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Formal and Compositional Analysis of Power

Systems using Reachable Sets
Matthias Althoff

Abstract—Power system stability analysis becomes more im-
portant in the presence of ever increasing variations in operating
conditions. Traditionally, the operation of power systems is
verified for specific operating conditions. In this work, the
stability analysis is performed for a set of operating conditions
using reachability analysis, which makes it possible to compute
the bounds of all possible system trajectories. Thus, reachability
analysis can be used to rigorously check specifications. Contrary
to previous work, the presented approach does not require
model simplifications when the system is described by semi-
explicit, nonlinear, index-1 differential-algebraic equations. The
main obstacle in reachability analysis is the scalability towards
larger systems, which is addressed by investigating compositional
techniques. As a result, transient stability and variable energy
production can be analyzed for the IEEE 14-bus and 30-bus
benchmark systems, for which the computation times are orders
of magnitude faster than the simulation of all cases starting in
the corners of the set of possible initial states.

Index Terms—Reachability analysis, stability analysis, com-
positional analysis, power systems, transient stability analysis,
uncertain energy production, differential-algebraic equations,
formal verification.

I. INTRODUCTION

The ongoing trend towards decentralized power generation

with a considerable share of renewable energy sources results

in a less predictable operation of power systems. New anal-

ysis techniques are required to consider all possible future

behaviors to ensure a reliable operation of power systems.

In this paper, reachability analysis is proposed as a formal

technique to verify if specifications are met under uncertain

operating conditions. Reachability analysis computes the set of

all possible (infinitely many) trajectories of a dynamic model

when the uncertainty of initial states, time-varying inputs, and

parameters is bounded by sets.

This work focuses on large deviations from the initial oper-

ating condition, such that small-signal analysis techniques can

no longer be applied [1, Chap. 12]. The dominant technique in

power systems for model-based analysis of large disturbances

is numerical simulation, which is easy to implement, but

can only provide satisfying results when the actual operating

condition is known and there are no parametric and input

uncertainties. The knowledge of the actual operating condition

requires constant simulation of the system for a set of probable

contingencies when new SCADA (Supervisory Control And

Data Acquisition) measurements are available at a cycle time

of around 10-30 minutes [2]. Due to increasingly varying
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operating conditions, the measurements at the last cycle might

have considerably drifted. In order to rigorously consider those

drifts, one has to assume a set of possible initial states covering

changes between SCADA updates. However, the number of

required simulations grows exponentially with the number

of state, input, and parametric variables due to a necessary

gridding of the multidimensional set bounding all variables.

Besides the exponential complexity, numerical simulation is

not a formal technique, i.e., one cannot certify whether the

effect of a control action complies with the system specifica-

tion: 1) it does not show that all states (infinitely many) of

an initial set return to the operating point, and 2) it is unclear

for how long a simulation has to be run until a particular

trajectory can be considered stable. The aforementioned issues

are alleviated by faster simulation using parallel-in-space [3]–

[5] and parallel-in-time algorithms [6] and by Monte Carlo

simulation [7]–[9] to address uncertain prediction.

Instead of explicitly simulating the behavior for stability

analysis, direct methods compute regions in the state space

from which the system state returns to the original operating

point [10]–[12]. Those regions are essential to quickly check

if control actions are capable of stabilizing the system without

requiring time-consuming simulations. Direct methods require

Lyapunov functions, which can only be found for simplified

system dynamics using network preserving and network reduc-

tion methods, where the latter is the dominant technique, see

e.g. [10]–[15]. While network preserving methods work with

ordinary differential equations (ODEs), network preserving

methods use more general models described by differential-

algebraic equations (DAEs) [16]–[19]. A challenge for both is

to find the so-called critical value of the Lyapunov function

to underapproximate the region of attraction. Especially for

systems with several generators, the critical value is rather

conservative, resulting in an underapproximation of the region

of attraction [10], [11]. Another disadvantages of direct meth-

ods is that one cannot check if phase, voltage, and frequency

constraints are met since direct methods only analyze if a

steady state of a disturbed system is eventually reached.

Reachability analysis is a complementary analysis technique

besides simulation techniques and direct methods. Differing

from simulation techniques, reachability analysis can prove

whether system specifications are fulfilled in the presence of

uncertainties, such as uncertain initial states and uncertain

inputs/disturbances. Direct methods are a formal technique

since they can guarantee stability when the initial state starts

in the computed region of attraction. However, other than

reachability analysis, direct methods cannot formally verify

whether constraints are met (e.g. whether frequencies and volt-

ages remain within permitted ranges). Since formal analysis of
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the nonlinear dynamics of power systems is undecidable [20],

one cannot compute exact reachable sets for this system class,

requiring instead the computation of an overapproximation of

the reachable set, which includes all behaviors of the modeled

system. However, when the overapproximation is too large,

one might not be able to verify the system although all

specifications are met in reality. General literature reviews on

reachability analysis of dynamic systems can be found in [21]–

[24]. Most previous work on reachability analysis in power

systems has been limited to small problems due to the initial

computational costs of first attempts. In [25], [26], reachability

analysis is performed for a single-machine-infinite-bus system

modeled by ordinary differential equations with only 2 state

variables. A slightly larger double-machine-infinite-bus system

with 2 buses described by ODEs resulting in 5 state variables is

considered in [27], where simulations are performed to approx-

imate the reachable set resulting in a non-formal approach, i.e.

one cannot prove that the controller meets the specifications

under all eventualities. A 3-bus system is considered in [28] to

investigate effects on wind variability. More recent work of the

same authors considers the effects of wind variability for the

39-bus New England system model [29] and similar studies

on the effect of uncertain energy production on frequency

deviation are studied in [30] for a reduced-order model of

the U.S. power system. The computations in [28]–[30] are

simplified by linearizing the system dynamics so that the

results are not overapproximative anymore and thus do not

qualify for formal analysis.

To the best knowledge of the author, none of the previous

methods for reachability analysis of power systems considers

the original DAE system arising in power system modeling,

instead relying on simplification of the system dynamics to

ordinary differential equations. In the previous work of the

author [31], a new method is presented which can compute

the reachable set of the original DAE systems. The approach

proposed in [31] has a complexity of O(n5), where n is

the number of state variables. Although the complexity is

polynomial, the analysis of large systems results in enormous

computational costs. In this work, the computational costs are

drastically reduced by investigating compositional techniques,

making it possible to compute reachable sets of the IEEE 30-

bus benchmark system in less time compared to the IEEE

14-bus version when no compositional techniques are ap-

plied. Another extension compared to [31] and other previous

works is the investigation of the effect of uncertain energy

production–not only on frequency, but also on bus voltage and

phase under consideration of nonlinear effects.

