication?server− > client : e_ResM

14844 VOLUME 9, 2021



J. Zhang et al.: Formal Analysis of QUIC Handshake Protocol Using Symbolic Model Checking

This means that if an attacker can induce the client (or server)

to decrypt the ciphertext e_ResM (or e_ReqM ), then the

attacker has successfully impersonated the server (or client).

3) COMPARISON OF THE TWO MODELS

The two models differ from each other in both protocol mod-

eling and property specification. ProVerif offers the complex

message types as well as user-defined types, which however

are not declared inVerifpal. By forbidding user-defined types,

Verifpal avoids the modeling uncertainty associated with the

message types.

ProVerif defines a channel in the form of free c :

channel[private], where c is the name of a private channel.

When the keyword private is not added, a public channel is

declared instead. In Proverif, communication is captured by

input and output events. The input event in(m, x : t) means

that a message of type t from the channel m is expected

and bounded to variable x when received. Similarly, the

output event out(m, n) sends the message m on the chan-

nel n. For instance, in the QUIC handshake protocol, event

out(c,CHLO) indicates that the message CHLO is sending

on the public channel c and at the same time event in(c, x1 :

bitstring) indicates a message of type bitstring is receiving on

the channel c.

Verifpal models communication in a much simpler and

straightforward manner. It does not declare any channels but

represents the message passing in the form of client− >

server : message. For instance, the same passing message

event above is modeled by client− > server : CHLO. The

drawback however is that the lack of channel descriptions

makes it difficult to consider private channels.

ProVerif describes each role of the protocol as a complete

process, whereas Verifpal is different from that it describes

the behavior of the protocol roles in the message-passing

order, which is similar to the execution flow of the protocol

and makes the model easier to understand.

In modeling message confidentiality, ProVerif and Verifpal

both use a similar approach. They provide a confidentiality

query to determine whether an attacker has access to the

sensitive messages. For forward confidentiality, they both use

the concept of phases, which enables the protocol to validate

forward confidentiality of messages in multiple sessions. In

terms of authentication, ProVerif uses events in the protocol

process model to determine whether authentication is sat-

isfied. In contrast, the Verifpal model is relatively concise

and its determination of authentication is similar to confi-

dentiality why does not require adding additional expressions

artificially in the protocol process.

V. RESULTS

We apply ProVerif 2.00 and Verifpal 0.18.1 respectively to

verify the QUIC handshake protocol model and give the

experimental results in Table 2. The secrecy properties S1,F1

and the agreement property A3 are satisfied, while the agree-

ment properties A1,A2 and the secrecy property S2 are vio-

lated. The violation of properties A1 and A2 means that both

the client and the server cannot agree on the correspondence

and the request message ReqM after successful terminations.

While the violation of property S2 means that the adversary

is able to obtain the request message ReqM . The reason

for these violations is that the protocol designer ignores the

protection of CEPub. Although the transmission of CEPub

in plaintext does not give an attacker access to the session

secret key, an attacker can easily disguise himself as some

legitimate client to complete the protocol handshake with the

server. In other words, it means that the server does not have

the ability to authenticate the client.

In terms of efficiency, ProVerif outperforms Verifpal in

almost all experiments. We give a brief explanation in the

following. ProVerif represents the protocol in an extension of

the applied pi calculus. This representation is then translated

into an abstract representation by Horn clauses, which is used

to prove the desired correspondence. Therefore, the protocol

can be verified by this method is less than 1s. Notice that

ProVerif can verify complex protocol models, such as the

5G EAP-TLS protocol [14], in seconds. Verifpal separates

protocol analysis into five stages in which it gradually allows

itself to modify more and more elements of principals’ states

[19]. Verifpal validates each property from the first stage.

Some properties may get the result in the first stage analysis,

while others may need to analyze all five stages to get the

result. Therefore, Verifpal probably takes more time on the

protocol analysis than ProVerif. In fact, this few seconds gap

indeed indicate a large efficiency difference between the two

verifiers in formal verification. This gap will be even more

obvious in complex models.

