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ABSTRACT
Single-Sign-On (SSO) protocols enable companies to estab-
lish a federated environment in which clients sign in the
system once and yet are able to access to services offered by
different companies. The OASIS Security Assertion Markup
Language (SAML) 2.0 Web Browser SSO Profile is the emerg-
ing standard in this context. In this paper we provide for-
mal models of the protocol corresponding to one of the
most applied use case scenario (the SP-Initiated SSO with
Redirect/POST Bindings) and of a variant of the protocol
implemented by Google and currently in use by Google’s
customers (the SAML-based SSO for Google Applications).
We have mechanically analysed these formal models with
SATMC, a state-of-the-art model checker for security proto-
cols. SATMC has revealed a severe security flaw in the pro-
tocol used by Google that allows a dishonest service provider
to impersonate a user at another service provider. We have
also reproduced this attack in an actual deployment of the
SAML-based SSO for Google Applications. This security
flaw of the SAML-based SSO for Google Applications was
previously unknown.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.2 [Computer-Communication
Networks]: Network Protocols—Protocol verification; C.2.6
[Computer-Communication Networks]: Internetwork-
ing—Standards, SAML, TLS ; D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal methods, Model
checking ; E.4 [Coding and Information Theory]: For-
mal models of communication; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—
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Process models, Program Analysis; K.4.4 [Computers and
Society]: Electronic Commerce—Security ; K.6.5 [Management
of Computing and Information Systems]: Security and
Protection—Authentication
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1. INTRODUCTION
The management of multiple user-names and passwords

is not only an annoying aspect of the current Internet, it is
also one of the most serious security weakness. Each system
requires that a client registers himself in order to access to
the services. But rather often a user is registered in several
web sites under the same user-name and with the same or
closely related passwords, which is not a secure practice. Or
they often forgets their user-name and password and the
user management system sends an unencrypted e-mail with
these confidential data.

Single Sign-On (SSO) protocols tackle the problem by
enabling companies to establish a federated environment
in which clients sign in the environment once and yet are
able to access to services offered by different companies.
The Security Assertion Markup Language (SAML) 2.0 Web
Browser SSO Profile (SAML SSO, for short) [15] is the
emerging standard in this context: it defines an XML-based
format for encoding security assertions as well as a num-
ber of protocols and bindings that prescribe how assertions
should be exchanged in a variety of applications and/or de-
ployment scenarios. SAML SSO is at the core of several
SSO solutions like the Liberty Alliance project [13] and the
Shibboleth Project [11]. In addition, established software
companies base their SSO implementations on SAML SSO.
This is the case of Google that developed a SAML-based
Single Sign-On for its Google Apps Premier Edition [7], a
service for using custom domain names with several Google



web applications (e.g. Gmail, Google Calendar, Talk, Docs
and Sites).

The security of a SAML SSO solution critically depends
on several assumptions (e.g. the trust relationships among
the involved parties) and security mechanisms (e.g. the se-
cure transport protocols used to exchange messages). The
many security recommendations that are available through-
out the bulky SAML specifications are useful in avoiding the
most common security pitfalls but are of little help in en-
suring their absence. It is therefore very difficult to achieve
the needed level of assurance even for very simple instances
of the protocol.

In this paper, we provide a formal model of the protocol
corresponding to one of the most employed use case scenario
of the SAML Web Browser SSO Profile: the SP-Initiated
SSO with Redirect/POST Bindings. We have mechanically
analysed it with SATMC, a state-of-the-art model checker
for security protocols. In doing this we have extended previ-
ous work on SAML SSO (e.g. [8, 10]) (i) by considering the
latest version of the SAML specifications (i.e. SAML 2.0),
(ii) by relaxing the assumptions on the trustworthiness of
the principals, and (iii) by using a more general model of
the transport protocols.

