
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
Vol. 54, No. 1, 2006

Formal approach to modelling a multiversion data warehouse

B. BĘBEL∗, Z. KRÓLIKOWSKI, and R. WREMBEL

Institute of Computing Science, Poznań University of Technology, 2 Piotrowo St., 60-965 Poznań, Poland

Abstract. A data warehouse (DW) is a large centralized database that stores data integrated from multiple, usually heterogeneous external
data sources (EDSs). DW content is processed by so called On-Line Analytical Processing applications, that analyze business trends, discover
anomalies and hidden dependencies between data. These applications are part of decision support systems. EDSs constantly change their
content and often change their structures. These changes have to be propagated into a DW, causing its evolution. The propagation of content
changes is implemented by means of materialized views. Whereas the propagation of structural changes is mainly based on temporal extensions
and schema evolution, that limits the application of these techniques. Our approach to handling the evolution of a DW is based on schema and
data versioning. This mechanism is the core of, so called, a multiversion data warehouse. A multiversion DW is composed of the set of its
versions. A single DW version is in turn composed of a schema version and the set of data described by this schema version. Every DW version
stores a DW state which is valid within a certain time period. In this paper we present: (1) a formal model of a multiversion data warehouse,
(2) the set of operators with their formal semantics that support a DW evolution, (3) the impact analysis of the operators on DW data and user
analytical queries. The presented formal model was a basis for implementing a multiversion DW prototype system.

Key words: schema evolution, data evolution, schema versioning, data versioning, multiversion data warehouse, formal model.

1. Introduction

A data warehouse (DW) is a large database (often of terabytes
size) that integrates data from various external data sources
(EDSs). EDSs are implemented as databases as well as var-
ious storage systems (e.g. spreadsheets, legacy systems, flat
files, XML files). They store production data collected during
normal functioning of an enterprise. These production data are
loaded, integrated, augmented with summaries in a DW for the
purpose of detail analysis from various perspectives. Data are
analyzed by, so called, On-Line Analytical Processing (OLAP)
queries aiming at: discovering trends (e.g. sale of products),
patterns of behaviour and anomalies (e.g. credit card usage) as
well as finding hidden dependencies between data (e.g. market
basket analysis, suggested buying). The findings are then ap-
plied in real business. Data warehouse and OLAP technologies
are important components of decision support systems.

The process of good decision making often requires fore-
casting future business behaviour, based on present and histor-
ical data as well as on assumptions made by decision makers.
This kind of data processing is called a what-if analysis. In
this analysis, a decision maker simulates in a data warehouse
changes in the real world, creates virtual possible business sce-
narios, and explores them with OLAP queries. To this end, a
DW must provide means for creating and managing various
DW alternatives, that often requires changes to a DW structure
and content.

An inherent feature of external data sources is their au-
tonomy, i.e. they may evolve in time independently of each
other and independently of a DW that integrates them [1,2].
The changes have an impact on the structure and content of a
DW. The evolution of EDSs can be characterized by: content

changes, i.e. insert/update/delete data, and schema changes,
i.e. add/modify/drop a data structure or its property. Content
changes result from user activities that perform their normal
daily work with the support of information systems. On the
contrary, schema changes in EDSs are caused by: changes of
a real world being represented in EDSs (e.g. changing bor-
ders of countries, changing administrative structure of orga-
nizations, changing legislations), new user requirements (e.g.
storing new kinds of data), new versions of software being in-
stalled, and system tuning activities.

The consequence of content and schema changes at EDSs
is that a DW built on the EDSs becomes obsolete and needs
to be synchronized. Content changes are monitored and prop-
agated to a DW often by means of materialized views [3] and
the history of data changes is supported by applying temporal
extensions e.g. [4]. Whereas EDSs schema changes are often
handled by applying schema evolution, e.g. [5,6] and temporal
versioning techniques [7–9]. In schema evolution approaches
historical DW states are lost as there is only one DW schema
that is being modified. In temporal versioning approaches
only historical versions of data are maintained whereas schema
modifications are difficult to handle. In our approach [10], we
propose a multiversion data warehouse (MVDW) as a frame-
work for: (1) handling content and schema changes in EDSs,
(2) simulating and managing alternative business scenarios,
and predicting future business trends (a what-if analysis). A
MVDW is composed of persistent versions, each of which de-
scribes a DW schema and content in a given time period.

In this paper we contribute by presenting a formal model
of a multiversion data warehouse and a formal semantics of
operators modifying the structure do a DW schema and di-
mensions. The presented model and operators were a basis

∗e-mail: bartosz.bebel@cs.put.poznan.pl

51



B. Bębel, Z. Królikowski, and R. Wrembel

for implementing a multiversion DW prototype system.
The rest of this paper is organized as follows. Section 2

presents basic definitions concerning a multidimensional data
model. Section 3 discusses related approaches to handling dy-
namics of a DW. Section 4 informally overviews our concept
of a mutliversion data warehouse and Section 5 presents its for-
mal model. Formal semantic of operators modifying a MVDW
are discussed in Section 6. Finally, Section 7 summarizes the
paper.

2. Basic definitions
A DW takes advantage of a multidimensional data model [11–
13] with facts representing elementary information being the
subject of analysis. A fact contains numerical features, called
measures, that quantify the fact and allow to compare differ-
ent facts. Values of measures depend on a context set up by
dimensions. Examples of measures include: quantity, income,
turnover, etc., whereas typical examples of dimensions include
Time, Location, Product, etc. (cf. Fig. 1. In a relational imple-
mentation, a fact is implemented as a table, called a fact table,
e.g. Sales in Fig. 1).

Fig. 1. An example DW schema on sale of products

Dimensions usually form hierarchies. Examples of hierar-
chical dimensions are: (1) Location, with Cities at the top and
Shops at the bottom, (2) Product, with Categories and Items
(cf. Fig. 1). A schema object in a dimension hierarchy is called
a level, e.g. Cities, Shops, Categories, Items, and Time. In a
relational implementation, a level is implemented as a table,
called a dimension level table.

A dimension hierarchy specifies the way measures are ag-
gregated. A lower level of a dimension rolls-up to an upper
level, yielding more aggregated data. Values in every level are
called level instances. Example instances of level Items may
include: ‘Deep t-shirt’ and ‘Yves Rocher shampoo’, whereas
instances of level Categories may include: ‘clothes’ and ‘cos-
metics’. The dimension instance of dimensionDi is composed
of hierarchically assigned instances of levels inDi, where the
hierarchy of level instances is set up by the hierarchy of lev-
els. Example instances of dimension Product include: {‘Deep

t-shirt’ → ‘clothes’, ‘Yves Rocher shampoo’→ ‘cosmetics’},
where→ is the hierarchical assignment of a lower level in-
stance to an upper level instance.

