
Formal Correctness, Safety, Dependability, and Performance Analysis of a Satellite

Marie-Aude Esteve∗, Joost-Pieter Katoen†‡, Viet Yen Nguyen†, Bart Postma‡ and Yuri Yushtein∗
∗ Software Systems Engineering Section, European Space Agency/ESTEC, The Netherlands

Email: {marie-aude.esteve,yuri.yushtein}@esa.int
† Software Modeling and Verification Group, RWTH Aachen University, Germany

Email: {katoen,nguyen}@cs.rwth-aachen.de
‡ Formal Methods and Tools Group, University of Twente, The Netherlands

Email: {b.c.postma}@student.utwente.nl

Abstract—This paper reports on the usage of a broad palette
of formal modeling and analysis techniques on a regular
industrial-size design of an ultra-modern satellite platform.
These efforts were carried out in parallel with the conventional
software development of the satellite platform. The model
itself is expressed in a formalized dialect of AADL. Its
formal nature enables rigorous and automated analysis, for
which the recently developed COMPASS toolset was used. The
whole effort revealed numerous inconsistencies in the early
design documents, and the use of formal analyses provided
additional insight on discrete system behavior (comprising
nearly 50 million states), on hybrid system behavior involving
discrete and continuous variables, and enabled the automated
generation of large fault trees (66 nodes) for safety analysis
that typically are constructed by hand. The model’s size pushed
the computational tractability of the algorithms underlying the
formal analyses, and revealed bottlenecks for future theoretical
research. Additionally, the effort led to newly learned practices
from which subsequent formal modeling and analysis efforts
shall benefit, especially when they are injected in the conven-
tional software development lifecycle. The case demonstrates
the feasibility of fully capturing a system-level design as a single
comprehensive formal model and analyze it automatically using
a toolset based on (probabilistic) model checkers.

Keywords-formal methods; satellite; model checking; safety;
dependability; performance; FDIR; fault management;

I. INTRODUCTION

Building modern spacecrafts is highly demanding. They
should be extremely dependable and they must offer service
without interruption (i.e. without failure) for a very long time
– typically years or decades – and in the harsh environment
of space. Failures are costly and may severely damage
reputations. Rigorous design support and analysis techniques
are thus called for. Design mistakes must be found as early
as possible in the design process while performance and
reliability guarantees need to be checked whenever possible.

Tailored effective techniques exist for specific system-
level aspects. Peer reviewing and extensive testing find most
of the software bugs, performance is checked using discrete
event simulation, and hardware safety levels are analyzed
using a profiled Failure Modes, Effects and Criticality
Analysis (FMECA) approach. That is the current state of
industrial practice. But how is the consistency ensured if

the input models are tailored to reflect a single aspect? What
is the relevance of a 98.7% availability if its analysis over-
conservatively abstracts from degraded modes of operations?
There is a clear need for an integrated, coherent approach.
This is easier said than done. The inherently heterogeneous
character of on-board systems involving software, sensors,
actuators, hydraulics, electrical components, etc., each with
its own specific development approach and artifacts, severely
complicates this.

About three years ago a small consortium consisting of
government, academia and industry took up this challenge.
Within the European Space Agency-funded COMPASS
(COrrectness, Modeling and Performance of Aerospace SyS-
tems) project [8], an overarching model-based approach
has been developed. The key is to model spacecrafts at
an adequate level of abstraction using a general-purpose
modeling and specification formalism based on Architecture
Analysis & Design Language (AADL) as standardized by
SAE International. Ambiguities about the meaning of de-
signs are abandoned by a rigorous formal semantics. Among
the system aspects that can be modeled are (timed) hardware
operations, software operations (supporting processes and
threads), continuous variables (such as temperature) and
faults with probabilistic failure rates. A complete system
specification describes three parts: nominal behavior, error
behavior, and a fault injection specifying how the error
behavior influences the system’s nominal behavior. Systems
are described in a component-based manner such that the
structure of system models strongly resembles the real sys-
tem structure. This coherent and multidisciplinary modeling
approach is complemented by a comprehensive palette of
analysis techniques. The richness of the AADL dialect
gives the power to specify and generate a single system
model that can be analyzed for multiple qualities: reliabil-
ity, availability, safety, performance, and their mixture. All
analysis outcomes are related to the same system model,
thus ensuring coherency and consistency. Most importantly
though, is that many of these analyses can be carried out in a
fully automated manner using the COMPASS toolset [8] . It
supports modern model checking techniques [4] for checking
correctness, advanced safety analysis techniques to generate



static and dynamic fault trees [5], the automated generation
of FMECA tables, automated diagnosability analysis, and
the generation of key performance indices using probabilistic
model checking [3].

In this paper, our contribution is the report on our model-
ing and analysis effort of a modern satellite platform under
development using the aforementioned toolset. The effort
is motivated by the challenges encountered in the conven-
tional space software development (cf. §II). By using the
COMPASS toolset (described in §III), we constructed from
the early (volatile) design documents of a satellite platform
in development (outlined in §IV) a substantial system-level
model of nearly 4,000 lines with a nominal behavior of
nearly 50 million states. The modeling process itself (cf.
§V-A), the formalization of the requirements (cf. §V-B) and
correctness, safety, dependability and performance analyses
performed on the model (cf. §VI) revealed inconsistencies
in the design documents which were provided as feedback
to the satellite development team. It also showed the cur-
rent limits of the modeling language and the algorithms
underlying the analyses, providing the scientific community
input for future work. Furthermore, we developed new
practices which benefit future formal modeling and analysis
efforts, especially when they are injected in the conventional
development (cf. §VII). The project took six months in total
– including the learning curve of AADL and the COMPASS
toolset – and was carried out by (on average) 1.5 persons.

