BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
Vol. 54, No. 1, 2006

Formal approach to modelling a multiversion data warehouse

B. BEBEL, Z. KROLIKOWSKI, and R. WREMBEL
Institute of Computing Science, Pozndniversity of Technology, 2 Piotrowo St., 60-965 PoznBoland

Abstract. A data warehouse (DW) is a large centralized database that stores data integrated from multiple, usually heterogeneous extern.
data sources (EDSs). DW content is processed by so called On-Line Analytical Processing applications, that analyze business trends, disco
anomalies and hidden dependencies between data. These applications are part of decision support systems. EDSs constantly change t
content and often change their structures. These changes have to be propagated into a DW, causing its evolution. The propagation of contt
changes is implemented by means of materialized views. Whereas the propagation of structural changes is mainly based on temporal extensic
and schema evolution, that limits the application of these techniques. Our approach to handling the evolution of a DW is based on schema ar
data versioning. This mechanism is the core of, so called, a multiversion data warehouse. A multiversion DW is composed of the set of its
versions. A single DW version is in turn composed of a schema version and the set of data described by this schema version. Every DW versic
stores a DW state which is valid within a certain time period. In this paper we present: (1) a formal model of a multiversion data warehouse,
(2) the set of operators with their formal semantics that support a DW evolution, (3) the impact analysis of the operators on DW data and use
analytical queries. The presented formal model was a basis for implementing a multiversion DW prototype system.

Key words: schema evolution, data evolution, schema versioning, data versioning, multiversion data warehouse, formal model.

1. Introduction changes, i.e. insert/update/delete data, and schema changes,
i.e. add/modify/drop a data structure or its property. Content
A data warehouse (DW) is a large database (often of terabyt@ganges result from user activities that perform their normal
size) that integrates data from various external data Sourcgsily work with the support of information systems. On the
(EDSs). EDSs are implemented as databases as well as \@ntrary, schema changes in EDSs are caused by: changes of
lous storage systems (e.g. spreadsheets, legacy systems dflagdal world being represented in EDSs (e.g. changing bor-
files, XML files). They store production data collected duringjers of countries, changing administrative structure of orga-
normal functioning of an enterprise. These production data aggzations, changing legislations), new user requirements (e.g.
loaded, integrated, augmented with summaries in a DW for thgoring new kinds of data), new versions of software being in-
purpose of detail analysis from various perspectives. Data agy|led, and system tuning activities.
analyzed by, so called, On-Line Analytical Processing (OLAP) The consequence of content and schema changes at EDSs
queries aiming at: discovering trends (e.g. sale of productsy, that a DW built on the EDSs becomes obsolete and needs
patterns of behaviour and anomalies (e.g. credit card usage}@se synchronized. Content changes are monitored and prop-
well as finding hidden dependencies between data (e.qg. mar&%tated to a DW often by means of materialized views [3] and
basket analysis, suggested buying). The findings are then gpa history of data changes is supported by applying temporal
plied in real business. Data warehouse and OLAP technologiggiensions e.g. [4]. Whereas EDSs schema changes are often
are important components of decision support systems. handled by applying schema evolution, e.g. [5,6] and temporal
The process of good decision making often requires foreersioning techniques [7-9]. In schema evolution approaches
casting future business behaviour, based on present and hiskistorical DW states are lost as there is only one DW schema
ical data as well as on assumptions made by decision maketigat is being modified. In temporal versioning approaches
This kind of data processing is called a what-if analysis. lanly historical versions of data are maintained whereas schema
this analysis, a decision maker simulates in a data warehousedifications are difficult to handle. In our approach [10], we
changes in the real world, creates virtual possible business speopose a multiversion data warehouse (MVDW) as a frame-
narios, and explores them with OLAP queries. To this end,&ork for: (1) handling content and schema changes in EDSs,
DW must provide means for creating and managing varioyg) simulating and managing alternative business scenarios,
DW alternatives, that often requires changes to a DW structugéd predicting future business trends (a what-if analysis). A
and content. MVDW is composed of persistent versions, each of which de-
An inherent feature of external data sources is their agcribes a DW schema and content in a given time period.
tonomy, i.e. they may evolve in time independently of each In this paper we contribute by presenting a formal model
other and independently of a DW that integrates them [1,2&f a multiversion data warehouse and a formal semantics of
The changes have an impact on the structure and content af@erators modifying the structure do a DW schema and di-
DW. The evolution of EDSs can be characterized by: contemensions. The presented model and operators were a basis

*e-mail: bartosz.bebel@cs.put.poznan.pl

51

B. Bebel, Z. Krélikowski, and R. Wrembel

for implementing a multiversion DW prototype system. t-shirt’ — ‘clothes’, ‘Yves Rocher shampoe> ‘cosmetics’},
The rest of this paper is organized as follows. Section @here — is the hierarchical assignment of a lower level in-
presents basic definitions concerning a multidimensional daséance to an upper level instance.
model. Section 3 discusses related approaches to handling dy-
namics qf a DW. Section 4 informally overviews our con_cepg. Related work
of a mutliversion data warehouse and Section 5 presents its for-
mal model. Formal semantic of operators modifying a MvVDWThe support of evolution of schema and data turned up to

are discussed in Section 6. Finally, Section 7 summarizes the required in the applications of object-oriented databases to
paper. Computer Aided Design, Engineering, and Manufacturing sys-

tems. The problem was intensively investigated and resulted
2 Basic definitions inthe de_velopment of various approaches and prototypes, [14—

18], to list only a few of them. These and many other ap-
A DW takes advantage of a multidimensional data model [11gy0aches were proposed for versioning complex objects stored
13] with facts representing elementary information being thg, 3 database of moderate size. On the contrary, in data ware-
subject of analysis. A fact contains numerical features, callagyyse systems objects being versioned have very simple struc-
measures, that quantify the fact and allow to compare diffefyre (several fact or dimension tables) but the size of a database
ent facts. Values of measures depend on a context set upiBYmuch larger. Therefore, the versioning mechanisms men-
dimensions. Examples of measures include: quantity, incomgned above are not suitable for versioning traditional (rela-
turnover, etc., whereas typical examples of dimensions inclu%nab data warehouses. The approaches to the management
Time, Location, Product, etc. (cf. Fig. 1. In a relational impleqf changes in a DW can be classified as: (1) schema and data
mentation, a fact is implemented as a table, called a fact tabl&o|ution: [5,6,19-22], (2) temporal and versioning extensions
e.g. Sales in Fig. 1). [2,4,7-9,13,23-29]. The approaches in the first category sup-

port only one DW schema and its instance. In a consequence,

Dimension TIME any structural modification requires data conversions that, in

Time turn, results in the loss of historical DW states. In the ap-
Dimension % time_id proaches from the second category, in [4,7-9,28], changes to
PRODUCT day_name Dimension the structure of dimension instances are time-stamped in order
Categories iﬁoﬁttl;;name LOCATION to create _temp_oral_versions_. The approaches are suitable for
4 cat_id year Cities representing historical versions of data, but not schgmas. The
cat_name day_no_inyear m paper by [13] addresses also the problem of dimension updates
cat_tax month_no Citgjname and focuses on consistency criteria that every dimension has to
fulfill. It gives an overview how the criteria can be applied to a
temporal DW only.
Sales In [2,25] data versions are used to avoid duplication
. Ttems # cosm_id __ Shops anomaly during DW refreshing process. The work also
prod_id #f shop_id # shop_id sketches the concept of handling changes in an EDS struc-
prod_name # time_id shop_name)
cat_id quantity city_id ture. However, a clear solution was not presented on how to