3. Related work

The support of evolution of schema and data turned up to
be required in the applications of object-oriented databases to
Computer Aided Design, Engineering, and Manufacturing sys-
tems. The problem was intensively investigated and resulted
in the development of various approaches and prototypes, [14–
18], to list only a few of them. These and many other ap-
proaches were proposed for versioning complex objects stored
in a database of moderate size. On the contrary, in data ware-
house systems objects being versioned have very simple struc-
ture (several fact or dimension tables) but the size of a database
is much larger. Therefore, the versioning mechanisms men-
tioned above are not suitable for versioning traditional (rela-
tional) data warehouses. The approaches to the management
of changes in a DW can be classified as: (1) schema and data
evolution: [5,6,19–22], (2) temporal and versioning extensions
[2,4,7–9,13,23–29]. The approaches in the first category sup-
port only one DW schema and its instance. In a consequence,
any structural modification requires data conversions that, in
turn, results in the loss of historical DW states. In the ap-
proaches from the second category, in [4,7–9,28], changes to
the structure of dimension instances are time-stamped in order
to create temporal versions. The approaches are suitable for
representing historical versions of data, but not schemas. The
paper by [13] addresses also the problem of dimension updates
and focuses on consistency criteria that every dimension has to
fulfill. It gives an overview how the criteria can be applied to a
temporal DW only.

In [2,25] data versions are used to avoid duplication
anomaly during DW refreshing process. The work also
sketches the concept of handling changes in an EDS struc-
ture. However, a clear solution was not presented on how to
apply the changes to DW fact and dimension tables. More-
over, changes to the structure of dimensions as well as dimen-
sion instances were not taken into consideration. In [26,27,30]
implicit system created versions of data are used for avoiding
conflicts and mutual locking between OLAP queries and trans-
actions refreshing a DW.

On the contrary, [23,24] supports explicit, time-stamped
versions of data. The proposed mechanism, however, uses one
central fact table for storing all versions of data. In a con-
sequence, only changes to dimension and dimension instance
structures are supported. In [31], a DW schema versioning
mechanism is presented. A new persistent schema version
is created for handling schema changes. The approach sup-
ports only four basic schema modification operators, namely
adding/deleting an attribute as well as adding/deleting a func-
tional dependency. A persistent schema version requires a pop-
ulation with data. However, this issue is only mentioned in the
paper.

In [29] a virtual versioning mechanism was presented. A
virtual DW structure is constructed for hypothetical queries

52 Bull. Pol. Ac.: Tech. 54(1) 2006



Formal approach to modelling a multiversion data warehouse

simulating business scenarios. As this technique computes
new values of data for every hypothetical query based on vir-
tual structures, performance problems will appear for large
DWs.

4. Multiversion data warehouse – overview
A multiversion data warehouse (MVDW) is composed of the
ordered set of its versions. A DW version is in turn composed
of a schema version and an instance version. A schema ver-
sion describes the structure of a DW within a given time period,
whereas an instance version represents the set of data described
by its schema version.

We distinguish two types of DW versions, namely real and
alternative ones. Real versions are created in order to keep up
with changes in a real business environment, like for example:
changing organizational structure of a company, changing ge-
ographical borders of regions, changing prices/taxes of prod-
ucts, changing legislations, opening/closing shops. Real ver-
sions are linearly ordered by the time they are valid within. Al-
ternative versions are created for simulation purposes, as part
of a what-if analysis. Such versions represent virtual business
scenarios. All DW versions are connected by version deriva-
tion relationships, forming a version derivation graph. The root
of this graph is the first real DW version.

Every real as well as alternative version is valid within a
certain period of time. Version validity is represent by two
timestamps, i.e. begin validity time and end validity time, that
are associated with every version (cf. [10] for details).

A schema version is composed of several elements, whose
informal description is as follows. Each level can have many
versions, which belong to the set of levels versions. A level
version is assigned to a given dimension version as a part of

this dimension’s hierarchy. All versions of dimensions form
the set of dimensions versions. Facts also can have multiple
versions. Versions of a facts are elements of the set of fact ta-
ble versions. Facts versions are assigned to given dimensions
versions. The structure of levels versions as well as fact ver-
sions consists of attributes, which form the set of attributes. At-
tributes are not versioned, i.e. every attribute can be assigned
to only one dimension or fact.

A DW instance version is composed of records versions as-
signed to a level version or to a fact table version. All records
versions belong to the set of records versions.

Figure 2 schematically shows relationships between the
discussed schema and instance versions elements.

5. Multiversion data warehouse – formal model
As stated in Section 4, a multiversion data warehouse, denoted
asMV DW , is composed of the set of its versions, denoted
asDWV . A single DW version is composed of a schema ver-
sion (DWSV i) and an instance version (DWSV i). A schema
version includes several schema components, whereas an in-
stance version includes several instance components. Subse-
quent sections provide formal definitions of the model compo-
nents.

5.1. Model components. Formal definitions of a schema and
an instance version use multiple components that are defined
in this section.
Set of versions identifiers. Each DW version is unambigu-
ously identified by unique identifierdwv_id that is an ele-
ment from the set of all DW version identifiersV ID =
{dwv_id1, . . . , dwv_idn}, wheredwv_idi is an identifier of
a i-th DW version.

Fig. 2. Relationships among schema and instance version elements

Bull. Pol. Ac.: Tech. 54(1) 2006 53



B. Bębel, Z. Królikowski, and R. Wrembel

Multiversion level. A multiversion level is the element of a
dimension structure. It may consist of multiple versions. One
level version may exist in several DW versions and in this
case the level version is a shared one. A multiversion level
is defined as tripleLMV

i = 〈mvl_idi,mvl_namei, LVi〉,
where:mvl_idi is a multiversion level identifier,mvl_namei

is a multiversion level name,LVi = {LV1, . . . , LVm} is
the set of level versions, which is the subset of the setLV
of all level versions. A level version is defined as a pair
LVj = 〈lv_idj , V IDj〉, where: lv_idj denotes a level ver-
sion identifier andV IDj ⊆ V ID is the set of identifiers of
these DW versions, in which versionLVj of level LMV

i ex-
ists. LMV = {LMV

1 , . . . , LMV
n } is the set of all multiversion

levels.
Multiversion dimension. A multiversion dimension may con-
sist of multiple versions. One dimension version may exist in
several MVDW versions and in this case the dimension version
is a shared one. A multiversion dimension is defined as triple
DMV

i = 〈mvd_idi,mvd_namei, DVi〉, where: mvd_idi is
a multiversion dimension identifier,mvd_namei is a multi-
version dimension name,DVi = {DV1, . . . , DVm} is the set
of dimension versions, which is the subset of the setDV of
all dimensions versions. A dimension version is defined as
quadrupleDVj = 〈dv_idj ,LVj ,�j , V IDj〉, where:dv_idj

is a dimension version identifier,LVj ⊆ LV is the set of lev-
els versions, which belong to a dimension version hierarchy;
a pair(LVj ,�j) is a lattice, which describes dimension ver-
sion hierarchy, with distinguished elements: bottom element
(bottom level) and implicit top element (denoted as ‘All’) (cf.
[33]); �j ⊆ LV × LV is a relation over the set of levels
versions in a dimension hierarchy; its transitive and reflexive
closure�∗j defines a partial order over the set of level versions:
if LVk andLVl ∈ LVj andLVl �∗ LVk, then there is no such
LVo, thatLVl �∗ LVo �∗ LVk; V IDj ⊆ V ID is the set of
version identifiers, in which versionDVj of multiversion di-
mensionDMV

i exists. For a given level versionLVk, function
SubLevels : LV → 2LV returns the set of all levels versions
that are located in a hierarchy of a dimension version, in a spec-
ified DW version, in a subtree whose root is level versionLVk.
For a given level versionLVk functionSuperLevels : LV →
2LV returns the set of all levels versions that are direct parents
of LVk, in hierarchy of dimension version, in a specified DW
version. DMV = {DMV