We have also built a formal model of the protocol im-
plemented in the SAML-based SSO for Google Apps and
analysed it with SATMC. SATMC has revealed a severe se-
curity flaw in Google’s variant of the protocol that allows a
dishonest service provider to impersonate a user at another
service provider. We have also reproduced this attack in
an actual deployment of the SAML-based SSO for Google
Applications. This security flaw of the SAML-based SSO
for Google Applications was previously unknown. We have
promptly reported this vulnerability to Google as well as to
the Computer Emergency Response Team (CERT). At the
time of this writing Google is instructing their customers
to implement measures to mitigate potential exploits and
has started offering a new version of the SSO service which
does not suffer from the problem. CERT will soon release a
vulnerability report describing the problem.

Structure of the paper.
In the next section we give a brief introduction of the

SAML SSO. In Section 3 we describe the specification for-
malism we use to specify security protocols, the properties of
the transport protocols and the security properties that the
protocols are expected to meet. In Section 4 we present the
results of our analysis of the SAML SSO with SATMC. In
Section 5 we discuss some of the related work and in Section
6 we conclude.

2. THE SAML WEB BROWSER SSO PRO-
TOCOLS

SAML specifications are based on the notions of asser-
tions, protocols, bindings and profiles: A SAML assertion is
an XML expression encoding a statement about a principal
(also called subject). In this paper we will consider only a
special type of assertions, called authentication assertions.
An authentication assertion states that a given subject was
authenticated by a particular means at a particular time.
Protocols prescribe how assertions should be exchanged and
bindings detail how assertions can be mapped into transport
protocols, e.g. SOAP or HTTP. Finally, profiles define the

use of SAML assertions, protocols and bindings so to meet
some specific use case requirements (e.g. SSO). This is done
to the minimum extent needed to guarantee the interoper-
ability among different implementations. As a consequence,
SAML SSO is a framework which needs to be instantiated
according to the requirements posed by the application sce-
nario and the available security mechanisms.

Three roles take part in the protocol: a client (C), an iden-
tity provider (IdP) and a service provider (SP). C, typically
a web browser guided by a user, aims at getting access to
a service or a resource provided by SP. IdP authenticates C
and issues corresponding authentication assertions. Finally,
SP uses the assertions generated by IdP to give C access to
the requested service. A session is a particular run of the
protocol, in which each role is played by a specific principal.

The Web Browser SAML 2.0 SSO profile [14] provides a
wide variety of options, primarily having to do with two
dimensions of choice: first whether the message flows are
IdP-initiated or SP-initiated, and second, which bindings
are used to deliver messages between the IdP and the SP. In
this paper we report on the SP-initiated SSO using a Redi-
rect Binding for the SP-to-IdP <AuthnRequest> message and
a POST Binding for the IdP-to-SP <Response>. The proto-
col is depicted in Figure 1. In step S1, C asks SP to provide
the resource located at the address URI. SP then initiates
the SAML Authentication Protocol by sending C a redirect
response directed to IdP containing an authentication re-
quest of the form AuthReq(ID,SP)—where ID is a string
uniquely identifying the request—and the address URI of
the resource. IdP then challenges C to provide valid cre-
dentials and—if the authentication succeeds—IdP builds an
authentication assertion AA = AuthAssert(ID,C, IdP,SP)
and places it into a response message Resp = Response(ID,
SP, IdP, {AA}

K−1
IdP

), where {AA}
K−1

IdP
is the assertion digi-

tally signed with K−1
IdP, the private key of IdP. (As unneces-

sary for our findings, we will not model how the authentica-
tion between C and IdP is performed, but we simply assume
it is successful.) IdP then places Resp into an HTML form
as a hidden form control and sends it back to C. For ease of
use purposes, the HTML form is typically accompanied by
script code that automatically posts the form to SP. This
completes the protocol and SP can deliver the requested re-
source to C.

The protocol discussed above results from a considerable
effort we put into a careful scrutiny and interpretation of
the modular and open, but informal and bulky SAML 2.0
specifications.

Our interpretation of the standard seems to differ from
the one of Google whose SAML-based Single Sign-On for
Google Applications deviates from the above protocol for
a few, seemingly minor simplifications in the messages ex-
changed:

(G1) ID and SP are not included in the authentication as-
sertion, i.e. AA is AuthAssert(C, IdP) instead of
AuthAssert(ID,C, IdP, SP);

(G2) ID, SP and IdP are not included in the response, i.e.
Resp is Response({AA}

K−1
IdP

) instead of Response(ID,

SP, IdP, {AA}
K−1

IdP
).

