
Scientific Programming 14 (2006) 27–40 27
IOS Press

Formal constraints on memory management

for composite overloaded operations

Damian W.I. Rousona, Xiaofeng Xub and Karla Morrisc

aUS Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA

Tel.: +1 202 767 6965; Fax: +1 815 572 8203; E-mail: damian.rouson@nrl.navy.mil
bDepartment of Fire Protection Engineering, University of Maryland, College Park, MD 20742, USA

Tel.: +1 301 405 3990; Fax: +1 301 405 9383; E-mail: xxf@umd.edu
cMechanical Engineering Dept., The Graduate Center of The City University of New York, Fifth Ave. at 34 th St.

New York, NY, USA

Tel.: +1 212 650 7134; Fax: +1 212 650 8314

Abstract The memory management rules for abstract data type calculus presented by Rouson, Morris & Xu [15] are recast as

formal statements in the Object Constraint Language (OCL) and applied to the design of a thermal energy equation solver. One

set of constraints eliminates memory leaks observed in composite overloaded expressions with three current Fortran 95/2003

compilers. A second set of constraints ensures economical memory recycling. The constraints are preconditions, postconditions

and invariants on overloaded operators and the objects they receive and return. It is demonstrated that systematic run-time

assertion checking inspired by the formal constraints facilitated the pinpointing of an exceptionally hard-to-reproduce compiler

bug. It is further demonstrated that the interplay between OCL’s modeling capabilities and Fortran’s programming capabilities

led to a conceptual breakthrough that greatly improved the readability of our code by facilitating operator overloading. The

advantages and disadvantages of our memory management rules are discussed in light of other published solutions [11,19].

Finally, it is demonstrated that the run-time assertion checking has a negligible impact on performance.

1. Introduction

Formal methods form an important branch of software engineering that has apparently been applied to the design

of only a small percentage of scientific simulation programs [3,8]. Two pillars of formalization are specification

and verification – that is specifying mathematically what a program must do and verifying the correctness of an

algorithm with respect to the specification. The numerical aspects of scientific programming are already formal.

The mathematical equations one wishes to solve in a given scientific simulation provide a formal specification, while

a proof of numerical convergence provides a formal verification. Hence, formal methods developers often cite a

motivation of seeking correctness standards for non-scientific codes as rigorous as those for scientific codes [13].

This ignores, however, the non-numerical aspects of scientific programs that could benefit from greater rigor. One

such aspect is memory management. The current paper specifies formal constraints on memory allocations in a

Fortran 95/2003 program for simulating thermal conduction and convection.

There have been longstanding calls for increased use of formal methods in scientific programming to improve

reliability. Nearly a decade ago, Stevenson proclaimed a “crying need for highly reliable system simulation

methodology, far beyond what we have now,” He cited formal methods amongst the strategies that might improve

the situation [18]. Part of his basis was Hatton’s measurement of an average of 10 statically detectable serious faults

ISSN 1058-9244/06/$17.00 2006 – IOS Press and the authors. All rights reserved

28 D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations

per 1,000 lines amongst millions of lines of commercially released scientific C and Fortran 77 code [9]. Hatton

defined a fault as “a misuse of the language which will very likely fail in some context.” Examples include interface

inconsistencies and using un-initialized variables. Hatton suggested that formal methods reduce defect density by a

factor of three (cited in [18]).

Pace [14] expressed considerable pessimism about the prospects for the adoption of formal methods in scientific

simulation because of the requisite mathematical training, which often includes set theory and a predicate calculus.

A good candidate for adoption must balance such rigor with ease of use. The Object Constraint Language (OCL)

strikes such a balance by facilitating the expression of formal statements about software models without the use of

mathematical symbols known only to formal methods specialists. A primary requirement stated by OCL’s designers

is that OCL “must be understood by people who are not mathematicians or computer scientists” [21].

To attract scientific programmers, any software development strategy must address performance. Fortunately,

program specification and verification are part of the software design rather than the implementation. Thus, they

need not impact run-time performance. However, run-time checking of assertions, a third pillar of formal methods, is

part of the implementation [5]. Nonetheless, when the assertions are simple Boolean expressions, they often occupy

a negligible fraction of the run time compared to the long loops over millions of floating point calculations typical

of scientific software.

A final factor influencing adoption of formal methods is the lack of a common approach for describing the structure

of traditional scientific codes beyond flow charts. OCL’s incorporation into the recent versions of the Unified

Modeling Language (UML) [21], a graphical standard for describing software structure and behavior, suggests

that newcomers must simultaneously leap two hurdles: learning OCL and learning UML. Fortunately, increasing

interest in object-oriented scientific programming has led to more frequent scientific program structural descriptions

resembling UML class models [1,2]. Class models describe object interfaces and relationships between classes.

Object interfaces describe object behavior (procedures) and state (data).

The coupling of OCL and UML class models represents a subtle yet important shift away from the traditional

emphases of scientific programming. Traditional approaches develop mathematical abstractions for the physics and

the numerics but not the software. For example, continuum mechanics is an abstraction of condensed matter in that

it retains only the level of detail required to model macroscopic phenomena. Numerical approximations represent

an abstraction of the governing continuum equations in that they retain only the number of discrete values required

to obtain a solution within a given tolerance. Likewise, UML class models are software abstractions that retain only

the features needed to describe object interfaces and their interrelationships. OCL facilitates describing the resulting

software model formally.