1 , . . . , DMV
n } denotes the set of all

multiversion dimensions.
Multiversion fact. A multiversion fact may consist of sev-
eral versions, each of which may be shared by multiple DW
versions. A multiversion fact is defined as a tripleFMV

i =
〈mvf_idi, mvf_namei, FVi〉, where: mvf_idi is a mul-
tiversion fact identifier,mvf_namei is a multiversion fact
name,FVi = {FV1, . . . , FVm} is the set of all versions of
a multiversion fact, which is the subset of a setFV of all
multiversion facts versions. A multiversion fact version is de-
fined as a pairFVj = 〈fv_idj ,V IDj〉, where: fv_idj is
an identifier of a fact version,V IDj ⊆ V ID is the set of
DW versions identifiers, in which a given fact version exists.
F MV = {FMV

1 , . . . , FMV
n } denotes the set of all multiver-

sion facts.

Set of attributes. A = {A1, A2, . . . , An} is the set of at-
tributes belonging to levels or facts. Each element of this set
is defined as a tripleAi = 〈a_idi, a_namei, a_typei〉 where:
a_idi is an attribute identifier,a_namei is an attribute name,
anda_typei is an attribute type. The model does not support
versioning attributes.
Attribute to level version assignment.FunctionAtrLevel :
A → LV defines the assignment of an attribute to a level ver-
sion in a given DW version.
Attribute to fact version assignment. FunctionAtrFact :
A → FV defines the assignment of an attribute to a fact ver-
sion in a given DW version.
Fact version to level version assignment. Function
FactLevel : FV → 2LV defines the assignment of a spec-
ified fact version to the set of levels versions in a given DW
version. For a given fact versionFVi ∈ FV , the function
returns the set of base levels versions within dimension hierar-
chies, connected to fact versionFVi.
Multiversion record. A multiversion record implements
an instance of a multiversion level or a record of a mul-
tiversion fact. A Multiversion record is defined as a pair
RMV

i = 〈mvr_idi, RVi〉, where: mvr_idi is a multiver-
sion record identifier,RVi = {RV1, . . . , RVn} is the set
of record versions that is a subset of setRV of all records
versions. A record version is defined as a tripleRVj =
〈rv_idj , rv_valuej , V IDj〉, where: rv_idj is a record ver-
sion identifier,rv_valuej ∈ V AL is the value of a record in
the setV AL of values of all multiversion records,V IDj ⊆
V ID is the set of DW version identifiers, in which a given
record version exists. For a given record version, function
RecV alue : RV → V AL returns its value in a specified
DW version. For a given record versionRVk being an instance
of level versionLVl, functionSuperInst : RV → 2RV re-
turns the set of record versions, each of which is the instance
of direct parent levels of levelLVl, to which instanceRVk

is classified in a specified DW version. For a given record
versionRVk being the instance of level versionLVl, func-
tion SubInst : RV → 2RV returns the set of records ver-
sions, being the instances of direct child levels of levelLVl,
which are classified to instanceRVk in a specified DW ver-
sion.RMV = {RMV

1 , . . . , RMV
n } denotes the set of all multi-

version records.
Record version to level version assignment. Function
RecLevel : RV → LV defines the assignment of a record
version to a level version in a specified DW version.
Record version to fact version assignment. Function
RecFact : RV → FV defines the assignment of a record
version to fact version in a specified DW version.

5.2. Multiversion data warehouse. Formally, a MVDW is
defined as follows:

MV DW = 〈dw_id, dw_name,DWV , N, CM〉 (1)

where:

– dw_id and dw_name represent MVDW identifier and
MVDW name, respectively;

54 Bull. Pol. Ac.: Tech. 54(1) 2006



Formal approach to modelling a multiversion data warehouse

– DWV is the set of data warehouse versions, each of which
consists of a schema version and an instance version;

– N is the set of parent-child relationships between DW ver-
sions;

– CM is the set of conversions methods, which accomplish
transformations between adjacent instance versions; conver-
sion methods are necessary for integrating results of queries
addressing several DW versions, cf. [32].

5.3. Data warehouse version.A data warehouse version
DWV i ∈ DWV is formally defined as follows:

DWVi = 〈dwv_idi, dwv_namei, DWSVi, DWIVi〉 (2)

where:

– dwv_idi anddwv_namei represent a DW version identifier
and a DW version name, respectively;

– DWSVi is a schema version;
– DWIVi is an instance version.

5.4. Schema version. A schema version, denoted as
DWSV i, i = 1, . . . , n, describes the structure of data in a
DW versionDWV i, within DW version validity period, cf.
Section 4. Its formal definition is as follows:

DWSVi = 〈 dwv_idi, DVi, LVi,FVi, Ai,

AtrLeveli, AtrFacti, FactLeveli〉 (3)

where:

– dwv_idi is an identifier of versionDWV i whose structure
is described by schema versionDWSVi;

– DVi ⊆ DV is the set of dimension versions which exist in
schema versionDWSV i;

– LVi ⊆ LV is the set of level versions, which exist in
schema versionDWSV i;

– FVi ⊆ FV is the set of fact versions, which exist in
schema versionDWSV i;

– Ai ⊆ A is the set of attributes belonging to level and fact
versions in schema versionDWSV i;

– functionAtrLeveli : Ai → LVi assigns an attribute to a
level version in schema versionDWSV i;

– functionAtrFacti : Ai → FVi assigns an attribute to fact
version in schema versionDWSV i;

– functionFactLeveli : FVi → 2LVi connects a fact version
to a level version in schema versionDWSV i.

5.5. Instance version. An instance version, denoted as
DWIV i, i = 1, . . . , n, represents the set of data consistent
with its schema versionDWSV i. The formal definition of an
instance version is as follows:

DWIVi = 〈dwv_idi,RVi, RecLeveli, RecFacti〉 (4)

– dwv_idi is the identifier of DW versionDWV i to which
instance versionDWIVi belongs;

– RVi ⊆ RV is the set of records versions, forming instance
versionDWIVi;

– functionRecLeveli : RVi → LVi assigns records versions
to levels versions in instance versionDWIVi;

– functionRecFacti : RVi → FVi assigns records versions
to facts versions in instance versionDWIVi.

