
Radosław Klimek∗, Piotr Szwed∗

FORMAL ANALYSIS OF USE CASE DIAGRAMS

Use case diagrams play an important role in modeling with UML. Careful modeling is crucial
in obtaining a correct and efficient system architecture. The paper refers to the formal
analysis of the use case diagrams. A formal model of use cases is proposed and its construction
for typical relationships between use cases is described. Two methods of formal analysis and
verification are presented. The first one based on a states’ exploration represents a model
checking approach. The second one refers to the symbolic reasoning using formal methods
of temporal logic. Simple but representative example of the use case scenario verification is
discussed.

Keywords: UML, use case, formal model, verification, model checking, temporal logic, se-
mantic tableau

FORMALNA ANALIZA DIAGRAMÓW PRZYPADKÓW UŻYCIA
Diagramy przypadków użycia odgrywają znaczącą rolę w modelowaniu systemów z wykorzys-
taniem UML. Staranne i dokładne modelowanie ma zasadnicze znaczenie w postępowaniu
umożliwiającym uzyskanie poprawnej i efektywnej architektury systemu. Artykuł odnosi się
do formalnej analizy diagramów przypadków użycia. Został zaproponowany model formal-
ny przypadku użycia, a także opisano odpowiednie konstrukcje dla relacji występujących
pomiędzy przypadkami użycia. Zostały przedstawione dwie formalne metody ich analizy
i weryfikacji. Pierwsza oparta jest na eksploracji stanów i reprezentuje podejście nazwane
weryfikacją modelową. Druga odwołuje się do wnioskowania symbolicznego z wykorzystaniem
logiki temporalnej. Został pokazany prosty i reprezentatywny przykład weryfikacji pewnego
scenariusza przypadku użycia.

Słowa kluczowe: UML, przypadek użycia, model formalny, weryfikacja, weryfikacja mode-
lowa, logika temporalna, metoda tablic semantycznych

1. Introduction

Use cases are an important part of UML being a coherent story about system’s be-
havior. They are used for documenting system requirements. They may also be used
for communication both between various participants in a software project, i.e. sys-
tem developers, its future users and owners. Test cases derived from use cases are

∗ AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland,
{rklimek,pszwed}@agh.edu.pl

13 października 2010 str. 1/17

Computer Science • Vol. 11 • 2010

115

usually the criteria of a system acceptance. Use cases appear to be relatively easy-to-
perception, even for people not familiar with the information technology. Use cases
enable understanding the system though they do not fall too much in the implemen-
tation details. On the other hand, errors committed in the course of the preparation
of the use cases’ documentation may have far-reaching consequences, c.f. [12]. This
may be manifested not only in the design phase of a well-balanced architecture of
the system, but even in the implementation phase. Thus, the possibility of formal
analysis of the diagrams can be an effective counterweight to the presented above
threats. In addition, inference based on a formal approach allows the verification of
the desired property of the modeled system. As the primary artifact of requirements
documentation use cases appear in two complementary forms:

1. as graphical diagrams enumerating use cases and actors (usually users and ex-
ternal systems) and showing relations between them;

2. as sets of scenarios describing from the actor’s perspective flows of events in the
system.

Whereas the use case diagrams has strictly formalized syntax, several techniques could
be used to document scenarios describing the system behavior. They include, for
example, informal natural language, restricted natural language, Activity Diagrams
or Message Sequence Charts.

The purpose of this paper is to present the possibility of formal analysis and
verification of use cases of UML. This will be implemented in such a way that first
a formal model of a use case is proposed. It includes a number of important elements
and it’s creation is necessary because it can help to find a reliable basis for further
discussion and formal verification. Construction methods for typical relationships be-
tween use cases are presented, too. It seems obvious that the finite state machines is
suitable as a semantic model for use cases, but there is a gap between natural lan-
guage and finite state machines and the intention of this work is to provide a step in
this direction.

The second purpose of this paper is to show the possibility of formal analysis of
use cases. Use cases can also describe the system requirements and, therefore, formal
verification of these requirements at the initial phase of the system modeling reduces
production costs throughout the whole software development cycle. There are two
basic methods that can be used for a formal use cases’ verification. The first one
is based on a states’ exploration, i.e. the set of reachable states is determined and
analyzed. This method represents a model checking approach. The second one refers
to the symbolic reasoning using formal logic and the expressive language of temporal
logic and the method of semantic tableau is used to prove system’s properties. It has
been shown a common example to illustrate these two approaches. Model checking
was discussed very thoroughly in this paper. Logical approach has been outlined here
and in more detail shown in the paper [13].