II. PROBLEM FORMULATION

We consider power systems that can be modeled as a set

of semi-explicit, nonlinear, index-1 DAEs, which applies to

almost all power systems (see e.g. [32]). For brevity of the pre-

sentation it is assumed that the parameters of the power system

are known and constant over time, resulting in a set of time-

invariant DAEs. Extensions required for uncertain parameters

are presented in [33]. The vectors of differential variables,

algebraic variables, and inputs are respectively denoted by

x ∈ Rnd , y ∈ Rna , and u ∈ Rm, where nd, na, and m are the

corresponding numbers of variables. For a set of consistent

initial states R(0) and a set of possible inputs/disturbances U ,

the system equations are

ẋ = f(x(t), y(t), u(t)),

0 = g(x(t), y(t), u(t)),
(1)

where [xT (0), yT (0)]T ∈ R(0), u(t) ∈ U . The initial state is

consistent when g(x(0), y(0), u(0)) = 0 and it is assumed

that (1) has a unique solution γ(t, x(0), y(0), u(·)) for all

consistent initial states x(0), y(0) and all piecewise continuous

input trajectories u(·), where u(t) refers to an input at a

specific point in time t. No other assumption besides unique

solutions are required. The goal of this work is to compute

the reachable set Re([0, tf ]) of (1) for a time interval [0, tf ]:

Re([0, tf ]) =
{

γ(t, x(0), y(0), u(·))
∣
∣
∣[xT (0), yT (0)]T ∈ R(0),

{

u(t) ∈ U , t ∈ [0, tf ]
}

.

The superscript e on Re([0, tf ]) denotes the exact reachable

set, which cannot be computed for nonlinear DAE systems as

mentioned in the introduction [20]. For this reason, algorithms

are presented which compute as tight as possible overap-

proximations R([0, tf ]) ⊇ Re([0, tf ]). For simplification, the

expression reachable set is used even when overapproximative

reachable sets are computed. For later derivations, the projec-

tion of the reachable set onto the coordinates of differential

variables is denoted by Rd([0, tf ]) and onto the algebraic vari-

ables by Ra([0, tf ]). Since reachable sets contain the union of

all possible simulations, the same types of analysis performed

with simulations can be performed with reachable sets. Note

that reachability can in principle also be applied to chaotic

systems [34]. In this work, the focus is on transient stability

analysis and the effects of uncertain energy production.

III. PRELIMINARIES

The presented approach is based on known techniques

for computing reachable sets of linear differential inclusions,

which are recapitulated in this section. Reachable set computa-

tions are typically performed iteratively for short time intervals

τk := [tk, tk+1].

In this work, constant-size time intervals tk := k r are used to

focus on the main innovations, where k ∈ N is the time step

and r ∈ R+ is referred to as the time increment. An extension

to variable time increments is described in [35].

The iterative computation of reachable sets for linear

systems requires set-based addition or Minkowski addition

(X⊕Y := {x+y|x ∈ X , y ∈ Y}) and set-based multiplication

(X ⊗ Y := {x y|x ∈ X , y ∈ Y}). Note that the symbol

for set-based multiplication is often omitted for simplicity of

notation, and that one or both operands can be singletons. A

brief description of the main steps for obtaining reachable sets

for a single time interval is provided below.

In this section, the reachability analysis of linear differential

inclusion ˙̃x ∈ Ãx̃(t) ⊕ Ũ is recapitulated, where x̃ ∈ Rnd ,

Ã ∈ Rnd×nd , and Ũ ⊂ Rnd is a set of uncertain inputs. A
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tilde is used for the variables of the linear differential inclusion

to distinguish the variables from the ones of the original

nonlinear DAEs. For further computations, some variables and

sets are introduced: uc is the center of Ũ , Ũ∆ := Ũ ⊕ (−uc)
is the deviation of Ũ from the center uc, the reachable set of

the affine dynamics ˙̃x = Ãx̃(t) + uc is Rd
a(t), the reachable

set of the particular solution due to the uncertain input Ũ∆ is

Rd
p(Ũ∆, t), and the partial reachable set correcting the initial

assumption that trajectories are straight lines between tk and

tk+1 is Rd
ǫ . According to [23], the reachable set for a time

interval τk is computed as shown in Fig. 1:

1) Starting from Rd(tk), compute the set of all solutions

Rd
a(tk+1) for the affine dynamics ˙̃x = Ãx̃(t) + uc at

time tk+1.

2) Obtain the convex hull of Rd(tk) and Rd
a(tk+1) to

approximate the reachable set for the time interval τk.

3) Compute Rd(τk) by considering uncertain inputs by

adding Rd
p(Ũ∆, r) and accounting for the curvature of

trajectories by adding Rd
ǫ .

Rd(tk)

Rd
a(tk+1)

convex hull of

Rd(tk), R
d
a(tk+1)

Rd(τk)

➀ ➁ ➂

enlarge-

ment

Fig. 1. Steps for computing the reachable set for a linear system.

Using r = tk+1 − tk, the solution of Rd
a(tk+1) is

Rd
a(tk+1) = eÃrRd(tk) +

∫ r

0

eÃ(r−t) dt uc

︸ ︷︷ ︸

=:xp(r)

,

where xp(r) is bounded by integrating the finite Taylor series

eÃr =
∑η

i=0(Ãr)i/(i!) up to order η to which the remainder

Ep(r) is added:

xp(r) ∈
( η
∑

i=0

Ãiri+1

(i+ 1)!
⊕ Ep(r)

)

︸ ︷︷ ︸

=:Γ(r)

uc.