6. MVDW operators

We distinguish two groups of operators that modify the struc-
ture of a data warehouse, namely:

– operators that have an impact on a DW schema, further
called schema change operators;

– operators that have an impact on the structure of a dimen-
sion instance, further called dimension instance structure
change operators.

All operators address a particular version of a data warehouse.
They are formally described in this section by: their meaning,
the set of input arguments, constraints that have to be fulfilled
before and after applying a given operator, the set of changes
to a DW schema version and its instance, as well as additional
comments.

6.1. Schema change operators.The following 15 operators
describe the evolution of a DW schema.

Creating a new dimension.

Meaning: The operator creates a new dimension in the schema
of a specified DW version; created dimension has no hi-
erarchy.

Input: DW versionDWVi; namedim_name of a new dimen-
sion.

Constraints:There is no dimension in the schema of DW ver-
sionDWVi having the same name asdim_name.

Output: DW versionDWV ′
i with the following changes:

Schema changes.A new multiversion dimensionDMV
new

with namedim_name is created. The dimension
has only one versionDVnew.

Instance changes.None, since the newly created dimen-
sion has no levels.

Comments:The operator creates a new dimension in a given
schema version; the dimension has no hierarchy hence
no instances and no connections to facts. Changes made
by the operator do not require adaptation of either DW
instance version or analytical queries. In a consequence,
there is no need to derive a new DW version before the
operator is applied.

Creating a new level.

Meaning: The operator creates a new level with a given set of
attributes in a specified schema version; the created level
does not belong to any dimensions hierarchy.

Input: DW versionDWVi, level namelev_name, the set of
attributesAnew for a newly created level.

Constraints:There is no level in a schema versionDWVi hav-
ing the same name aslev_name.

Output: DW versionDWV ′
i with the following changes:

Bull. Pol. Ac.: Tech. 54(1) 2006 55



B. Bębel, Z. Królikowski, and R. Wrembel

Schema changes.A new multiversion levelLMV
new with

namelev_name is created, the level has only one
versionLVnew; its structure is set up by the set
of attributesAnew; Anew is added to the setAi

of version attributes; the attributes fromAnew

are assigned to level versionLVnew by function
AtrLeveli.

Instance changes.None, since the newly created level
has no instances.

Comments:Since new level has no instances, changes made
by the operator, do not require adaptation either or an
instance version or analytical queries. In a consequence
there is no need to derive a new DW version before an
operator is applied.

Connecting a level into a dimension hierarchy.

Meaning: The operator connects a given level into a hierarchy
of a given dimension, in a specified DW version. The
level being connected can already be connected to other
hierarchies of the same dimension (the case of a dimen-
sion with multiple hierarchies).

Input: DW versionDWVi; versionDVk of a multiversion di-
mensionDMV

l where level versionLVj is to be con-
nected to, position of the level in the hierarchy is de-
scribed by two sets: the setLVtop ⊆ LVk of direct par-
ent levels ofLVj and the setLVbottom ⊆ LVk of direct
child levels ofLVj .

Constraints:None.
Output: DW versionDWV ′

i with the following changes:

Schema changes.Level LVj is added to the setLVk

of levels belonging to the hierarchy of dimension
versionDVk (unless levelLVj is already the part
of another hierarchy in dimension versionDVk).
A partial order�k over the set ofLVk is modi-
fied in the following way: level versionLVj be-
comes the child level of all levels from setLVtop

and becomes the parent level for all levels from set
LVbottom. If LVbottom = ∅ (i.e. levelLVj be-
comes a new bottom level) it is necessary to drop
an old assignment of a bottom level and to create an
assignment of levelLVj to facts; this assignment is
created by functionFactLeveli.

Instance changes.The described operator requires clas-
sification of all instances of level versionLVj to
some instances of levels from setLVtop unless
LVj becomes a new top level of a hierarchy; classi-
fication of all instances of levels from setLVbottom

to some instances of levelLVj unlessLVj becomes
a new bottom level of a hierarchy (in both cases, in-
stances that are to be classified should be specified
by MVDW administrator); fact records adaptation
to a changed dimension hierarchy.

Comments:Changes to a dimension structure done by the de-
scribed operator, imply changes to a version instance.
Adaptations of: (1) instances of a level being connected

to a hierarchy, (2) instances of levels which are already
in a hierarchy, and (3) records of fact tables may cause
some major changes in DW version instance, even po-
tential data loss. Analytical queries may also require
modifications. Moreover, the results of queries, obtained
from adapted data, may result in incorrect business deci-
sions. This leads us to the conclusion that the derivation
of a new DW version is required before applying the dis-
cussed operator.

Disconnecting a level from a dimension.

Meaning: The operator disconnects a given level from a hier-
archy of a given dimension, in a specified DW version.
If a level being disconnected belonged to one hierarchy,
the level becomes an isolated one.

Input: DW version DWVi; level versionLVj of a multi-
version levelLMV

m being disconnected from a hierar-
chy of versionDVk of a multiversion dimensionDMV

l ,
LVj ∈ LVk.

Constraints:If the level being disconnected is a base level in
a dimension hierarchy, it should not be associated with
any fact in its schema version.

Output: DW versionDWV ′
i with the following changes:

Schema changes.If level versionLVj is part of one hi-
erarchy of dimension versionDVk, then version
LVj is removed from the setLVk of level versions
in all hierarchies of dimension versionDVk; par-
tial order�k on the set of level versionsLVk is
modified, a new order describes dimension hierar-
chy in which all child levels ofLVj are connected
to some parent levels ofLVj (unlessLVj was a
base level in a hierarchy). IfLVj was a top level,
then all its child levels are connected to implicit
element ”All”.

Instance changes.If disconnected levelLVj was not a
base level, then all instances of child levels ofLVj

should be reclassified to instances ofLVj parent
levels (unlessLVj was a top level of a hierarchy);
fact records should also be adapted to a modified
dimension hierarchy.

Comments:Changes to a dimension structure done by the op-
erator imply the following changes to instances of di-
mension versionDVk: (1) reclassification of level in-
stances and (2) adaptation of fact data. These changes
may lead to data loss and incorrect results or interpreta-
tions of analytical queries. Therefore, a new DW version
should be derived before applying the described opera-
tor.

Removing a dimension.

Meaning: The operator removes a given dimension from a
schema of a specified DW version.

Input: DW versionDWVi, versionDVj of a multiversion di-
mensionDMV

k , which is being removed from a schema
of DWVi.

56 Bull. Pol. Ac.: Tech. 54(1) 2006



Formal approach to modelling a multiversion data warehouse

Constraints:No hierarchy in the dimension being removed.
Output: DW versionDWV ′

i with the following changes:

Schema changes.Removing versionDVj of multiver-
sion dimensionDMV

k from the setDVi of all di-
mensions.

Instance changes.None, since the dimension being re-
moved has no hierarchy, hence it has no data.