The use case diagrams have already been under consideration in the context of
their formal analysis and verification. In work [1], an approach in which the emphasis

13 października 2010 str. 2/17

116 Radosław Klimek, Piotr Szwed

on description of behavior between actors and use cases through the so-called contracts
is presented. In work [19] a kind of a review technique for the use case diagrams is
proposed. Work [16] contains the proposed division of scenarios, but it has no formal
model and consequently there is a lack of reliable mechanism for formal reasoning
about the modeled system. In work [4] consistency between use case scenarios and
sequence diagrams is checked. Work [11] provides a very thorough and detailed survey
of selected issues concerning use cases. The dualism of representations and informal
character of scenarios documentation implies several difficulties in reasoning about
the system behavior and validating the consistency between diagrams and scenarios
description. Several research works in this field attempted to translate scenarios or
formulate them in more formal language. Work [3] includes the transition of use cases
to finite state machines, however the formal model presented in our work is more
detailed and also shows the specific context of the formal verification. Work [20] shows
the formal analysis of use cases, however, it has been used the Petri Nets formalism.
The details of the models differed depending on the assumed purpose. They include
relations with external objects from the class hierarchy [14], automatic generation
of test cases [2], validation use cases against the regulatory constrains [18], tracking
changes in use case based on FSM equivalence [3]. It should be mentioned, that in use
case modeling methods has no systematic approach that would fully cover relations
between use cases and reflect their presence in the models.

The rest of the paper has been organized as follows. First, the metamodel of the
use case is be presented. The next step is to propose a formal model. Another point
of work focuses on relationships occurring on the use case diagrams. The analyzed
example is contained in a separate section. It includes a detailed and formal analysis
using two different approaches mentioned above.

2. Metamodel

The use case diagram ([10, 7]) consists of actors and use cases. Actors are environ-
ment of the modeled system and use cases form this system. Actors are objects which
interacts with the target system. Use cases are services and functionalities which are
used by actors. Use cases should meet actors’ requirements. The use case diagram
both identify external objects’ expectations for the system and specific features of the
system. However, the diagram does not refer to the details of the system implemen-
tation.

Use cases can be linked by relationships. There are three basic relations between
use cases: generalization and two standard stereotypes, i.e. «include» and «extend».
Relations between uses cases are an important tool for managing complexity of sce-
narios. If several consecutive steps are repeated in a number of use cases or they
can be treated as logically closed functionality (as logging to a system) they may be
extracted to form a stand alone use case that may be called from a basic use case
like a function. This situation corresponds to include relation. A use case linked with
extend relation represents variant or exceptional behavior to the scenario of a basic

13 października 2010 str. 3/17

Formal analysis of use case diagrams 117

use case. Its occurrence depends on the satisfaction of certain conditions (extension
points). Extending use cases can be treated as a set of alternative scenarios that was
important enough to be transformed into stand alone use cases visible on the diagram
and separately documented. The included use case must augment the execution of
basic use case while the extended use case might be used to augment the execution.

Scenario
ScenarioSetp

StartPoint

Event Condition

ExtensionPoint

Guard

1
1

1

1

SetClause

1 0..*
1

*

UseCase

1

*

Variable

1 *

*

*

*

*

1

*

SuccessPostCondition

1

*

1

*

*

*

*

*

Fig. 1. An object oriented metamodel of the use case model

The use case diagram is a very descriptive technique to compare with the other
UML diagrams and it needs more details to describe its behavior. To achieve this
it is necessary to create a narrative for each case of use case. There is no standard
for content of use case and natural language for this kind of description is accepted.
However, in order to achieve adequate accuracy and precise description it is assumed
that documentation should contains some important elements. Besides the obvious
element such as the name of a use case, its scenario should contains some assumption
and (pre-)condition for a beginning, precise dialog expressed in some steps for use case
body, and (post-)conditions for its termination. Both assumption and precondition
describe the desired state of the system which must be satisfied before the use case
is executed. The main difference is that assumption is not tested and it is assumed
that it is true while the precondition is tested and the execution of use case depends
on the result of this test, i.e. use case may be never executed. Use case scenario can
also define the internal variables. These internal variables can then be the attributes
of the respective classes implementing the system. Steps can contain assign instruc-

