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1 Introduction

Rule-based programming has become one of the dominant computing paradigms within the artificial intelligence
community, particularly in the expert systems arena. To a large extent, this popularity is due to the intuitive
appeal of specifying computations as sets of rules. Success, however, has generated an increased demand for
computing efficiency, particularly in using rule-based programming for application areas involving real-time
decision processes. It is generally agreed that parallel processing offers the only hope for achieving significant
execution speed-up [10,17]. Throughout this paper we use the ferm concurrency to refer to the potential
for parallelism inherent in the logical structure of a program. We reserve the term parallelism to refer to
implementations that employ hardware consisting of multiple processing units. Our research is concerned with
promoting concurrency in rule-based programs, i.e., with enhancing the opportunities for parallel matching and
firing of rules whether the implementation is parallel or not. To date, most efforts directed toward the parallel
processing of expert systems has followed a relatively conservative strategy [11,12). They start with existing
rule-based programs and attempt to identify parallel algorithms for key functions of the run-time system such
as the matching and firing of rules. Our strategy both complements and competes with these approaches. The
complementary aspect is a direct consequence of the fact that rule-based programs written with an eye towards
concurrency are less likely to impose sequential dependencies that could undermine parallel implementations.
The competitive aspect stems from the fact that the very nature of rule-based programming may be altered and
completely new implementation strategies may become feasible when one injects the concern for CONCUITENncy
into the program derivation process.

Program derivation refers to a systematic formal process of constructing correct programs from their specifi-
cations, typically through some form of stepwise refinement. Thanks to work by Dijkstra [6], Gries [9], and many
others, this approach has reached high degrees of sophistication and formality in the arena of sequential pro-
gramming. The introduction of similar techniques to the area of concurrent programming is a relatively recent
development. Chandy and Misra’s work on UNITY [4] advocates an approach in which a formal specification
of the problem is gradually refined up to the point when the specification is restrictive enough as to suggest
a trivial franslation into a concurrent program. An alternate approach is offered by work on action systems.
Back and Sere [1] start with an initial {mostly sequential) program and refine it into an efficient concurrent one.
In this paper we show that a combination of specification and program refinement may be applied to deriving
eflicient concurrent rule-based programs. We employ specification refinement to generate an initial rule-based
program that is later refined into a program that is highly concurrent and efficient. The approach is targeted
to rule-based programs that terminate.

The program notation and proof logic used in this paper are those of Swarm [15], a concurrency model in
which all the entities that make up the program state have a tuple-like representation and state transitions,
called transactions, are described using a rule-like notation. Swarm is uniquely appropriate for this task. Its
proof logic [5] is a direct extension of the UNITY proof logic. Consequently, specification refinement technigues
used in UNITY are also applicable to Swarm. Moreover, the Swarm notation is very close to common rule-based
languages, such as OPS5 [7]. This facilitates the integration of techniques used in concurrent programming into
the rule-based programming arena.



The remainder of the paper consists of five main parts followed by a discussion and conclusions. Section 2
introduces Swarm and programming notation used throughout the paper. Section 3 summarizes the proof logic
for Swarm. The use of assertions to specify rule-based programs is illustrated in Section 4 on a typical artificial
intelligence textbook problem, grocery bagging. The published programming solution [19] relies on conflict
resolution for tasking and rule-ordering, and no speed-up would be gained if executed in parallel on available
parallel productions system models, such as those proposed by Ishida and Stolfo {11], and Schmalze [17]. Section
5 presents a systematic formal derivation of a highly concurrent version of the this program without reliance
on traditional conflict resolution. Section 6 gives the results of executing the derived program in the parallel
production system PARS [17], which is also described in this section.

2 Notation

Swarm [15] belongs to a class of languages and models that use tuple-based communication. Other languages
and models in this class are Linda [3], Associons [14], and GAMMA [2]. In this section we present a brief
overview of the Swarm notation and its relation to traditional rule-based programming notation.

The dataspace. In Swarm, the entire computation state is captured by a set of tuple-like entities called
the dataspace. For the purpose of this paper, the dataspace is partitioned into a tuple space, which corresponds
working memory, and a transaction space, which corresponds to the knowledge base.