Comments:There is no need to derive a new DW version be-
fore applying the described operator since the dimension
does not have a hierarchy. Consequently, the dimension
has neither instances nor associations to fact tables. A
dimension removal does not influence either dimension
instances or fact records or user queries.

Removing a level.

Meaning: The operator removes a given level, that is discon-
nected from hierarchies of all dimensions, in a specified
DW version.

Input: DW versionDWVi; versionLVj ∈ LVi of multiver-
sion levelLMV

k , which is to be removed fromDWVi.
Constraints:Level versionLVj is not part of a hierarchy in

any dimensions inDWVi.
Output: DW versionDWV ′

i with the following changes:

Schema changes.Removing level versionLVj from the
setLVk of all versions of multiversion levelLMV

k ;
removing the assignments of attributes to levelLVj

by modifying functionAtrLeveli; removing all at-
tributes previously assigned to levelLVj from Ai

(the set of attributes).

Instance changes.Removing instances of level version
LVj by modifying functionRecLeveli.

Comments:There is no need to derive a new DW version be-
fore the described operator is applied. A level being
removed is not part of any dimension hierarchy. Con-
sequently, there is no association between a level and a
fact. A level removal does not influence either dimen-
sion instances or fact records or user queries.

Creating a new attribute for a level.

Meaning: The operator creates a new attribute in a schema of
a given level in a specified DW version.

Input: DW version DWVi; version LV j of a mul-
tiversion level LMV

m ; attribute Anew defined as
〈a_idnew, a_namenew, a_typenew〉 being created in the
schema of level versionLV j .

Constraints:There is no attribute in the schema of level
version LV j having the same name as attribute
a_namenew being created.

Output: DW versionDWV ′
i with the following changes:

Schema changes.Adding a new attributeAnew to the
set Ai of attributes; creating an assignment of
attributeAnew to level versionLV j by function
AtrLeveli.

Instance changes.Possible adaptation of instances of
level versionLVj , by assigning values (user de-
fined, default, derived) to a newly created attribute
for the instances of level versionLV j .

Comments:There is no need to adapt dimension instances af-
ter the operator has been applied to a schema version.
However, changes introduced by the operator can have
impact on results of analytical queries. For example, let
us assume that a new attribute was added to a level in
a hierarchy of a dimension. The dimension has already
assigned a non-empty fact table. Now, users can ana-
lyze fact data from the perspective of the newly added
attribute. The obtained results can be correct or not, de-
pending on the semantics of this attribute and the way it
was created, e.g. the attribute may not correctly describe
facts which existed before the attribute was added. To
avoid this dilemma it is safe to derive a new DW version
before applying the operator.

Removing an attribute from a level.

Meaning: The operator removes a given attribute from the set
of attributes of a given level, in a specified DW version.

Input: DW versionDWVi; versionLVj of multiversion level
LMV

m ; attributeAdel being removed from the set of at-
tributes of level versionLVj .

Constraints:None.
Output: DW versionDWV ′

i with the following changes:

Schema changes.Removing the assignment of an at-
tribute Adel to level versionLVj by modifying
functionAtrLeveli; removing attributeAdel from
the setAi of attributes.

Instance changes.The modification of values of records
versions assigned to level versionLVj ; the modi-
fication consists in deleting values of a removed
attribute.

Comments:It is necessary to derive a new DW version before
applying the operator. Removing a level attribute causes
level data loss. Moreover, analytical queries have to be
reformulated.

Changing the domain of level attribute or fact attribute.

Meaning: The operator changes the domain of a given at-
tribute in a specified DW version. The attribute is part of
a level version or fact version.

Input: DW versionDWVi; attributeAj ∈ Ai whose domain
is being modified to a new one -a_typenew.

Constraints:None.
Output: DW versionDWV ′

i with the following changes:

Schema changes.Attribute A′j whose domain has been
modified to a new domaina_typenew.

Instance changes.Adaptation of record versions; the
form of adaptation depends on the form of an at-
tribute domain change.

Bull. Pol. Ac.: Tech. 54(1) 2006 57



B. Bębel, Z. Królikowski, and R. Wrembel

Comments:A decision whether to derive a new DW version
before the operator is applied depends on a character of
a domain modification. If a domain modification does
not require an attribute values adaptation (for example:
maximal attribute length is modified from 15 to 20 char-
acters) and it does not cause data loss, the derivation of a
new DW version is not necessary. In other cases, a DW
administrator may decide to derive a new DW version
and apply the operator there, in order to prevent from
data loss.

Creating a new fact.

Meaning: The operator creates a new fact with its attributes;
there is no association between a new fact and any di-
mension levels.

Input: DW version DWVi; fact namef_name; the set
Anew = {A1, . . . , Ak} of attributes of a new fact.

Constraints:No fact exists in schema versionDWVi having
the same name asf_name.

Output: DW versionDWV ′
i with the following changes:

Schema changes.Creating new multiversion factFMV
new

and adding it to the setF MV of multiversion facts;
the newly created multiversion fact has only one
versionFVnew, which is the new element of set
FVi of fact versions inDWV ′

i ; adding the set
Anew of new fact attributes to the setAi of at-
tributes in schema versionDWV ′

i ; creating as-
signments between new fact versionFVnew and
attributes from setAnew, by modifying function
AtrFacti.

Instance changes.None, new fact has no instances.

Comments:It is not necessary to derive a new DW version
before the operator is applied. Since a new fact has no
instances and it is not associated with any dimension. In
a consequence, there is no need to perform any adap-
tation. The modification does not influence analytical
queries either.

Creating a new attribute for a fact.

Meaning: The operator creates a new measure attribute for a
given fact, in a specified DW version.

Input: DW version DWVi; version FV j of a multiver-
sion fact FMV

m ; attribute Anew defined as a triple
〈a_idnew, a_namenew, a_typenew〉, that is being added
to the set of attributes of fact versionFV j .

Constraints:No attribute exists in the set of attributes of fact
versionFV j having the same name asa_namenew.

Output: DW versionDWV ′
i with the following changes:

Schema changes.Adding attributeAnew to the setAi

of attributes of DW versionDWV ′
i ; assigning at-

tribute Anew to fact versionFVj by modifying
functionAtrFacti.

Instance changes.Possible fact versionFVj data adap-
tation consisting in assigning values (user defined,
default, derived) to attributeAnew.

Comments:Adding a new measure to a fact may cause in-
correct results of analytical queries. As an example, let
us consider fact table Sales storing product sales data in
the first and second quarter of 2004. At the begining of
a third quarter of 2004 an attribute ClaimsNumber has
been added to the schema of fact table Sales. The reg-
istration of customers claims starts from a third quarter
of 2004. All values of an attribute ClaimsNumber in fact
records, which describe sales in first and second quarters
of 2004 were set to 0. Let’s assume that a user analyzes
the total number of claims in months of 2004. In the pe-
riod from January until June the number of claims equals
to 0. Whereas in July, August 2004 etc. the number of
claims appears as greater than 0. In a consequence, a
user may conclude that the quality of products sold in the
second half of 2004 became worse than products sold in
the first half of 2004. The conclusion is evidently false.
This example motivates a need for deriving a new DW
version before the discussed operator is applied.