Fig. 1. An example DW schema on sale of products

apply the changes to DW fact and dimension tables. More-
over, changes to the structure of dimensions as well as dimen-
sion instances were not taken into consideration. In [26,27,30]

Dimensions usually form hierarchies. Examples of hieraimplicit system created versions of data are used for avoiding
chical dimensions are: (1) Location, with Cities at the top ang@onflicts and mutual locking between OLAP queries and trans-
Shops at the bottom, (2) Product, with Categories and Itenastions refreshing a DW.

(cf. Fig. 1). A schema object in a dimension hierarchy is called On the contrary, [23,24] supports explicit, time-stamped
a level, e.g. Cities, Shops, Categories, Items, and Time. Invarsions of data. The proposed mechanism, however, uses one
relational implementation, a level is implemented as a tableentral fact table for storing all versions of data. In a con-
called a dimension level table.

A dimension hierarchy specifies the way measures are agffuctures are supported. In [31], a DW schema versioning
gregated. A lower level of a dimension rolls-up to an uppemechanism is presented. A new persistent schema version
level, yielding more aggregated data. Values in every level are created for handling schema changes. The approach sup-
called level instances. Example instances of level ltems maprts only four basic schema modification operators, namely
include: ‘Deep t-shirt’ and ‘Yves Rocher shampoo’, whereagdding/deleting an attribute as well as adding/deleting a func-
instances of level Categories may include: ‘clothes’ and ‘cogional dependency. A persistent schema version requires a pop-
metics’. The dimension instance of dimensiBpis composed ulation with data. However, this issue is only mentioned in the
of hierarchically assigned instances of leveldin where the paper.
hierarchy of level instances is set up by the hierarchy of lev- In [29] a virtual versioning mechanism was presented. A
els. Example instances of dimension Product include: {'Deegirtual DW structure is constructed for hypothetical queries

52

sequence, only changes to dimension and dimension instance

Bull. Pol. Ac.: Tech. 54(1) 2006

Formal approach to modelling a multiversion data warehouse

simulating business scenarios. As this technique computiiss dimension’s hierarchy. All versions of dimensions form
new values of data for every hypothetical query based on vithe set of dimensions versions. Facts also can have multiple
tual structures, performance problems will appear for largeersions. Versions of a facts are elements of the set of fact ta-

DWs. ble versions. Facts versions are assigned to given dimensions
versions. The structure of levels versions as well as fact ver-
4. Multiversion data warehouse — overview sions consists of attributes, which form the set of attributes. At-

A multiversion data warehouse (MVDW) is composed of th‘%t(;bourfﬁ/soirs;ﬁgﬁ;ﬁglﬂ;? every attribute can be assigned

ordered set of its versions. A DW version is in turn compose : o .
. . . A DW instance version is composed of records versions as-
of a schema version and an instance version. A schema ver- . :
. . - . : . _signed to a level version or to a fact table version. All records
sion describes the structure of a DW within a given time perio

) . versions belong to the set of records versions.
whereas an instance version represents the set of data descri ei. . . .
igure 2 schematically shows relationships between the

by its schema version. . X :
L : g|scussed schema and instance versions elements.
We distinguish two types of DW versions, namely real an

alternative ones. Real versions are created in order to keep up . .

with changes in a real business environment, like for examplg:' Multiversion data warehouse — formal model
changing organizational structure of a company, changing gas stated in Section 4, a multiversion data warehouse, denoted
ographical borders of regions, changing prices/taxes of prods MV DW , is composed of the set of its versions, denoted
ucts, changing legislations, opening/closing shops. Real veaxsDW V. A single DW version is composed of a schema ver-
sions are linearly ordered by the time they are valid within. Alsion (DW SV;) and an instance versioW{1’ SV;). A schema
ternative versions are created for simulation purposes, as pegtsion includes several schema components, whereas an in-
of a what-if analysis. Such versions represent virtual businestance version includes several instance components. Subse-
scenarios. All DW versions are connected by version derivauent sections provide formal definitions of the model compo-
tion relationships, forming a version derivation graph. The roatents.

of this graph is the first real DW version.

Every real as well as alternative version is valid within &.1. Model components. Formal definitions of a schema and
certain period of time. Version validity is represent by twaan instance version use multiple components that are defined
timestamps, i.e. begin validity time and end validity time, thain this section.
are associated with every version (cf. [10] for details). Set of versions identifiers. Each DW version is unambigu-

A schema version is composed of several elements, whosesly identified by unique identifiedwv_id that is an ele-
informal description is as follows. Each level can have mangnent from the set of all DW version identifie®ID =
versions, which belong to the set of levels versions. A leveldwv_idy, ..., dwv_id,}, wheredwv_id; is an identifier of
version is assigned to a given dimension version as a part @f-th DW version.

DW schema version DW instance version

Set of levels

e VErs101s Set of records versions
Set of levels versions)
to levels versions

to dimensions versions . N~ .
Set of attributes assignments
to levels versions
assignments

assignments

Set of dimensions Set Set of records
versions of attributes versions

Set of attributes
o) to tables versions

Set of fact tables versions assignments L1 Set of records versions

to dimensions versions / to fact tables versions

assignments Set of fact tables assignments
versions

Fig. 2. Relationships among schema and instance version elements

Bull. Pol. Ac.: Tech. 54(1) 2006 53

B. Bebel, Z. Krélikowski, and R. Wrembel

Multiversion level. A multiversion level is the element of a Set of attributes. A = {4, A4s,..., A,} is the set of at-
dimension structure. It may consist of multiple versions. Ontibutes belonging to levels or facts. Each element of this set
level version may exist in several DW versions and in thiss defined as a triplel; = (a_id;, a_name;, a_type;) where:
case the level version is a shared one. A multiversion level id; is an attribute identifietg_name; is an attribute name,

is defined as triplel ™V = (mvl_id;, mvl_name;, LV;), anda_type; is an attribute type. The model does not support
where:mwvl_id; is a multiversion level identifierpvl_name; versioning attributes.
is a multiversion level nameLV; = {LVi,...,LV,,} is Attribute to level version assignment. Function Atr Level :

the set of level versions, which is the subset of thelskt A — LV defines the assignment of an attribute to a level ver-
of all level versions. A level version is defined as a paision in a given DW version.