13 października 2010 str. 4/17

118 Radosław Klimek, Piotr Szwed

tions which assigning new values to these variables. The use case scenario can contain
initiation triggers. They define situations when the use case must start, i.e. they iden-
tify situations when external events cause an use case invocation. Sometimes, there
are many ways to end use case and the termination and postcondition describe these
situations. Termination is a list of success/failure and final options. Postcondition is
a kind of formal commitment which is satisfied when use case ends. Figure 1 shows
a sample object-oriented metamodel of the use case model.

3. Formal model

To perform formal validation of use cases we transform its specification to a transition
system. Each step in the use case scenario is modeled as a transition between states.
Transitions can be labeled by guards and assignments to variables, whereas states can
be labeled with Boolean functions representing conditions: extension points, pre- and
postconditions.

To avoid defining syntax of expressions appearing in a use case specification, we
convert them to a set of Boolean variables and assignments of values to variables. Each
Boolean variable corresponds to a test expression appearing in guards or extension
point conditions of use case specification, e.g.:

v1 ≡ payment = cash

v2 ≡ payment = creditcard

v3 ≡ ¬queue.empty()

v4 ≡ sessionexpired

v5 ≡ debit > 0

Let V = {v1, v2, . . . , vn}, where n > 0, be an enumerable set of Boolean variables.
Function Val : V → {true, false} is a valuation function. We will denote by Val(i) (or
simply vi where this does not imply ambiguities) a value of i-th variable. Pred(V) is
a set of predicates defined over a set of variables V .

Let C be a set of logical constraints describing dependencies between variables.
Any valid valuation function must satisfy constraints Val |= C. Constraints should
allow undefined values.

Let us consider the following example. For variables v1 and v2 coresponding to
test expressions payment = cash and payment = creditcard constraints should be
defined as:

C = (¬v1 ∧ ¬v2) ∨ (v1 ∧ ¬v2) ∨ (¬v1 ∧ v2)

The above formula specifies that payment should be undefined (neither by cash, nor
by card) or cash only or card only.

A modification (assignment) function f : Val → Val changes the valuation of
logical variables. It is assumed, that for any Val2 = f(Val1) if Val1 |= C then Val2 |=
C. A set of modification functions is denoted by F .

13 października 2010 str. 5/17

Formal analysis of use case diagrams 119

Definition 1. Use case model UCM is a tuple UCM = 〈S, T, V,Assign, G, s0,Cond ,
Val0〉, where

S – is a set of states,
T – where T ⊆ S × S is a transition function,
V – is a set of Boolean and atomic variables,
Assign – is a partial function: T → 2F , i.e. any transition can be linked with a set of

assignments,
G – is a partial function T → Pred(V),
s0 – is the initial state,
Cond – is a partial function S → Pred(V), i.e. this function represents post- and

preconditions that can be assigned to states,
Val0 – is the initial valuation of variables, satisfying cardPred(V) = Cond(s0) and

Pred(Val0) = true.

1

2

5

4

3

6

[condition
1
]

[condition 2]

Nondeterministic

choice and loop

7

x:=a | x:=b

6

7' 7'’

x:=a x:=b

not [condition
1
]

not [condition
2
]

Choice between assignments

equivalent to nondeterminism

Fig. 2. Use case model

Figure 2 shows typical patterns that can appear in UCM:

• deterministic choice guarded by expressions at states 2 and 3,
• loops (states 3-4-5) with accompanying nondeterministic choice – an actor per-

forms a step 5-6 of main scenario or optionally a step 5-3,

13 października 2010 str. 6/17

120 Radosław Klimek, Piotr Szwed

• nondeterministic assignment – transition 6-7 is labeled with two assignments
x := a and x := b what corresponds to two transitions 6-7’ labeled with x := a

and 6-7” labeled with x := b.

4. Modeling relations in use case specifications

Use case specification usually takes the form of a scenario expressed in natural lan-
guage. In the presence of includes, extends or inheritance relations the scenario should
be consistent with constraints imposed by those relations. The include relation im-
plies calling the included use case in a step of the basic use case. The extends relation
corresponds to linking scenarios of extending use case at a certain extension point. We
treat the inheritance as an obligation that a specialized version of the some general
use case preserves its set of pre- and postconditions.