Working memory. The tuple space consists of a set of data tuples, which correspond to working memory
elements. A data tuple assumes the form:

class_name(sequence_of.attribute_values)

e.g., iem(l,w,B,n) may be a tuple representing a grocery item uniquely identified by I, of weight w, and packed
in bag B after {n-1)} other items;

Data tuples may be queried, deleted, and inserted. To query for the existence of a data tuple in the
dataspace one simply treats tuple descriptions as predicates over the dataspace. Insertions are specified by fully
instantiated tuples and deletions are specified by tagging a fully instantiated tuple with a dagger (1). Some
examples of queries and actions relating to data tuples one can specify in Swarm follow:

¢ [V Iw,Bn : item(I,w,Bn) :: B=0An= 0]~ (only as a query) checks if all items are unbagged,
i.e., the bag identifier is zero;

o item(I,w,0,0) — (as an action) deletes this item from the dataspace.

e item(I,w,0,0) — (as an action) inserts this item into the dataspace.

Production memory. The transaction space consists of a set of transactions. A simple transaction is
analogous to a rule found in rule-based programming languages, and is defined in terms of a query followed by
an action list consisting of deletions and insertions. The query is considered as the LIIS of the simple transaction
and the action list is the RHS. For instance,

B: I]_,\V]_,n]_,lz, Wo,Nlp
item(ly, wi, B,n1) A item(ls, wo, B,na) A (wy > w2) A (03 > ny)

item(Iy, wy, B, n1)f, item(Ia, we, B, na)f, item(Iy, wi, B, ns), item(l2, wo, B,n,)

I'This three part notation is defined as follows: the first part, up to the single colon, consists of a quantifier and a list of quantified
variables; the middle part restricts the domain of values that may be assuined by the variables; the third part, after the double
colon, consists of a predicate. If the single colon is missing, the domain is not restricted.



states that two groceries items that have been packed in the same bag with the heavier one on top of the lighter
one are sub ject to a position exchange by deleting the old instances of the two item descriptions and by inserting
new ones. The query is an arbitrary predicate that may involve testing for the presence or absence of data tuples.
A successful query binds the variables listed before the query (existentially quantified by implication) to values
used to compute the dataspace deletions and insertions. Al deletions and assertions must contain hounded
variables. Deletions always precede insertions, and it is acceptable for a transaction to attempt to delete an
instantiated tuple that does not exist in working memory. Such deletions have no effect and do not represent
semantic errors. If the query evaluates to false, no explicit deletions or insertions are performed.

Commas may be used inside the query as shorthand for the logical and (A) and the order in which deletions
and insertions are listed is immaterial. Actually, when the tuples being deleted are present in the query part,
their deletion can be marked by daggers inside the query (only as a shorthand notation}. Using these conven-
tions the simple transaction above hecomes

B,Ij,wy,np, 1o, wp,np ¢
item(ll,W],,B,DI_)i', item(Ig,“’z,B,nz)T, (wl > WQ)} (Il]_ > DZ)
——

item(I;, w1, B,ns), item(Iy, w2, B,11)

Naming transaction instances and classes. In Swarm the simple transaction above can be parameter-
ized with respect to B and can be given a name:

Swap(B) =
Il,wl,nl,Ig,Wz,ng :
item(I;, wy, B,n1)i, item(Iz, w2, B,n2)f, (w1 > ws), (n1 > na)
—_
item(I;, wy, B, ny), item(Iy, wa, B,n;)

This becomes a transaction type or transaction class definition, whose parameters (if any) are attribute
values. Actually, every rule used in a Swarm program must be an instance of one of a finite set of transaction
classes associated with the program. The transaction space containg transaction instances (henceforth simply
called transactions) that can be executed by the program at a particular point in the computation. For example,
a transaction of class Swap, such as Swap(1), represents a specific transaction that may be included in the
transaction space af initialization or during execution. Since transaction names in the transaction space are
superficially indistingnishable from data tuples in the tuple space, Swarm allows queries and actions to refer
to both data tuples and transactions, except that the action list may not include deletions of transactions.
The technical reasons for this restriction will become apparent later in the paper. A query that tests for the
presence or absence of a transaction in the transaction space is successful if there exists a desired instance of the
transaction class in the transaction space. This test does not evaluate the transaction instance. The distinction
between a transaction type definition and a transaction in Swarm represents another point of departure from
current rule-based languages.