The online static demo of the SAML-based SSO for Google
Apps, available on Google at http://code.google.com/apis/
apps/sso/saml_static_demo/saml_demo.html, illustrates each



SAML Authentication Protocol

C IdP SP

S1. C, SP,URI

A1. C, IdP,AuthReq(ID, SP),URI

REDIRECT

A2. C, IdP,AuthReq(ID, SP),URI

IdP builds an authentication assertion
AA = AuthAssert(ID,C, IdP, SP)A3. Response(ID, SP, IdP, {AA}

K−1
IdP

),URI

POST A4. Response(ID,SP, IdP, {AA}
K−1

IdP
),URI

S2. Resource

Figure 1: SP-Initiated SSO with Redirect/POST Bindings

Figure 2: Screenshot of the online static demo of the SAML-based SSO for Google Apps

step of the SAML workflow between Google and a partner
IdP and allowed us to spot these divergences. Figure 2 de-
picts a screenshot of this static demo. The frame on the left
hand side represents the SP while the one on the right hand

side captures the IdP. The authentication response gener-
ated by the IdP in the demo (see Figure 4) contains neither
the ID nor the SP fields occurring in the authentication re-
quest created by the SP (see Figure 3). As we will see in



Section 4 these changes compromise the security of the pro-
tocol.1

The security of the SAML SSO Protocol relies on a num-
ber of assumptions about the trustworthiness of the princi-
pals involved as well as the security of the transport proto-
cols employed that we summarise hereafter.

Trust Assumptions. The protocol assumes that IdP is trust-
worthy for both C and SP, but SP is not assumed to be
trustworthy. In accordance with this in our analysis we will
consider protocol sessions in which C and SP can be played
by the intruder, while we assume that IdP is played by an
honest agent.

Assumptions on the communication channels. Communica-
tions between the parties are subject to the following as-
sumptions:

(A1) the communication between C and SP is carried over
a unilateral SSL 3.0 or TLS 1.0 channel (henceforth
SSL/TLS), established through the exchange of a valid
certificate (from SP to C); and

(A2) the communication between C and IdP is carried over
a unilateral SSL/TLS channel that becomes bilateral
once C authenticates itself on IdP. This is established
through the exchange of a valid certificate (from IdP
to C) and of valid credentials (from C to IdP).

Under the above assumptions the protocol is expected to
meet the following security properties: (i) SP authenticates
C, i.e., at the end of its protocol run SP believes it has
been talking with C; and (ii) Resource must be kept secret
between C and SP.

3. FORMALISATION OF THE SAML SSO
PROTOCOL

We focus on the problem of determining whether the con-
current execution of a finite number of sessions of the pro-
tocol enjoys the expected security properties in spite of the
interference of a malicious intruder. We show that this prob-
lem can be recast into a model checking problem of the form

M |= (CI⇒G) (1)

where M is a labelled transition system modelling the initial
state of the system and the behaviours of the principals (in-
cluding the intruder), CI is a conjunction of LTL formulae
(henceforth called LTL constraints) constraining the allowed
behaviours of the intruder, and G is an LTL formula stating
the security property that the protocol is expected to enjoy.

A fact is a ground (i.e. variable free) atomic formula of
a first-order language with sorts. If T is a sort, then the
domain of T is a set of ground (i.e. variable-free) terms of
sort T . Since our model checking technique carries out a
bounded analysis of the protocols, we assume that the do-
mains of all sorts are finite. (The computation of finite over-
approximation of the domains can be done in polynomial
time by carrying out a static analysis of the protocol [3].)

1At the time of this writing Google has been promptly in-
formed by us about our findings and it has already released
a new version of the SAML-based SSO for Google Apps not
suffering from the attack reported by us. The online static
demo hosted at Google is thus likely to be changed accord-
ingly.