Removing an attribute from a fact table.

Meaning: The operator removes a measure attribute from a
given fact, in a specified DW version.

Input: DW versionDWVi; versionFV j of multiversion fact
FMV

m ; attributeAdel being removed from the set of at-
tributes of fact versionFV j .

Constraints:None.
Output: DW versionDWV ′

i with the following changes:

Schema changes.Removing an association between at-
tribute Adel and fact versionFV j by modifying
functionAtrFacti; removing attributeAdel from
the setAi of attributes inDWV ′

i .

Instance changes.Adaptation of fact instances, as-
signed to fact versionFV j , by deleting values of
the removed attribute.

Comments:Applying the operator to a schema version causes
data loss and it requires reformulation of analytical
queries. In a consequence, the operator should be ap-
plied to a new DW version.

Creating an association between a fact and a level.

Meaning: The operator creates an association between a given
version of a fact and a given version of a base level in
dimension hierarchy, in a specified DW version.

Input: DW versionDWVi, versionFVj of multiversion fact
FMV

k , versionLVl of multiversion levelLMV
m ; LVl is a

base level in the hierarchy of versionDVn of multiver-
sion dimensionDMV

o .
Constraints:LVl is a base level in a hierarchy of dimension

versionDVn.
Output: DW versionDWV ′

i with the following changes:

Schema changes.Creating an association between fact
versionFVj and level versionLVl, by modifying
functionFactLeveli.

58 Bull. Pol. Ac.: Tech. 54(1) 2006



Formal approach to modelling a multiversion data warehouse

Instance changes.Possible adaptation of fact instances
assigned to fact versionFVj .

Comments:There are two following cases concerning the op-
erator: (1) when a fact table is empty, no adaptation of
its instances is required; (2) when a fact table stores data,
it is necessary to assign each fact record to its level in-
stance. Sometimes it requires decreasing the level of
fact data aggregation. If it is not possible to assign a
fact record to a level instance (e.g. a level has no in-
stances or there is no proper level instance to assign to),
fact records have to be removed or assigned to a spe-
cially created level instance. Since data loss during the
process of adaption may happen and the results of user
analytical queries can be influenced, a new DW version
has to be created before applying the operator.

Removing an association between a fact and a level.

Meaning: The operator removes an association between a
given fact and a given level in a specified DW version.

Input: DW versionDWVi; versionFVj of a multiversion fact
FMV

k ; versionLVl of a multiversion levelLMV
m , which

is a base level in a hierarchy of versionDVn of multi-
version dimensionDMV

o .
Constraints:None.
Output: DW versionDWV ′

i with the following changes:

Schema changes.Removing an association between
fact versionFVj and level versionLVl by modi-
fying functionFactLeveli.

Instance changes.Possible adaption of fact instances
assigned to fact versionFVj .

Comments:Removing an association between a fact and a
level requires only a fact table records adaptation (if
a fact table is not empty). One of possible adapta-
tions is increasing a level of fact data aggregation. DW
users also lose one of the perspectives for data analy-
sis. These reasons motivate a necessity for a new DW
version derivation before an operator is applied.

Removing a fact.

Meaning: The operator removes a given fact from a specified
DW version.

Input: DW versionDWVi; versionFVj of multiversion fact
FMV

k .
Constraints:VersionFVj being removed is not connected to

any version of a multiversion levels inDWVi.
Output: DW versionDWV ′

i with the following changes:

Schema changes.Removing versionFVj from the set
FVk of versions of multiversion factFMV

k ; re-
moving assignments between fact versionFVj and
its attributes, by modifying functionAtrFacti; re-
moving attributes previously assigned to fact ver-
sionFVj , from the setAi of attributes inDWV ′

i .

Instance changes.Removing assignments between fact
versionFVj and its instances, by modifying func-
tion RecFacti; removing fact instances ofFVj .

Comments:It is not necessary to derive a new DW version
before the operator is applied since a fact being removed
was previously disconnected from all levels.

6.2. Dimension instance structure change operators.The
following 5 operators describe the evolution of dimensions in-
stances.

Inserting a new level instance.

Meaning: The operator inserts a new instance to the set of in-
stances of a given level, in a specified DW version.

Input: DW versionDWVi; versionLVj of multiversion level
LMV

m ; valuerv_valuenew of new levelLVj instance.
Constraints:If a level an instance is inserted into, is not a top

level in a dimension hierarchy, then each parent level of
LVj should have an instance, to which an instance of
LVj can be classified.

Output: DW versionDWV ′
i with the following changes:

Schema changes.None.

Instance changes.Inserting new multiversion record
RMV

new into the setRMV of multiversion records;
the newly created record has one versionRVnew,
added to the setRVi of record versions, in a DW
version DWV ′

i ; record valuerv_valuenew has
been added to the setV AL of record values; creat-
ing an assignment between record versionRVnew

and a level versionLVj , by modifying function
RecLeveli. If LVj is not a top level version in
a dimension hierarchy, then a new instance should
be classified to explicitly chosen instances of par-
ent levels ofLVj . There is no need to adapt fact
instances.

Comments:Although there is no need to adapt either level or
fact instances, it is necessary to derive a new DW ver-
sion before applying the operator, as a new level instance
can change the results of analytical queries. In a conse-
quence, the obtained results can be wrongly interpreted
if users do not have a proper information on changes
made to dimension instances.

Deleting a level instance.

Meaning: The operator deletes a given instance from the set
of instances of a given level, in a specified DW version.

Input: DW version DWVi; record version RVdel

being deleted; RVdel is defined as a triple
〈rv_iddel, rv_valuedel, V IDdel〉, which implements
the instance of versionLVk of a multiversion levelLMV

m .
Constraints:None.
Output: DW versionDWV ′

i with the following changes:

Schema changes.None.

Instance changes.Removing an assignment between
record versionRVdel and level versionLVk, by
modifying function RecLeveli; deleting record
version RVdel from the setRV of record ver-
sions, in DW versionDWV ′

i ; deleting record

Bull. Pol. Ac.: Tech. 54(1) 2006 59



B. Bębel, Z. Królikowski, and R. Wrembel

rv_valuedel from the setV AL of records; the fol-
lowing adaptations should take place: (1) instances
of child levels ofLVk, which were classified to
a deleted instance, should be reclassified to other
instances of levelLVk or should be deleted; (2)
fact instances, which are connected, either directly
(whenLVk is a base level) or indirectly (whenLVk

is a top level or a level inside a hierarchy), should
be connected to other instances of levels or should
deleted.

Comments:Deleting a level instance can cause massive adap-
tations of dimension instances as well as fact instances.
Such adaptations can lead to data loss and also can
change results of analytical queries. For these reasons, a
new DW version should be derived before applying the
operator.

Reclassifying a level instance.