4.1. Include

If use case A includes use case B it implies an obligation. In a step of main or al-
ternative scenario of A the use case B should called. This corresponds to replacing
transition in a model of A by the model of B (Figure 3) and linking initial and final
states. If the included use case defines variables, they are inserted to the set of vari-
ables of the model of main use case. This allows checking failures in included use case
after calling it by appropriate guards in the scenarios of main use case.

A B

success:=true success:=false[success=true] [success=false]

Fig. 3. Modeling include relation

4.2. Extends

Extends relation between use case A and B implies, that at a certain extension point
the main scenario of A forks and possibly joins at a state indicated in B specification.
As the result models of both use cases are merged (states, transitions and variables).
Extending use cases are treated similarly to alternative scenarios (Figure 4). They
specify alternative branches in the model.

13 października 2010 str. 7/17

Formal analysis of use case diagrams 121

A

B

paid:=true

paid:=true

paid:=false

Fig. 4. Modeling extends relation

4.3. Inheritance

The inheritance relation between two use cases: the base and the derived implies that
the derived use case delivers the same results as the base use case while manifesting
different behavior. The typical example is shown in Figure 5. An abstract use case
Identify User has two specializations: Identify User By Retina Scan and Identify User
By Fingerprint. Those methods of identifications base on different principles and have
different steps, however both result the same result: the status of user identification.

Identify User

Identify User By Retina Scan Identify User By Fingerprint

Fig. 5. Inheritance between use cases

Figure 6 shows a model of the use case Identify User. For a given precondition
(true) it leads to two states annotated with different postconditions identified = true
or identified = false. If an external use case includes it, both models are merged
by appropriately linking initial and final states and merging sets of variables (see

13 października 2010 str. 8/17

122 Radosław Klimek, Piotr Szwed

Figure 3). Calling use case may then test postconditions referring to variables defined
in scope of Identify User.

Identify User

Pre [true]

Post [identified=true] Post [identified=false]

Fig. 6. Model of generalized use case

It is assumed that specialized use cases can be used in any context, where the
base use case can be called (included). In Figure 7 a model of specialized use case
Identify User by Retina Scan is presented. Although more expanded, it preserves the
pre and postconditions. In fact, we may expect that the derived use case has identical
preconditions and its postconditions form a subset of postconditions in base use case
(derived use case may narrow but not widen the set of postconditions). Moreover, for
any trace in the model UCM of derived use case transforming a precondition into a
postcondition, analogous trace should exist in the model of base use case.

Pre [true]

Post [identified=true] Post [identified=false]

Identify User By Retina Scan

Fig. 7. Model of specialized use case

5. Verification of UCM

5.1. Correctness of use case model

Let us consider a finite trace representing behavior of UCM. The trace si a sequence
of states and valuation of variables starting with the initial values s0 and Val0. σ =
(s0,Val0), (s1,Val1), . . . , (sn,Valn).

For each subsequent pairs (si−1,Val i−1) and (si,Val i) the following conditions
holds:

1. ti = (si−1, si) ∈ T

13 października 2010 str. 9/17

Formal analysis of use case diagrams 123

2. G(ti)(Val i−1) = true
3. if Val i−1 6= Val i then f ∈ Assign(t) : f(Val i−1) = Val i
4. ∀s ∈ S \ {sn} : (sn, s) /∈ T or ∃s ∈ S \ {sn} : (sn, s) ∈ T ∧G(sn, s)(Valn) = false

Definition 2. We define a set of final states of UCM as FS = {s ∈ S :
¬∃snext.(s, snext) ∈ T}. The trace σ is correct iff:

1. sn ∈ FS
2. Cond(Valn) = true

Definition 3. Let L(UCM) be a set of all traces of UCM satisfying conditions (1-4).
The UCM model is correct iff:

1. ∀σ ∈ L(UCM) σ is correct
2. ∀t = (s1, s2) ∈ T ∃σ ∈ L(UCM),
σ = (s0,Val0), . . . , (si−1,Val i−1), (si,Val i), . . . , (sn,Valn) : s1 = si−1, s2 = si

5.2. Model verification

Verification of UCM model consists in systematic exploration of its state space and
constructing an execution graph Γ = (V,E) modeling its behavior. Each vertex vi ∈ V
is labeled with the pair (si,Val i). An edge e ∈ E in the graph is labeled by a transition
t ∈ T in UCM and an assignment function f ∈ Assign(t).