The goals of this paper are twofold:

1. to demonstrate how exposure to formal methods benefited us greatly by inspiring a systematic approach to

run-time assertion checking and

2. to demonstrate an increase in code readability achieved because OCL forced us to think abstractly about an

otherwise language-specific construct: pointers.

Before returning to these themes in Sections 3 and 4 of this paper, Section 2 presents a UML class model for

simulating thermal conduction and convection. Section 2 also presents a Fortran 95/2003 implementation. Section 3

specifies a set of OCL constraints intended to prevent memory leaks and reduce the code’s dynamic memory

requirements. Section 4 discusses limitations of our approach and describes our run-time assertions and performance

results. Section 5 summarizes our conclusions.

2. Case study: a thermal conduction and convection solver

2.1. Problem statement

OCL constraints are meaningful only in the context of an object-oriented class model [21]. Figure 1 presents a

UML class model for a scalar advection/diffusion solver. The random molecular diffusion and organized transport

(advection) of scalar quantities is of broad scientific interest. Applications range from modeling combustion to

D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations 29

 1
 1

 1
1

 1

1

3

 1

Mixture

+ d_dt(Mixture) : Mixture

- Scalar : pointer

- Fluid : pointer

- temporary : Boolean

Grid

+ nodes_of_Grid(Grid) : Array<real> (N)

- N : integer

- x : Array< >(N)

Fluid

+ d_dt(Fluid): Fluid

- velocity : Array<Field>(3)

- temporary : Boolean

Field

Integrand

+ d_dx(Field,integer) : Field

+ operator(+)(Field,Field) : Field

+ assignment(=)(Field,Field)

- N : integer

- fourier : Array<complex>(N/2,N,N)

- physical : Array<real>(N,N,N)

- mesh : Grid

- temporary : Boolean

- temporary : Boolean

- Mixture : pointer

- TP, TPP : Integrand

- temporary : Boolean

+ RK3 Integrate(Integrand) : Integrand

Scalar

- scalar_field : Field

- temporary : Boolean

+ d_dt(Scalar): Scalar

Inheritance

Composition

Aggregation

Associations

real

Fig. 1. Navier-Stokes fluid and scalar advection/diffusion class model (numbers near associations indicate the number of instantions present on

either side of the association).

tracking atmospheric pollutants. This paper examines a case where the scalar is temperature and the resulting scalar

advection and diffusion are thermal convection and conduction, respectively.

Figure 1 depicts three types of relationships between classes: inheritance, composition and aggregation. As

defined by Decyk, Norton and Szymanksi [6,7], inheritance relationships are one-to-one associations referred to as

“is a” relationships. Composition represents a “contains a” relationship wherein the contained object survives if the

containing object ceases to exist. Aggregation represents a “has a” relationship wherein each instance of a class

includes one or more instances of another class that does not survive if the including object ceases to exist. Thus,

Fig. 1 reads as follows: an Integrand contains a Mixture that contains a Fluid and a Scalar; whereas a Fluid has

three Fields (velocity components), a Scalar is a Field, and a Field is a Grid with an associated set of values. The

Integrand uses Mixture time derivatives to integrate the Mixture forward in time. The Mixture time derivative is

the vector containing its component Scalar and Fluid time derivatives. The Fluid time derivative is calculated from

the Navier-Stokes equations as described elsewhere [17]. The Scalar time derivative is calculated from the thermal

30 D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations

assignment(=)(dT_dt ,)

operator(-)(,)

 operator(+)(,) operator(*)(1/alpha ,)

 operator(+)(,)

 operator(*)(u,) operator(+)(,)

d2_dx2(T,1)

 d_dx(T, 1) operator(*)(v,) operator(*)(w,) operator(+)(,)

 d2_dx2(T, 3) d_dx(T, 2) d_dx(T, 3) d2_dx2(T, 2)

dT_dt = (1/alpha)*(d2_dx2(T,1) + d2_dx2(T,2) + d2_dx2(T,3)) &

 -(u*d_dx(T,1))+ v*d_dx(T,2))+ w*d_dx(T,3))

Fig. 2. Source code (below) and call tree (above) resulting from evaluating the right-hand side of the equation for thermal conduction and

convection (Eq. (1)).

conduction/convection equation described below. The Grid holds mesh positions and connectivity. The Mixture

mediates information exchange between the Scalar and Fluid to avoid the circular reference that would result from

making the Scalar and Fluid aware of each other.

A scalar temperature field, T (x, y, z, t), in a homogeneous fluid medium satisfies the following advection/diffusion

relation, also referred to as the “energy equation”:

∂T

∂t
=

1

α

(

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)

−

(

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)

(1)

where u = (u, v, w)T is the Fluid velocity field and α is the thermal diffusivity. The first parenthetical terms on the

right-hand side (RHS) of Eq. (1) model thermal diffusion, which is energy transport by random molecular motions.

The second parenthetical terms model thermal advection, or “convection”, which is energy transport by organized

motions (fluid flow). The operators required to evaluate the RHS of Eq. (1) include the arithmetic operators ×,

+, and −, the differential operators ∂/∂x, ∂/∂y, and ∂/∂z and combinations thereof. Figure 2 shows the Fortran

95/2003 source code and resulting call tree for evaluating the RHS of Eq. (1).