We represent the states of M as sets of facts and its tran-
sitions as set-rewriting rules that define mappings between
sets of facts. If S is a set of facts, then we interpret the facts
in S as the propositions holding in the state represented by
S, all other facts being false in that state (closed-world as-

sumption). Let (L
ρ−→ R) be (an instance of) a rewrite rule

and S be a set of facts. If L ⊆ S then we say that ρ is appli-
cable in S and that S′ = appρ(S) = (S \ L) ∪R is the state
resulting from the execution of ρ in S. A path π is an al-
ternating sequence of states and rules S0ρ1S1 . . . Sn−1ρnSn
such that Si = appρi

(Si−1) (i.e. Si is a state resulting from
the execution of ρi in Si−1), for i = 1, . . . , n. If, addition-
ally, S0 ⊆ I, then we say that the path is initialised . Let
π = S0ρ1S1 . . . Sn−1ρnSn be a path. We define π(i) = Si
and πi = Siρi+1Si+1 . . . Sn−1ρnSn. π(i) and πi are the i-th
state of the path and the suffix of the path starting with
the i-th state respectively. We also assume that paths have
infinite length. This can be always obtained by adding stut-
tering transitions to the transition system.

The language of LTL we consider uses facts and equal-
ities over ground terms as atomic propositions, the usual
propositional connectives (namely, ¬, ∨) and the temporal
operators F (eventually) and O (once). Let π be an ini-
tialised path of M , an LTL formula f is valid on π, written
π |= f , if and only if (π, 0) |= f , where (π, i) |= f (f holds
in π at time i) is inductively defined as follows:

(π, i) |= f iff f ∈ π(i)
(π, i) |= (t1 = t2) iff t1 and t2 are the same term
(π, i) |= ¬f iff (π, i) 6|= f
(π, i) |= (f ∨ g) iff (π, i) |= f or (π, i) |= g
(π, i) |= Ff iff exists j ∈ [i,∞).(π, j) |= f
(π, i) |= Of iff ∃j ∈ [0, i].(π, j) |= f

In the sequel we use (f∧g), (f⇒ g) and Gf as abbreviations
of ¬(¬f ∨ ¬g), (¬f ∨ g) and ¬F¬f respectively. Moreover,
if X is a variable of sort T , then with dom(X) we denote
the domain of T and use ∀X.f and ∃X.f as an abbreviation
of the formulae

V
t∈dom(X) f [t/X] and

W
t∈dom(X) f [t/X] re-

spectively, where f [t/X] is the formula obtained by substi-
tuting all free occurrences of X in f with the term t. Finally
we use ∀(f) and ∃(f) as abbreviations of ∀X1. . . .∀Xn.f and
∃X1. . . .∃Xn.f respectively, where X1, . . . , Xn are the free
variables of the formula f .

In Section 3.1 we show how the behaviours of the princi-
pals can be specified using a set-rewriting formalism. This
amounts to specifying the model M of (1). In Section 3.2
we show how assumptions on the behaviour of the intruder
can be specified by means of LTL constraints (correspond-
ing to the CI constraints of (1)). Finally in Section 3.3 we
show how the security properties that the protocol is ex-
pected to enjoy can be specified by means of LTL formulae
(corresponding to the formula G in (1)).

3.1 Formalising the Behaviour of Principals
Facts are expressions of the form given in the left column

of Table 1 and whose informal meaning is described in the
right column. The constant i of sort Agent is used to
denote the intruder. If S is a set of facts representing a
state, then the state of the honest principal a is represented
by all the facts of the form stateR(j, a, es, s) (called state-
facts) occurring in S. By construction, for each session s and
for each principal a there exists at most one fact of the form
stateR(j, a, es, s) in S. Notice that this does not prevent an



Figure 3: SAML Authentication Request from the online static demo

Figure 4: SAML Authentication Response from the online static demo

agent from playing different roles in different sessions. No
state-fact is associated with the intruder.