Two vertices v1 = (s1,Val1) and v2 = (s2,Val2) are linked by an edge e12 =
(t12, f12) if the following conditions are satisfied:

1. t12 = (s1, s2) ∈ T
2. G(t12)(Val1) = true
3. f12 ∈ Assign(t12)
4. Val2 = f12(Val1)

As it can be observed, the graph G represents in fact a Kripke structure [6] or it can
be easily transformed to it by removing labeling of edges and adding extra self-loops
at vertices having no successors. The process of building graph G follows the method
of building occurrence graph for Petri nets described in [17]. It starts with an initial
graph Γ0 = (V0, E0), where V0 = (s0,Val0), E0 = ∅. At each step a new graph Γi
is constructed from a graph Γi−1 by adding an edge ei and a vertex vi to the graph
Γi−1. This is done by selecting a starting vertex vs = (ss,Vals), a candidate transition
ti ∈ {(s1, s2) ∈ T : s1 = ss}, checking its guard and selecting an assignment function
fi ∈ Assign(ti). If the edge ei = (ti, fi) is not present in Ei−1, graph Γi is constructed
by calculating Ei = Ei−1 ∪ {ei} and Vi = Vi−1 ∪ {(si,Val i)}, where ti = (ss, si)
and Val i = f(Vals). The process terminates if all edges labeled with pairs (ti, fi) are
present in the graph Γi−1.

It can be observed that the graph Γ has following properties:

• its finite, as sets S and the set valuations of Boolean variables are finite,
• any trace of UCM execution represents a path in the graph.

Correctness of UCM can be checked by checking two properies:

13 października 2010 str. 10/17

124 Radosław Klimek, Piotr Szwed

• for each vertex v = (s,Val) with no outgoing edge v should satisfy: s ∈ FS and
Cond(Val) = true.
• for any transition t ∈ T the set of edges E should contain an edge labeled with t.

5.3. Logic verification

Another way of system’s verification is an analysis of correctness using the methods
of formal logic. Such analysis enables checking whether our inference procedures pre-
serve truth, which is of fundamental importance in validation of modeled systems.
It can be observed increasing of importance of non-classical logics as they are close
to the natural inference mechanisms. Particularly noteworthy is temporal logic which
originates from modal logic. It allows to reason about the system behavior taking
into account its relations with time. However, temporal logic is not focused on time
measurement and more important are temporal relationships among events such as
precedence and sequence of events.

Definition 4. Formal logic is a structure L = 〈F , I, |=〉, where F is a set of syntac-
tically correct formulae, I is a set of legal interpretations, and |=⊆ I × F is a rela-
tionship that combines syntax and semantics of a logic.

The formal definition of the syntax and semantics of temporal logic can be found
in many works, e.g. [9]. Thus, treating these concepts as defined, let us define further
ones.

Definition 5. Temporal logic formula P is satisfied, if there is any interpretation I

such that I |= P , i.e. I is a model for formula P . Formula P is called valid, or simply
tautology, if for every interpretation I there is I |= P .

There are many ways of logical inference, but here attention will be paid in two
key methods of temporal logic inference about modeled system. The first one is called
the deductive method. It is based on a logical system which is build in such a way
that there are some rules of inference which contain assumptions that lead to the
conclusions. This makes possible to introduce a formal scheme which allows to obtain
new sentences in a formal way. These new sentences are theorems in a logical sys-
tem. Therefore, the construction of a system of logical inference requires to propose
sentences recognized by the system as its assumptions, i.e. sentences which do not
require proofs, and rules of inference. These sentences are schemes which allow trans-
formation of some valid sentences in the other valid sentences. However, this is done
within the formal language. On the other hand, the inference rules relate to some
metalanguage and they are reliable inference patterns. Construction of a deductive
system must take into account a number of its properties, including the structure of
time domain, which in general is a fairly complex process. However, axiomatic and
deductive system for the smallest temporal logic is defined ([5]) as an extension of the
classical propositional calculus about axiom �(P ⇒ Q)⇒ (�P ⇒ �Q) and inference

rule
|−P
|−�P This rule states how to transform a theorem to another one.