We recently published informal memory management rules for using the Integrand class to integrate the time

derivative on the left-hand side of evolutions equations such as Eq. (1) [15]. (A specification in any natural language

such as English is inherently informal due to the ambiguities associated with such languages.) In the current paper,

we turn our attention to evaluating the RHS of Eq. (1). The size of the 3D grids on which the spatial derivatives of T
are needed implies the state vectors occupy much more memory than did the state vectors considered in our previous

papers [15,16]. Those papers treated very different objects: one-dimensional quantum vortices and zero-dimensional

droplets (point masses). The increased memory requirements of 3D fields motivate the current paper.

Each procedure call in Fig. 2 produces a Field result that is no longer needed once the operator of lower precedence

(higher on the call tree) completes. Thus, Fig. 2 represents 15 intermediate instantiations. Each intermediate result

is an instance of the Scalar class containing its own Field representation. Simulating turbulent flows at laboratory

conditions requires discrete fields with roughly 5123 grid points [4]. With 4-byte precision per value, each Field

instance occupies 0.5 gigabytes. If compilers do not deallocate the intermediate results, the burden falls on the

D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations 31

+ size(Array<type>) : integer

+ shape(Array<type>) : Array<type>(dimension)

+ allocated(Array<type>) : Boolean

+ dimension : integer

Array<type>

Fig. 3. Sample utility array class template.

programmer to do so. When the final assignment at the top of the call tree is executed, the names associated with

intermediate allocations are out of scope and it would be difficult or impossible for the programmer to free the

associated memory at that point. Rouson, Morris and Xu (hereafter “RMX”) [15] developed the following definitions

and rules for freeing the memory allocated by each overloaded operator in Fortran 95/2003:

Definition 1. Given an object that appears as the result of an arithmetic or differential operator, we define the

object as temporary if it can be deleted at the termination of execution of the first subsequent operator in which it

appears as an argument.

Corollary: All objects that are not temporary are persistent.

RMX implemented this scheme by inserting Boolean (Fortran LOGICAL) flags named temporary in the definition

of each data structure. They then applied four rules to memory allocations and de-allocations:

Rule 1: All arithmetic and differential operator results are marked as temporary upon creation.

Rule 2: Left-hand arguments to defined assignments are marked as persistent.

Rule 3: Temporary objects are deleted prior to the termination of any arithmetic or differential operator in which

they appear as an argument.

Rule 4: Persistent objects are deleted prior to the termination of the procedure that instantiated them.

Before explaining in Sections 3–4 how formalizing these rules greatly benefited us, the next two subsections

address specification issues in OCL and implementation issues in Fortran.

2.2. Modeling arrays with OCL

Multidimensional arrays account for the lion’s share of the memory allocated in our Field implementation.

Although OCL has a “sequence” type that could naturally be used to model one-dimensional arrays, OCL does not

contain an intrinsic multidimensional array type. Any types defined by a UML model, however, are considered

OCL model types [15]. We will assume the user has access to a multidimensional utility array class template for

constructing collections of various basic types and model types. Figure 3 depicts such a template. We will not

explore its implementation details here. The interested reader might consult the text by Barton and Nackman [2] for

an example of a C++ array template class written for scientific and engineering applications. For our purposes, it

will suffice to assume that the available array class implements the attributes and services of the Fortran 95/2003

arrays. In particular, the class should have public methods that return the array size, shape, and allocation status as

shown in Fig. 3.

2.3. Fortran 95/2003 implementation

Although OCL is programming language-independent, it will prove fruitful to discuss our programming language

to facilitate the discussions in Section 3. Two important reasons for choosing Fortran 95/2003 are the language’s

operator overloading and complex number type. Section 4 demonstrates that a complex Fast Fourier Transform

(FFT) occupies the largest share of our code’s execution time. We refer the reader to Rouson and Xiong [16] for a

32 D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations

Field

- N : integer

- fourier : Array<complex>(N/2,N,N)

- physical : Array<real>(N,N,N)

- temporary : Boolean

+ Field_(Array<real>(N,N,N))

+ delete_Field(Field)

+ d_dx(Field) : Field

+ operator(+)(Field,Field) : Field

+ operator(*)(real,Field) : Field

+ assignment(=)(Field,Field)

�

Fig. 4. Field class arithmetic and differential operators.

more complete discussion of our language choice. We also cite Akin [1] for his clear exposition of object-oriented

programming (OOP) techniques in Fortran 90/95.

To provide the requisite operators, we must define overloaded operators of the form

PRIVATE ! hide all data & procedures by default

PUBLIC :: OPERATOR (+), Field

INTERFACE OPERATOR (+)

MODULE PROCEDURE field plus field

END INTERFACE OPERATOR (+)

where the exclamation marks precede comment. The above syntax tells the complier to call field plus field()

whenever it finds the “+” operator between two objects that match the argument list in the following function

signature:

FUNCTION field plus field (left, right) RESULT (total)

TYPE (Field), INTENT (IN) :: left, right

TYPE (Field) :: total

The above function returns the pointwise sum of two instances of the following derived type:

TYPE Field

PRIVATE

REAL , DIMENSION (:,:,:), ALLOCATABLE :: physical

COMPLEX, DIMENSION (:, :, :), ALLOCATABLE :: fourier

TYPE (Grid) :: mesh

LOGICAL :: temporary

END TYPE Field

where we capitalize Fortran keywords as visual cue to code structure and where the components of a Field are its

physical-space samples, the corresponding Fourier-space coefficients, the mesh point locations of the physical-space

samples, and a Boolean indicator of whether the given Field object is temporary or persistent. We detail the Fourier

spectral solution of similar equations in a recently submitted paper [17]. Here we focus on memory management

issues only.