While the initial state of the system defines the initial
knowledge of the intruder (usually including its cryptographic
material, various agent identifiers, their public keys and the
communication channels on which the intruder has some
control) and the initial state of all the honest principals in-
volved in the protocol sessions considered, rewriting rules
specify the evolution of the system. The behaviour of hon-
est participants is specified by rules of the form:

sent(RS, B, A, M, Ch)
receive(A,B,RS,M,Ch)−−−−−−−−−−−→ rcvd(A, B, M, Ch) (2)

rcvd(A, B, M, Ch) � stater (j, A, es, S)
sendj(A,B,B1,...,S)
−−−−−−−−−−→

sent(A, A, B1, M1, Ch1) � stater (l, A, es′, S) (3)

Rule (2) models the reception of a message by an honest
agent, whereas rule (3) models the processing of a previ-
ously received message and the sending of the next protocol
message. Notice that rule (3) may take slightly different
forms depending on the type of the protocol step modelled.
For instance, if j = 1 and A plays the role of initiator (i.e.
the principal that sends the first message of the protocol),

the fact rcvd(A, B, M, Ch) is not included in the left hand side
of the rule. Similarly, if a fresh term must be generated
and sent, then c(N) and c(s(N)) are included in the left and
right hand sides of the rule respectively. A further variant is
necessary when the step involves either a membership test
or an update of a set of elements. In this case the facts of
the form contains(db,m) must be properly included in the
rules.

To illustrate we consider the protocol steps in which the
authentication request sent by SP and received by C is redi-
rected to IdP. This transition is modelled by rule (2) and by
the following one, in which C forwards to IdP the message
A1 received from SP (see Figure 1):

rcvd(C, SP, 〈C, IdP, authReq(ID, SP), URI〉, SP2C) �

stateC(2, C, [SP, URI, . . .], S)
send2(C,...,S)−−−−−−−−→

sent(C, C, IdP, 〈C, IdP, authReq(ID, SP), URI〉, C2SP) �

stateC(3, C, [IdP, ID, SP, URI, . . .], S)

where SP2C and C2SP are the channels used by C and SP to
communicate with each other. (Channels in our model are
unidirectional: if x and y are principals, then x2y denotes a



Table 1: Facts and their informal meaning
Fact Meaning

stater (j, a, es, s) Principal a, playing role r, is ready to execute step j in session s of the protocol, and es is a
list of expressions representing the internal state of a and thus affecting her future behaviour.

ik(m) The intruder knows message m.
sent(rs, b, a,m, ch) Principal rs has sent message m on channel ch to principal a pretending to be principal b.

rcvd(a, b,m, ch) Message m (supposedly sent by principal b) has been received on channel ch by principal a,
but a has not processed it yet.

c(n) Term n is the current value of the counter used to construct fresh terms. This value is incre-
mented every time a fresh term is used.

contains(db,m) Message m is contained into set db. Sets are used, e.g., to share data between honest principals.

channel used by x to send messages to y and y2x denotes a
channel used by y to send messages to x.)

The abilities of the intruder are modelled according to the
standard Dolev-Yao attacker [6] by the following rules:

ik(M) � ik(A) � ik(B) � ik(Ch)
fake(A,B,M,Ch)−−−−−−−−→

sent(i, A, B, M, Ch) � ik(M) � ik(A) � ik(B) � ik(Ch)

sent(A, A, B, M, Ch) � ik(Ch)
intercept(A,B,M,Ch)−−−−−−−−−−−→

rcvd(i, A, M, Ch) � ik(M) � ik(Ch)

sent(A, A, B, M, Ch) � ik(Ch)
overhear(A,B,M,Ch)−−−−−−−−−−→

sent(A, A, B, M, Ch) � rcvd(i, A, M, Ch) � ik(M) � ik(Ch)

For instance, the first rule models the intruder that exploits
its knowledge to impersonate an agent A in sending a mes-
sage M to an agent B on a communication channel Ch. Finally,
the inferential capabilities of the intruder are modelled by
the following rules (where K is either K or K−1, and K is K

if K = K−1 and K is K−1 otherwise):

ik(M) � ik(K)
encrypt(K,M)−−−−−−−−→ ik(M) � ik(K) � ik({M}K)

ik({M}K) � ik(K)
decrypt(K,M)−−−−−−−−→ ik({M}K) � ik(K) � ik(M)

ik(M1) � ik(M2)
pairing(M1,M2)−−−−−−−−−→ ik(M1) � ik(M2) � ik(〈M1, M2〉)

ik(〈M1, M2〉)
decompose(M1,M2)−−−−−−−−−−→ ik(〈M1, M2〉) � ik(M1) � ik(M2)

3.2 Formalising the Communication Channels
As the security of SAML SSO ultimately depends on the

security of the transport protocols used to exchange the mes-
sages, special care must be paid in modelling the communi-
cation channels. We do this by constraining the behaviour of
the intruder through a number of LTL formulae each mod-
elling a specific security property that the underlying com-
munication channel is expected to enjoy.