The remainder can be overapproximated by an interval matrix

Ep(r) := [−W (r) r,W (r) r], i.e., by a matrix with lower

and upper bounds on each element, where W (r) = e|Ã|r −
∑η

i=0
|Ã|iri

i! . For later derivations, W̃ (r) := W (r)r is also

introduced. The required enlargement of the convex hull (see

3rd step in Fig. 1) is achieved by adding Rd
ǫ to account for

the curvature of trajectories from Rd(tk) to Rd
a(tk+1) (see

[23]) and by adding the reachable set Rd
p(Ũ∆, r) due to the

uncertain and convex input set Ũ∆ (see [36]):

Rd
ǫ :=

(
F ⊗Rd(tk)

)
⊕
(
F̃ ⊗ uc

)

Rd
p(Ũ∆, r) :=

η
⊕

i=0

(

Ãi ri+1

(i + 1)!
Ũ∆

)

⊕
(
[−W̃ (r), W̃ (r)] ⊗ |Ũ∆|

)
,

with

F :=

(
η
⊕

i=2

[(

i
−i
i−1 − i

−1

i−1

)

ri, 0
] Ãi

i!

)

⊕ [−W (r),W (r)]

F̃ :=

(
η+1
⊕

i=2

[(

i
−i
i−1 − i

−1

i−1

)

ri, 0
] Ãi−1

i!

)

⊕ [−W̃ (r), W̃ (r)].

The absolute value |Ũ∆|i := sup
{
|ui|
∣
∣u ∈ Ũ∆

}
is defined

elementwise. The reachable sets for the next point in time and

time interval are obtained by combining all previous results

(see [36]):

Rd(tk+1) :=eArRd(tk)⊕ Γ(r)uc ⊕Rd
p(Ũ∆, r),

Rd(τk) :=CH
(
Rd(tk), e

ArRd(tk)⊕ Γ(r)uc

)

⊕Rd
ǫ ⊕Rd

p(Ũ∆, r),

(2)

where CH() returns the convex hull. Throughout this work,

zonotopes are used to represent the reachable sets. How-

ever, the proposed algorithms and computations apply to all

kinds of set representations. Zonotopes are used since they

can efficiently represent reachable sets in high-dimensional

spaces while operations required for reachability analysis can

efficiently be applied to them. Details on the definition of

zonotopes and operations on them are described in Sec. VI.

IV. REACHABILITY ANALYSIS OF NONLINEAR DAE

SYSTEMS

Other than for linear systems, no closed-form solution

exists for general nonlinear DAEs. In order to exploit the

efficient methods of the previous section based on the closed-

form solution of linear systems, an abstraction of the original

nonlinear DAEs to linear differential inclusions is performed

for each consecutive time interval τk. The linear differential

inclusions are computed such that the resulting abstraction

is strictly overapproximative, i.e. it contains all behaviors of

the original dynamics. By re-computing the abstraction for

each time interval, the overapproximation remains small and

accurate results are obtained while traversing the nonlinear

state space far away from the original operating point.

A. Abstraction to Linear Differential Inclusions

The abstraction of the nonlinear DAEs to linear differential

inclusions is based on linearizing the system dynamics and

adding the linearization errors as uncertain input. For a concise

notation, the vector z := [xT , yT , uT ]T , the linearization

point z∗ := [x∗T , y∗T , u∗T ]T , and Rz := R(τk) × U are

introduced. To efficiently obtain a suitable linearization point,

the volumetric centers cd, ca, cu of the sets Rd(tk), R
a(tk),

and U , are introduced. In a previous work it is shown that

the center of the reachable set of the current time interval

is the best linearization point when the linearization error is

computed via an evaluation of the Lagrange remainder using

bounds on absolute values [33, Prop. 2]. Although a refined

technique is used for the linearization error computation in

this work, the center of the reachable set remains the best

choice for the linearization error. To circumvent the problem
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that the reachable set is required for an optimal lineariza-

tion point, which in turn is required for the computation of

the reachable set, the center of the differential variables is

approximated by a one-step Euler integration. This yields

x∗ = cd + 0.5r · f(cd, ca, cu), where the step size is 0.5r
because the center of the reachable set Rd(τk) for the time

interval τk is expected to be reached after half the interval

duration of tk+1 − tk = r from the center cd of Rd(tk).
Besides the linearization point of the dynamic variables, the

linearization point of the inputs is chosen as u∗ = cu and

the linearization point of the algebraic part is computed such

that it is consistent with the constraint 0 = g(x∗, y∗, u∗)
using the Newton-Raphson method. The linearization of the

original dynamics in (1) is performed using a first-order Taylor

expansion with Lagrangian remainder:

ẋi = fi(z(t)) ∈ fi(z
∗) +

∂fi(z)

∂z

∣
∣
∣
z=z∗

(z(t)− z∗)

⊕

{
1

2
(z(t)− z∗)T

∂2fi(z)

∂z2

∣
∣
∣
z=ξ

(z(t)− z∗)

∣
∣
∣
∣
ξ, z(t) ∈ Rz

}

︸ ︷︷ ︸

=:Ld
i

,

0 = gj(z(t)) ∈ gj(z
∗) +

∂gj(z)

∂z

∣
∣
∣
z=z∗

(z(t)− z∗)

⊕

{
1

2
(z(t)− z∗)T

∂2gj(z)

∂z2

∣
∣
∣
z=ξ

(z(t)− z∗)

∣
∣
∣
∣
ξ, z(t) ∈ Rz

}

︸ ︷︷ ︸

=:La
j

,

(3)

where Ld
i denotes the projection of Ld onto the ith coordinate.

The Lagrangian remainders Ld and La enclose all higher-

order terms if z∗, ξ, z(t) ∈ Rz [37, p. 87]. For subsequent

derivations, it is required to separate the effects from differ-

ential variables, algebraic variables, and inputs. Therefor, the

following sub-matrices of the Jacobians are introduced:

∂f(z)

∂z

∣
∣
∣
z=z∗

= [A, C, B],
∂g(z)

∂z

∣
∣
∣
z=z∗

= [D, F, E], (4)

where A ∈ Rnd×nd , B ∈ Rnd×m, C ∈ Rnd×na , D ∈
Rna×nd , E ∈ Rna×m, F ∈ Rna×na , and nd, na,m are

the number of differential, algebraic, and input variables,

respectively. Inserting the abbreviation z = [xT , yT , uT ]T

and the matrices A-F into (3), and introducing Hd,(i)(ξ) :=
∂2fi(z)
∂z2 )

∣
∣
z=ξ

, Ha,(j)(ξ) :=
∂2gj(z)
∂z2 )

∣
∣
z=ξ

, Rz
∆ := Rz ⊕ (−z∗),

ν(t) := z(t)− z∗, yields

ẋ ∈f(z∗) +A(x(t) − x∗

︸ ︷︷ ︸

=:∆x(t)