The Fortran 95/2003 standards require overloaded operators and the procedures they call to be free of side effects –

that is they cannot modify their arguments. The “INTENT(IN)” attribute enforces this condition, but also poses a

memory management dilemma. In composite (nested) function calls, the left and right arguments could have

D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations 33

Table 1

Memory leak test results (N.A. = vendor supplied intermediate C code)

Compiler Platform(s) Version Memory Leak?

Absoft Cray XD1 9.0-1 yes

g95 Windows PC 4.0.2 no

Intel Linux PC, SGI Altix 9.0 yes

Portland Group Linux PC, Cray XD1 6.1 yes

NAG N.A. N.A. no

appeared as a RESULT in an operator of higher precedence. The operator passing its result to field plus Field

is likely to have allocated memory for that result’sfourier orphysical component just asfield plus Field

will likely need to allocate space for total%fourier or total%physical via a statement of the form

ALLOCATE(total%physical(nx,ny,nz))

where nx, ny, and nz are integers. As several authors have pointed out, the easiest and most efficient place for the

programmer to release memory that was dynamically allocated inside the result of one operator is inside the operator
to which this result is passed [11,15,19]. However, the operator receiving the result cannot modify it.

A similar dilemma relates to defined assignments such as

PUBLIC :: ASSIGNMENT (=)

INTERFACE ASSIGNMENT (=)

MODULE PROCEDURE field equals field

END INTERFACE ASSIGNMENT (=)

SUBROUTINE field equals field (left, right)

TYPE (Field), INTENT (OUT) :: left

TYPE (Field), INTENT (IN) :: right

where there frequently arises a need to free memory associated with allocatable components of right if it is the

result an expression evaluation.

The Fortran standard resolves the above dilemmas by stipulating, “When a variable of derived type is deallocated,

any ultimate component that is a currently allocated allocatable array is deallocated (as if by a DEALLOCATE

statement)” [10]. Since the compiler is responsible for deallocating left and right after they go out of scope,
the standard obligates compilers to deallocate these variables’ allocatable components also. Nonetheless, Table 1

shows three of the five compilers tested exhibited memory leaks for at least some overloaded expressions. We can

provide the relevant test code for each compiler upon request.

Even compilers that do the proper deallocations might not do so economically. For example, we have analyzed

intermediate code received from the Numerical Algorithms Group (NAG) and found that the NAG compiler carries

along all the memory allocated at intermediate steps in the call tree, performing deallocations only after the final

assignment at the top of the tree. This extremely lax, although arguably valid, interpretation of the standard could

lead programmers working with large arrays to abandon operator overloading until the situation improves.

We seek to facilitate the use of allocatable components now, rather than awaiting the long overdue vendor

corrections. We also seek to economize the dynamic memory usage in ways the standard does not require. Achieving
these goals requires addressing widespread and longstanding inadequacies in compilers, not inadequacies in the

standard.

3. Formal specification

3.1. Hermeticity

We can now specify the constraints that preclude a category of memory leaks in composite operator calls. We

refer to leak-free execution as hermetic memory management, or simply hermeticity. The memory of interest is

associated with the allocatable array components inside data structures passed into, through and out of call trees of

the form of Fig. 2. In our applications, we find no need for any other large memory allocations inside operators, so

we will assume no others take place. This assumption is discussed further vis- à-vis economy in Section 3.2.

34 D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations

Figure 4 details several operators of interest. These include unary operators such as d dx(), binary operators such
as OPERATOR(+) and a defined assignment ASSIGNMENT(=). Our primary task is to constrain the behavior of such
operators using the four memory management rules listed in Section 2.1. We model the Definition and Corollary

simply by including a Boolean temporary attribute in the Field object interface (see Fig. 1). The value of this
attribute classifies the object in the set of objects defined by the Definition or in the complementary set defined by
the Corollary.

In formal methods, constraints take three forms: preconditions that must be true before a procedure starts,
postconditions that must be true after it ends, and invariants that must be true throughout its execution. We formally
specify Rule 1 from Section 2.1 through postconditions on the arithmetic and differential operators. The contexts
for OCL pre- and postconditions are always operations or methods. In OCL, one writes the constraint context above
the constraint. Thus, OCL postconditions are written in the following form:

context: Field::

field plus Field (left: Field, right: Field) total: Field

post: total.temporary = true

where the text following “context:” provides the class name followed by the operator signature, including the
operator name, its argument names and types, and its result name and type. The postcondition following the above
“post:” label stipulates that all results returned by field plus field() must be classified as temporary. The
corresponding constraint for unary operators takes the same form.

Rule 2 governs the left-hand arguments to defined assignments:

context: Field:: assignment (=) (left: Filed, right: Field)
post: left.temporary = false

Although there is no explicit result passed by a defined assignment (Fortran 95/2003 requires a defined assignment
to be a SUBROUTINE), the implicit result is the left-hand argument, which is passed by reference and modified to
contain a copy of the right-hand argument. The latter postcondition specifies that left must be persistent.