Transaction selection and execution. The transaction space of a Swarm program consists of a set of
transactions. For rule-based programs expressed in Swarm, fairness requires that each transaction in the trans-
actlon space is eventually selected and executed (atomically), according to its class definition. The transaction
selection is done prior to the evaluation of its query and is based simply on the fact that the transaction exists
in the transaction space. A transaction executes any time it is selected. If the query does not succeed, the
transaction is deleted from the transaction space. If its query is successful the deletions and insertions listed
in the action list of the transaction are performed. The transaction is deleted implicitly unless it explicitly
reinserts itself in the transaction space. Since transactions may be deleted and inserted, the transaction space
is dynamic. In general, the transaction space is continuously updated by executing transactions that insert new
transactions. Of course, the fransaction space may be kept the same by reinserting each transaction after every
execution. A Swarm program terminates when there are no more transactions in the transaction space.



Composition of simple transactions. In traditional rule-based languages, such as OPS5, rules cannot
be combined to create new rules. In Swarm, however, the |[-operator, borrowed from UNITY, may be used to
combine several simple transactions into a single complex transaction. A complex transaction is defined using a
class name and parameters in the same manner shown for a simple transaction. For instance, a transaction that
swaps out-of-order items in a bag B can be composed with a transaction that counts the number of successful
swaps.

Swap_and_Count(B) =
11 , Wi, nl,Ig, Wa,Rn
item(l1, wy, B,n;)t, item(Iz, wo, B,na}f, (w1 > wa), (m3 > ng)
—
item(Iy, wy, B, ny), item(Is, we, B,n;)
k:
| swapcount(k)j — swapcount(k+1)

The simple transactions making up a complex transaction are called subtransactions. When an instance of
a complex transaction is chosen from the transaction space, all the subtransaction queries are applied together
but only those subtransactions whose queries are successful contribute deletions and insertions. The combined
deletions of successful subtransactions are performed simultaneously and are followed by the combined assertions
of the same subtransactions. If the [|-operator is used without restriction, the resulting transaction may not be
equivalent to any serial execution of its component subtransactions since all queries precede all deletions which,
in turn, precede all insertions.

There are two problems with the above Swap_and_Couni(B) transaction. The first problem is that because
the queries of the subtransactions are performed simultaneously, it is possible for the second subtransaction
query to be successful when the first subtransaction query is not. The result is that if there are no out of
order items in the bag B, the count is still increased. The second problem is that Swap_and_Count(B) executes
once and deletes itself. Thus, the program can terminate with items incorrectly ordered in a bag. To solve the
problem, the second subtransaction should succeed only if the first subtransaction succeeds, and the transaction
should reinsert itself as long as it finds out of order items in bag B. This requires strengthening the query on
the second subtransaction. Swarm provides a very compact notation for doing this.

Notational convenience with special queries. In Swarm, the correct version of
Swap_and.Count(B) may be stated very compactly as

Swap.and_Count(B) =
I, wi,n1,1a,we,nq
item(l;, w1, B,ny)f, item(lz, wo, B,na)f, (w1 > wa), (ny > ng)
E—
item(l;, wy, B,ny), item(Is, wy, B,n;)
I k:
OR, swapcount(k)t — swapcount(k+1), Swap_and_Count(B)

The special predicate, OR, succeeds by definition, whenever some other query appearing in the same transaction
is successful, and this query malkes no reference to any special built-in predicates. Such queries are called regular,
while those that utilize special predicates are called special queries. Besides OR, other special predicates are
AND, NAND, NOR, and TRUE with the meaning all, not all, none, and no matter how many of the
regular queries appearing in the same transaction succeed. Throughout this paper, the special queries provide
only notational convenience.? They are most often used either to force the recreation of the transaction whenever
the query fails or to prevent recreation of the transaction when it is no longer useful.