As for the correctness of our formal models, we take two

complementary verifiers to perform the modelling and ver-

ification. In particular, the tool Verifpal provides a straight-

forward and intuitive modelling language, that fits well with

the protocol interaction flow. And, the protocol interaction

flow is obtained directly from the protocol standardization

document. Thus, we believe that the formal protocol model

is faithful for analysis. Moreover, both verifiers (i.e., Verifpal

and ProVeirf) produce the same counterexample, which can-

not happen if one of the formal model is incorrect. We also

look at the counterexample closely and analyze its feasibility,

which gives us confidence that this counterexample is due to

some design flaws.

A. COUNTER EXAMPLE AND A POSSIBLE FIX

ProVerif and Verifpal can generate the counterexamples for

the violated properties. We do not report their complex out-

put in this article. We discuss the defects and fix of the

QUIC handshake protocol later. In Fig. 13, we represent

the attacker’s behavior and messages in red. We expose the

models and results of this article in the Github repository.1

The QUIC handshake protocol uses the Diffie-Hellman

algorithm twice to calculate the initial keys and the

forward-secure keys. The client transmits the CEPub to the

1https://github.com/bxk2008/model-QUIC

VOLUME 9, 2021 14845



J. Zhang et al.: Formal Analysis of QUIC Handshake Protocol Using Symbolic Model Checking

TABLE 2. Comparison of the verification results by Proverif and Verifpal.

FIGURE 13. The counterexample for property A1, A2 and S2.

FIGURE 14. The revised QUIC handshake protocol.

server without any protection, such as signature or encryp-

tion. The server cannot confirm that CEPub is from a legiti-

mate client. The attacker can impersonate the legal client to

complete the handshake process with the server. Therefore,

the properties A1,A2, S2 are violated, the counterexample is

shown in Fig. 13. However the server signs its LPubmessage,

the attacker cannot impersonate the server to complete the

handshake process with the client. As a possible fix, we pro-

pose a revised QUIC handshake protocol shown in Fig.14.

First, we add a nonce R when the client sends the CHLO

message to the server. And then we sign both CEPub and

the nonce R with the private key of the client and send it

to the server along with the public key certificate of the

client. Therefore, the attacker cannot impersonate the client to

complete the initial key calculation with the server. We have

verified the newly revised QUIC handshake protocol shown

in Fig.14, and the newly added elements are marked in red.

Our analysis shows that this revised protocol satisfies all the

security properties we have considered.

VI. CONCLUSION

In this work, we first investigate the IETF documents of

QUIC and extract the security properties that QUIC hand-

shake protocol should be satisfied. Then we model the QUIC

handshake protocol and verify its properties using two state-

of-the-art symbolic model checkers, namely ProVerif and

Verifpal. We also discuss the differences between ProVerif

and Verifpal in both protocol modeling and property spec-

ification. We also give a comparison of their performance

in verifying the QUIC handshake protocol. The verification

14846 VOLUME 9, 2021



J. Zhang et al.: Formal Analysis of QUIC Handshake Protocol Using Symbolic Model Checking

results reveal a defect of the protocol design. Furthermore,

we also propose a possible fix to repair this design defect.

Our analysis is based on the symbolic model checking,

we remark that our analysis is based on the assumption

that the cryptographic primitives are perfect. For instance,

the hash functions are perfect one-way functions, and not

susceptible to attacks like the length extension attack. This

is the fundamental difference between tools like ProVerif and

Verifpal which operate in the symbolic model, and the other

tool like CryptoVerif [35] which operates in the computa-

tional model.

In the future, we would like to go one step further to

investigate the correctness of the protocol implementations,

with respect to the specification. One possible technique to

achieve this goal is configurable software verification [36].

We will also extend the current work to the computational

cryptography model, where the cryptographic primitives are

no longer assumed to be perfect, but the probability of break-

ing the cryptographic primitives is taken into account.

REFERENCES

[1] A. Langley, A. Riddoch, A.Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,

F. Kouranov, I. Swett, J. Iyengar, and J. Bailey, ‘‘The QUIC transport

protocol: Design and Internet-scale deployment,’’ in Proc. Conf. ACM

Special Interest Group Data Commun., SIGCOMM, Los Angeles, CA,

USA, Aug. 2017, pp. 183–196, doi: 10.1145/3098822.3098842.