LV; = (lv_id;, VIDy), where:[v_id; denotes a level ver- Attribute to fact version assignment. Function AtrFact :
sion identifier and ID; C VID is the set of identifiers of A — FV defines the assignment of an attribute to a fact ver-
these DW versions, in which versidiV; of level LMY ex- sion in a given DW version.

ists. LMV = {LMV ... LMV} is the set of all multiversion Fact version to level version assignment. Function
levels. FactLevel : FV — 2LV defines the assignment of a spec-
Multiversion dimension. A multiversion dimension may con- ified fact version to the set of levels versions in a given DW
sist of multiple versions. One dimension version may exist iRersion. For a given fact versioRV; ¢ FV, the function
several MVDW versions and in this case the dimension versiagturns the set of base levels versions within dimension hierar-
is a shared one. A multiversion dimension is defined as tripkehies, connected to fact versidii/;.

DMV = (mvd_id;, mvd_name;, DV;), where:muvd_id; is Multiversion record. A multiversion record implements
a multiversion dimension identifierpud_name; is a multi- an instance of a multiversion level or a record of a mul-
version dimension namd)V; = {DVy,...,DV,,} is the set tiversion fact. A Multiversion record is defined as a pair
of dimension versions, which is the subset of theBat of RMV = (mur_id;, RV;), where: mvr_id; is a multiver-

all dimensions versions. A dimension version is defined asion record identifier,RV; = {RVi,...,RV,} is the set
quadrupleDV; = (dv_id;, LV}, >, VIDy), where:dv_id; of record versions that is a subset of &V of all records

is a dimension version identifieE,V; C LV is the set of lev- versions. A record version is defined as a trigte; =

els versions, which belong to a dimension version hierarchyiv_id;, rv_value;, VID,), where: rv_id; is a record ver-

a pair(LVj,r>;) is a lattice, which describes dimension ver-ion identifier,;-v_value; € V AL is the value of a record in
sion hierarchy, with distinguished elements: bottom elemertie setV’ AL of values of all multiversion recordd/ID; C
(bottom level) and implicit top element (denoted as ‘All') (cf. VID is the set of DW version identifiers, in which a given
[33]); >; € LV x LV is a relation over the set of levels record version exists. For a given record version, function
versions in a dimension hierarchy; its transitive and reflexivRecValue : RV — V AL returns its value in a specified
closure>7 defines a partial order over the set of level versionW version. For a given record versidii/;, being an instance

if LVx andLV; € LV; andLV, >* LV}, then there is no such of level versionLV;, function SuperInst : RV — 2BV re-
LV,, thatLV, >* LV, >* LVy; VID; C VID is the set of turns the set of record versions, each of which is the instance
version identifiers, in which versioPV; of multiversion di- of direct parent levels of levelV;, to which instanceRV;,
mensionD,"'V exists. For a given level versidil;, function s classified in a specified DW version. For a given record
SubLevels : LV — 2LV returns the set of all levels versionsversion RV, being the instance of level versiahV;, func-
that are located in a hierarchy of a dimension version, in a spefon Subinst : RV — 2BV returns the set of records ver-
ified DW version, in a subtree whose root is level versidny. sions, being the instances of direct child levels of ek,

For a given level versioh V;, function Super Levels : LV — which are classified to instandeV;, in a specified DW ver-
2LV returns the set of all levels versions that are direct parengfon. RMYV = {RMV ... RMV} denotes the set of all multi-
of LV, in hierarchy of dimension version, in a specified DWyersion records.

version. DMV = {D}MV ... DMV} denotes the set of all Record version to level version assignment. Function
multiversion dimensions. RecLevel : RV — LV defines the assignment of a record
Multiversion fact. A multiversion fact may consist of sev- version to a level version in a specified DW version.

eral versions, each of which may be shared by multiple DWecord version to fact version assignment. Function
versions. A multiversion fact is defined as a trif@!V = RecFact : RV — FV defines the assignment of a record
(muf_id;, mvf_name;, F'V;), where: mvf_id; is a mul- version to fact version in a specified DW version.

tiversion fact identifier,mv f_name; is a multiversion fact

name,F'V; = {FV1,...,FV,,} is the set of all versions of 55 Multiversion data warehouse. Formally, a MVDW is

a multiversion fact, which is the subset of a #eV" of all jefined as follows:

multiversion facts versions. A multiversion fact version is de-

fined as a paiF'V; = (fv_id;, VID;), where: fv_id; is MV DW = (dw_id,dw_name, DWV,A,CM) (1)

an identifier of a fact versionlyV ID; C VID is the set of

DW versions identifiers, in which a given fact version exists.

FMV — (pMV_ FMV} denotes the set of all multiver- — dw_id and dw_name represent MVDW identifier and
sion facts. MVDW name, respectively;

54 Bull. Pol. Ac.: Tech. 54(1) 2006

Formal approach to modelling a multiversion data warehouse

— DWYV is the set of data warehouse versions, each of which function RecFact; : RV; — F'V; assigns records versions

consists of a schema version and an instance version; to facts versions in instance versioivVI1V;.
— A is the set of parent-child relationships between DW ver-
slons, 6. MVDW operators

— CM is the set of conversions methods, which accomplish .
transformations between adjacent instance versions; conviéye distinguish two groups of operators that modify the struc-
sion methods are necessary for integrating results of queriée of a data warehouse, namely:

addressing several DW versions, cf. [32]. — operators that have an impact on a DW schema, further

5.3. Data warehouse versionA data warehouse version called schema change operators;)
DWV e DWV is formally defined as follows: — operators that have an impact on thg structure of a dimen-
¢ : sion instance, further called dimension instance structure
DWWV, = (dwv_id;, dwv_name;, DWSV;, DWIV;) (2) change operators.

where: All operators address a particular version of a data warehouse.
They are formally described in this section by: their meaning,
the set of input arguments, constraints that have to be fulfilled
before and after applying a given operator, the set of changes
to a DW schema version and its instance, as well as additional
comments.

— dwv_id; anddwv_name; represent a DW version identifier
and a DW version name, respectively;

— DW SV, is a schema version;

— DW 1V, is an instance version.

5.4. Schema version. A schema version, denoted as
DWSV,;, i = 1,...,n, describes the structure of data in a-1. Schema change operators.The following 15 operators

DW version DWV/;, within DW version validity period, cf. describe the evolution of a DW schema.
Section 4. Its formal definition is as follows:

DWSV; = (dwv_id;, DV;, LV;, FV;, A;,

AtrLevel;, AtrFact;, FactLevel;) (3) Meaning: The operator creates a new dimension in the schema
of a specified DW version; created dimension has no hi-

Creating a new dimension.

where:

erarchy.

— dwv_id; is an identifier of versiodWV; whose structure Input: DW versionDW V;; namedim_name of a new dimen-
is described by schema versioaiv SV;; sion.

— DV, C DV is the set of dimension versions which exist inConstraints:There is no dimension in the schema of DW ver-
schema versioDW SV ;; sion DWV; having the same name d&n_name.