) +B(u(t)− u∗

︸ ︷︷ ︸

=:∆u(t)

) + C(y(t)− y∗
︸ ︷︷ ︸

=:∆y(t)

)

⊕
{1

2
σ
∣
∣
∣σi = νTHd,(i)(ξ)ν, ξ ∈ Rz , ν ∈ Rz

∆

}

, (5)

0 ∈g(z∗) +D(x(t) − x∗

︸ ︷︷ ︸

=:∆x(t)

) + E(u(t)− u∗

︸ ︷︷ ︸

=:∆u(t)

) + F (y(t)− y∗
︸ ︷︷ ︸

=:∆y(t)

)

⊕
{1

2
φ
∣
∣
∣φj = νTHa,(j)(ξ)ν, ξ ∈ Rz , ν ∈ Rz

∆

}

. (6)

Note that F is invertible because of the index-1 property, so

that one can reformulate (6) to

∆y(t) ∈ −F−1
(

g(z∗) +D∆x(t) + E∆u(t)
)

(7)

⊕
{

−
1

2
F−1φ

∣
∣
∣φj = νTHa,(j)(ξ)ν, ξ ∈ Rz , ν ∈ Rz

∆

}

.

Inserting (7) into (5) results in a differential inclusion

ẋ ∈f(z∗) +A∆x(t) +B∆u(t)

− CF−1
(
g(z∗) +D∆x(t) + E∆u(t)

)
⊕ L

=(w + Ã∆x(t) + B̃∆u(t))⊕ L,

(8)

where

w := f(z∗)− CF−1g(z∗), (9)

Ã := A− CF−1D, B̃ := B − CF−1E,

and

L =
{1

2
(σ − CF−1φ)

∣
∣
∣σi = νTHd,(i)(ξ)ν,

φj = νTHa,(j)(ξ)ν, ξ ∈ Rz , ν ∈ Rz
∆

}

.
(10)

One can further simplify (8) by combining the singleton w
and the sets B̃(U ⊕ (−u∗)) and L to a new set Ũ :

˙̃x ∈ Ãx̃(t)⊕ Ũ , (11)

x̃(t) := ∆x(t), Ũ := w ⊕ B̃(U ⊕ (−u∗)) ⊕ L.

The obtained differential inclusion can be solved as described

in Sec. III. Still remaining is the determination of linearization

errors.

B. Computation of the Linearization Error

The problem with evaluating (11) is that the set of lin-

earization errors L is not known in advance, consequently Ũ
is unknown, as well. As an initial guess the most recently

computed linearization error L̃ is enlarged by a user-defined

factor λL ∈ R+ around the volumetric center ĉL of L̃:

L = ĉL ⊕ λL(L̃ ⊕ (−ĉL)). (12)

In the event that the enclosure assumption (L ⊇ L) is not

correct after computing the reachable set and the associated

set of linearization errors, L has to be further enlarged. In

order to bound the set of linearization errors, one additionally

checks if L ⊆ Lmax, where Lmax is set by the user. If the

above inclusion is not fulfilled, the reachable set has to be split

in order to reduce the linearization error or the time increment

r has to be reduced.

The set of linearization errors L is computed based on the

reachable set Rd(τk) of the linear differential inclusion (11)

after replacing the input set Ũ by U = w⊕B̃(U⊕(−u∗))⊕L,

which considers the linearization error assumption L instead

of L. After applying the procedures in Sec. III on the linear

differential inclusion (11), one obtains the reachable set of

the differential variables Rd(τk). For computing the set of

linearization errors, the reachable set of the differential and

algebraic variables is required, which can be solely recon-

structed by the reachable set of the differential variables. This
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is achieved by firstly starting with x(t) = x∗ + ∆x(t) and

y(t) = y∗ + ∆y(t), secondly replacing ∆y(t) with (7), and

thirdly substituting specific values by sets:

R(τk) =

[
x∗

y∗ − F−1g(z∗)

]

⊕

[
I

−F−1D

]

(Rd(τk)− x∗)

⊕

[
0

−F−1E

]

(U − u∗)⊕

[
0

−F−1

]

L
a
.

(13)

The reachable set R(τk) is used to compute the set of

linearization errors L as presented in [31]. The computa-

tion of the linearization error is the bottleneck in terms of

computational costs of the presented approach. When using

zonotopes as a set representation, all operations required

for the reachability analysis excluding the linearization error

computation have complexity O(n3), where n is the number

of dynamic and algebraic variables. The linearization error

computation, however, has complexity O(n5). For this rea-

son, compositional techniques are investigated to scale the

approach to larger power systems as presented in the next

section. The overall algorithm of all previously mentioned

steps is presented in Alg. 1.

Algorithm 1 reachNext(Rd(tk),L,U , Ã, B̃, w, r,Lmax, λL)

Require: Previous set Rd(tk), previous linearization error

L, input set U , linearized system matrix Ã, linearized

input matrix B̃, constant input w, time increment r, max.

linearization error Lmax, factor λL

Ensure: Rd(tk+1),R(τk), split
1: repeat

2: L = ĉL ⊕ λL(L ⊕ (−ĉL)) (see (12))

3: U = w ⊕ B̃(U ⊕ (−u∗))⊕ L (see (11))

4: compute Rd(τk) using (2) based on U
5: compute R(τk) using (13)

6: compute L by evaluating (10) according to [31]

7: until L ⊆ L ∨ L * Lmax

8: if L * Lmax then

9: split = true
10: else

11: split = false
12: Ũ = w ⊕ B̃(U ⊕ (−u∗))⊕ L (see (11))

13: compute Rd(tk+1)using (2) based on Ũ
14: end if

V. COMPOSITIONAL REACHABLE SET COMPUTATION

In order to improve the scalability of the proposed reacha-

bility analysis, two compositional techniques are investigated.

One of them is to split the power grid into subsystems for

which the reachable set is computed separately. The other

technique compositionally computes the set of linearization

errors, while abstracting the dynamics to linear differential

inclusions using the full model.

Before applying compositional analysis techniques, one has

to partition the power system into subsystems. Partitioning

of power systems is a well-known problem for different

aspects of power systems. Examples include coherency-based

decomposition [38], [39] and graph-based decomposition [40].