Confidential channels.
A channel ch provides confidentiality if its output is ex-

clusively accessible to a given receiver p. In our model
this amounts to requiring that in every state S if a fact
rcvd(a, b,m, ch) ∈ S, then a has exclusive access to the
channel. Thus, the condition that channel ch is confidential
to principal p can be formalised by the following formula:

confidential(ch, p) := G∀(rcvd(A,B,M, ch)⇒A = p)

Authentic channels.
A channel provides authenticity if its input is exclusively

accessible to a specified sender. The condition that chan-

nel ch is authentic for principal p can be formalised by the
following constraint:

authentic(ch, p) :=

G∀(sent(RS,A,B,M, ch)⇒(A = p ∧RS = p))

A run of SSL/TLS in which one of the two principals does
not have a valid certificate yields a unilateral authentic and
confidential channel. In order to model this type of channel
we relax the notions of confidential and authentic channels
as follows.

Weakly confidential channels.
A channel provides weak confidentiality if its output is

exclusively accessible to a single, yet unknown, receiver. In
our model this amounts to requiring that, for every state S,
if a fact rcvd(a, b,m, ch) ∈ S, then in all the successor states
the rcvd facts with channel ch must have a as recipient. The
condition that channel ch is weakly confidential can then be
formalised by the following formula:

weakly confidential(ch) :=

G∀((rcvd(A,B,M, ch)∧F rcvd(A′, B′,M ′, ch))⇒A = A′)

Weakly authentic channels.
A channel provides weak authenticity if its input is exclu-

sively accessible to a single, yet unknown, sender. In our
model this amounts to requiring that, for every state S, if
a fact sent(rs, a, b,m, ch) ∈ S, then in all the succeeding
states the sent facts with channel ch must have rs as real
sender and a as official sender. The condition that chan-
nel ch is weakly authentic can then be formalised by the
following constraint:

weakly authentic(ch) :=

G∀((sent(RS,A,B,M, ch)∧F sent(RS′, A′, B′,M ′, ch))⇒
(A = A′ ∧RS = RS′))

A run of SSL/TLS in which principal y has a valid cer-
tificate but principal x does not, is then modelled by a pair
of channels x2y and y2x, where x2y is confidential to y and
weakly authentic and y2x is weakly confidential and authen-
tic for y with the additional requirement that the principal
sending messages on x2y is the same principal that receives
messages from y2x. This can be formalised by adding the



following constraints to CI :

unilateral confidential authentic(x, y, x2y, y2x) :=

(confidential(x2y, y) ∧ weakly authentic(x2y)∧
weakly confidential(y2x) ∧ authentic(y2x, y)∧

G∀(F sent(RS, x, y,M, x2y) ∧ F rcvd(R, y,M ′, y2x))

⇒RS = R))

To illustrate the usage of the above constraints let us con-
sider the SAML SSO and its security recommendations in
matter of communication channels (cf. Section 2). Assump-
tion (A1) requires that the message exchanges between C
and SP are carried over unilateral SSL/TLS channels. As-
sumption (A2) imposes that the message from C to IdP is
sent over a confidential channel, while the message from IdP
to C is sent over a confidential and authentic channel. For
each session s, this amounts to including the following con-
straints in CI :

unilateral confidential authentic(c, sp, c2sp(s), sp2c(s)),

(4)

confidential(c2idp(s), idp), authentic(idp2c(s), idp),
confidential(idp2c(s), c)

(5)

where c, sp, and idp are the agents playing in session s the
roles C, SP, and IdP respectively. (Clearly, constraints 4
and 5 capture assumptions (A1) and (A2) respectively.)