Initialization section. Each program in Swarm must have a section that defines the initial configuration
of the dataspace. For instance, one initial configuration of a program using Swap_and.Count(B) may involve M
items and a transaction that reorders the items in bag number 3:

2These special queries have other purposes when used with features of Swarm that are not presented in this paper.



[I:1<I<M : item(l,weight(I),bag(l),position(T)), Swap_and_Count(3), swapcount(0} ]

in which weight(I), bag(I), and position(I) are functions that map ['to a weight value, bag number, and position,
respectively. The three-part construct used above is called an object generator. [is a dummy variable that is
restricted to ranging between 1 and some constant value M. For each valid value of I the generator contributes
two data tuples ilem(l,weight(1) bag(I),position(I}) and swapcouni(() and a transaction Swap.and_Couni(3).
Since the net product is a set, object duplication is harmless.

3 Proof Logic Overview

Our program derivation methodology presupposes the ability to specify the operational details and formal
properties of the program under development and to formalize the functional requirements imposed by the
application. Section 2 gave an overview of the Swarm notation that is used to describe the structure and
behavior of rule-based programs resulting from the application of our method. Safety and progress properties
of programs are specified and verified using the Swarm proof logic [5] summarized in this section. The same
proof logic is used to define an initial program specification. This is accomplished, as shown in Section 4, by
constructing a sufficiently complete assertional-style characterization of the class of programs that represent
acceptable realizations of the particular application. The Swarm proof logic follows the notational conventions
for UNITY [4]. We use Hoare-style assertions of the form {p} ¢t {¢} where p and ¢ are predicates over the
combined fuple space and transaction space (i.e., the dataspace) and is a transaction. Properties and inference
rules are often written without explicit quantification; they are universally quantified over all the values of the
free variables occurring in them. The notation [{]® denotes the predicate “transaction ¢ is in the transaction
space”, TRS denotes the set of all possible transactions (not a specific transaction space), and INIT denotes
the initial state of the program. The proof rules for the subset of Swarm used in this paper are summarized in
Figure 1. The first use of these concepts appears in the next section, where we elaborate the specifications of a
sample problem.

4 Formal Specification

In this section we introduce and give a formal specification of the problem used to illustrate our approach to
formal derivation of rule-based programs. Bagger is a rule-based program described by Winston in {19]. More
detail of this particular formulation of the problem is given in Section 6. It expresses the desired way in which
grocery items should be packed into bags. The program must pack all unbagged items according to their weight,
with the heavier items preceding the lighter ones in each bag. A bag must only be created when it is needed,
and its weight must not exceed some predetermined maximum value. The program must terminate when all
items have been bagged.

4.1 Representation

The very first decision one must take in building a formal specification is the choice of representation for the
entities manipulated by the program. This decision has important implications on the simplicity and conciseness
of the formal specification. Moreover, in the absence of data refinement, the representation has a direct bearing
also on the degree of concurrency achievable by programs derived from a particular specification. In this paper,
however, we are not concerned with heuristics for constructing “good” specifications. We assume that a valid
and adequate specification exists and concentrate our attention on a process for deriving concurrent programs
that meet that specification. Qur choice regarding the representation of items is fine grained because such a
representation is less likely to restrict the opportunities for concurrency.

4Throughout the paper we simply use ¢ in place of [4 in predicates dealing with the existence of transaction t.



L {p} ¢ {¢}

Whenever the precondition p is true and ¢ is a transaction in the fransaction space, all
dataspaces that can result from executing { satisfy postcondition g.

Wt:te TRS = {p A ~qgltipval]

p unless ¢

If p is {rue at some point in the compuiation and g is not, then, after the execution of
any single transaction, p remains true or ¢ becomes frue.

3. stable p = p unless false
If p becomes true, it remains true forever.

4. invariant p = (INIT = p) A (stable p)
5. constant p = (stable p ) A (stable —p )

Invariants are properties that are true at all points in the computation, written inv p
and const p.