Since this work focuses on the compositional computation

of reachable sets for a given partition, we assume that a

reasonable partition is already provided, where transmission

lines are the interfaces. Since the transmission lines are the

subsystem interfaces, the bus phase angles and the bus voltage

are internal variables when the bus is within the subsystem,

and a system input otherwise. The assignment of the variables

to the dynamic and algebraic state vectors x, y as well as to

the input vector u are described in Sec. VII-A.

A. Compositional Reachable Set Computation

This subsection describes the first option investigated for

compositional analysis by splitting the power system into

subsystems. The reachable set of each subsystem is computed

as presented in Alg. 1. The input sets representing inputs to the

complete system are known, however, the input sets originat-

ing from the interfaces of the subsystem are unknown. They

depend on the reachable set of neighboring subsystems, which

in turn depend on the reachable sets of other subsystems.

The basic idea for breaking this mutual dependence apart is

similar to the computation of the linearization error. First, the

interface inputs of the ith subsystems are enlarged by a factor

λU (analogously to (12))

Û (i) = ĉ
(i)
U ⊕ ((λU − 1)Λ(i) + I)(U (i) ⊕ (−ĉ

(i)
U )), (14)

where Λ is a diagonal matrix that contains ones for indices

corresponding to interface inputs and zeros otherwise. Based

on the system input Û (i), the reachable set of the corre-

sponding subsystem is computed as presented in Alg. 1. For

aggregating the reachable sets of the complete system by

partial reachable sets R(i)(τk) of the ith subsystem, matrices

Φ(i) are introduced, which map the local states of the ith

subsystem to the states of the full system. The matrices Φ(i)

contain ones when states are correlated, and zeros otherwise,

so that the complete reachable set is obtained using the

Cartesian product:

R(τk) = Φ(1)R(1)(τk)×Φ(2)R(2)(τk)×. . .×Φ(ns)R(ns)(τk),
(15)

where ns is the number of subsystems and the computation of

linear maps and Cartesian products of zonotopes is performed

as presented in Sec. VI. In order to check if the assumption on

the set of interface inputs is correct for all subsystems, further

matrices Υ(i) are introduced, which map the states of the

complete system to the interface inputs of the ith subsystem.

Again, the matrix contains ones for corresponding states and

interface inputs and zeros otherwise. If

∀i : Υ(i)R(τk) ⊆ Λ(i)Û (i)

the assumption is overapproximative and thus valid. Other-

wise, one has to re-apply the enlargement in (14) for the

subsystems that violate the assumption. This procedure is

summarized in Alg. 2 under the assumption that no split is

required.
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Algorithm 2 reachNextCompositional(R(i),d(tk), λU ,U
(i),

otherInputsToReachNext)

Require: Previous set R(i),d(tk) and input set U (i) for each

subsystem, factor λU , otherInputsToReachNext).
Ensure: R(i),d(tk+1),R(τk)

1: ∀i : inputEnclosure(i) = false

2: repeat

3: for i = 1 . . . ns do

4: if inputEnclosure(i) == false then

5: obtain Û (i) based on U (i) using (14)

6: Alg. 1 based on Û (i) → R(i),d(tk+1),R
(i)(τk)

7: end if

8: end for

9: R(τk) = Φ(1)R(1)(τk)× . . .× Φ(ns)R(ns)(τk)
10: for i = 1 . . . ns do

11: if Υ(i)R(τk) ⊆ Λ(i)Û (i) then

12: inputEnclosure(i) = true

13: else

14: inputEnclosure(i) = false

15: end if

16: U (i) = Λ(i)Û (i) ⊕ (I − Λ(i))U (i)

17: end for

18: until ∀i : inputEnclosure(i) == true

B. Compositional Linearization Error Computation

In some power systems, generators might be strongly cor-

related, resulting in unsatisfactory overapproximations of the

compositional algorithm in Alg. 2. Since most of the compu-

tation time is spent on evaluating the linearization error, one

could only compute the linearization error compositionally,

while maintaining all the correlations for the reachable set

computation in Alg. 1.

Using a decomposition of the full system into subsystems

as in the previous subsection, the Lagrangian remainder in

(10) is evaluated compositionally. For this purpose, the set of

input values from subsystem interfaces has to be considered

resulting in the set of inputs for each subsystem as proposed

in (14). The partial Lagrange remainders of the ith subsystem

denoted by L(i) are combined to the complete Lagrange

remainder as for the reachable set in (15):

L(τk) = Φ(1)L(1)(τk)×Φ(2)L(2)(τk)× . . .×Φ(ns)L(ns)(τk).

As previously mentioned, the Lagrange remainder has com-

plexity O(n5), where n is the number of state variables,

whereas all other operations have complexity O(n3) when

using zonotopes as the set representation. Thus, the com-

positional computation of the linearization error has similar

computational savings than the completely compositional com-

putation as presented in the previous subsection.

VI. SET REPRESENTATION BY ZONOTOPES

So far, all set-based computations have been introduced

independently of the set representation so that all kinds of

set representations can be used in principle. Typical set repre-

sentations are: polytopes [41], zonotopes [42], ellipsoids [43],

support functions [44], and oriented hyperrectangles [45]. As

shown in Sec. III, the set operations required for reachability

analysis of linear systems are matrix and interval matrix mul-

tiplication, Minkowski addition, absolute value computation,

and convex hull. All of these can be efficiently computed

using zonotopes, which makes zonotopes very attractive for

reachability computations of linear systems [42], [46].

Definition VI.1 (Zonotope) Given a center c ∈ Rn and so-

called generators g(i) ∈ Rn, a zonotope is defined as

Z :=
{

x ∈ Rn
∣
∣
∣x = c+

p
∑

i=1

βig
(i), βi ∈ [−1, 1]

}

We write in short Z = (c, g(1), . . . , g(p)) and define the order

of a zonotope as ρ := p
n

, where p is the number of generators.

A zonotope can be seen as the Minkowski addition of line

segments [−1, 1]g(i), which provides an intuition of how a

zonotope is constructed as presented in Fig. 2.

c

g(1) g(2) g(3)

c⊕ g(1) c⊕ g(1) ⊕ g(2) c⊕ g(1) ⊕ g(2) ⊕ g(3)

construction
direction

”⊕””⊕”

Fig. 2. Step-by-step construction of a two-dimensional zonotope.