- LV; C LV is the set of level versions, which exist in Output: DW versionDWV;’ with the following changes:
schema versiobW W SV;; . _ o Schema changesA new multiversion dimensiom"

— FV, C FV is the set of fact versions, which exist in with namedim_name is created. The dimension
schema versioWWSV';; _ has only one versio®V,,.,,.

— A; C Ais the set of attributes belonging to level and fact _)
versions in schema versidaiv SV Instan_ce changes\one, since the newly created dimen-

— function AtrLevel; : A; — LV; assigns an attribute to a sion has no levels.
level version in schema versidniW SV ;; Comments:The operator creates a new dimension in a given

— function Atr Fact; : A; — F'V; assigns an attribute to fact schema version; the dimension has no hierarchy hence
version in schema versiabW SV ;; no instances and no connections to facts. Changes made

— functionFactLevel; : F'V; — 2-Vi connects a fact version by the operator do not require adaptation of either DW
to a level version in schema versignV SV ;. instance version or analytical queries. In a consequence,

there is no need to derive a new DW version before the
5.5. Instance version. An instance version, denoted as operator is applied.
DWIV,; i = 1,...,n, represents the set of data consistent

with its schema versio®W SV ;. The formal definition of an Creating a new level.
instance version is as follows:
Meaning: The operator creates a new level with a given set of

DWIV; = {(dwv_id;, RV, RecLevel;, RecFact;) (4) attributes in a specified schema version; the created level

— dwv_id; is the identifier of DW versioDWV; to which does not belong to any dimensions hierarchy.
instance versio®W I'V; belongs; Input: DW version DW'V;, level naméev_name, the set of
— RV, C RV is the set of records versions, forming instance attributesA,,.., for a newly created level.
versionDWIV;; Constraints:There is no level in a schema versiDiV'V; hav-
— function RecLevel; : RV; — LV, assigns records versions ing the same name asv_name.
to levels versions in instance versigiv IV;; Output: DW versionDWV; with the following changes:

Bull. Pol. Ac.: Tech. 54(1) 2006 55

B. Bebel, Z. Krélikowski, and R. Wrembel

Schema changesA new multiversion levelL2"" with
namelev_name is created, the level has only one
version LV,,..,; its structure is set up by the set
of attributesA,,..,; A, iS added to the sef;
of version attributes; the attributes from,,..,
are assigned to level versiaiV,,.,, by function

AtrLevel;.

Instance changedNone, since the newly created level
has no instances.

to a hierarchy, (2) instances of levels which are already
in a hierarchy, and (3) records of fact tables may cause
some major changes in DW version instance, even po-
tential data loss. Analytical queries may also require
modifications. Moreover, the results of queries, obtained
from adapted data, may result in incorrect business deci-
sions. This leads us to the conclusion that the derivation
of a new DW version is required before applying the dis-
cussed operator.

Comments:Since new level has no instances, changes mailﬁsconnecting a level from a dimension

Connecting a level into a dimension hierarchy.

by the operator, do not require adaptation either or an

instance version or analytical queries. In a consequendéeaning: The operator disconnects a given level from a hier-

there is no need to derive a new DW version before an
operator is applied.

Meaning: The operator connects a given level into a hierarchy

Input: DW versionDW'V;; versionDV), of a multiversion di-

of a given dimension, in a specified DW version. The

level being connected can already be connected to othé{)ns
hierarchies of the same dimension (the case of a dimen-

sion with multiple hierarchies).

mensionDMV where level versionV; is to be con-
nected to, position of the level in the hierarchy is de-
scribed by two sets: the sé&V;,, C LV}, of direct par-
ent levels ofLV; and the seL Viottom C LV, Of direct
child levels of LV;.

Constraints:None.
Output: DW versionDWV; with the following changes:

Schema changed.evel LV; is added to the seLV;
of levels belonging to the hierarchy of dimension
versionDV;, (unless levellV; is already the part
of another hierarchy in dimension versi@n},).
A partial orderr>; over the set ofLV; is modi-
fied in the following way: level versiolV; be-
comes the child level of all levels from s&V;,,
and becomes the parent level for all levels from set
LViottom- If LViottom = 0 (Ie level LV] be-
comes a new bottom level) it is necessary to drop
an old assignment of a bottom level and to create an

archy of a given dimension, in a specified DW version.
If a level being disconnected belonged to one hierarchy,
the level becomes an isolated one.

Input: DW version DWV;; level versionLV; of a multi-

version level LMV being disconnected from a hierar-

m

chy of versionDV;, of a multiversion dimensio®;",
LV, € LV,

traints:If the level being disconnected is a base level in

a dimension hierarchy, it should not be associated with
any fact in its schema version.

Output: DW versionDWV; with the following changes:

Schema changesf level versionLV; is part of one hi-
erarchy of dimension versio®WV}, then version
LV; is removed from the sdi V;, of level versions
in all hierarchies of dimension versiaVy; par-
tial ordert>;, on the set of level versionEV,, is
modified, a new order describes dimension hierar-
chy in which all child levels ofLV; are connected
to some parent levels afV; (unlessLV; was a
base level in a hierarchy). EV; was a top level,
then all its child levels are connected to implicit
element "All".

Instance changedf disconnected leveLV; was not a
base level, then all instances of child levels.df;
should be reclassified to instancesdf; parent
levels (unlesd.V; was a top level of a hierarchy);
fact records should also be adapted to a modified
dimension hierarchy.

assignment of levellV; to facts; this assignmentis Comments:Changes to a dimension structure done by the op-

created by functioact Level;.

Instance changesThe described operator requires clas-
sification of all instances of level versiail/; to
some instances of levels from s&tV,,, unless
LV; becomes a new top level of a hierarchy; classi-
fication of all instances of levels from BV, ¢ om
to some instances of level/; unlessLV; becomes
a new bottom level of a hierarchy (in both cases, in-

erator imply the following changes to instances of di-
mension versioDV;: (1) reclassification of level in-
stances and (2) adaptation of fact data. These changes
may lead to data loss and incorrect results or interpreta-
tions of analytical queries. Therefore, a new DW version
should be derived before applying the described opera-
tor.

stances that are to be classified should be specifi&@moving a dimension.
by MVDW administrator); fact records adaptationyjeaning: The operator removes a given dimension from a

to a changed dimension hierarchy.

schema of a specified DW version.

Comments:Changes to a dimension structure done by the déaput: DW versionDWV;, versionDV; of a multiversion di-

56

scribed operator, imply changes to a version instance.
Adaptations of: (1) instances of a level being connected

mensionDV, which is being removed from a schema
of DWV;.

Bull. Pol. Ac.: Tech. 54(1) 2006

Input: DW version DW'V;; versionLV; € LV; of multiver-

Input: DW version DWV;;

Formal approach to modelling a multiversion data warehouse

Constraints:No hierarchy in the dimension being removed.
Output: DW versionDWV; with the following changes:

Schema changeskemoving versionDV; of multiver-
sion dimensionD}MV from the setDV; of all di-
mensions.