Rule 3 governs the deletion of temporary objects. It applies to all operators, including unary and binary ones,
along with defined assignments. As applied to the unary operator d dx, the corresponding formal constraint takes
the form

context: Field::

d dx (s: Field, direction: Integer) ds dx: Field

post: s.temporary implies not s. allocated()

Although d dx() takes two arguments, we refer to it as a unary operator because the second argument simply
determines the coordinate direction in which the first argument will be differentiated. Predicate calculus stipulates
that the latter postcondition evaluates to true if the expression after the implies operator is true whenever the
expression before implies is true. The constraint also evaluates to true whenever the expression before the
implies is false.

Rule 4 governs the deletion of persistent objects. Only defined assignments create persistent objects. Since all
Field operators have access to private Field components, they can make direct assignments to those components.
Field operators therefore do not call the defined assignment procedure, so most persistent Field objects are
created outside the Field class. An example occurs inside the third-order, Runge-Kutta time-advancement method,
RK3 Integrate, of the Integrand class in Fig. 1. As described by RMX, Integrand is a polymorphic
class that uses dynamic dispatching to integrate instances of various classes from some time tn to some time
tn+1 = tn + ∆t. The Integrand argument passed into RK3 Integrate effectively represents a virtual object
whose actual type is determined at run time.

During execution, RK3 Integrate() instantiates several temporary instances of whatever class of object it
receives. Two such instances contain the state variables at the end of the two intermediate Runge-Kutta substeps.
Given an Integrand T containing a Scalar temperature field, the two intermediate instances are typically
referred to as T ′ and T ′′, so we name them Tp and Tpp. To write constraints on these objects, we model them as
attributes of theIntegrand class – although they are actually implemented as local variables inRK3 Integrate()
since they are not currently used by other time advancement methods within the Integrand class.

To formalize Rule 4, we specify invariant constraints on the persistence of Tp and Tpp. For OCL invariants, the
context is always a class, an interface, or a type. For the Integrand class, we wright

D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations 35

Context: Integrand

Tp.temporary = false

Tpp.temporary = false

Since RK3 Integrate instantiates these objects, the formal constraints corresponding to
Rule 4 requires they be deleted upon termination of this procedure:

Context: Integrand :: RK3 Integrate (k: Integrand)
post: Tp.allocated () = false

post: Tpp.allocated () = false

Similar postconditions apply to any other integration procedures that use Tp and Tpp.
As valid OCL expressions, the above constraints are backed by a formal grammar defined in Extended Backus-Naur

Form (EBNF) [16]. An EBNF grammar specifies the semantic structure of allowable statements in a formal language.
The statements’ meanings can therefore be communicated unambiguously as part of the UML design document. An
additional advantage of formal methods is their ability to express statements that could not be written in an executable
language. One example is the relationship between the Boolean expressions in the implies statement. Another is
the fact that these constraints must be satisfied on the set of all instances of the class. Programs that run on finite state
machines cannot express conditions on sets that must in theory be unbounded. An additional benefit is that the set
theory and predicate logic behind formal methods facilitate proving additional desirable properties from the specified
constraints. (Such proofs are most naturally developed by translating the constraints into a mathematical notation
that is opaque to those who are not formal methods specialists. Since the non-specialists OCL targets coincide with
our intended audience, proving additional properties mathematically would detract from our main purpose.) Finally,
a more concrete benefit will be explained. in Section 4.2 after detailing the run-time checks inspired by the OCL
pre- and postconditions.

The run-time checks inspired by the above OCL pre- and postconditions will be detailed in Section 4.2, where a
more concrete benefit will be explained.

3.2. Economy

The above rules can be refined to encourage more economical memory usage. Although the memory reductions are
modest, we hope to demonstrate an important tangential benefit from the way OCL forced us to think abstractly about
our software model. For this purpose, consider again the function field plus field(), which takes arguments
left and right, returntotal and has the generic interfaceoperator (+)]. We can ensure economical memory
usage by specifying that temporary memory be recycled. To facilitate this, left, right, and total must be
pointers. In Fortran 2003, this means adding the POINTER attribute to their declarations as follows:

FUNCTION field plus Field (left, right) RESULT (total)
TYPE (Field), POINTER, INTENT (IN) :: left, right

TYPE (Field), POINTER :: total

Since OCL does not have a pointer type, we model pointers as a UML association between two classes. We model
left, right and total as instances of a Field Pointer class that exists solely for its association with the
Field class. It is assumed here the Field Pointer class implements the services of Fortran 95/2003 pointers,
including an ASSOCIATED() method that returns a Boolean value specifying whether its first argument is associated
with its second argument.

In Fig. 5, we apply the label “target” to theField at the other end of the association. From aField Pointer

object, this association can be navigated through the OCL component selection operator “.”, so an economical
postcondition might be

context: Field::

operator (+) (left: Field Pointer, right: Field Pointer)
total: Field Pointer

post: left. target.temporary implies

associated (total, left.target)
post: ((not left. target.temporary) and

right. target.temporary) implies

associated (total, right.target)

36 D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations

target

Field_Pointer
Field

1*

1

+ Boolean :

associated(Field_Pointer, Field)

Fig. 5. Field pointer class model (numerical values indicate that one or more Field pointer instances can be associated with any one Field

instance).

where the implied conditions stipulate that totalmust be associated with one of the temporary targets. We assume

the programmer has overwritten the corresponding temporary with the sum of left and right, but we leave out

this part of the specification since the meaning of the sum is application-dependent. In our application, it simply

means that all component real and integer variables and arrays have been summed.