Meaning: The operator changes the parent of a given child
level instance into another parent level instance. Both
parent instances of an instance being reclassified (i.e. the
one before reclassification and the one after reclassifica-
tion) are the instances of the same parent level.

Input: DW versionDWVi; record versionRVj (the instance
of level versionLVk belonging to multiversion level
LMV

l ); RVj is classified to a record versionRVold (the
instance of level versionLVm); record versionRVnew

(the instance of level versionLVm); instanceRVnew will
be the new parent instance of instanceRVj ; level version
LVm is the parent ofLVk.

Constraints:Value rv_valuej of record versionRVj should
allow its reclassification to record versionRVnew.

Output: DW versionDWV ′
i with the following changes:

Schema changes.None.

Instance changes.Modification of record version value
rv_valuej , which classifies record versionRVj to
record versionRVnew.

Comments:Instance changes caused by applying the de-
scribed operator do not lead to any data loss (neither di-
mension or fact instances). However, they may change
the results of analytical queries. If users are not provided
with an information on changes in the structure of a di-
mension instance then interpretations of obtained query
results may be wrong. For these reasons, a new DW ver-
sion should be derived before applying the operator.

Merging n instances of a level into a new instance.

Meaning: The operator merges n instances{RV1, . . . , RVn}
of a given levelLVj into the new instanceRVnew of
the same level. LetRVparent denote the parent instance
of {RV1, . . . , RVn}. If LVj is not a top level, then:
(1) {RV1, . . . , RVn} have to be classified to the same
instance of their parent level, i.e.RVparent, and (2)
RVnew will be classified also toRVparent.

Input: DW version DWVi; the set RVmerge =
{RV1, . . . , RVn} of record versions, i.e. the instances of
level versionLVj , being merged; the instances are clas-
sified to a record versionRVp, i.e. the instance of level
versionLVo; LVo is the parent level of level version
LVj ; value rv_valuenew of the new instance of level
LVj (an instance, to which instances from setRVmerge

will be merged).
Constraints:If merged instances are not the instances of a top

level, then they have to be classified to the same parent
instance. Valuerv_valuenew of a record, which im-
plements a level instance after merging, should allow
its classification to instanceRVparent. If merged in-
stances are not the instances of a base level, then values
of their child instances should allow their classification
to a new instance (the one whose value is represented by
rv_valuenew).

Output: DW versionDWV ′
i with the following changes:

Schema changes.None.

Instance changes.Creating new multiversion record
RMV

new in the setRMV of multiversion records.
A new record has one versionRVnew, which is
the element of the setRVi of record versions in
DWIV ′

i . Record valuerv_valuenew is added to
the setV AL of record values inDWIV ′

i . Modi-
fication of functionRecLeveli, which: (1) creates
an assignment of record versionRVnew to level
versionLVj , and (2) deletes the assignments of
record versions in setRVmerge to level version
LVj . Classification of the instances ofLVj (pre-
viously classified to instances from setRVmerge)
to a new instance, implemented by record version
RVnew. Removing from setRV elements of set
RVmerge. Removing values of merged instances,
rv_valuek, k = 1, . . . , n, from setV AL. If level
versionLVj is a bottom level of dimension hier-
archy, it is necessary to adapt fact data, connected
to the instances being merged. The form of the
adaptation can be either (1) reconnecting fact data
to instanceRVnew after the merge operation or
(2) deleting fact data, connected to the merged in-
stances (instances from setRVmerge).

Comments:The described operator does not require adapta-
tion of dimension instances, however, in some cases, its
application can lead to fact table data adaptation. This
adaptation can cause data loss. In all cases, applying
the operator changes the results of analytical queries. If
users are not provided with an information on changes
in the structure of a dimension instance then interpreta-
tions of obtained query results may be wrong. For these
reasons, a new DW version should be derived before ap-
plying the operator.

Splitting a level instance into n new instances.

Meaning: The operator splits a given level instanceRVold into
n new instances{RV1, . . . , RVn} of the same levelLVj ,

60 Bull. Pol. Ac.: Tech. 54(1) 2006



Formal approach to modelling a multiversion data warehouse

in a specified DW version. LetRVparent denote the par-
ent instance ofRVold. If RVold is not an instance of a
top level, then{RV1, . . . , RVn} have to be classified to
RVparent. Instances of child levels, which were previ-
ously classified toRVold, will be classified to one of the
instances{RV1, . . . , RVn}, chosen by a DW adminis-
trator.

Input: DW versionDWVi; record versionRVold, i.e. the in-
stance of level versionLVj ; record versionRVold is clas-
sified to a record versionRVparent, i.e. the instance of
level versionLVo; LVo is the parent level ofLVj ; in-
stanceRVold will be split into{RV1, . . . , RVn}, each of
which will be implemented by records whose values are
given in setV ALnew = {rv_value1, . . . , rv_valuen};
elementrv_valuec ∈ V ALnew is the value of a record,
which will implement an instance to which all instances,
previously classified toRVold, will be reclassified.

Constraints:None.
Output: DW versionDWV ′

i with the following changes:

Schema changes.None.

Instance changes.Creating n multiversion records
{RMV

1 , . . . , RMV
n } in set RMV . Every record

{RMV
1 , . . . , RMV

n } has only one version. The
versions form setRVnew = {RV1, . . . , RVn},
which is added to the setRVi of record versions in
DWV ′

i . Values of records, stored in setV ALnew,
are added to the setV AL of record values. Modi-
fication of functionRecLeveli, which : (1) assigns
record versions from setRVnew to level version
LVj as its new instances, and (2) removes the as-
signment of record versionRVk from LVj . The
classification of the instances of child levelsLVj

(previously classified to instanceRVk) to instance
RVc ∈ RVnew. Removing record versionRVk

from the setRV of record versions. Removing
value rv_valuek of RVk from the setV AL of
record values. IfLVj is a bottom level in dimen-
sion hierarchy, it is necessary to adapt fact data
connected to instanceRVk being split. The form
of an adaptation can be either (1) reconnecting fact
data to the instances after the split operation or (2)
deleting fact data, previously connected to a split
instance.

Comments:The split operator performs an operation opposite
to the merge operator, but the consequences of both op-
erations are the same. Consequently, the application of
the split operator should be performed in a new DW ver-
sion.

7. Summary

Handling evolution of data warehouses is currently becoming
an important research field [34,35]. On the one hand, research
issues in this field are mainly focusing on temporal extensions,
that limit their use. On the other hand, commercial data ware-
house systems (e.g. Oracle10g, Sybase IQ, MS SQLServer,

IBM DB2) are not able to store and manage more than one
DW state at the same time.

Our approach to this problem is based on a multiversion
data warehouse that is composed of the set of its versions.
A DW version represents the structure and content of a DW
at a certain time period. A DW version can be used for in-
corporating structural changes in external data sources as well
as changes to a DW schema resulting from changing user re-
quirements. Moreover, DW versions can be applied to creating
alternative business scenarios and predicting future. DW ver-
sions can also store historical data from certain time periods,
and in this case they offer the functionality of temporal data
warehouses.