Instance changesNone, since the dimension being re-
moved has no hierarchy, hence it has no data.

Comments:There is no need to derive a new DW version be-

fore applying the described operator since the dimension
does not have a hierarchy. Consequently, the dimension
has neither instances nor associations to fact tables. A
dimension removal does not influence either dimension
instances or fact records or user queries.

Removing a level.

Meaning: The operator removes a given level, that is discon-

nected from hierarchies of all dimensions, in a specified
DW version.

sion level L}V, which is to be removed frodW V.

Constraints:Level versionLV; is not part of a hierarchy in

any dimensions iDW'V;.

Output: DW versionDW 'V with the following changes:

Schema changefkemoving level versiod V; from the
setLV;, of all versions of multiversion levelV;

Instance change$?ossible adaptation of instances of
level versionLV;, by assigning values (user de-
fined, default, derived) to a newly created attribute
for the instances of level versidil/ ;.

Comments:There is no need to adapt dimension instances af-

ter the operator has been applied to a schema version.
However, changes introduced by the operator can have
impact on results of analytical queries. For example, let
us assume that a new attribute was added to a level in
a hierarchy of a dimension. The dimension has already
assigned a non-empty fact table. Now, users can ana-
lyze fact data from the perspective of the newly added
attribute. The obtained results can be correct or not, de-
pending on the semantics of this attribute and the way it
was created, e.g. the attribute may not correctly describe
facts which existed before the attribute was added. To
avoid this dilemma it is safe to derive a new DW version
before applying the operator.

Removing an attribute from a level.

Meaning: The operator removes a given attribute from the set

of attributes of a given level, in a specified DW version.

Input: DW versionDW'V;; versionLV; of multiversion level

LMV attribute A4.; being removed from the set of at-
tributes of level versiod.V;.

Constraints:None.

removing the assignments of attributes to lek&} ~ Output: DW versionDW V; with the following changes:

by modifying functionAtr Level;; removing all at-
tributes previously assigned to level’; from A;
(the set of attributes).

Instance changedkemoving instances of level version
LV; by modifying functionRecLevel;.

Comments:There is no need to derive a new DW version be-

fore the described operator is applied. A level being
removed is not part of any dimension hierarchy. Con-

Schema changefkemoving the assignment of an at-
tribute A4, to level versionLV; by modifying
function Atr Level;; removing attributed ;.; from
the setA; of attributes.

Instance changesrhe modification of values of records
versions assigned to level versida;; the modi-
fication consists in deleting values of a removed
attribute.

sequently, there is no association between a level and3mments:It is necessary to derive a new DW version before

fact. A level removal does not influence either dimen-
sion instances or fact records or user queries.

Creating a new attribute for a level.

Meaning: The operator creates a new attribute in a schema &1anging the domain of level attribute or fact attribute.

a given level in a specified DW version.
version LV; of a mul-

tiversion level LMV, attribute A,., defined as

applying the operator. Removing a level attribute causes
level data loss. Moreover, analytical queries have to be
reformulated.

Meaning: The operator changes the domain of a given at-

tribute in a specified DW version. The attribute is part of
a level version or fact version.

(a_idnew, a_namency, a_typene,) being created inthe Input: DW versionDWV;; attribute A; € A; whose domain

schema of level versionV’ ;.

version LV; having the same name as attribute,
a_namey,, being created.

Output: DW versionDW 'V, with the following changes:

Schema change#Adding a new attributed,,.,, to the
set A; of attributes; creating an assignment of
attribute A,,.,, to level versionLV; by function
AtrLevel;.

Bull. Pol. Ac.: Tech. 54(1) 2006

is being modified to a new oneu- type,,cw.

Constraints:There is no attribute in the schema of IevelConstraints:None.
utput: DW versionDWV; with the following changes:

Schema changesttribute A’; whose domain has been
modified to a new domaia_type, e -

Instance changesAdaptation of record versions; the
form of adaptation depends on the form of an at-
tribute domain change.

57

Input: DW version DWV;; version F'V; of a multiver-
attribute A,.,, defined as a triple Meaning: The operator creates an association between a given

B. Bebel, Z. Krélikowski, and R. Wrembel

before the operator is applied depends on a character of
a domain modification. If a domain modification does
not require an attribute values adaptation (for example:
maximal attribute length is modified from 15 to 20 char-
acters) and it does not cause data loss, the derivation of a
new DW version is not necessary. In other cases, a DW
administrator may decide to derive a hew DW version
and apply the operator there, in order to prevent from
data loss.

Creating a new fact.
Meaning: The operator creates a new fact with its attributes;

there is no association between a new fact and any di-
mension levels.

Input: DW version DW'V;; fact name f_name; the set

Ao = {A1,..., Ay} of attributes of a new fact.

Constraints:No fact exists in schema versidoWV; having

the same name g5 name.

Output: DW versionDW 'V, with the following changes:

Schema change<reating new multiversion fadt 2V
and adding it to the sét™ Y of multiversion facts;
the newly created multiversion fact has only one

Comments:A decision whether to derive a new DW versionComments:Adding a new measure to a fact may cause in-

correct results of analytical queries. As an example, let
us consider fact table Sales storing product sales data in
the first and second quarter of 2004. At the begining of
a third quarter of 2004 an attribute ClaimsNumber has
been added to the schema of fact table Sales. The reg-
istration of customers claims starts from a third quarter
of 2004. All values of an attribute ClaimsNumber in fact
records, which describe sales in first and second quarters
of 2004 were setto 0. Let's assume that a user analyzes
the total number of claims in months of 2004. In the pe-
riod from January until June the number of claims equals
to 0. Whereas in July, August 2004 etc. the number of
claims appears as greater than 0. In a consequence, a
user may conclude that the quality of products sold in the
second half of 2004 became worse than products sold in
the first half of 2004. The conclusion is evidently false.
This example motivates a need for deriving a new DW
version before the discussed operator is applied.

Removing an attribute from a fact table.

Meaning: The operator removes a measure attribute from a

given fact, in a specified DW version.

version F'V,,.,,, Which is the new element of set Input: DW versionDWV;; versionFV ; of multiversion fact

FV; of fact versions inDWV/; adding the set
A, ., Of new fact attributes to the sed; of at-

FMV. attribute A4.; being removed from the set of at-
tributes of fact versiod'V ;.

tributes in schema versioDWV/; creating as- Constraints:None.
signments between new fact versiéil,,.,, and Output: DW versionDW V; with the following changes:

attributes from setd,,..,, by modifying function
AtrFact;.

Instance changedNone, new fact has no instances.

Comments:lt is not necessary to derive a new DW version

before the operator is applied. Since a new fact has no
instances and it is not associated with any dimension. In

a consequence, there is no need to perform any adap-

tation. The modification does not influence analytical
queries either.