We advocate reusing the entire temporary object, while giving its array component the ALLOCATABLE attribute,

rather than the POINTER attribute. In Fortran 95/2003, an ALLOCATABLE array can be thought of as a limited type

of pointer – one which can be associated with memory only through an ALLOCATE statement, not through target

redirection or pointer arithmetic. This limitation has important performance benefits with optimizing compilers.

As discussed by Metcalfe, Reid and Cohen [12], for example, ALLOCATABLE arrays are guaranteed to contain

contiguous memory that can be accessed with unit stride; whereas a Fortran POINTER can target an array subsection

that might not be contiguous. Any resulting lack of spatial locality could retard cache performance.

For us, the greatest benefit of developing the economizing constraints relates to the conceptual leap required to

model pointers in OCL. Prior to making that leap, we had given up on expressing INTENT for POINTER arguments.

The ability to do so is a Fortran 2003 feature not yet available in some compilers, e.g., g95, and only very recently

added to others, e.g., Intel. Developing the Field Pointer class model inspired us to implement an analogous

data structure that facilitated emulating pointer intent before it was available in compilers. This breakthroughenabled

operator overloading. Without it, we could not even satisfy the hermeticity constraints of Section 3.1 unless we used

an awkward syntax as discussed next.

Recall that Fortran requires operator arguments to have the INTENT(IN) attribute, which precludes the dealloca-

tions necessary to ensure hermeticity with several current compilers. To circumvent this restriction, we previously

evaluated derived type expressions by invoking procedures by name, while writing the operator syntax in an adjacent

comment

TYPE (Field) :: left, right, total

! total = left + right

CALL assign (total, plus (left, right))

where assign and plus are aliases for field equals field and field plus field, respectively. To see

the tremendous value of operator overloading, consider the RHS of Eq. (1), for which our previous syntax was

TTPE (Field) :: dT dt, T

CALL assign (dT dt, &

minus (times (1/alpha, &

plus (d2 dx2 (T, 1), plus (d2 dx2 (T, 2), d2 dx2 (T, 3)))), &

plus (times (u, d dx (T, 1)), plus (times (T, d dx(T, 2)), &

times (w, d dx (T, 3)))))

where ampersands indicate line continuation. The corresponding overloaded syntax is much closer to the form of

differential equation being approximated:

dT dt = (1/alpha)* (d2 dx2 (T, 1) + d2 dx2 (T,2) + d2 dx2 (T, 3)) & − (u*d dx

(T,1) + v*d dx (T,2) + w*d dx (T, 3))

The overloaded syntax requires applying the INTENT(IN) attribute to a Field Pointer object to follows:

TYPE Field Pointer

TYPE (Field), POINTER :: target field

END TYPE Field Pointer

D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations 37

FUNCTION field plus Field (left, right) RESULT (total)
TYPE (Field Pointer), INTENT (IN) :: left, right

TYPE (Field Pointer), :: total

This restricts us from changing with what target object the target field pointer is associated, while it allows
us to DEALLOCATE the ALLOCATABLE array inside the target.

4. Discussion and results

4.1. Limitations

Subsequent to the publication of the RMX memory management rules, we found an informal report by Markus [11]
and Stewart [19] describing a strategy that, at its core, is algorithmically equivalent to ours. One significant difference
between their approach and ours is their use of pointers to allocate the component arrays inside abstract data types.
We have already discussed the performance advantage of allocatable arrays. We now summarize a limitation of our
approach pointed out by Markus and Stewart.

If the ultimate step in the call tree is a Fortran intrinsic command or system call, the programmer cannot release
the memory allocated for derived type components at the penultimate step. Markus gives an example equivalent to

PRINT *, a + b

wherea andb are instances of an abstract data type and “+” is an overloaded operator. Stewart solves this problem by
keeping a running tally of the nesting level at which an object is being used. He stores the tally in the object itself and
deletes the object at the outermost nesting level. Specifying this in a UML/OCL model requires writing constraints
for all procedures in the model, not just overloaded operators. Although we have not needed this technique in our
applications, it is clearly of value in some projects.

4.2. Run-time assertion checking

Modern tools exist for automatically generating Java code from OCL. We know of no attempts to extend this
capability to Fortran, but it is noteworthy that some of the earliest work on automated insertion of run-time assertions
was in Fortran 77 [20].

Run-time checking is necessarily incomplete because each run tests only one set of inputs, but this is of no
consequence in our case because the memory allocations required to advance the simulation are the same at each time
step independent of the initial data. Appendix A presents Fortran subroutines that approximate our OCL hermeticity
constraints. We call pre Field() at the beginning of each Field class method (except in constructors). We call
post Field() at the end of each method (except in destructors). Although the specification presented in Section 3
was slightly simplified in the interest of brevity, the full implementation in Appendix A is largely self-explanatory.
Each Field instance contains two ALLOCATABLE array components: one stores a physical-space representation
and another stores the corresponding Fourier coefficients. In our implementation, it is never valid for both to be
allocated except momentarily in the routine that transforms one to the other. This condition is checked in the
Appendix A code.