13 października 2010 str. 11/17

Formal analysis of use case diagrams 125

An alternative way of inference is the method of semantic tableau (e.g. [8]). In this
method, an attempt to prove a formula by examining the complementary formula, i.e.
its negation, and then lead to a contradiction. The procedure starts by a placing the
complementary formula in the root of a tree, and then other subtrees are generated.
Building the tree is achieved through an application of some defined rules. Some of the
generating rules come from classical logic, but others are specific to temporal logic.
The purpose of a such procedure is to find contradictions in various branches of the
tree. This, in turn, means that there is an absence of a contradiction for the initial
formula. Thus, the tree is called closed if in each branch was found a contradiction.
The method of semantic tableau can be automated. What’s more, the method has
an advantage over the deductive method. It follows from the fact that it is easier
to find the place of potential error which is simply the appropriate branch of the
tree. In addition, the method is characterized by a lower complexity, which arises
from the fact that the generated tree has less and less complex formulae at each
stage. Proving the desired property of the modeled system consists in the logical
implications P ⇒ Q, where P is a conjunction P = p1 ∧ p2 ∧ . . . ∧ pn of all formulas
which constitute the system specification, and Q is a formula expressing the desired
property. It is interpreted that the examined property is a logical consequence of the
system specification. Of course, the key issue is the careful identification of formulas
which make up the modeled system.

6. Example

Let us consider an example. It deals with the classical problem of the choice of payment
method for goods. A common solution to this problem is presented in Figure 8. and
the scenario for this problem is presented in Table 1.

Payment (in cash)

Card

Salesperson

Bank

«extends»

Fig. 8. Use case implementation using one extended use case

The baseline scenario assumes the implementation of cash payment. However, as
an optional extension might be the implementation of payment by credit card. This
is an extension of the base case, which occurs as a result of switching and transition
control to the extending use case. This solution seems to be a model pattern.

13 października 2010 str. 12/17

126 Radosław Klimek, Piotr Szwed

Table 1
Scenario for use case Payment (in cash)

Precondition

Debit undefined value
PaymentMethod undefined value

Postcondition for success

Debit Debit = 0
PaymentMethod PaymentMethod = cash∨

PaymentMethod = card

Postcondition for failure

Debit Debit > 0
PaymentMethod PaymentMethod = cash∨

PaymentMethod = card

Main scenario

1. System displays the customer’s
account

Debit:= anynonnegativevalue

2. System introduces a standard
method of payment

PaymentMethod:= cash

3. Salesperson verifies the choice of
method of payment

Guard: [PaymentMethod = cash]

4. Salesperson accepts payment
and confirms it to the system

Debit:= 0

Alternative

2.a. Guard: [Debit = 0]
2.a.1. System displays information
that no payment is needed and use
case terminates
4.a. Payment cannot be realized
4.a.1. Use case terminates

Extensions

3.a. Payment in card PaymentMethod:= card

Model verification

Let us consider the formal analysis of the last solution. Figure 9 shows an example
of UCM for the use case Payment (in cash). The conditions in use case specifications:
debit = 0, debit > 0, PaymentMethod = cash and PaymentMethod = card are rep-
resented by Boolean variables: debit eq 0, debit gt 0, pm eq cash, pm eq card . The
constraints C for the variables are:

((¬debit eq 0 ∧ ¬debit gt 0) ∨ (debit eq 0 ∧ ¬debit gt 0) ∨

13 października 2010 str. 13/17

Formal analysis of use case diagrams 127

(¬debit eq 0 ∧ debit gt 0)) ∧ ((¬pm eq cash ∧ ¬pm eq card) ∨
(¬pm eq cash ∧ pm eq card) ∨ (pm eq cash ∧ ¬pm eq card))

Valuations of Boolean variables (debit eq 0, debit gt 0, pm eq cash, pm eq card) we
will represent by strings containing T and F letters. The initial valuation assigns false
to all variables, thus corresponding string is FFFF .