In this paper we presented a formal model of a mutliv-
ersion data warehouse. We identified and analyzed possible
schema changes and dimension instance changes applicable to
a MVDW. Every such a change was in depth analyzed with re-
spect to: its meaning, input and output parameters, the impact
on fact and level instances. To the best of our knowledge, it
is the first formal approach to describing the evolution of data
warehouses. The discussed model was the basis for developing
a prototype MVDW system, cf. [32].

REFERENCES

[1] J. Roddick, “A survey of schema versioning issues for database
systems”,Information and Software Technology37 (7), 383–
393 (1996).

[2] E. Rundensteiner, A. Koeller, and X. Zhang, “Maintaining data
warehouses over changing information sources”,Communica-
tions of the ACM43 (6), 57–62 (2000).

[3] A. Gupta and I.S. Mumick (eds.),Materialized Views: Tech-
niques, Implementations, and Applications, The MIT Press,
ISBN 0-262-57122-6, 1999.

[4] P. Chamoni and S. Stock, “Temporal structures in data ware-
housing”,Proc. DaWaK99, 353–358 (1999).

[5] M. Blaschka, C. Sapia, and G. Hofling, “On schema evolution
in multidimensional databases”,Proc. DaWak99 Conference,
153–164 (1999).

[6] C.E. Kaas, T.B. Pedersen, and B.D. Rasmussen, “Schema evo-
lution for stars and snowflakes”,Proc. Intern. Conf. on Enter-
prise Information Systems (ICEIS2004), 425–433 (2004).

[7] J. Eder and C. Koncilia, “Changes of dimension data in tem-
poral data warehouses”,Proc. DaWaK Conference, 284–293
(2001).

[8] J. Eder, C. Koncilia, and T. Morzy, “The COMET metamodel
for temporal data warehouses”,Proc. 14th CAISE02 Confer-
ence, 83–99 (2002).

[9] A.O. Mendelzon and A.A. Vaisman, “Temporal queries in
OLAP”, Proc. VLDB Conference, 242–253 (2000).

[10] B. Bębel, J. Eder, C. Koncilia, T. Morzy, and R. Wrembel,
“Creation and management of versions in multiversion data
warehouse”,Proc. ACM Symposium on Applied Computing
(SAC’2004), 717–723 (2004).

[11] M. Gyssens and L.V.S. Lakshmanan, “A foundation for multi-
dimensional databases”,Proc. 23rd VLDB Conference, 106–
115 (1997).

[12] M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis,Funda-
mentals of Data Warehouses, Springer-Verlag, 2003.

[13] C. Letz, E.T. Henn, and G. Vossen, “Consistency in data ware-

Bull. Pol. Ac.: Tech. 54(1) 2006 61



B. Bębel, Z. Królikowski, and R. Wrembel

house dimensions”,Proc. Intern. Database Engineering and
Applications Symposium (IDEAS’02), 224–232 (2002).

[14] R. Agrawal, S. Buroff, N. Gehani, and D. Shasha, “Object ver-
sioning in Ode”,Proc. ICDE Conference, 446–455 (1991).

[15] M. Ahmed-Nacer and J. Estublier, “Schema evolution in soft-
ware engineering”,Databases – A new Approach in ADELE en-
vironment, Computers and Artificial Intelligence19, 183–203
(2000).

[16] W. Cellary and G. Jomier, “Consistency of versions in object-
oriented databases”,Proc. VLDB Conference, 432–441 (1990).

[17] S. Gançarski and G. Jomier, “A framework for programming
multiversion databases”,Data Knowledge Engineering36(1),
29–53 (2001).

[18] W. Kim and H. Chou, “Versions of schema for object-oriented
databases”,Proc. VLDB Conference, 148–159 (1988).

[19] C.A. Hurtado, A.O. Mendelzon, and A.A. Vaisman, “Maintain-
ing data cubes under dimension updates”,Proc. ICDE Confer-
ence, 346–355 (1999).

[20] C.A. Hurtado, A.O. Mendelzon, and A.A Vaisman, “Updating
OLAP dimensions”,Proc. DOLAP Conference, 60–66 (1999).

[21] A. Koeller, E. Rundensteiner, and N. Hachem, “Integrating the
rewriting and ranking phases of view synchronization”,Proc.
DOLAP98 Workshop, 60–65 (1998).

[22] A.A. Vaisman, A.O. Mendelzon, W. Ruaro, and S.G. Cymer-
man, “Supporting dimension updates in an OLAP server”,Proc.
CAISE02 Conference, 67–82 (2002).

[23] M. Body, M. Miquel, Y. Bédard, and A. Tchounikine, “A mul-
tidimensional and multiversion structure for OLAP applica-
tions”, Proc. DOLAP’2002 Conf., 1–6 (2002).

[24] M. Body, M. Miquel, Y. Bédard, and A. Tchounikine, “Han-
dling evolutions in multidimensional structures”,Proc. ICDE

2003 Conf., 581 (2003).
[25] J. Chen, S. Chen, and E. Rundensteiner, “A transactional model

for data warehouse maintenance”,Proc. ER, 247–262 (2002).
[26] H.G. Kang and C.W. Chung, “Exploiting versions for on–line

data warehouse maintenance in MOLAP servers”,Proc. VLDB
Conference, 742–753 (2002).

[27] S. Kulkarni and M. Mohania, “Concurrent maintenance of
views using multiple versions”,Proc. Intern. Database Engi-
neering and Application Symposium, 254–259 (1999).

[28] L. Schlesinger, A. Bauer, W. Lehner, G. Ediberidze, and M.
Gutzman, “Efficienlty synchronizing multidimensional schema
data”,Proc. DOLAP, Atlanta, 69–76 (2001).

[29] A. Balmin, T. Papadimitriou, and Y. Papakonstanitnou, “Hypo-
thetical queries in an OLAP environment”,Proc. VLDB Conf.,
220–231 (2000).

[30] D. Quass and J. Widom, “On-line warehouse view mainte-
nance”,Proc. SIGMOD Conference, 393–404 (1997).

[31] M. Golfarelli, J. Lechtenbörger, S. Rizzi, and G. Vossen,
“Schema versioning in data warehouses”,ER Workshops 2004
LNCS 3289, 415–428 (2004).

[32] T. Morzy and R. Wrembel, “On querying versions of multiver-
sion data warehouse”,Proc. 7th ACM Int. Workshop on Data
Warehousing and OLAP (DOLAP 2004), Washington, 92–101
(2004).

[33] J. Lechtenbörger and G. Vossen, “Multidimensional normal
forms for data warehouse design",Information Systems28(5),
415–434 (2003).

[34] S. Rizzi, “Open problems in data warehousing: 8 years later”,
The Keynote Speech at the DMDW Conference, Berlin, 2003.

[35] The panel discussion at theDOLAP Conference, Washington,
2004.

62 Bull. Pol. Ac.: Tech. 54(1) 2006