Besides monitoring our source code behavior, we found these routines eminently useful in checking for compiler
bugs. Using these routines, we discovered that the Portland Group compiler was not always allocating arrays as
requested. Despite repeated attempts to reproduce this problem in a simple code to send the compiler vendor, our
simplest demonstration of the error was a 4500-line package in which the error only occurs after several time steps
inside a deeply nested call tree. The related saga cost us several weeks of effort and has so far taking the vendor
over one year repair. The disciplined approach to checking assertions at the beginning and end of each procedure,
as inspired by the OCL pre- and postconditions, paid its greatest dividend in motivating us to switch compilers.

Appendix B presents a procedure that verifies economical memory recycling based on the Field Pointer

class of Fig. 5. Using this code, we have determined that memory allocated for temporary arguments is recycled
by associating it with the function result. We also monitored our code’s memory utilization with the Linux shell
command “top”, which displays in real time the processes using the most memory. The memory occupied by our
code closely matched our calculation based on recycling and the maximum memory usage remained nearly constant
over time, implying hermeticity.

38 D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations

Table 2

Procedural run-time distribution

Function Name Number % of total

of calls execution time

transform Field 108 34.32

field equals Field 167 19.67

d dx Field 156 16.18

dealiasing uv Field 36 7.70

field plus Field 75 7.43

field times Field 36 5.03
.

pre Field 1447 0

post Field 885 0

4.3. Performance

Since our pre- and postcondition subroutines contain simple Boolean expressions, they require insignificant

amounts of execution time. Table 2 shows our most costly procedure is the transform Field(), which contains

3D FFT calls. This procedure accounts for 34% of the processor time. By contrast the constraint checkers

pre Field() andpost Field() occupy immeasurably low percentages of execution time even though the number

of calls to these routines exceeds the calls to transform Field() by roughly an order of magnitude.

We address broader performance issues in a separate paper [17], including opportunities for coarse-grained

parallelism in the upper three layers of the class hierarchy in Fig. 1 along with fine-grained parallelism in the lower

two layers. In classes where the compilers are leak-free, the operators do not need to modify their arguments, so the

procedures can have the Fortran 95 PURE attribute, a feature that facilitates automatic parallelization across calls to

the operators. Inside the operators, long loops are often replaced with the Fortran 95 FORALL construct, a feature

that facilitates further automatic parallelization.

5. Conclusions

We have demonstrated that the process of converting previously informal rules into formal constraints written in

OCL benefited us in two significant ways. First, the notion of writing pre- and postconditions that must be true before

and after a procedure’s execution, respectively, enabled us to expose an exceptionally hard-to-find compiler bug that

presented itself only after several iterations through 4500 lines of code. Second, the thought process involved in

the abstract modeling of an otherwise language-specific construct, pointers, inspired us to encapsulate Fortran 95

pointers in a data structure that we used to emulate a Fortran 2003 feature before it had been added to compilers. In

particular, our emulation of the ability to specify pointer intent liberated us from an extremely cumbersome notation

by enabling programmer-controlled, hermetic operator overloading.

Although programmer-controlled deallocation of allocatable array components will no longer be necessary once

compilers properly implement the Fortran 2003 standard, our techniques enable programmers to use derived types

with allocatable components in overloaded expressions now, rather than await vendor compliance. The techniques

are not without limitations, but we have found them sufficient for solving several partial differential equations,

including the equation for thermal convection and conduction.

Finally, we monitored the run-time memory utilization of our code and found it to be consistent with hermetic,

economical execution. We also demonstrated that the run-time assertions inspired by our pre- and post-condition

subroutines have negligible cost in terms of execution time.

Acknowledgements

This work was supported in part by Award No. 61-8257-0-6-5 from the Office of Naval Research.

D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations 39

Appendix A. Hermetic Field operator pre- and post-conditions

 SUBROUTINE pre_Field(this,constructor)

 this

uctor

) is_constructor=constructor

 ALLOCATED(this%physical)

r result previously allocated’

ed) &

 partially allocated’

UTINE pre_Field

s,public_operator,deletable)

_operator

n

cated &

 ALLOCATED(this%physical)

 IMPLICIT NONE

TENT(IN) :: TYPE(Field) ,IN

 LOGICAL ,INTENT(IN), OPTIONAL :: constr

 LOGICAL :: both_allocated &

ated & ,at_least_one_alloc

 ,is_constructor

 is_constructor=.FALSE.

 IF (PRESENT(constructor)

 at_least_one_allocated = &

 ALLOCATED(this%fourier) .OR.

 both_allocated = &

 ALLOCATED(this%physical) ALLOCATED(this%fourier) .AND.

 IF (both_allocated) &

 STOP ’pre: constructo

 IF (is_constructor) THEN

 IF (at_least_one_allocat

 STOP ’pre: constructor result

 ELSE

 .NOT.(at_least_one_allocated)) & IF (

 STOP ’pre: invalid argument’

 END IF

 END SUBRO

 SUBROUTINE post_Field(thi

 IMPLICIT NONE

TENT(IN) :: this TYPE(Field) ,IN

 LOGICAL ,INTENT(IN) :: public

 ! => could appear in a derived type expressio

 LOGICAL ,INTENT(IN) :: deletable

 ! => must be deallocated if temporary

_allo LOGICAL :: at_least_one

 ,both_allocated

 at_least_one_allocated = &

 ALLOCATED(this%fourier) .OR.

 both_allocated = &

 ALLOCATED(this%physical) ALLOCATED(this%fourier) .AND.