[2] L. Hirschi, R. Sasse, and J. Dreier, ‘‘Security issues in the 5G standard

and how formal methods come to the rescue,’’ ERCIM News, vol. 2019,

no. 117, 2019.

[3] D. Basin, C. Cremers, and C. Meadows, ‘‘Model checking security proto-

cols,’’ in Handbook of Model Checking, E. M. Clarke, T. A. Henzinger,

H. Veith, and R. Bloem, Eds. Cham, Switzerland: Springer, 2018,

pp. 727–762, doi: 10.1007/978-3-319-10575-8_22.

[4] G. Lowe, ‘‘An attack on the needham-schroeder public-key authen-

tication protocol,’’ Inf. Process. Lett., vol. 56, no. 3, pp. 131–133,

Nov. 1995.

[5] J. C. Mitchell, M. Mitchell, and U. Stern, ‘‘Automated analysis of cryp-

tographic protocols using murφ,’’ in Proc. IEEE Symp. Secur. Privacy,

May 1997, pp. 141–151.

[6] D. X. Song, ‘‘Athena: A new efficient automatic checker for security

protocol analysis,’’ in Proc. 12th IEEE Comput. Secur. Found. Workshop,

Jun. 1999, pp. 192–202.

[7] E. M. Clarke, S. Jha, and W. Marrero, ‘‘Verifying security protocols with

brutus,’’ ACM Trans. Softw. Eng. Methodol., vol. 9, no. 4, pp. 443–487,

Oct. 2000.

[8] A. Armando and L. Compagna, ‘‘SATMC: A SAT-based model checker

for security protocols,’’ in Logics in Artificial Intelligence, J. J. Alferes

and J. Leite, Eds. Berlin, Germany: Springer, 2004, pp. 730–733.

[9] D. Basin, S. Mödersheim, and L. Vigano, ‘‘OFMC: A symbolic model

checker for security protocols,’’ Int. J. Inf. Secur., vol. 4, no. 3, pp. 181–208,

Jun. 2005.

[10] V. Cortier, S. Delaune, and P. Lafourcade, ‘‘A survey of algebraic prop-

erties used in cryptographic protocols,’’ J. Comput. Secur., vol. 14, no. 1,

pp. 1–43, Feb. 2006.

[11] B. Blanchet, ‘‘Modeling and verifying security protocols with the applied

pi calculus and ProVerif,’’ Found. Trends Privacy Secur., vol. 1, nos. 1–2,

pp. 1–135, 2016.

[12] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler,

‘‘A formal analysis of 5G authentication,’’ in Proc. ACM SIGSAC Conf.

Comput. Commun. Secur., Oct. 2018, pp. 1383–1396.

[13] C. Cremers and M. Dehnel-Wild, ‘‘Component-based formal analysis of

5G-AKA: Channel assumptions and session confusion,’’ in Proc. Netw.

Distrib. Syst. Secur. Symp., Feb. 2019, pp. 1–15.

[14] J. Zhang, L. Yang, W. Cao, and Q. Wang, ‘‘Formal analysis of 5G

EAP-TLS authentication protocol using proverif,’’ IEEE Access, vol. 8,

pp. 23674–23688, 2020.

[15] M. Abadi, B. Blanchet, and C. Fournet, ‘‘The applied pi calculus: Mobile

values, new names, and secure communication,’’ J. ACM, vol. 65, no. 1,

pp. 1–41, Jan. 2018.
[16] H. Comon-Lundh, S. Delaune, and J. K. Millen, ‘‘Constraint solving

techniques and enriching the model with equational theories,’’ in Formal

Models and Techniques for Analyzing Security Protocols (Cryptology

and Information Security Series), vol. 5, V. Cortier and S. Kremer, Eds.

Amsterdam, The Netherlands: IOS Press, 2011, pp. 35–61.
[17] B. Blanchet, ‘‘Using horn clauses for analyzing security protocols,’’ in For-

mal Models and Techniques for Analyzing Security Protocols (Cryptology

and Information Security Series), vol. 5, V. Cortier and S. Kremer, Eds.