6 {punless g} A[3t:t¢c TRS = (p A g = [t} A {p A =g}t {g}]
) P ensures g

For p ensures g to be irue, there must exist a transaction # in the transaction space such
that ¢ will establish ¢ when executed from a state in which p A =g holds. The requirement
p A g = [t] generalizes the UNITY definition of ensures to accommodate Swarm’s
dynamic creation of transactions. The second part of the definition guarantees ¢ will
eventually become true. This follows from the fact that a transaction can be removed

{from the dataspace only if il ezecules; the fairness assumption guarantees that a
transaction will eventually be selected and executed.

T.p —+ ¢ (Read p leads-to ¢.)
Once p becomes frue, ¢ will eventually become true, but p is not guaranteed to remain

true until ¢ becomes true. As in UNITY, the assertion p —— ¢ is frue if and only if
it can be derived by a finite number of applications of the following inference rules:

(1) p_ensures g (2) pr—7 AT I— g
Pt g P oe— g

W [¥m :m €W u plm) m— 4]

{3) Tor any set W, Emim €W o pim)] s g

8. TERM = [Vi:t € TRS = -[t]].

Swarm programs terminate when the transaction space is empty.

Figure 1: A subset of the Swarm proof logic.




The universe of grocery items forms a class whose members assume the form item(l,w,B,n), where item
is the class name and the parentheses hold a sequence of values, one for each attribute of the class. Iis the
unique identifier of the item, w is the weight of the item, B is the unique identifier of the bag in which the
itemn is packed, and n is the position of the item in its bag. If B is zero, then the item is considered unbagged.
Regarding the bags, as already shown, their representation is distributed across that of the items they hold.
Furthermore, both bags and items are restricted in weight to a maximum value H. Given this representation,
we can turn next to developing a formal specification from which the program will be derived. All variables
appearing free are universally quantified.

4.2 Proof Obligations

The constraints we want to impose over the representation of grocery items have to do with the desirability of
being able to distinguish items by using unique identifiers and the requirement that they do not change weight
along the way:

inv [ w,Bn: item(I,w,Bn) = 1]*< 1 (51)
const {3 Bn :: item(L,w,B,n)] (52)

The fact that bags have a distributed representation results in the necessity to impose constraints over
working memory. In particular, bags are not permitied to exceed a maximum weight capacity # and must have
contiguous identifiers:

inv WgBag(B) < H (S3)

inv (WgBag(By) > 0) A (B, > B; > 0) = WgBag(B,) > 0 (S4)
where

WgBag(B) = [ Lw,n : item(I,w,B,n) :: w} (D1)

Next, we impose restrictions on the bagging policy of the program. TFirst, once an item is placed in the
bag, it cannot be removed and it cannot change positions within the bag. This constraint maps directly to the
assertion

stable item(I,w,B,n) A (B=Bg > 0) A (n = ng > 0) (S5)

Second, we require that bagged items have non-zero positions and that no two items occupy the same position
in the same bag. A third restriction is that items in the same bag are ordered according to their weights, with
heavier items packed before lighter ones. Finally, if one item is in the first position of some bag, then all bags
created prior to this bag (as determined by the identification numbers of the bags) cannot hold the item. This
guarantees that bags are created as needed. All these requirements are captured by the following invariant:

nv [V I]_,IQ,W;(,WQ,B1,Bz,n1,ng : (SG)
item(Iy, w1, By, m) A item(Tz, wa,Ba,m) A (By > 0) A (Bs > 0) =
(ny > 0) A (ng >0)
A ((I]_ o 12) L= (Bg_ = Bz) A (1’11 = 112))
A ((Il # Ig) A (W1 > Wg) A (Bl ;Bg) = (n1 < Il;;))
Al # I2) A (By < Ba) A (2 =1) = (WgBag(Bi)+wy) > H)]
1The three part notation is extended to allow operators in place of quantifiers. In such cases, the third part of the notation

defines a list of operands over which the operator is applied. Here we sum the weights of items contained in a particular bag. If
the list of operands is empty, the result is zero.




Given these integrity and policy statements, the problem to be solved is stated very simply: given a finile
sel of unbagged grocery items with identifiers in the range 1 to N and weights in the range I {0 H, the program
terminates wilh ell flems packed. This is captured by the following set of conditions:

GINIT — GPOST (P1)

GINIT = [V Lw,B,n : item(l,w,B,n) :: (D2)
((<w<HALSISN)AB=0)A (=0

GPOST = [V Lw,B,n : item(I,w,Bn) = B > 0] (D3)

where GINIT, the initial state of the data, requires that all items start unbagged and have weight less than H
and GPOST, the desired outcome of the computation, requires that all items are bagged.