 IF (both_allocated) STOP �post: invalid result�

 IF (public_operator .AND. deletable) THEN

ed) &

 on temporary’

.NOT.at_least_one_allocated) &

on-temporary’

(.NOT.at_least_one_allocated) &

lt’

 END SUBROUTINE post_Field

 IF (this%temporary) THEN

 IF (at_least_one_allocat

 STOP ’post: invalid operation

 ELSE

 IF (

 STOP ’post: invalid operation on n

 END IF

 ELSE

 IF

 STOP ’post: invalid operation resu

 END IF

40 D.W.I. Rouson et al. / Formal constraints on memory management for composite overloaded operations

Appendix B. Economical Field operator post-condition

 SUBROUTINE economical_Field(left,right,result)

ter) ,INTENT(IN) ::left,right,result

 IF (left%target%temporary) THEN

rget,left%target) &

right%target) &

 END SUBROUTINE economical_Field

 IMPLICIT NONE

 TYPE(Field_Poin

 IF (.NOT. ASSOCIATED(result%ta

 STOP ’post: left argument not recycled’

 ELSE IF (right%target%temporary THEN

 IF (.NOT. ASSOCIATED(result%target,

 STOP ’post: right argument not recycled’

 END IF

 END IF

References

[1] E. Akin, Object-oriented Programming via Fortran 90/95, Cambridge University Press, Great Britain, 2003.

[2] J.J. Barton and L.R. Nackman, Scientific and Engineering C++: An Introduction with Advanced Techniques and Examples, Addison-

Wesley 1994.

[3] P. Bientinesi, J.A. Gunnels, M.E. Myers, E.S. Quintana-Orti and R.A. van de Geijn, The science of deriving dense linear algebra algorithms,

ACM Transactions on Mathematical Software 31(1) (2005), 1–26.
[4] S.M. de Bruyn Kops and J.J. Riley, Direct numerical simulation of laboratory experiments in isotropic turbulence, Phys Fluids 10(9)

(1998), 25–27.

[5] L.A. Clarke and D.S. Rosenblum, A historical perspective on runtime checking in software development, ACM SIGSOFT Software

Engineering Notes 31(3) (2006), 25–37.

[6] V.K. Decyk, C.D. Norton and B.K. Szymanski, How to express C++ concepts in Fortran 90, Scientific Programming 6 (1997), 363–390.

[7] V.K. Decyk, C.D. Norton and B.K. Szymanski, How to support inheritance and run-time polymorphism in Fortran 90, Computer Physics

Communications 115 (1998), 9–17.

[8] R. van Engelen, L. Wolters and G. Cats Tomorrow’s weather forecast: Automatic code generation for atmospheric modeling, IEEE

Computational Science and Engineering, July-September 1997.

[9] L. Hatton, The T Experiments: Errors in Scientific Software, IEEE Computational Science & Engineering 4(2) (1997), 27–38.

[10] J3 Fortran Standards Technical Committee, Technical Report ISO/IEC 15581:1998(E) International Organization for Stan-

dards/International Electrotechnical Committee, Geneva, Switzerland, 1998.

[11] A. Markus, Avoiding memory leaks with derived types, ACM Fortran Forum 22(2) (August 2003).

[12] M. Metcalfe, J. Reid and M, Cohen, Fortran 95/2003 Explained, Oxford University Press, Oxford, 2004.

[13] J.N. Oliveira, 1997, http://www.di.uminho.pt/˜jno/html/cam-wfm.html.
[14] D.K. Pace, Modeling and simulation verification challenges, Johns Hopkins APL Technical Digest 25(2) (2004), 163–172.

[15] D.W.I. Rouson, K. Morris and X. Xu, Dynamic memory de-allocation in Fortran 95/2003 derived type calculus, Scientific Programming

13(3) (2005).

[16] D.W.I. Rouson and Y. Xiong, Design metrics in quantum turbulence simulations: How physics influences software architecture, Scientific

Programming 12 (2004), 185–196.

[17] D.W.I. Rouson and X. Xu, A grid-free abstraction of the Navier-Stokes equations via data structure wrappers in Fortran 95/2003, submitted

to ACM Transactions on Mathematical Software in March 2006.

[18] D.E. Stevenson, How goes CSE? Thoughts on the IEEE CS Workshop at Purdue, IEEE Computational Science & Engineering (April–June
1997).

[19] G.W. Stewart, Memory leaks in derived types revisited, ACM Fortran Forum 22(3) (December 2003).

[20] L.G. Stucki and G.L. Foshee, New assertion concepts for self-metric software validation, Proceedings of the International Conference on

Reliable Software, ACM SIGPLAN and SIGMETRICS, Los Angeles, California USA, 1971, 59–71.

[21] J. Warmer and A. Kleppe The Object Constraint Language: Getting Your Models Ready for MDA, 2nd ed., Addison-Wesley, New York,

NY, USA 2003.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