Amsterdam, The Netherlands: IOS Press, Mar. 2011, pp. 86–111.
[18] B. Blanchet, ‘‘An efficient cryptographic protocol verifier based on prolog

rules,’’ in Proc. 14th IEEE Comput. Secur. Found. Workshop, Jun. 2001,

pp. 82–96.
[19] N. Kobeissi, G. Nicolas, and M. Tiwari, ‘‘Verifpal: Cryptographic protocol

analysis for the real world,’’ in Proc. 21st Int. Conf. Cryptol. India Prog.

Cryptol. (INDOCRYPT), Bengaluru, India, Dec. 2020, pp. 151–202.
[20] S. Meier, B. Schmidt, C. Cremers, and D. Basin, ‘‘The tamarin prover for

the symbolic analysis of security protocols,’’ in Computer Aided Verifica-

tion, N. Sharygina and H. Veith, Eds. Berlin, Germany: Springer, 2013,

pp. 696–701.
[21] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe,

‘‘A comprehensive symbolic analysis of TLS 1.3,’’ in Proc. ACM SIGSAC

Conf. Comput. Commun. Secur., Oct. 2017, pp. 1773–1788.
[22] K. Bhargavan, B. Blanchet, and N. Kobeissi, ‘‘Verified models and refer-

ence implementations for the TLS 1.3 standard candidate,’’ in Proc. IEEE

Symp. Secur. Privacy (SP), May 2017, pp. 483–502.
[23] N. Kobeissi, K. Bhargavan, and B. Blanchet, ‘‘Automated verification

for secure messaging protocols and their implementations: A symbolic

and computational approach,’’ in Proc. IEEE Eur. Symp. Secur. Privacy

(EuroS&P), Apr. 2017, pp. 435–450.
[24] B. Blanchet, ‘‘A computationally sound mechanized prover for security

protocols,’’ IEEE Trans. Depend. Sec. Comput., vol. 5, no. 4, pp. 193–207,

Oct. 2008.
[25] K. L. Mcmillan and L. D. Zuck, ‘‘Formal specification and testing of

QUIC,’’ in Proc. ACM Special Interest Group Data Commun., Aug. 2019,

pp. 227–240, doi: 10.1145/3341302.3342087.
[26] C. Troncoso et al., ‘‘Decentralized privacy-preserving proximity trac-

ing,’’ 2020, arXiv:2005.12273. [Online]. Available: http://arxiv.org/abs/

2005.12273
[27] M. R. Kanagarathinam, S. Singh, S. R. Jayaseelan, M. K. Maheshwari,

G. K. Choudhary, and G. Sinha, ‘‘QSOCKS: 0-RTT proxification design

of SOCKS protocol for QUIC,’’ IEEE Access, vol. 8, pp. 145862–145870,

2020, doi: 10.1109/ACCESS.2020.3013524.
[28] A. Rasool, G. Alpár, and J. de Ruiter, ‘‘State machine inference of

QUIC,’’ 2019, arXiv:1903.04384. [Online]. Available: http://arxiv.org/abs/

1903.04384
[29] X. Cao, S. Zhao, and Y. Zhang, ‘‘0-RTT attack and defense of QUIC

protocol,’’ in Proc. IEEE Globecom Workshops (GC Wkshps), Dec. 2019,

pp. 1–6, doi: 10.1109/GCWkshps45667.2019.9024637.
[30] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru, ‘‘How secure

and quick is QUIC? Provable security and performance analyses,’’ in

Proc. IEEE Symp. Secur. Privacy, May 2015, pp. 214–231, doi: 10.1109/

SP.2015.21.
[31] J. Zhang, L. Yang, X. Gao, and Q. Wang, ‘‘Formal analysis of QUIC

handshake protocol using ProVerif,’’ in Proc. 7th IEEE Int. Conf. Cyber

Secur. Cloud Comput. (CSCloud)/ 6th IEEE Int. Conf. Edge Comput.