II. SPACE SOFTWARE ENGINEERING

Spacecraft operations have different degrees of on-board
automation depending on factors such as mission type,
mission objectives and priorities, type of the spacecraft or-
bit, spacecraft ground visibility profile, operations concepts
and communication constraints. These factors contribute to
the trade-off on the distribution of responsibilities and the
corresponding required capabilities of the ground stations
versus the autonomous spacecraft operation. For example,
communication satellites placed in the geostationary orbit
have continuous ground visibility with very small commu-
nication delay. If needed, they can be operated in real-time
(tele-operated). However, due to their mission objectives,
they have very high availability requirements, as loss of ser-
vice has economical, and sometimes safety, consequences.
Another example are Earth observation spacecrafts. They
typically orbit in the low Earth orbit, having intermittent
visibility by the ground stations during the flyovers. These
missions are characterized by the massive amount of ob-
servation data to be processed and downlinked. As this
cannot be performed continuously due to the short visibility
windows, continued data collection and data integrity shall
be ensured between the communication sessions. Lastly,
science and robotic exploration missions take spacecrafts
farther into space and further away from the possibility
of direct Earth intervention as communication bandwidth

decreases and communication latency increases, putting ever
increasing focus on the spacecraft self-reliance.

In the context of the increasing spacecraft autonomy
demands, the spacecraft capability to sustain the continued
operation in the presence of failures and anomalies plays
a central role. Failure Detection, Isolation and Recovery
(FDIR) systems ensure that the mission objectives and
constraints in terms of dependability and safety are met, and
ultimately to protect the spacecraft from the failure scenarios
leading to the spacecraft’s loss. The FDIR system plays
the role of a supervisory controller restricting the system
behavior from the undesired scenarios. FDIR operations
are based on system monitoring through the available on-
board observations, diagnosis of the off-nominal conditions
and initiation of the recovery procedures. These procedures
are designed to restore the spacecraft operation to nominal
conditions if feasible, to a degraded operation if possible, or
to put the spacecraft into a known safe configuration. The
latter is only used to safeguard the system and to transfer
control to the ground station for further handling.

Current practices of FDIR development are derived from
the development processes that are standardized in the form
of the European Cooperation for Space Standardization
(ECSS) as available from ecss.nl. The practices utilize the
results of the system Reliability, Availability, Maintainability
and Safety (RAMS) analyses, such as Failure Modes Effects
and Criticality Analysis, Fault Tree Analysis (FTA) and
Hardware-Software Interaction Analysis (HSIA). However,
data for these analyses become available later in the en-
gineering process when software development has already
passed its initial phases. This makes the introduction of
software FDIR components in the overall software archi-
tectural design a challenging matter. Moreover, changes in
the subsystems design, their fault modes, and possible fault
combinations and scenarios, hamper the process of achieving
a stable FDIR design. System testing is also a challenging
process from the FDIR perspective due to physical limita-
tions in the ability to reproduce all the possible faults and
their combinations during the test campaigns. Additional
challenges in FDIR development are posed by the often
partial system observability by the FDIR subsystems, the
continuous nature of particular processes and values being
monitored (implying necessity for the adequate approaches
to their reliable detection, and consistency in the sets of
detection thresholds for reliable diagnosis), and general
system diagnosability issues. The latter hinders the FDIR
verification for correctness and completeness, negatively
affecting the false alarm rates—both negative and positive
ones. For the distributed or layered FDIR architectures
adequacy of the overall (system-level) FDIR operation shall
be assured through consistency of the actions at the local
FDIR elements.

The FDIR design strongly depends on the spacecraft
operational modes and mission phases. Accordingly, the



Nominal 
Model

Error 
Model

Fault 
Injections

Req's
(patterns)

Extended 
Model

Correctness Safety/
Depend.

PerformabilityFDIR 
Effectiveness

Formal Canonical Models

Req's
(logic)State Space Markov 

Chain
NuSMV

Figure 1. COMPASS approach. The rhomboid shapes are the inputs, the
rounded rectangles are the intermediate artifacts derived through transfor-
mation and the unrounded rectangles are the outputs/analyses.

FDIR system has to handle – typically hundreds to thousands
of – recovery procedures each appropriate to the current state
of the spacecraft. This usually leads to a multitude of excep-
tions in the FDIR processing. Moreover, local implementa-
tions of the FDIR system elements in separate equipments,
units, and subsystems imply the need for coordination logic
and measures to be put in place. These matters, including the
additional timing dimension, result in the high overall FDIR
complexity, limiting the possibility for the fault coverage
analysis, and impairing effective verification & validation
process.

III. FORMAL METHODS & TOOLS FOR SPACE INDUSTRY

Formal methods come with the rigor that is needed to
overcome the challenges of developing FDIR systems. It
emphasizes proof-oriented verification and its mathemati-
cal underpinnings allows for a high degree of automated
analysis. In 2008, the COMPASS consortium developed a
formal modeling and analysis toolset specifically addressing
the needs of the (European) space industry. The result is
a graphical toolset-supported modeling-requirement-analysis
approach (cf. figure 1). In this section, only a brief overview
of COMPASS is presented. A full description can be found
in [8].