3.3 Security Properties

Authentication.
We base our definition of authentication on Lowe’s notion

of non-injective agreement [12]: whenever principal b (play-
ing role R2) completes a run of the protocol apparently with
principal a (playing role R1), then (i) a has previously been
running the protocol apparently with b, and (ii) the two
agents agree on m. We then say that b authenticates a on
m in session s if and only if the following formula holds:

authentication(b, a,m, s) :=

G∀(stater2(j2, b, [a, . . . ,m, . . .], s)⇒
∃O stater1(j1, a, [b, . . . ,m, . . .], s)) (6)

where j1 is the protocol step in which m is sent by an agent
playing role r1 and j2 is the last protocol step of an agent
playing role r2.

Secrecy.
The secrecy of a message m is guaranteed if, and only if,

the intruder does not know m. This is formalised by the
following formula:

secret(m) := G¬ ik(m)

To illustrate an application of the above formulae let us
consider again the SAML SSO and the security properties it
is expected to enjoy (cf. end of Section 2). For each protocol
session s, this amounts to including the following formulae
in G:

authentication(sp, c, uri, s)

secret(resource) provided that i 6∈ {c, sp}

where c, sp, and idp are the agents playing in session s the
roles C, SP, and IdP respectively, while uri and resource
are the data values of URI and Resource as exchanged by
the agents in s. (Clearly, the intruder is entitled to access
resource if, and only if, it is playing in s one of those agents
that is legitimated to do so i.e., the intruder is either c or
sp.)

4. MODEL CHECKING OF THE SAML SSO
PROTOCOL

We have mechanically analysed the formal model of the
SAML SSO Protocol presented in Section 3 using SATMC,
a state-of-the-art model checker for security protocols. At
the core of SATMC lies a procedure that automatically gen-
erates a propositional formula whose satisfying assignments
(if any) correspond to counterexamples (i.e. execution traces
of M that falsify (CI⇒G)) of length bounded by some in-
teger k. Finding attacks (of length k) on the protocol there-
fore boils down to solving propositional satisfiability prob-
lems. SATMC relies on state-of-the-art SAT solvers for this
task which can handle propositional satisfiability problems
with hundreds of thousands of variables and clauses or more.
SATMC can be instructed to perform an iterative deepening
on k. More details on SATMC can be found in [3, 2].

By running SATMC against the formal model of the pro-
tocol implemented in the SAML-based Single Sign-On for
Google Applications, we have found the attack depicted in
Figure 5. In the attack, bob initiates a session of the proto-
col to access a resource provided by the (malicious) service
provider i that in parallel starts a new session of the proto-
col with google pretending to be bob (indicated as i(bob))
and that mischievously reuses the authentication assertion
received by bob (cf. step A4) to trick google into believing
he is bob. The attack completes with the delivery of the re-
source (whose access should be reserved to bob) to i. This
attack represents a violation of the two security properties
that the protocol is expected to enjoy (cf. Section 2 and
Section 3.3).

Notice that two protocol sessions sharing the same IdP
are sufficient for a malicious SP to mount this attack and
gain access to a resource of another SP under the identity
of an unaware user. It is easy to imagine realistic scenar-
ios in which this flaw can be exploited by a dishonest SP.
To illustrate consider the scenario in which the AI-Lab has
registered to the SAML SSO of Google to make available to
its members Google’s applications (e.g. Gmail, Google Cal-
endar) without any additional authentication burden. Ba-
sically, once authenticated into the AI-Lab server, any user
can transparently access to Google’s remote applications.
(AI-Lab is serving as IdP in this scenario.) Now, any other
SP offering the very same SAML SSO solution as Google and
attractive enough to convince the AI-Lab to include one of
its remote services (e.g. free access to online scientific books)
is able to mount the above attack and thus to impersonate
any user of the AI-Lab IdP that accesses its resources at any
Google Application.