Creating a new attribute for a fact.
Meaning: The operator creates a new measure attribute for a

given fact, in a specified DW version.
sion fact FMV;,
(a_idnew, a_nameney, a_typenew), thatis being added
to the set of attributes of fact versidrl/ ;.

versionF'V ; having the same name asnamepeq, .

Output: DW versionDWV; with the following changes:

Schema change®dding attributeA,,.,, to the setA;

Schema changedsemoving an association between at-
tribute A4.; and fact versionF'V; by modifying
function Atr Fact;; removing attributed .; from
the setA; of attributes inDWV;'.

Instance changedAdaptation of fact instances, as-
signed to fact versiod'V ;, by deleting values of
the removed attribute.

Comments:Applying the operator to a schema version causes

data loss and it requires reformulation of analytical
queries. In a consequence, the operator should be ap-
plied to a new DW version.

Creating an association between a fact and a level.

version of a fact and a given version of a base level in
dimension hierarchy, in a specified DW version.

Constraints:No attribute exists in the set of attributes of factinput: DW version DWV;, version FV; of multiversion fact

FMV versionLV; of multiversion levelL2V; LV is a
base level in the hierarchy of versidnV,, of multiver-

sion dimensiodMV',

of attributes of DW versioDW V/; assigning at- Constraints: LV} is a base level in a hierarchy of dimension

tribute A,,.,, to fact versionF'V; by modifying
function Atr Fact;.

Instance changefossible fact versiof'V; data adap-
tation consisting in assigning values (user defined,
default, derived) to attributd,,,,.

versionDV,,.

Output: DW versionDWV;/ with the following changes:

Schema change<reating an association between fact
versionF'V; and level versiorLV;, by modifying
function Fact Level;.

Bull. Pol. Ac.: Tech. 54(1) 2006

Formal approach to modelling a multiversion data warehouse

Instance changed?ossible adaptation of fact instancesComments:It is not necessary to derive a new DW version
assigned to fact versiaR'V;. before the operator is applied since a fact being removed

Comments:There are two following cases concerning the op- ~ Was previously disconnected from all levels.
erator: (1) when a fact table is empty, no adaptation of
its instances is required; (2) when a fact table stores da
it is necessary to assign each fact record to its level in
stance. Sometimes it requires decreasing the level Bf2NCES.
fact data aggregation. If it is not possible to assign
fact record to a level instance (e.g. a level has no i
stances or there is no proper level instance to assign tdjeaning: The operator inserts a hew instance to the set of in-
fact records have to be removed or assigned to a spe- stances of a given level, in a specified DW version.
cially created level instance. Since data loss during theput: DW versionDW'V;; versionLV; of multiversion level
process of adaption may happen and the results of user LV valuerv_value,., of new levelLV; instance.

m

analytical queries can be influenced, a new DW versio@onstraints:If a level an instance is inserted into, is not a top

2. Dimension instance structure change operatorsThe
ollowing 5 operators describe the evolution of dimensions in-

inserting a new level instance.

has to be created before applying the operator. level in a dimension hierarchy, then each parent level of
LV; should have an instance, to which an instance of
Removing an association between a fact and a level. LV; can be classified.
Meaning: The operator removes an association between @utput: DW versionDW V" with the following changes:
given fact and a given level in a specified DW version. Schema changes\one.

Input: [3\\1/\‘//versionDWV;; versionF'V; ofamulti\zlwe‘gsion fact Instance changednserting new multiversion record
£y;77 5 versionLV; of a multiversion level;, ', which RMY"into the setRM" of multiversion records;
is a base level in a hierarchy of versién/,, of multi- the newly created record has one versiow,
. . . ew:
version dimensioMV

. added to the seRV; of record versions, in a DW
Constraints:None.

_ - .) _ version DWV/; record valuerv_valuene, has
Output: DW versionDW V' with the following changes: been added to the sBtA L of record values: creat-

Schema changefkemoving an association between ing an assignment between record versiid, ..,
fact versionF'V; and level versiorLV; by modi- and a level version.V;, by modifying function
fying function Fact Level;. RecLevel;. If LV is not a top level version in
Instance changesRossible adaption of fact instances a dimension hierarchy, then a new instance should
assigned to fact versioRV;. be classified to explicitly chosen instances of par-
ent levels ofLV;. There is no need to adapt fact

Comments:Removing an association between a fact and a
level requires only a fact table records adaptation (if
a fact table is not empty). One of possible adaptaComments:Although there is no need to adapt either level or
tions is increasing a level of fact data aggregation. DW fact instances, it is necessary to derive a new DW ver-
users also lose one of the perspectives for data analy- Sion before applying the operator, as a new level instance
sis. These reasons motivate a necessity for a new DW can change the results of analytical queries. In a conse-

instances.

version derivation before an operator is applied. quence, the obtained results can be wrongly interpreted
if users do not have a proper information on changes

Removing a fact. made to dimension instances.
Meaning: The operator removes a given fact from a specifiegeletin level inst

DW version. g a level instance.
Input: DW version DW'V;; version F'V; of multiversion fact Meaning: The operator deletes a given instance from the set

FMV, of instances of a given level, in a specified DW version.
Constraints:Version F'V; being removed is not connected tolnput: DW version DWYV;; record version RVg

any version of a multiversion levels BV V. being deleted; RV, is defined as a triple
Output: DW versionDW 'V, with the following changes: (rv_idger, mv_valuege;, VIDge), which implements

Schema changegRemoving versionF'V; from the set the instance of versiohV;, of a multiversion level, V.
J

FV;, of versions of multiversion facFMV; re- Constraints:None. . .
moving assignments between fact versFM,» and Output: DW versionDWV;/ with the following changes:

its attributes, by modifying functiodtr Fact;; re- Schema changedNone.

moving attributes previously assigned to fact ver- Instance changesRemoving an assignment between

sion 'V}, from the setA; of attributes inDWV'. record versionRV,.; and level versionLV, by
Instance changesRemoving assignments between fact modifying function RecLevel;; deleting record

versionF'V; and its instances, by modifying func- version RVy,; from the setRV of record ver-

tion RecFact;; removing fact instances dfV/;. sions, in DW versionDWV/; deleting record

Bull. Pol. Ac.: Tech. 54(1) 2006 59

B. Bebel, Z. Krélikowski, and R. Wrembel

rv_valuege; from the seV” AL of records; the fol-
lowing adaptations should take place: (1) instances
of child levels of LV}, which were classified to

a deleted instance, should be reclassified to other
instances of leveL'V;, or should be deleted; (2)
fact instances, which are connected, either directly
(whenLV}, is a base level) or indirectly (whehV,

is a top level or a level inside a hierarchy), should

Input: DW version DWV;;

the set RVierge =
{RV4,..., RV, } of record versions, i.e. the instances of
level versionZV}, being merged; the instances are clas-
sified to a record versioRV,, i.e. the instance of level
version LV,; LV, is the parent level of level version
LVj; value rv_valuene,, Of the new instance of level
LV; (an instance, to which instances from $&V,,c,.gc

will be merged).

be connected to other instances of levels or shouldonstraints:If merged instances are not the instances of a top

deleted.