Modeling Language: To warrant design acceptance by
engineers in the aerospace industry (and other engineering
domains), the COMPASS approach is based on AADL, a
design formalism that is standardized by the Society of
Automotive Engineers [14]. It is used to capture a system
from an architectural perspective, at which the abstraction-
level reasons over software (e.g. processes and threads)
and hardware (e.g. processors and buses) components.
The components are arranged in a super/sub component-
hierarchy, respectively representing top-down system refine-
ment. Components interact through typed event and data

port connections and the interaction itself is defined by a
mode transition system, akin to a state machine. Modes can
be annotated with real-time and hybrid behavior, allowing
for capturing systems with continuous physical dynamics
such as mechanics and hydraulics. There is built-in support
for dynamic reconfiguration that allows for the activation
and deactivation of subcomponents and port connections
depending on current mode. A dynamic reconfiguration
represents an on-the-fly change in the system topology and
is a strategy often used to cope with faults and errors.
All the aforementioned is only used to capture nominal
behavior. For degraded and failing behavior, AADL provides
error models as an extension. Error models define a prob-
abilistic state machine where states represent fault modes
and the transitions between are faults whose occurrences
are governed by Poisson rates. Errors can propagate to
other components by matching incoming with outgoing error
events. System repairs can be modeled using reset events.
Nominal AADL models are oblivious to error models unless
a failure is injected: this links a fault in the error model
to an user-defined data-corruption in the nominal model.
A nominal model, an error model and the fault injections
that link them are integrated into a single model called the
extended model. The latter represents the nominal, degraded
and failure operations of the system. In COMPASS, the
extended model is equipped with a formal semantics [7]
that provides precise and unambiguous meaning in terms
of a state space containing action, stochastic and timed
transitions. To avoid confusion with AADL, which has
no comprehensive formal semantics, the formal semantics
and the scope of supported syntax is christened SLIM, the
System-Level Integrated Modeling language.

Requirements: In traditional formal methods ap-
proaches, engineers express requirements in a temporal logic
fitting to the analysis. Mastering a particular logic comes
with a steep learning curve. When Dywer et al. surveyed
requirement documents [13], they noticed that a majority of
them could be captured in (just) seven patterns. The patterns
are suitable for non-expert users, yet have a direct translation
to the temporal logics. Grunske did a similar survey [15] on
risk and performance requirements, and developed a set of
eight patterns that are translatable to Continuous Stochastic
Logic [3], a temporal logic that allows statements about
timing and probabilities. In COMPASS, these patterns are
graphically presented in prose-form containing blanks. The
blanks are input fields that the user fills in to complete the
prose representing the requirement. When needed, the toolset
automatically transforms the filled patterns to a logical
formula. This way, the user is not exposed to the logics.

Analysis: The extended SLIM model and the require-
ments are the input for various analyses. Through the COM-
PASS graphical interface, the user can do the following:
Functional Verification – comprises random and user-
guided simulation, deadlock detection and the verification



of functional properties via model checking (also known as
exhaustive testing) [4]. For the latter two, the output is that
a deadlock is absent respectively the property holds, or a
trace that represents a counterexample proving the presence
of a deadlock or refuting the property.
Safety & Dependability Analysis – comprises the au-
tomated generation of traditional safety & dependability
artifacts [9], namely dynamic fault trees (FTA) and failure
modes and effects tables (FMEA). FTA is a deductive
analysis where the user provides a top-level event (e.g.
undesired system state) and the COMPASS tool then reasons
backwards to compute all possible combinations of basic
faults that lead to that state. The output is a tree-shaped dia-
gram composed of OR, AND, and ordered AND operators.
FMEA is the inductive equivalent of FTA and it is the same
as FMECA without criticality analysis. It computes, given
a fault combination provided by the engineer, the causal
effects on the system upon occurrence of that combination.
FDIR Effectiveness – fault detection analysis computes
which data lines are triggered upon a failure. Fault isolation
analysis relates the possible fault configuration to a triggered
data line. Diagnosability analysis [11] checks whether a
system (or a component) provides sufficient data output lines
for another system to infer a correct belief failure state. It can
also be used to cut off data output lines (and consequently
costs) by checking whether the removal of a data output line
impacts the inference of belief failure states.
Performability – determines system performance by com-
puting probabilities of events (e.g. failures, recoveries) under
degraded operations. It furthermore includes the evaluation
of fault trees by computing the probabilities of top-level
events [5].

The COMPASS toolset performs a series of behind-the-
scenes model transformations to inputs for NuSMV [10] and
MRMC [16]. Both are model checkers that cover discrete,
real-timed, hybrid and through linking both, also probabilis-
tic systems. The model checkers are the generic engines
performing the analyses stated above. The user however does
not need to interact with them. Their outputs are transformed
back to symbols and identifiers at SLIM level, and as such
the user only needs to operate with the COMPASS graphical
interface.

IV. CASE STUDY: SATELLITE PLATFORM

Industrial case studies have been conducted earlier within
the COMPASS project, such as a satellite’s FDIR mode
management system and a satellite’s thermal regulation
system [6]. These studies were focussed on critical parts of
satellite, and did not cover the full functionality of a satellite
platform such as the interaction between several subsystems.
This section presents a newer and more comprehensive case
study covering a satellite platform that is currently under
development. Due to the confidential nature of the case, the
model is not publicly available.

Satellite

Payload

Platform

AOCS

EPS

TT&C

OCS

CDU
OBDH RM

Control & 
Data Unit

Reconfiguration 
Module

Attitude & 
Orbit Control 

System

Power

Onboard Data 
Handling

Telemetry, 
Tracking &
Command

Propulsion

Figure 2. Decomposition of the case study’s satellite. OCS consists of a
series of controllable thrusters for orbital corrections. AOCS is a control-
system consisting of several kinds of sensors for acquiring and maintaining
a correct attitude and orbit. CDU is the main computer. EPS consists of
solar arrays and batteries for powering both the platform and the payload.
TT&C is the radio communication interface for ground control on Earth.

A. Satellite Overview

At the highest conceptual level, the satellite is composed
of the payload and the platform. The payload comprises
mission-specific subsystems and the platform contains all
subsystems needed to keep the satellite orbiting in space
(cf. Figure 2). The payload is usually designed and tailored
from scratch, whereas for the platform lots of design her-
itage applies. For this reason, our case study focuses on a
SLIM model of the platform, as this might benefit future
projects too. A decomposition of the platform into selected
subsystems is shown in Figure 2.