The multiplication with a matrix M ∈ Ro×n and the

Minkowski addition of two zonotopes Z1 = (c, g(1), . . .,
g(p1)) and Z2 = (d, h(1), . . ., h(p2)), are a direct consequence

of the zonotope definition (see [47]):

Z1 ⊕Z2 = (c+ d, g(1), . . . , g(p1), h(1), . . . , h(p2))

M ⊗Z1 = (M c,M g(1), . . . ,M g(p1))
(16)

Additionally, the convex hull of Z1 and eArZ1 is required (see

[46]):

CH(Z1, e
ArZ1) ⊆

1

2
(c1 + eArc1, g

(1) + eArg(1), . . . , g(p1) + eArg(p1),

c1 − eArc1, g
(1) − eArg(1), . . . , g(p1) − eArg(p1)).

(17)

After introducing the matrix of generators G =
[
g(1), . . . , g(p)

]
and the alternative notation of a zonotope by

Z = (c,G), the Cartesian product of two zonotopes Z1 = (c,
G) and Z2 = (d, H) is

Z1 ×Z2 =

([
c
d

]

,

[
G 0

0 H

])

,

where 0 is a matrix of zeros of proper dimension. For the

multiplication of an interval matrix M with a zonotope, the

matrix M is split into a real-valued matrix M ∈ Rn×n and

an interval matrix with radius S ∈ Rn×n, such that M =
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M ⊕ [−S, S]. After introducing Sj as the j th row of S, the

result is overapproximated as shown in [23, Theorem 3.3] by

MZ1 ⊆(MZ1 ⊕ [−S, S]Z1)

⊆(Mc1,Mg(1), . . . ,Mg(p1), h(1), . . . , h(n))

h
(i)
j =

{

Sj(|c|+
∑p1

k=1 |g|
(k)), for i = j

0, for i 6= j
.

The overapproximative result of a quadratic map ZQ ⊇
{ϕ|ϕi = xTQ(i)x, x ∈ Z1} for a discrete set of matrices

Q(i) ∈ Rn×n, i = 1 . . . n, is computed according to [48] as

ZQ = (d, h(1), . . . , h(σ))

with σ =
(
p+2
2

)
− 1 generators, the center di = cTQ(i)c +

0.5
∑p

s=1 g
(s)TQ(i)g(s) and the generators

j =1 . . . p : h
(j)
i =cTQ(i)g(j) + g(j)

T
Q(i)c

j =1 . . . p : h
(p+j)
i =0.5g(j)

T
Q(i)g(j)

l =

p−1
∑

j=1

p
∑

k=j+1

1 : h
(2p+l)
i =g(j)

T
Q(i)g(k) + g(k)

T
Q(i)g(j)

The complexity of constructing this overapproximation with

respect to the dimension n is O(n5).

VII. CASE STUDIES

The introduced methods are applied to the transient stability

analysis of power systems and to the analysis of uncertainty

in renewable energy production. Transient stability analysis

requires considering the nonlinearities of the dynamics since

the operating condition is strongly perturbed. The analysis of

the effects of uncertain energy production is presented in [28]–

[30], but without considering nonlinear effects in contrast to

the work presented here.

A. Power System Modeling

The mathematical models used for the case studies are

standard models. The generator dynamics is borrowed from

[28] and the power grid models are the IEEE 14-bus and

30-bus benchmark systems [49]. The dynamic variables of

the ith generator are the generator phase angle δ̃i [rad], the

angular velocity ωi [rad/s], and the torque Tm,i [p.u.] (p.u.:

per unit). The commanded power production Pc,i [p.u.] is a

system input. The generator phase angles δi = δ̃i − Θs are

chosen relative to the slack bus angle Θs which has a constant

angular velocity ωs (in the previous work [31], the phase of the

first generator is chosen as the reference phase). The dynamic

equations of the chosen generator model are according to [28]:

δ̇i = ωi − ωs

ω̇i = −
Di

Mi

(ωi − ωs) +
1

Mi

Tm,i −
1

Mi

Pg,i

Ṫm,i = −
1

TSV,iRD,iωs

(ωi − ωs)−
1

TSV,i

Tm,i +
1

TSV,i

Pc,i.

(18)

Parameters of each generator are the rotational inertia Mi

[MJ/Hz2], the damping coefficient Di [s/rad], the time constant

of the governor TSV,i [s], and the proportional gain of the

governor 1
RD,i

[-]. For simplicity, the same model is used for

all generators and synchronous condensers, where the latter

are generators that produce no active power. The parameter

values are chosen identical to [28] for each generator and

synchronous condensers and are listed in Tab. I.

The power flow equations are obtained using standard

methods, see e.g. [50, p.174]. The algebraic variables of the

ith bus are the absolute value of the bus voltage Vi [p.u], the

phase angle of the bus voltage Θ̃i [rad], the active power Pi

[p.u.], the reactive power Qi [p.u.], and the generator voltage

Ei [p.u.] if the bus is connected to a generator. The bus

phase angles with respect to the slack bus are denoted by

Θi = Θ̃i − Θs. The buses are connected via admittances

Yij = Yji, where i and j are the indices of the connected

buses. The admittance from the generator to the ith generator

bus is Yg,i, where |Yg,i| [p.u.], Ψg,i = ∠Yg,i [rad] are the

absolute values and phase angles, respectively. The absolute

value and the angle of the admittances are denoted by |Yij |
and Ψij = ∠Yij , respectively. The active and reactive power

of each bus results from the generator production Pg,i, Qg,i

and a demand of that node Pd,i, Qd,i. The parameters of the

power grid are chosen according to the corresponding IEEE

benchmark problem and can be found in [49].

The numbering of the power network buses is renumbered

from the original IEEE benchmark problems, where Ng is the

number of generators and Nl is the number of load buses. In

this work, the first bus (i = 1) is connected to a generator and

serves as the slack bus. Further, the power system has Ng so-

called generator buses, which are connected to the generators.

Those buses (including the slack bus) produce active and

reactive power according to the following equations (see [50]):

Pg,i = EiVi|Yg,i| cos(Ψg,i + δi −Θi)− V 2
i |Yg,i| cos(Ψg,i),

Qg,i = −EiVi|Yg,i| sin(Ψg,i + δi −Θi) + V 2
i |Yg,i| sin(Ψg,i).