Comments:Deleting a level instance can cause massive adap-
tations of dimension instances as well as fact instances.
Such adaptations can lead to data loss and also can
change results of analytical queries. For these reasons, a
new DW version should be derived before applying the
operator.

Reclassifying a level instance.

Meaning: The operator changes the parent of a given child
level instance into another parent level instance. Both
parentinstances of an instance being reclassified (i.e. the
one before reclassification and the one after reclassifica-
tion) are the instances of the same parent level.

Input: DW version DWV;; record versionkV; (the instance
of level version LV, belonging to multiversion level
LMV); RV; is classified to a record versidRV,, (the
instance of level versioi.V,,,); record versionRV,,..,

(the instance of level versiahV/,,); instanceRV,, ., will
be the new parent instance of instaitk;; level version
LV, is the parent of.V.

Constraints:Value rv_value; of record versionRV; should
allow its reclassification to record versi@ti,,c., .

Output: DW versionDW 'V, with the following changes:

Schema changes\None.

Instance changesModification of record version value
rv_value;, which classifies record versiddV; to
record versiomV,,c., .

Comments:Instance changes caused by applying the de-
scribed operator do not lead to any data loss (neither di-
mension or fact instances). However, they may change
the results of analytical queries. If users are not provide,
with an information on changes in the structure of a di-
mension instance then interpretations of obtained query
results may be wrong. For these reasons, a new DW ver-
sion should be derived before applying the operator.

Merging n instances of a level into a new instance.

Meaning: The operator merges n instancgRV;, ..., RV, }
of a given levelLV; into the new instanceV;,,, of
the same level. LeRV,,..,: denote the parent instance
of {RV4,...,RV,,}. If LV; is not a top level, then:
(1) {RV4,...,RV,} have to be classified to the same
instance of their parent level, i.eRV,qrent, and (2)
RV, Will be classified also tdV,qrent.

60

level, then they have to be classified to the same parent
instance. Valuev_value,.,, of a record, which im-
plements a level instance after merging, should allow
its classification to instanc&V,qren:. |f merged in-
stances are not the instances of a base level, then values
of their child instances should allow their classification

to a new instance (the one whose value is represented by
7U_valueney).

Output: DW versionDW 'V, with the following changes:

Schema changedNone.

Instance change<Creating new multiversion record
RMV in the setRMV of multiversion records.
A new record has one versioRV,,.,,, which is
the element of the seRV; of record versions in
DW1IV/. Record valuerv_value,.,, is added to
the setV AL of record values iDWIV,/. Modi-
fication of functionRecLevel;, which: (1) creates
an assignment of record versidilV,,.,, to level
version LV;, and (2) deletes the assignments of
record versions in seRV,,..q4. t0 level version
LV;. Classification of the instances &f/; (pre-
viously classified to instances from sBV, ., ¢.)
to a new instance, implemented by record version
RV, Removing from selRV elements of set
RV,,.rqe. Removing values of merged instances,
rv_valueg, k =1,...,n, fromsetV AL. If level
versionLV; is a bottom level of dimension hier-
archy, it is necessary to adapt fact data, connected
to the instances being merged. The form of the
adaptation can be either (1) reconnecting fact data
to instanceRV,,.,, after the merge operation or
(2) deleting fact data, connected to the merged in-
stances (instances from BV ,,c,c)-

8omments:The described operator does not require adapta-

tion of dimension instances, however, in some cases, its
application can lead to fact table data adaptation. This
adaptation can cause data loss. In all cases, applying
the operator changes the results of analytical queries. If
users are not provided with an information on changes
in the structure of a dimension instance then interpreta-
tions of obtained query results may be wrong. For these
reasons, a new DW version should be derived before ap-
plying the operator.

Splitting a level instance into n new instances.
Meaning: The operator splits a given level instang&’,;; into

n new instance§RV1, ..., RV, } of the same level V;,

Bull. Pol. Ac.: Tech. 54(1) 2006

Formal approach to modelling a multiversion data warehouse

in a specified DW version. L&tV,q,.,: denote the par-
ent instance ofRV,;4. If RV,4 is not an instance of a
top level, then{ RV1, ..., RV, } have to be classified to

RVparent. Instances of child levels, which were previ-

ously classified taRV,;4, will be classified to one of the
instances{RV1, ..., RV, }, chosen by a DW adminis-
trator.

Input: DW versionDW'V;; record versionRV,4, i.e. the in-
stance of level versiohV;; record versiomRR V4 is clas-
sified to a record versioRV,q,ent, i.€. the instance of
level versionLV,; LV, is the parent level of.V;; in-
stanceRV,;4 will be splitinto{RV4, ..., RV, }, each of

IBM DBZ2) are not able to store and manage more than one
DW state at the same time.

Our approach to this problem is based on a multiversion
data warehouse that is composed of the set of its versions.
A DW version represents the structure and content of a DW
at a certain time period. A DW version can be used for in-
corporating structural changes in external data sources as well
as changes to a DW schema resulting from changing user re-
quirements. Moreover, DW versions can be applied to creating
alternative business scenarios and predicting future. DW ver-
sions can also store historical data from certain time periods,
and in this case they offer the functionality of temporal data

which will be implemented by records whose values ar@rarehouses.

giveninsetV AL,,.,, = {rv_valuey,...,rv_value,};
elementv_value. € VAL, is the value of a record,

In this paper we presented a formal model of a mutliv-
ersion data warehouse. We identified and analyzed possible

which will implement an instance to which all instancesschema changes and dimension instance changes applicable to

previously classified t&V,,;4, will be reclassified.
Constraints:None.
Output: DW versionDWV; with the following changes:

Schema changes\one.

Instance changesCreating n multiversion records

{RMV ... RMV} in set RMV. Every record
{RMV ...,RMV} has only one version. The
versions form setRV,,..,, = {RVi,...,RV,},

which is added to the sd®V; of record versions in
DWYV/. Values of records, stored in SEtA L.,

are added to the s& AL of record values. Modi-
fication of functionRecLevel;, which : (1) assigns
record versions from seRV,,.,, to level version

LV; as its new instances, and (2) removes the as-

signment of record versio®V), from LV;. The
classification of the instances of child levely’;
(previously classified to instand@l;) to instance
RV, € RV,.,. Removing record versioiV},
from the setRV of record versions. Removing
value rv_value, of RV, from the setV AL of
record values. LV} is a bottom level in dimen-

sion hierarchy, it is necessary to adapt fact datal6]

connected to instancRV} being split. The form

of an adaptation can be either (1) reconnecting fact
data to the instances after the split operation or (2) [7
deleting fact data, previously connected to a split

instance.

Comments:The split operator performs an operation opposite
to the merge operator, but the consequences of both op-
erations are the same. Consequently, the application of®l
the split operator should be performed in a new DW ver-

sion.