The majority of these subsystems are designed with
degrees of fault-tolerance, depending on the criticality of
the subsystem. Redundancy with reconfigurations, correcting
codes and compensation procedures are part of comprehen-
sive strategies for achieving fault-tolerance. In the extreme
case, the satellite should survive a particular number of days
without ground intervention assuming no additional failure
occurs. As faults could occur at any level in the system’s
hierarchy (system, subsystem, equipment), the FDIR system
obeys a cross-cutting design, where the complexity is han-
dled in levels. The lowest level represents minor failures
and their recoveries are handled transparently w.r.t. other
subsystems. Failures in the subsequent level can be isolated
to single subsystems and recovery is the responsibility of
the software. The next level represents failure of multiple
subsystems, which is also handled by the software. The
remaining levels are hardware failures and its recovery are
performed via dedicated reconfiguration modules. A design
of a FDIR mechanism that handles all these levels undergoes
a rigorous review process to ensure its correctness.



B. Objectives

We started our case study at the Preliminary Design
Review stage of the satellite project, where the details of
design started to mature. In the traditional space engineering
process, several objectives have to be met in order to proceed
to the Critical Design stage, among which the following are
of interest to us and thus within the scope of this case study:

• compliance of the preliminary design with the func-
tional and operational requirements and justifications.

• demonstration of compliance with preliminary relia-
bility, availability, failure tolerance, and failure prop-
agation requirements, consistency with redundancy
and FDIR approach implementation (HW/SW). And
evidence of tracking/implementation of preliminary
RAMS recommendations.

• consistency and completeness of the preliminary
RAMS analyses.

• completeness, credibility, and consistency of the pre-
liminary design.

The satellite’s development team was on a strict schedule,
and hence it would be unwise to inject novel development
approaches – like our initiative – into the production process.
We ran our case study in parallel with the actual devel-
opment as an experimental side-track so that we enjoyed
availability of fresh design information, while meeting our
own additional objectives:

• Reference model: obtaining a formal model of a satellite
platform as a reference for future formal modeling.

• Toolset capability: obtaining a model that pushes the
limits of the COMPASS toolset and revealing directions
for further research.

• Modeling guidelines: develop best practices for effec-
tive (e.g. fast) formal analysis using model checking
techniques.

• Improve software development lifecycle: understand
how formal analysis supplements and/or replaces exist-
ing practices as defined in ECSS E-40 [12] (European
Standard on Space Software Engineering). In particular,
to understand the impact of increasing design maturity
on formal modeling.

Note that for the latter, it is imperative that the case study
is run in parallel with the system’s active development.
If our case study were run after its realization, the effort
became an afterthought in which design information has
fully crystalized and matured.

V. MODELING & SPECIFICATION

The case study was conducted in a time-frame of six
months, which includes the learning curve to understand the
SLIM modeling language and the COMPASS toolset. Our
modeler has a master-level education in software engineering
and had only basic knowledge on model checking. He was
supported by the members of the COMPASS consortium

Table I
METRICS OF THE FULL SATELLITE PLATFORM MODEL AND

REQUIREMENTS.

Scope Metric Count

Model

Components 86
Ports 937
Modes 244
Error models 20
Recoveries 16
Nominal state space 48421100
LOC (without comments) 3831

Requirements

Propositional 25
Absence 2
Universality 1
Response 14
Probabilistic Invariance 1
Probabilistic Existence 1

during the modelling process. In this section, we highlight
the modeling (cf. §V-A) and requirements specification (cf.
§V-B).

A. Modeling

The overall composite system is described by two modes:
nominal and safe. The nominal mode describes a set of
satellite configurations in which the system functions within
nominal conditions. Upon the detection of faults, reco-
veries might be attempted for resuming nominal operation.
Otherwise a transition is made into safe mode for which
the system reconfigures itself for survival. This important
transition has system-level effects and hence is critical. In
the remainder of this paper this important event is called
TLE-1 (first top-level event).

During modeling, we focused on a subsystem/equipment
at a time as the design of each corresponded more or less to a
specific (section of a) design and a requirements document.
We progressively increased coverage by adding more de-
tailed subsystems to the overall model, while keeping high-
level abstractions or stubs for the remaining subsystems. The
metrics of the full model are described in the upper part
of Table I. Due to the page limit, we will only highlight
modeling aspects and practices.

1) Discretization: Various design aspects are often spec-
ified in terms of ranges. Like for the sun sensors, ranges are
used in degrees of sun ray impact to determine exposure to
the sun. For the power system, over-currents are specified
by voltage transfer functions. To avoid a combinatorial ex-
plosion of the state space, these ranges have to be abstracted
with respect to the desired functionality, e.g. a boolean
indicating sun exposure (or not) and respectively a boolean
indicating over-current (or not). Enumerations are used when
there are gradations within the ranges.

2) Timing: Real-time correctness is an important aspect
for various subsystems, especially with regard to the recov-
ery procedures. For example, the recovery modules contain
a table of Programmable Alarm Patterns (PAP), which



upon a match looks up a corresponding recovery procedure
which is described by a Compressed Command Sequence
(CCS). Each individual command in a recovery procedure
is annotated with its maximum task duration. To enforce
this timing behavior in our model, a timer is added and
transition guards over the timer are defined. If only guards
were used, it would be possible for the system to stay in
a mode forever (i.e. time divergence). To avoid this, mode
invariants are added to force a transition when the invariant
becomes invalid by the passage of time. A second concern
with modeling timed aspects is to ensure the absence of
Zeno behavior. Otherwise the model could take infinitely
many steps within a finite time-span. The presence of time-
divergence and Zeno behavior leads to invalid outputs, and
hence their absence needs to be ensured. This is elaborated
and discussed in section VII.