The remaining Nl buses are referred to as load buses (i =
Ng + 1 . . .Ng + Nl). The power flow equations as in [50,

p.174] of each bus are

Pi = Pg,i + P d
g,i + Pd,i

=

Ng+Nl∑

j=1

ViVj |Yij | cos(Ψij +Θj −Θi),

Qi = Qg,i +Qd
g,i +Qd,i

= −

Ng+Nl∑

j=1

ViVj |Yij | sin(Ψij +Θj −Θi),

(19)

where Pg,i and Qg,i are the active and reactive power produced

by generators with the dynamics according to (18), while P d
g,i

and Qd
g,i are directly injected active and reactive powers from

renewable energy sources. The power drop-out of the ith power

plant is modeled by setting the active and reactive power in

(19) and (18) to zero (Pg,i = 0, Qg,i = 0). In order to

write the power system in the standard form of time-invariant,

semi-explicit, index-1 DAEs as presented in (1), the dynamic,

algebraic, and input variables are renamed. The following

assignments are for a specific subsystem, i.e., the number of
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generators buses Ng and the number of load buses Nl are

specific to the considered subsystem. Additionally, the number

of cut transmission lines Ni for the considered subsystem

is introduced. It is also required to consider variables of

neighboring subsystems. The j th voltage of the kth subsystem

is denoted by V̂k,j and an analogous notation is used for Θ̂k,j .

The function [k, j] = h(i) returns the subsystem number k of

which the bus with number j is connected to the considered

subsystem and i takes integers up to the number of cut

transmission lines (i = 1 . . .Ni), thus providing the first,

second, and further input sources. The algebraic variables are

assigned as follows:

i = 1 . . .Ng : yi = Ei,
i = 1 . . .Nl : yNg+i = VNg+i,
i = 2 . . . (Ng +Nl) : yNg+Nl+i−1 = Θi.

Note that Θ1 is not considered in the above assignment since

it is the phase of the slack bus and thus always 0. The dynamic

variables are

i = 1 . . .Ng : xi = δi,
i = 1 . . .Ng : xNg+i = ωi,
i = 1 . . .Ng : x2Ng+i = Tm,i,

and the inputs are assigned as follows:

i = 1 . . .Ng : ui = Pc,i,
i = 1 . . . (Ng +Nl) : uNg+i = P d

g,i,

i = 1 . . . (Ng +Nl) : u2Ng+Nl+i = Qd
g,i,

i = 1 . . .Ni, [k, j] = h(i) : u3Ng+2Nl+i = V̂k,j ,

i = 1 . . .Ni, [k, j] = h(i) : u3Ng+2Nl+Ni+i = Θ̂k,j .

When the ith power plant is not on the grid, the variable Ei

is removed from (19), (18), and is no longer an unknown

variable. We replace yi = Ei by yi = Vi during the power

drop-out, since the power plant can no longer control the

voltage at the ith bus. All equations are automatically generated

by symbolic computations in MATLAB to exclude errors

during manual implementation.

TABLE I
PARAMETERS OF THE GENERATORS.

∀i: Mi Di |Yg,i| Ψg,i TSV,i RD,i ωs
1

15π
0.04 5 −π

2
1 0.05 120π

B. Transient Stability Analysis

The transient stability analysis is performed as follows.

After a pre-fault phase of 0.1 s, the power plant producing

the most power is taken off the grid (e.g. caused by a short

circuit) for 0.03 s and afterwards reconnected. In the post-fault

phase, the dynamics is computed until all continuous state

variables reach the set of initial states. In all case studies, the

center of the initial set is the steady state solution denoted

by a superscripted zero. For all power generators the initial

phase is δi(0) ∈ δ0i ⊕ 0.005 · [−1, 1], the initial rotational

speed is ωi(0) ∈ ω0
i ⊕ 0.1 · [−1, 1], and the initial torque is

Tm,i(0) ∈ T 0
m,i ⊕ 0.001 · [−1, 1].

The first case study is based on the IEEE 14-bus benchmark

system, enhanced by the generator dynamics as introduced in
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377

378
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380

δ1

ω
1

−0.06 −0.04 −0.02 0

0.398

0.399

0.4

0.401

0.402

0.403

δ2

T
m

,2

(a) Projections on differential variables of the 14-bus system.

1.055 1.06 1.065 1.07
−0.245

−0.24

−0.235

−0.23

−0.225

−0.22

−0.215

E3

Θ
3

fault-on

1.052 1.054 1.056

−0.28

−0.275
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(b) Projections on algebraic variables of the 14-bus system.
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376.7
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(c) Projections on differential variables of the 30-bus system.

1.1 1.2 1.3
−0.085

−0.08

−0.075

−0.07
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E2

Θ
2

fault-on

0.978 0.98 0.982
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Θ
2
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(d) Projections on algebraic variables of the 30-bus system.

Fig. 3. Selected projections of reachable sets for transient stability analysis.
Black lines show random simulations, gray areas show reachable sets, and
the white box the initial set. For algebraic variables, dark gray represents pre-
fault and post-fault sets, light gray represents fault-on sets, and medium gray
represents sets for all fault phases obtained by compositionally computing the
linearization error.

Sec. VII-A. In that case study, it is investigated whether it is

better to compute the reachable set of subsystems as described

in Sec. V-A, or to compute the linearization error composi-

tionally as described in Sec. V-B. For that purpose, the power

system is split into two subsystems as shown in Fig. 5. The
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separate computation of the subsystems results in an explosion

of the reachable set after 0.27 s in the considered case study

(not illustrated due to space limitations). This is because the

transmission line voltages and phase angles between interfaces

of subsystems can be chosen arbitrarily within the uncertain

sets Û (i). This includes trajectories that excite oscillations,

whereas all variables are correlated for the complete system,

such that those behaviors are excluded in reality. However,

when computing the linearization error compositionally, cor-

relations between states are preserved. This is demonstrated

by comparing the results of the monolithic and compositional

linearization error computation for selected projections of the

reachable set in Fig. 3. Although a different shade of gray is

used to plot the reachable sets of the compositional approach

for the linearization error computation, the difference can

only be observed after zooming in for most projections. The

accuracy of the results in Fig. 3 is indicated by simulations of

system trajectories from randomly chosen initial states, which

are plotted as black lines. Note that the results for the algebraic

variables jump after the pre-fault and fault-on phase since

the system model switches. Besides the 14-bus system, the

compositional linearization error computation is also studied

for the IEEE 30-bus benchmark system. Using the same

generator models and parameters as for the 14-bus system, the

reachable sets for the 30-bus system are presented in Fig. 3 for

the full system and the partition into four subsystems (a figure

showing the subsystems is not shown due to space limitations).