1

2

3

4

System displays client’s account

Salesperson enters payment method

System checks if payment by cash is

selected

5

Salesperson accepts payment and

registers it in the system

pm_eq_cash:=true |
pm_eq_card:=true

guard:
pm_eq_cash

debit_eq_0:=true

Post [debit_eq_0]

6

Payment not accepted

7

[debit_eq_0]

System displays information

that no payment is needed

[not debit_eq_0]

Post [debit_gt_0] Post [debit_eq_0]

debit_eq_0:=true |
debit_gt_0:=true

Fig. 9. Use case model example

In the Figure 10 Γ graph for the UCM from Figure 9 is presented. Each vertex
is annotated with the state number and the string representing valuation of Boolean
variables. Edges of the graph are annotated with assignments to the variables.

1,FFFF

2,FTFF 2,TFFF

3,FTTF 3,FTFT

4,FTTF

5,TFTF 6,FTTF 7,TFFF

debit_eq_0:=truedebit_gt_0:=true

pm_eq_cash:=true pm_eq_card:=true

debit_eq_0:=true
debit_gt_0:=false

Fig. 10. Γ graph

It can be observed that for the leaf vertices [5,TFTF], [6,FTTF] and [7,TFFF]
postconditions assigned to states evaluate to true, thus the traces leading to them are
correct. The vertex labeled with [3,FTFT] corresponding to selecting payment by card

13 października 2010 str. 14/17

128 Radosław Klimek, Piotr Szwed

has no successor and does not belong to the set of final states FS. The trace [1,FFFF]
[2,FTFF] [3,FTFT] can be classified as incorrect, what reveals incorrectness of the
isolated use case Payment (in cash). This however can be fixed if the extending use
case Card is defined and its UCM model is merged with the model in Figure 9 as
described in section 4.2.

Logic verification

The use case specification should be carefully constructed and divided to the follow-
ing items: main scenario, alternative (scenario), extensions, etc. However, the model
presented here is relatively small and therefore the specification (Table 1) of the (use
case) model will be considered a whole. First, let us consider the possibility of setting
a standard form of payment:

♦pm eq cash (1a)

On the other hand, the customer is left to the choice of the other form of payment:

♦(pm eq cash ⇒ ♦(pm eq cash ∨ pm eq card)) (1b)

If the debit is not positive then payment (in card) will not be made:

�(debit eq 0⇒ ¬♦pm eq card) (1c)

It is not possible to change the form of payment in card:

�(pm eq card ⇒ ¬♦pm eq cash) (1d)

Now, let us consider some expected liveness and safety properties. The basic
safety property says that it is not possible to request two forms of payment:

�¬(pm eq cash ∧ pm eq card) (2a)

The basic liveness property express the transition from precondition to postconditions
both for success and failures:

¬(debit eq 0 ∨ debit gt 0) ∧ ¬(pm eq cash ∨ pm eq card)⇒
♦((debit eq 0 ∨ debit gt 0) ∧ (pm eq cash ∨ pm eq card)) (2b)

(Note that undefined value may be treated as a specific variable’s value.) Formulas
from 1a to 1d belong to the logic model of the specification from Table 1. Formulas 2a
and 2b express basic and sample properties of the system. Properties can be verified
using the method of semantic tableau which was outlining above (section 5.3). The
detailed example of formal verification of use case diagrams using temporal logic and
semantic tableau method has been presented in work [13].

13 października 2010 str. 15/17

Formal analysis of use case diagrams 129

7. Conclusion

In this paper a formal model of use cases, enabling application of formal methods
for a system verification is proposed. There are two ways of formal reasoning about
the modeled system. The first method refers to states’ exploration while the other
one refers to the symbolic inference using temporal logic. An example of uses case
is analyzed taking into account two complementary ways of verification. Careful and
precise modeling of the use case diagrams is very important not only for understanding
the system itself, but there is also the ability to automatically, or semi-automatically,
generate a number of UML diagrams based on the use cases documentation, c.f. [15].

Future work will include defining a formal language of the use case specification
that would allow to define both narrative part in natural language and operations
on formally defined sets of variables. Presented in section 2 metamodel indirectly
defines the scope of such language. It is planned to develop a tool enabling automatic
translation of use case specification to the UCM model. It is planed also to investigate
the possibility of automatic, or semi-automatic, generation of temporal logic formulas
for the modeled system. Alternative to the model checking presented here is the model
checking with temporal logic, i.e. when a model is specified as a transition system but
properties are expressed as temporal logic formulas.