Scalable Cloud (EdgeCom), Aug. 2020, pp. 132–138.
[32] J. Iyengar and M. Thomson, ‘‘QUIC: A UDP-based multiplexed and

secure transport,’’ in Proc. Internet Eng. Task Force, Internet-Draft

Draft-Ietf-Quic-Transp.-27. Work Prog., Feb. 2020. [Online]. Available:

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-27
[33] J. Iyengar and M. Thomson, ‘‘Using TLS to secure QUIC,’’ in Proc. Inter-

net Eng. Task Force, Internet-Draft Draft-Ietf-Quic-Tls-27. Work Prog.,

Feb. 2020. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-

ietf-quic-transport-27
[34] D. Dolev and A. Yao, ‘‘On the security of public key protocols,’’ IEEE

Trans. Inf. Theory, vol. IT-29, no. 2, pp. 198–208, Mar. 1983.
[35] B. Blanchet. (2017). Cryptoverif: A Computationally-Sound Secu-

rity Protocol Verifier. [Online]. Available: https://prosecco.gforge.inria.

fr/personal/bblanche/cryptoverif/cryptove%rif.pdf
[36] D. Beyer, T. A. Henzinger, and G. Théoduloz, ‘‘Configurable software

verification: Concretizing the convergence of model checking and program

analysis,’’ in Proc. 19th Int. Conf. Comput. Aided Verification CAV, Berlin,

Germany, Jul. 2007, pp. 504–518, doi: 10.1007/978-3-540-73368-3_51.

VOLUME 9, 2021 14847

http://dx.doi.org/10.1145/3098822.3098842
http://dx.doi.org/10.1007/978-3-319-10575-8_22
http://dx.doi.org/10.1145/3341302.3342087
http://dx.doi.org/10.1109/ACCESS.2020.3013524
http://dx.doi.org/10.1109/GCWkshps45667.2019.9024637
http://dx.doi.org/10.1109/SP.2015.21
http://dx.doi.org/10.1109/SP.2015.21
http://dx.doi.org/10.1007/978-3-540-73368-3_51


J. Zhang et al.: Formal Analysis of QUIC Handshake Protocol Using Symbolic Model Checking

JINGJING ZHANG received the B.S. degree

in information security from Beijing Informa-

tion Science and Technology University, Beijing,

China, and the M.S. degree in electronics and

communication engineering from the Beijing Uni-

versity of Posts and Telecommunications, Beijing,

China. He is currently pursuing the Ph.D. degree

with the College of Command and Control

Engineering, Army Engineering University of

PLA. His research interest includes formal anal-

ysis of security protocols from the perspective of design models and

implementations.

LIN YANG received the M.S. degree in automa-

tion and the Ph.D. degree in communication and

electronic system from the National University of

Defense Technology, Changsha, Hunan, in 1995

and 1999, respectively. From 2005, hewas a Senior

Engineer with the China Electronic Equipment

and SystemEngineering Corporation. His research

interests include computer security, information

system security, network security, trusted com-

puting, security protocol analysis, and big-data

security.

XIANMING GAO received the Ph.D. degree

in computer science and technology from the

National University of Defense Technology,

Changsha, Hunan, in 2017. Since 2017, he has

been an Engineer with the China National

Key Laboratory of Science and Technology

on Information System Security. His current

research interests include future network archi-

tecture, intelligence routing protocol, and network

security.

GAIGAI TANG received the B.S. degree in ther-

mal engineering from Tianjin Chengjian Uni-

versity, Tianjin, China, and the M.S. degree in

naval architecture and marine engineering from

the Jiangsu University of Science and Technology,

Zhenjiang, Jiangsu, China. He is currently pursu-

ing the Ph.D. degree in information technology

with Harbin Engineering University. His research

interests include software security and machine

learning.

JIYONG ZHANG (Member, IEEE) received the

B.S. and M.S. degrees in computer science from

Tsinghua University, in 1999 and 2001, respec-

tively, and the Ph.D. degree in computer science

from the Swiss Federal Institute of Technology at

Lausanne (EPFL), in 2008. He is currently a Dis-

tinguished Professor with Hangzhou Dianzi Uni-

versity. His research interests include intelligent

information processing, machine learning tech-

niques, data sciences, and recommender systems.

QIANG WANG received the bachelor’s and mas-

ter’s degrees from the National University of

Defense Technology, in 2010 and 2012, respec-

tively, and the Ph.D. degree from the Swiss

Federal Institute of Technology at Lausanne

(EPFL), Switzerland, in 2017, where he has

been a key person in the development of the

component-based embedded system design frame-

work BIP. His current research interests include

formal verification techniques and tools for safety

and security critical systems.

14848 VOLUME 9, 2021