Again, the overapproximation is marginal for most variables.

Although the overapproximation of the compositional com-

putation of the linearization error is small, the savings in

computation time are significant. This is because the lineariza-

tion error computation consumes around 90% of the overall

computation time. Thus, the compositional linearization error

computation is clearly preferred over the compositional com-

putation of the reachable set, since the latter results in signifi-

cant overapproximation, while the savings in computational

time are comparable for both methods. The computational

times until all states return to the initial set (return time)

using the compositional linearization error computation are

listed in Tab. II for the considered case studies when the

linearization errors of subsystems are computed in parallel

using 4 cores. All computations are performed in MATLAB

on an Intel XEON X5690 processor with 3.47 Ghz. Note that

the 30-bus system can be computed in less time than the

14-bus system when using compositional linearization error

computation with four subsystems. Considering that a single

simulation takes around 1.5 s using the ode15s solver in

MATLAB, the simulations of all corner cases of the 30-bus

system with 18 dynamic variables requires 218 simulations,

which requires a computation time of 393216 s, which takes

around 100 times longer than the formal analysis.

C. Critical Clearing Time

Reachability analysis can also be used to determine the

critical clearing time for a set of initial states rather than a

single initial state. Since a single simulation run is faster than

a complete reachability analysis, one should start determining

the critical clearing time by simulating the system for different

fault clearing times starting from the center of initial states

x0,c. The critical clearing time for x0,c is tcrit = 0.323 s

for the previously considered IEEE 14-bus scenario in Sec.

VII-B. When computing several simulations starting from the

initial set specified in Sec. VII-B using the critical clearing

time tcrit = 0.323 s obtained for x0,c, some trajectories are

stable and return to the original steady state, while other

trajectories converge to another steady state as depicted in Fig.

4 for selected projections. The steady state from which the

trajectories start is referred to as steady state α, where steady

state β is the other possible steady state. The reachable set

computation for this scenario computes until tcrit = 0.323 s.

Afterwards, the reachable set computation does not converge

anymore and grows over all bounds. The reason is that

trajectories diverge at the critical clearing time causing a large

sensitivity for the algebraic state with respect to the dynamic

state. As a consequence, the linearization error computations

become very large so that the overapproximative computation

of the linearization error no longer converges. In Fig. 4, the

reachable set until the clearing time is shown for selected

projections.

In order to determine the critical clearing time for all

initial states, the recommended strategy is to start from the

critical clearing time obtained by a single simulation and then

iteratively decrease the critical clearing time until all states

return to the original operating region as presented in Sec.

VII-B.
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(a) Projection on δ1, ω1.
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(b) Zoom of the projection on δ1, ω1.
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(c) Projection on δ1, δ2.
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Fig. 4. Selected projections of reachable sets for the critical clearing time
analysis of the IEEE 14-bus example. Black lines show random simulations
for the time interval t ∈ [0, 4] s, gray areas show reachable sets until the
critical clearing time (t ∈ [0, tcrit]), and the white box the initial set. The
right figures show zoomed regions within the left figures.
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D. Effects of Variable Energy Production

The effect of variable renewable energy production are

demonstrated for the 14-bus system, where the generated

active power at bus 13 and 14 are directly injected (see

[28]), where ∀t ∈ [0, 5]s : P d
g,13(t), P

d
g,14(t) ∈ { t

5P
∗|P ∗ ∈

[0.04, 0.06]p.u.} modeling that the production uncertainty

grows linearly over time. The conventional power plants

produce only active power at bus 1 and 2: Pc,1 = 2 [p.u.]

and Pc,2 = 0.4 [p.u.]. Selections on reachable sets over time

for the time interval [0, 5] s are presented in Fig. 6 together

with random simulations for which a constant input is changed

every 0.2 s, causing jumps of algebraic variables.

GG

G
G

G

1

2
3

7 6

4

12 13 14

11 10

9 5

8

Fig. 5. IEEE 14-bus benchmark system. Gray lines show subsystem borders.

TABLE II
COMPUTATION TIMES AND TIMES TO RETURN TO INITIAL SET.

IEEE 14-bus IEEE 30-bus
subsystems 1 2 1 2 4
computation times 1536 s 853 s 5002 s 2025 s 1428 s
return times 4.0 s 4.0 s 4.4 s 4.4 s 4.4 s

0 2 4

−0.24

−0.23

−0.22

−0.21

t

δ
4

0 2 4

1.088

1.089

1.09

1.091

1.092

t

E
4

Fig. 6. Selected variable bounds over time due to variations in renewable
energy production. Black lines show random simulations, the gray area shows
the reachable sets.

VIII. CONCLUSIONS

The paper demonstrates a novel method to rigorously an-

alyze power systems subject to varying operating conditions

using reachability analysis. The consideration of semi-explicit,

nonlinear, index-1 DAEs instead of ODEs makes it possible

to not only analyze the frequency, but also the phases and

voltages of each bus, which is especially useful to verify if

cascading effects are avoided. The presented approach is based

on an abstraction to linear differential inclusions, which is

also of interest to other analysis techniques in power systems

or for checking if linear models are justified. In order to

improve the scalability, compositional techniques are proposed

on the system level and on the level of the linearization error

computation. The case studies revealed that the compositional

computation of the linearization error is preferable since the

computational savings are comparable, while the correlations

between state variables are much better preserved.

The presented approach can be used for the same types of

analysis for which simulation techniques are applied. Although

a single simulation is computed faster than a reachable set,

the simulation of all corner cases takes more time than the

computation of the reachable set. For the 30-bus system,

reachability analysis is around 100 times faster than sim-

ulating all corner cases due to the polynomial complexity

of the presented approach. Note that the intention of the

presented approach is not to replace simulation techniques,

but complement them for a more rigorous analysis. Simulation

techniques are especially useful to obtain a first idea about

the system behavior, while reachability analysis can provide

rigorous results in the presence of uncertainties.

A further application of reachability analysis is to compute

the largest invariant set around a steady state [51], i.e., the

largest set that cannot be left when starting in that set.

Incorporating the proposed approach into an algorithm for

computing the largest invariant set is part of future work.
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