3) Hybridity: Hybrid aspects (e.g. temperature evolu-
tion or fluid pressure) are a generalization of real-time
constraints. They need to be incorporated into the model
without discretization if one wants to check compliance
of range requirements, e.g., the temperature stays between
a lower and upper limit in the presence of a (redundant)
heating system. To ensure computational tractability [1], the
COMPASS toolset only supports simple linear differential
equations for time-dependent evolution. As many equations
are not specified in this form, the engineer needs to abstract
the original equations into linear ones. Additionally, the
concerns of Zeno behavior and time-divergence also apply
in a similar fashion to hybrid models.

4) Reconfiguration: SLIM offers mode-dependent acti-
vations as a first-class language construct, allowing the en-
abling/disabling of components based on the current mode.
Fault tolerance by redundancy can thus be easily expressed
by modeling multiple components of equal functionality
which are active in disjunct modes, like two processor mod-
ules being active in respectively the nominal and safe mode.
Events from a recovery procedure can trigger transitions
between the modes, resulting in a reconfiguration of the
system topology.

5) Errors and Fault Injections: The primary source for
error modeling is the preliminary FMECA. It lists the possi-
ble detectable failures as an event and relates it to the effect
on the system. This mapping is nearly equal to the fault
injections. It also provides the information for constructing
the error models. We found that in all cases, the probabilistic
behavior was either shaped as a single step from an error-
free state to an error state (so-called permanent errors), or
that they follow a fault-repair loop-structure on the error-
free/error states (so-called transient errors). The FMECA
is also the source for failure rates. They are expressed in
failures in time (FIT), which indicates the expected number
of failures in 109 hours.

6) Assumptions: At first sight, the amount of design
information is so overwhelming, that it is inconceivable to

comprehend the system all at once, especially if one is not
familiar with the system under development. Information
might be perceived as incomplete, unclear, or wrong due
to this, and this delays the modeling phase. We developed
a practice of quickly continuing modeling using assumptive
modeling decisions (Assumptions) and tracking those in a
spreadsheet. In addition to that, we also tracked parts of the
design documents that were easily modeled (Direct Conver-
sion), parts that were intentionally abstracted (Abstraction)
and parts that were not modeled (Underspecified). When a
design choice was clarified, the assumption was resolved
(Explained).

7) Traceability: For any system under development, and
especially in the preliminary design phase, the design is
susceptible to changes. Every few months a new version of
design documents is distributed with detailed change-logs.
To keep track of the changes, we maintained a traceability
spreadsheet that maps each SLIM part to the corresponding
points in the design documents. Upon a new revision, we
simply traversed the change-logs, pinpointed the affected
parts in the SLIM model and updated them to reflect the
change accordingly.

B. Requirements Specification

Requirements documents are developed for all parts of
the satellite at all levels (system, subsystem, equipment).
As we were in the preliminary design review phase, the
requirements were not fully detailed and still in prose-
form like “FDIR functions must be active in all AOCS
modes”. Due to this shape, not all of them are amenable for
formal analysis. From the several thousands of requirements,
we analyzed 106 requirements and checked whether they
specify behavior (as requirements can also state physical
structural constraints), whether they were not underspecified
(requirements might lack sufficient detail) and whether they
are within scope (requirements can relate to payload). From
the 106 requirements, 24 were suitable and used for our
model. Once deemed suitable, they had to be mapped to a
specification pattern. In many cases, clarifications are needed
during the mapping. For example, which analysis (and why)
is suitable for verification? What are the applicable modeled
components? What constitutes the atomic propositions (e.g.
what is exactly a FDIR function)? Hence for the analysis
and mapping of requirements, we additionally maintained
an assumptions spreadsheet and a traceability spreadsheet,
just like we did for modeling. Similar to the studies in [13],
[15], we tracked the kind of patterns used and these are
shown in the lower part of Table I.

VI. ANALYSES

Modeling is highly intertwined with analysis, since the
output from analysis provides valuable information for
possible refinements of the model. The most widely-used
analysis method during modeling is model simulation, as



22

14

10

8

8

7

5

2

1

172

11

1372

10

16

35

11

3

213563

1 10 100 1000 10000 100000 1000000

Reactionwheel + earth
sensor failures

Complete earth sensor
failure

Processor module
failures

Single reactionwheel
failure

All reactionwheel failures

AOCS equipments
failure

Propulsion failure

Double earth sensors
signal failure

Single earth sensor
signal failure Multiplication of state space

Number of injections

Figure 3. Degrees of state space increase with respect to nominal state
space size when injecting failures. The scale is logarithmic.

inspection of traces is a fast sanity check before running a
resource-consuming analysis.

During all analyses, particular sets of fault injections were
disabled/enabled depending on the aim. This was needed for
this case study as we observed that fault injections lead to a
significant increase of the state space (see Figure 3). This is
not surprising. A fault injection basically yields the cross-
product of the subsystem to which the error is injected, and
the error model [8]. There is no direct correlation between
the amount of fault injections and the increase, although
there is a relation between the kind of fault injections and
the increase. Fault injections that have system-level impact
(e.g. processor module failures) add more behavior than fault
injections with lower-level impact (e.g. Earth sensor failures)
as they affect a larger fragment of the state space.

All analyses were run on a set of identical computers
running 64-bits Linux, each with a 2.1 GHz AMD Opteron
CPU and 192 GB RAM. The consumption of peak resources
for each analysis is shown in Table II.

Functional Verification: we separated this into two ac-
tivities: discrete and real-time/hybrid verification. During the
verification of the discrete part, which is the majority of the
model, we verified 16 properties. Noteworthy here is that
the COMPASS toolset does verification in the absence of
any fairness constraints. Occasionally, it would be useful to
express those to avoid starvation of components. Now we
had to embed the constraints in the model instead, which
slightly increases its size due to the added synchronization.