7. Summary

Handling evolution of data warehouses is currently becominbll]
an important research field [34,35]. On the one hand, research
issues in this field are mainly focusing on temporal extensiong; 2]
that limit their use. On the other hand, commercial data ware-

a MVDW. Every such a change was in depth analyzed with re-
spect to: its meaning, input and output parameters, the impact
on fact and level instances. To the best of our knowledge, it
is the first formal approach to describing the evolution of data
warehouses. The discussed model was the basis for developing
a prototype MVDW system, cf. [32].

REFERENCES

[1] J. Roddick, “A survey of schema versioning issues for database
systems”,Information and Software Technolo@y (7), 383—
393 (1996).

E. Rundensteiner, A. Koeller, and X. Zhang, “Maintaining data
warehouses over changing information sourc€¥mmunica-
tions of the ACMA3 (6), 57—62 (2000).

A. Gupta and I.S. Mumick (eds.Materialized Views: Tech-
nigues, Implementations, and ApplicatipriEhe MIT Press,
ISBN 0-262-57122-6, 1999.

P. Chamoni and S. Stock, “Temporal structures in data ware-
housing”,Proc. DaWaK99353-358 (1999).

M. Blaschka, C. Sapia, and G. Hofling, “On schema evolution
in multidimensional databasesProc. DaWak99 Conference
153-164 (1999).

C.E. Kaas, T.B. Pedersen, and B.D. Rasmussen, “Schema evo-
lution for stars and snowflakesProc. Intern. Conf. on Enter-
prise Information Systems (ICEIS200425-433 (2004).

1 J. Eder and C. Koncilia, “Changes of dimension data in tem-
poral data warehousesRroc. DaWaK Conference284-293
(2001).

J. Eder, C. Koncilia, and T. Morzy, “The COMET metamodel
for temporal data warehousedroc. 14** CAISE02 Confer-
ence 83-99 (2002).

A.O. Mendelzon and A.A. Vaisman, “Temporal queries in
OLAP”, Proc. VLDB Conference242—-253 (2000).

B. Bebel, J. Eder, C. Koncilia, T. Morzy, and R. Wrembel,
“Creation and management of versions in multiversion data
warehouse”,Proc. ACM Symposium on Applied Computing
(SAC’2004) 717-723 (2004).

M. Gyssens and L.V.S. Lakshmanan, “A foundation for multi-
dimensional databasesProc. 23"¢ VLDB Conference106—
115 (1997).

M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadtsinda-
mentals of Data WarehouseSpringer-Verlag, 2003.

(2]

(3]

[4]
[5]

(8]

(10]

house systems (e.g. Oraclel0g, Sybase 1Q, MS SQLServgr3] C. Letz, E.T. Henn, and G. Vossen, “Consistency in data ware-

Bull. Pol. Ac.: Tech. 54(1) 2006

61

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

B. Bebel, Z. Krélikowski, and R. Wrembel

house dimensions”Proc. Intern. Database Engineering and
Applications Symposium (IDEAS'Q224-232 (2002).

R. Agrawal, S. Buroff, N. Gehani, and D. Shasha, “Object ver-
sioning in Ode” Proc. ICDE Conferencet46—455 (1991).

M. Ahmed-Nacer and J. Estublier, “Schema evolution in soft-
ware engineering'Databases — A new Approach in ADELE en-
vironment, Computers and Artificial Intelligend®, 183—203
(2000).

W. Cellary and G. Jomier, “Consistency of versions in object-
oriented databasesProc. VLDB Conferencet32—441 (1990).

S. Gancarski and G. Jomier, “A framework for programming
multiversion databasesData Knowledge Engineering6(1),
29-53 (2001).

W. Kim and H. Chou, “Versions of schema for object-oriented
databases’Proc. VLDB Conferencel48—159 (1988).

C.A. Hurtado, A.O. Mendelzon, and A.A. Vaisman, “Maintain- [30]

ing data cubes under dimension updaté&sc. ICDE Confer-
ence 346-355 (1999).

C.A. Hurtado, A.O. Mendelzon, and A.A Vaisman, “Updating
OLAP dimensions”Proc. DOLAP Conferenc&0—66 (1999).

A. Koeller, E. Rundensteiner, and N. Hachem, “Integrating thg32]

rewriting and ranking phases of view synchronizatioRt'pc.
DOLAP98 Workshop0-65 (1998).

A.A. Vaisman, A.O. Mendelzon, W. Ruaro, and S.G. Cymer-
man, “Supporting dimension updates in an OLAP serversc.
CAISEOQ2 Conferenc&7-82 (2002).

M. Body, M. Miquel, Y. Bédard, and A. Tchounikine, “A mul-

(26]

(27]

(28]

(29]

(31]

2003 Conf. 581 (2003).

[25] J. Chen, S. Chen, and E. Rundensteiner, “A transactional model

for data warehouse maintenancBtpc. ER 247-262 (2002).
H.G. Kang and C.W. Chung, “Exploiting versions for on—line
data warehouse maintenance in MOLAP servepsdc. VLDB
Conference742-753 (2002).

S. Kulkarni and M. Mohania, “Concurrent maintenance of
views using multiple versionsProc. Intern. Database Engi-
neering and Application Symposiu@b4—-259 (1999).

L. Schlesinger, A. Bauer, W. Lehner, G. Ediberidze, and M.
Gutzman, “Efficienlty synchronizing multidimensional schema
data”,Proc. DOLAR Atlanta, 69—76 (2001).

A. Balmin, T. Papadimitriou, and Y. Papakonstanitnou, “Hypo-
thetical queries in an OLAP environmen®roc. VLDB Conf.
220-231 (2000).

D. Quass and J. Widom, “On-line warehouse view mainte-
nance”,Proc. SIGMOD Conferenc893—-404 (1997).

M. Golfarelli, J. Lechtenbérger, S. Rizzi, and G. Vossen,
“Schema versioning in data warehousesR Workshops 2004
LNCS 3289, 415-428 (2004).

T. Morzy and R. Wrembel, “On querying versions of multiver-
sion data warehouseProc. 7" ACM Int. Workshop on Data
Warehousing and OLAP (DOLAP 2004)ashington, 92-101
(2004).

[33] J. Lechtenborger and G. Vossen, “Multidimensional normal

forms for data warehouse desigiformation System28(5),
415-434 (2003).

tidimensional and multiversion structure for OLAP applica-[34] S. Rizzi, “Open problems in data warehousing: 8 years later”,

tions”, Proc. DOLAP’2002 Conf.1-6 (2002).

The Keynote Speech at the DMDW Confereiezlin, 2003.

[24] M. Body, M. Miquel, Y. Bédard, and A. Tchounikine, “Han- [35] The panel discussion at tHBOLAP ConferenceWashington,

62

dling evolutions in multidimensional structures?roc. ICDE

2004.

Bull. Pol. Ac.: Tech. 54(1) 2006