References

[1] Back R.-J., Petre L., Porres Paltor I.: Analyzing UML Use Case as Contracts.
Proceedings of UML’99, Second International Conference on the Unified Modeling
Language. (Lecture Notes in Computer Science, 1723), Springer Verlag 1999,
pp. 518–533.

[2] Barnett M., Grieskamp W., Schulte W., Tillmann N., Veanes M.: Validating
Use-Cases with the AsmL Test Tool. Proc. of the 3rd International Conference
on Quality Software (QSIC’03). IEEE Computer Society 2003.

[3] Barrett S., Sinnig D., Chalin P., Butler G.: Merging of Use Case Models: Semantic
Foundations. 3rd International Symposium on Theoretical Aspects of Software
Engineering, IEEE Computer Society 2009, pp. 182–189.

[4] Bartsch K., Robey M., Ivins J., Lam C.P.: Consistency Checking between Use
Case Scenarios and UML Sequence Diagrams. International Conference on Soft-
ware Engineering, Innsbruck, 2004. IASTED/ACTA Press 2004.

[5] van Benthem J.: Temporal Logic. [in:] Handbook of Logic in Artificial Intelligence
and Logic Programming. vol. 4, Clarendon Press 1993–95, pp. 241–350.

[6] Clarke E. M. Jr., Grumberg O., Peled D. A.: Model Checking. MIT Press 1999.
[7] Cockburn A.: Writing Effective Use Cases. Addison-Wesley 2001.
[8] D’Agostino M., Gabbay D.M., Hähnle R., Posegga J. (eds): Handbook of Tableau

Methods. Kluwer Academic Publishers 1999.

13 października 2010 str. 16/17

130 Radosław Klimek, Piotr Szwed

[9] Emerson E. A.: Temporal and Modal Logic. Handbook of Theoretical Computer
Science, vol. B: Formal Models and Semantics, Elsevier, MIT Press 1990, pp. 995–
1072.

[10] Fowler M.: UML Distilled. 3rd Edition. Addison-Wesley 2004.
[11] Hurlbut R.: A survey of approaches for describing and formalizing use-cases.

Technical Report 9703, Department of Computer Science, Illinois Institute of
Technology 1997.

[12] Jacobson I.: Object-Oriented Development in an Industrial Environment. Proc. of
OOPSLA’87, special issue of SIGPLAN Notices. vol. 22, 12, 1987, pp. 183–191.

[13] Klimek R., Skrzyński P., Turek M.: Automatic verification of the model at the
requirements analysis phase [in Polish]. 12th National Conference of Software
Engineering, Poland, Gdańsk, September 27-29, PWNT 2010, pp. 209–216.

[14] Kösters G., Six H.-W., Winter M.: Validation and Verification of Use Cases
and Class Models. 7th International Workshop on Requirements Engineering:
Foundations for Software Quality (REFSQ’2001, Proc.), 2001.

[15] Król T.: The simulation of use cases [in Polish]. Master thesis (superviser:
R. Klimek). AGH University of Science and Technology 2007.

[16] Pohl K., Haumer P.: Modelling Contextual Information about Scenarios. Proc. of
the Third International Workshop on Requirements Engineering: Foundations of
Software Quality REFSQ’97, Barcelona, 1997, pp. 187–204.

[17] Reisig W.: Petri Nets – An Introduction. (EATCS Monographs on Theoretical
Computer Science, Volume 4). Springer Verlag 1985.

[18] Saeki M., Kaiya H., Hattori S.: Applying a Model Checker to Check Regulatory
Compliance of Use Case Models. Proc. of CAiSE Forum 2009.

[19] Shen W., Liu S.: Formalization, Testing and Execution of a Use Case Diagram.
ICFEM 2003 International Conference on Formal Engineering Methods, Singa-
pore, 2003. (Lecture Notes in Computer Science, 2885), Springer Verlag 2003,
pp. 68–85.

[20] Zhao J., Duan Z.: Verification of Use Case with Petri Nets in Requirement Anal-
ysis. Proc. of the International Conference on Computational Science and Its
Applications, Springer Verlag 2009, pp. 29–42.

13 października 2010 str. 17/17

Formal analysis of use case diagrams 131