The real-time/hybrid parts of the model are relatively
small and were joined together into a single hybrid model.
This alternative model was developed to check a require-
ment stating that the redundant heater is only active in
degraded operations. Verifying this requires the bounded
model checking backend [2] and we experimented with
increasing bounds to measure the limit (cf. table II). With

respect to the increasing bounds, we measured that the time
needed grows exponentially and memory-wise the growth is
linear. We stopped our measurements at bound 79, as this
exhausted our machine.

Safety & Dependability: the platform’s most critical
event that affects safety and dependability is TLE-1, i.e.
the transition to safe mode. The transition is triggered upon
the occurrence of severe failures. In the design documents,
a (static) fault tree of 66 nodes is provided relating TLE-
1 with the failures. Using our toolset, we could produce
the same (static) fault tree from our SLIM model in a fully
automated manner. We also generated a fault tree for the
setting of the fail-operational flag. This flag indicates that
the satellite’s payload services might be impaired due to
platform failures. The dynamic variant of fault tree analysis
delivered similar results. In two cases, it delivered them with
less computation time. This came to us as a surprise, given
that the dynamic aspect is an additional analysis upon static
fault tree generation. The internal logs of the COMPASS
toolset revealed this is due to its implementation, and likely
due to an internal heuristic optimisation algorithm which
on our model is more favourable for the dynamic case. A
FMEA table was generated for mapping the sensor failures
with three system effects: detection of failures, the setting of
the fail-operational flag and TLE-1. The generated table did
not provide additional values on the fault tree, as it directly
maps failures to the user-provided effects. It would be
more interesting if the COMPASS toolset could synthesize a
mapping from failures to a chain of effects, showing how the
first effect directly caused by the failure propagates through
the system to subsequent effects and eventually becoming a
failure like TLE-1.

FDIR Effectiveness: for fault detection, we checked
which observables were triggered when the transition to
safe mode is made. This could trigger 129 observables.
Subsequently, fault isolation was performed on all 129 ob-
servables. No properties are used for this, since the observ-
ables themselves are the only required inputs. Diagnosability
analysis was performed to see whether a double Earth sensor
failure is diagnosable (for the satellite operator) when TLE-1
occurs. Without any result, we had to stop the analysis after
7 days and consuming nearly 1400 MB at its peak. This is
understandable as, contrary to model checking algorithms
which usually compute a single state space, diagnosability
analyzes reachability properties on the double Cartesian
product of that state space [11].

Performability: reliability requirements are usually de-
fined as a cumulative distribution function and state that the
foreseen reliability must be at least as good. Its probabilistic
nature fits performability analysis. On our model, we wanted
to determine the reliability of the satellite in the presence
of a sensor failure. Performability analysis however ran
out of allocatable memory after nine hours. Investigation
revealed that the transformation of the state space into its



underlying Markov chain ran out of allocatable memory. The
transformation involves the use of a weak bisimulation min-
imization algorithm, whose implementation in COMPASS
is an adapted version of Sigref [18]. During our case study,
we observed that that implementation could only allocate
memory up to two GB, hence the out of memory.

Another approach to verifying the reliability requirements
is by computing the probabilities of the TLE-1 fault tree
which was generated during safety & dependability analysis.
This is called fault tree evaluation. As shown in Table II,
the computation occurs in a split second. Even though both
approaches can be used for this requirement, there are sub-
stantial differences. Fault trees are essentially abstract state
spaces where the relations between the top-level-events and
the failures are conservatively over-approximated by AND-,
OR- and PAND-gates (Priority AND). With performability
on the other hand, these relations are precisely preserved,
which however comes with increased time-complexity when
the underlying Markov chain needs to be obtained. The prob-
abilities computed with performability are however more
accurate than those obtained by fault tree evaluation.

VII. DISCUSSION

In this section, we reflect our objectives as stated in
Section IV-B and discuss the outcomes of this industrial
case study.

1) To PDR Objectives: For entering the subsequent stage
in the development process, the Preliminary Design Review
(PDR) objectives have to be met. During our efforts, we
encountered several inconsistencies in the design documents.
Most of them were found during modeling, due to the critical
interpretation of the design documents. They were reported
and have been corrected.

2) Reference Model: This SLIM model is the largest and
most-comprehensive we developed to date that is suitable for
model checking. Its incorporation of probabilistic aspects
through errors, and real-time/hybrid aspects have made it
a reference for benchmarking new algorithms that underlie
the analyses. Additionally, it can be used for kickstarting
subsequent formal modeling activities, so that one does not
have to start modeling from scratch.

3) Toolset Capability: As reported in an earlier evaluation
of much smaller scale [6], the hierarchical and component-
oriented nature of the modeling language fits naturally a
development by refinement process. During this case study
of much broader scope and size, we highlighted additional
points on the offered modeling constructs. We recognized a
need to support flows on continuous variables, used for the
hybrid aspects. This would allow for exposing its continuous
evolution to its neighboring components. In the same line, it
would be useful to develop efficient algorithms for verifying
systems with (decidable fragments of) non-linear equations,
allowing for more fine-grained hybrid behavior. Addition-
ally, we encountered Zeno behavior and time divergence

several times, and found it difficult to manually pinpoint
them in the model. The algorithmic detection of Zeno
behavior is an active field of research, and once it matures,
it is desirable to have it included.