We have reproduced the above attack in an actual deploy-
ment of the SAML-based SSO for Google Applications. To
this end, we registered the ai-lab.it domain at the SAML
SSO service and provided Google with the public key of the
IdP of the AI-Lab. We then implemented a Java Servlet sim-
ulating the behaviour of a dishonest SP called BadSP. Af-
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Figure 5: Attack on the SAML-based SSO for Google Applications

ter receiving the request for a resource from a web browser
used by an AI-Lab’s member, BadSP constructs a SAML
Authentication Request and sends it back to the browser.
BadSP then waits for the Response from the browser (this
response is obtained from the IdP of the AI-Lab), parses
the Response, and composes the fake Response for Google.
The attack succeeds and Google logs BadSP into Google
Applications as the AI-Lab member.

It is immediate to see that the attack originates from one
of the simplifications that Google adopted in its SAML SSO
solution and namely from simplification (G1) that deprives
the authentication assertion of both the ID and SP fields (cf.
Section 2). In fact, by performing a similar analysis on the
standard SP-Initiated SSO with Redirect/POST Bindings,
no attacks have been reported by SATMC despite the several
protocol scenarios considered.

5. RELATED WORK
Pfitzmann et al [16, 17, 9] lay the theoretical basis for a

rigorous analysis of web-based federated identity-management
protocols (e.g., the Single-Sign-on protocol proposed by Lib-
erty Alliance in 2002). They do not develop mechanised for-
mal analyses, but they provide precise protocol descriptions,
discussing their security vulnerabilities and possible preven-
tive measures. Some of these results have been fed into
the Liberty Alliance project and indirectly into the SAML
2.0 standard that according to our analysis does not suffer
from those vulnerabilities. Still, producing attack-free SSO
solutions does not seem an easy task as the Google exam-
ple shows. More precise protocol descriptions (see, e.g., the
BBAE protocol in [17]) might serve as deterrent and would
make easier undertaking a formal analysis. In this respect, it
is worth mentioning [4] where the idea is to couple real secu-
rity protocol reference implementations with formal model
specifications that can be then validated by means of state-
of-the-art verifiers such as ProVerif [5] and AVISPA [1].

[8] and [10] investigate more specifically on SAML Single
Sign-On. A security analysis of the SAML SSO Browser/Ar-
tifact Profile is presented in [8]. The paper (based on ver-
sion 1.0 of the SAML specifications) shows that the treat-
ment of the security aspects in the specifications may lead to
flawed implementations and/or deployments of the protocol.
Our work is based on version 2.0 of the SAML specifications
which provides a more detailed treatment of the security as-
pects of the protocols. The work most closely related to ours
is [10]. The authors provide a formal model of the SAML
SSO Browser/Artifact Profile (SAML version 1.0) and de-
scribe the results of the analysis obtained by running a static
analysis tool against several models of the protocol obtained
by using communication channels of different strength. In
our work we have focused on a single model of the protocol
based on secure channels as they appear to be recommended
by the latest version of the SAML specifications. In [10] it
is assumed that the attacker cannot play the role of the SP.
This assumption is not realistic as service providers do not
necessarily trust each other. It is worth noticing that the
adoption of this assumption would have prevented us from
detecting the attack on the SAML-based SSO for Google
Applications we reported in Section 4.

6. CONCLUSIONS
We have applied model-checking techniques to the analy-

sis of SAML SP-Initiated SSO with Redirect/POST Bind-
ings and to the protocol which is distributed and used by
Google’s partner companies to get full control over the au-
thorization and authentication of hosted user accounts that
can access web-based applications like Gmail or Google Cal-
endar. Our analysis has not reported any attack on the
model corresponding to (our interpretation of) the SAML
2.0 standard specifications despite the several protocol sce-
narios considered, but has unveiled a previously unknown
attack in the Google’s implementation. In line with respon-



sible disclosure principles, we have promptly reported this
attack to Google and to the Computer Emergency Response
Team (CERT). At the time of this writing Google is instruct-
ing their customers to implement measures to mitigate po-
tential exploits of this vulnerability and has released a new
version of the SSO service which does not suffer from the
attack. CERT will soon release a vulnerability report de-
scribing the problem. This paper extends previous work by
considering the latest version of the SAML specifications
(i.e. SAML 2.0), by relaxing the assumptions on the trust-
worthiness of the principals and by using a more general
model of the transport protocols.
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