Regarding the COMPASS toolset itself, it is pleasant not
to be exposed to the underlying logic and model checking
tools. For most analyses, the performance and the features
are sufficient. Other analyses are subject to improvement.
Upon model checking for example, the ability of expressing
fairness constraints for the absence of starvation is a more
elegant way than expressing them in the model itself. (For
certain temporal logics such as LTL, it is possible to encode
a rich class of fairness assumptions in the requirements.) Re-
garding FMEA, we found that FMEA generation is making
a reverse mapping of fault tree generation, hence not com-
plementing the information provided by fault trees. What
would be more useful is to understand the chain of effects
that start by a failure. This would give more information on
their detection means and possibly the design of the recovery
procedures. Regarding performability analysis, this analysis
ran out of memory after nine hours (cf. table II). The cause
is the weak bisimulation minimization implementation [18]
used to transform the state space to its underlying Markov
chain. Improvements to that implementation will have direct
benefits to performability analysis. Diagnosability analysis
on the other hand ran out of time, and this is due to the
reachability on the near full Cartesian product of the state
space. Faster model checking algorithms will improve its
performance, especially ones that exploit the compositional
structure of the SLIM model.

4) Modeling Guidelines: We used the preliminary
FMECA, the requirements and the design documents for
respectively the error models, properties and the model itself.
Note that the inputs were in a rough state: they change due to
review. Additionally, formal modeling and analysis supports
the review process by forcing one to consider missing infor-
mation. Updates due to review can be nicely accommodated
by exploiting SLIM’s features for modeling by refinement.
When design information is unclear, assumptions can be
modeled which we captured along with the traceability of
the modeled elements. In later phases, the assumptions can
be checked or raised during review meetings as discussion
points.

Regarding proper abstraction, it is wise to consider ab-
straction depending on the requirement that needs to be
verified. For the majority of the cases, discretization by
enums and booleans are the natural way for abstraction. This
is a necessity for keeping the growth of the state space under
control. Only when real-time and hybrid aspects need to be
verified alternative SLIM component implementations can
be developed that incorporate such behavior using the same
component interfaces.

Careful attention has to be paid when modeling real-
time and hybrid systems. We encountered Zeno behavior



Table II
PEAK RESOURCE CONSUMPTION PER ANALYSIS.

Analysis Fault Injections Properties Time (sec) Memory (MB)
Discrete model checking (none, i.e. nominal behavior only) “health check on valves is performed” and “no

firing of thrusters triggers reconfiguration” and
“thrusters not stopping firing triggers recon-
figuration” and “overpressure triggers opening
latch valve”

224 122

Discrete model checking Single Earth sensor signal failure i.d. 296 125
Discrete model checking Double Earth sensors signal failure i.d. 677 132
Hybrid model checking (10∗) Single Earth sensor signal failure “No thruster usage during nominal operation” 23 242
Hybrid model checking (20∗) Single Earth sensor signal failure “No thruster usage during nominal operation” 52 360
Hybrid model checking (30∗) Single Earth sensor signal failure “No thruster usage during nominal operation” 101 492
Hybrid model checking (40∗) Single Earth sensor signal failure “No thruster usage during nominal operation” 204 612
Hybrid model checking (50∗) Single Earth sensor signal failure “No thruster usage during nominal operation” 361 713
Hybrid model checking (60∗) Single Earth sensor signal failure “No thruster usage during nominal operation” 967 884
Hybrid model checking (70∗) Single Earth sensor signal failure “No thruster usage during nominal operation” 2176 1006
Fault tree analysis Double Earth sensors signal failure TLE-1 555 134
Fault tree analysis AOCS equipments failure TLE-1 2898 181
Fault tree analysis Double Earth sensors signal failure “fail-operational flag is set” 769 132
Fault tree analysis Processor module failures “CDU alarms are raised” 483 134
Fault tree analysis AOCS equipments failure “fail-operational flag is set” 8349 239
Dynamic fault tree analysis Double Earth sensors signal failure “fail-operational flag is set” 630 135
Dynamic fault tree analysis Processor module failures “CDU alarms are raised” 547 136
Dynamic fault tree analysis AOCS equipments failure “fail-operational flag is set” 5581 212
FMEA table generation Double Earth sensor signal failure “failures are detected” and “fail-operational

flag is set” and TLE-1
1003 134

Fault detection analysis Double Earth sensor signal failure TLE-1 1173 142
Fault isolation analysis Double Earth sensor signal failure n.a.¶ 21920 136
Diagnosability analysis Double Earth sensor failure TLE-1 586093† 1474†

Performability Single Earth sensor signal failure TLE-1 33166‡ 2103‡

Fault tree evaluation Double Earth sensor signal failure “fail-operational flag is set” 1 n.a.§

Dynamic fault tree evaluation Double Earth sensor signal failure “fail-operational flag is set” 1 n.a.§
∗ Bound parameter used in the bounded model checking.
† Ran out of time.
‡ Ran out of memory.
§ Analysis terminated too quickly for measurement.
¶ Fault isolation requires only the model as an input.

and time-divergence several times. To avoid Zeno-behavior,
one can reason by manual inspection that on each possible
infinite trace of the model there exists a transition that
has a guard t > a on a clock t, where a is strictly
positive. This ensures there is at least one event on each
loop consuming time, hence avoiding Zeno behavior. Time
divergence is avoided by checking manually that on each
possible infinite trace, all clocks are reset at least once.
These two manual checks are tedious, especially given a
large model, but are needed as long as algorithmic detection
of them is impractical.

Furthermore, during the case study, we developed a small
number of architectural patterns for modeling frequently
occurring concepts, like recovery procedures and particular
redundant configurations. The patterns are now tailored to
this case study, but could be further developed to become
more generic.

5) Improving Software Development Lifecycle: It is gen-
erally understood that formal modeling and analysis provides
outputs that improve the eventual system under development.
Formal methods forces engineers to consider design issues
early, and have them resolved long before integration testing,

thus avoiding increased costs. In our case study, we detected
several inconsistencies and reported them to the satellite
development team. Although the benefits are clear, it is yet
unclear how formal methods should be leveraged. There are
currently no standardized guidelines on the use of formal
methods in the software development life-cycle. For avionics
systems, this situation changes with the third revision of
European-American standard for software considerations in
airborne systems, called DO-178C/ED-12C [17]. It incor-
porates guidelines and allows for creditation when formal
methods are used for the development of avionics software.

The European space software development life-cycle is
defined in ECSS E-40 [12], which in its third revision
does not (yet) reflect the use of formal methods. Based
on our experience of this case study, we think it is more
pragmatic for the current E-40 standard to add aspects of
formal modeling and analysis. Most importantly, to have
a means to keep track with the evolution of design arti-
facts and ensure that the formal model reflects the current
design. For this reason, we developed a simple but useful
habit of keeping assumption spreadsheets and traceability
tables (cf. §V-A). Assumption spreadsheets allowed us to



progress swiftly on modeling, even when the details are
unclear. Traceability tables allowed us to pinpoint, upon
design changes, the affected parts of the model and push
the changes to the model accordingly. These lessons are the
outcome of running our case study in parallel with a system
in active development, because otherwise we would have
been presented a detailed design where we were not forced
to keep up with the changes.

VIII. CONCLUSIONS

The key benefit of this case study is the culmination
of a single comprehensive system model that covers all
aspects (discrete, real-time, hybrid, probabilistic). This en-
sures consistency of the analyses, which is a major benefit
upon current practices where various (tailored) models are
constructed each covering different aspects. The formal
nature of the used modeling language pushes for rigor and
completeness, which additionally increases confidence in the
output of the analyses. It furthermore enables automation.
Analyses now done manually can be performed automat-
ically, thus saving development time and avoiding human
error in the design documents. The large size of this case
demonstrates the maturity of formal methods, showing that
a full system-level model is feasible with the current state
of the art. The experience leveraged in this case study is
now injected in a follow-up case study project, in which the
current model is updated to reflect the current design. Since
the beginning of this case study, the amount of design details
has roughly doubled (in terms of document pages). Besides
the original objectives, we additionally aim to quantify to
which degree the increased detail affect system-level design
aspects (and hence the formal system-level model), and what
considerations are needed to measure and abstract them.

ACKNOWLEDGMENT

This work was partially supported by ESA/ESTEC (contract
no. 4000100798) and Thales Alenia Space (contract no.
1520014509/01).

REFERENCES

[1] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani.
Verifying industrial hybrid systems with MathSAT. Electronic
Notes in Theoretical Computer Science, 119(2):17–32, 2003.

[2] G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani.
Bounded model checking for timed systems. In Formal
Techniques for Networked and Distributed Systems (FORTE),
pages 243–259, 2002.

[3] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen.
Model-checking algorithms for continuous-time Markov
chains. IEEE Transactions on Software Engineering,
29(6):524–541, 2003.

[4] C. Baier and J.-P. Katoen. Principles of Model Checking.
MIT Press, 2008.

[5] H. Boudali, P. Crouzen, and M. Stoelinga. Dynamic fault
tree analysis using input/output interactive Markov chains. In
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 708–717. IEEE CS Press, 2007.

[6] M. Bozzano, R. Cavada, A. Cimatti, J.-P. Katoen, V.Y.
Nguyen, T. Noll, and X. Olive. Formal verification and
validation of AADL models. In Proceedings of Embedded
Real Time Software and Systems Conference (ERTS2 2010).

[7] M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, T. Noll,
and M. Roveri. Codesign of dependable systems: A
component-based modelling language. In Proceedings of
Conference on Formal Methods and Models for Co-Design
(MEMOCODE 2009), pages 121–130. IEEE CS Press.

[8] M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, T. Noll,
and M. Roveri. Safety, dependability, and performance
analysis of extended AADL models. The Computer Journal,
doi: 10.1093/com, March 2010.

[9] M. Bozzano and A. Villafiorita. The FSAP/NuSMV-SA
Safety Analysis Platform. International Journal on Software
Tools for Technology Transfer, 9(1):5–24, 2007.

[10] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: a new symbolic model checker. International
Journal on Software Tools for Technology Transfer, 2(4):410–
425, 2000.

[11] A. Cimatti, C. Pecheur, and R. Cavada. Formal verification of
diagnosability via symbolic model checking. In International
Joint Conference on Artificial Intelligence (IJCAI), pages
363–369. Morgan Kaufmann, 2003.

[12] European Cooperation for Space Standardization. ECSS-E-
ST-40C: Software General Requirements. Software Standard.

[13] M. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in prop-
erty specifications for finite-state verification. In International
Conference on Software Engineering (ICSE), pages 411–420.
IEEE CS Press, 1999.

[14] P.H. Feiler, D.P. Gluch, and J.J. Hudak. The Architecture
Analysis & Design Language (AADL): An introduction.
Technical Note CMU/SEI-2006-TN-011, CMU Software En-
gineering Institute, 2006.

[15] L. Grunske. Specification patterns for probabilistic quality
properties. In International Conference on Software Engi-
neering (ICSE), pages 31–40. ACM, 2008.

[16] J.-P. Katoen, I.S. Zapreev, E.M. Hahn, H. Hermanns, and D.N.
Jansen. The ins and outs of the probabilistic model checker
mrmc. Performance Evaluation, 68(2):90–104, 2011.

[17] RTCA Inc. and EUROCAE. DO-178C/ED-12C: Software
Considerations in Airborne Systems and Equipment Certifi-
cation. Software Standard, 2011.

[18] R. Wimmer, M. Herbstritt, H. Hermanns, K. Strampp, and
B. Becker. Sigref – a symbolic bisimulation tool box.
In International Symposium on Automated Technology for
Verification and Analysis (ATVA), volume 4218 of LNCS,
pages 477–492. Springer-Verlag, 2006.