Of course, GINIT must be established initially in the program, and once the desired outcome of the compu-
tation is reached the program eventually terminates. Therefore,

INIT = GINIT (C1)
stable GPOST (S7)
GPOST — TERM (P2)

INIT is the initial state of the program including the input data and TERM is the termination condition of
all Swarm programs as defined in Figure 1. The property (57) is implied by the stronger requirement (S5).
Termination, however, is an additional requirement independent of all others listed so far.

5 Program Derivation

In this section we develop a concurrent version of Bagger. We start with the formal specification given in Section
4 and apply to it, throughout Section 5.1, a series of refinements in a manner reminiscent of the UNITY derivation
process. The basic strategy behind the refinement steps is as follows. First, we introduce a way of measuring
global progress toward the desired outcome of the computation. Second, we express the global measure in
terms of simpler measures dealing with subproblems suggested by a proposed solution strategy. Third, we seek
ways of accomplishing progress toward solving the individual subproblems. Finally, we generate a program that
can be easily shown to meet the refined specification. The resulting program exhibits a significant degree of
concurrency, has a static set of rules, is correct except that it is non-terminating, and makes indiscriminate use
of highly complex queries.

Program refinement, detailed in Section 5.2, starts with this program and attempts to generate a new
program that offers greater opportunities for efficient parallel execution. First, we attempt to maximize the
degree of concurrency achievable by the program. This involves replacing single transactions with groups that
can perform the same computational task but possibly in parallel. Second, we address the issue of termination.
Third, we apply a series of heuristics to decrease the complexity of the queries employed by the program.
Finally, we take advantage of dynamic transaction creation and attempt to continually update the contents of
the transaction space to ensure that transactions are present only when they can contribute to reaching the
computational goals at hand and not sooner.

5.1 Stepwise Refinement of the Specification

Having given a formal specification for Bagger, this section is concerned with refining the specification to the
point that an initial Swarm program can be constructed directly from the refined specification. Successive
refinements of the main progress property (P1) are performed by gradually factoring in elements of an emerging
solution strategy. The discovery of the solution strategy is generally accepted to be a creative step. Verifying
that the original specification is satisfied by the refinement is a formal step involving an application of the
Swarm proof logic.



5.1.1 Refinement 1: measuring progress

We see refinement as a reversal of the verification process. In other words, given a property that needs to be
refined we pose the question how one might prove such a property. For instance, proving a property such as

GINIT s GPOST (P1)

usually requires the introduction of a variant function needed to construct an inductive proof. For Bagger, the
number of unbagged grocery items

NrOut = [E Lw,n : item(I,w,0,n) = 1} (D4)

is the most obvious way to measure progress. From its definition and from properties (S5) and (S1), which
state that bagged items are stable and that items are unique, we can establish that NrQut is non-increasing and
well-founded

stable NrOut < k (58)
inv NrQut > 0 (59)

The requirement (P1} becomes a consequent of the three conditions

GINIT = NrOut < N (S10)
NrQut =k Ak > 0 — NrOut < k (P3)
NrOut = 0 = GPOST {S11)

Property (510) follows from the definitions of NrOut and GINIT. Property (S11) may be proven using (S1),
which requires an item to be either bagged or unbagged, but not both. Property (P3) replaces the requirement
(P1) in the derivation.

5.1.2 Refinement 2: introducing local measures

If one is interested in generating a sequential program, the variant function NrQut is a good choice. Items
could be bagged one at a time. However, when seeking concurrency one generally needs to discover areas of
localized progress that together contribute toward achieving global progress. In the case of Bagger, we observe
that NrOut can be replaced by an equivalent measure consisting of a vector whose components are the number
of unbagged items corresponding to each conceivable weight w. By introducing the function

Nrwg(w) = [£ In : item(I,w,0,n) = 1] (D5)
we can replace the condition (P3) by
Nrwg(w) =k Ak > 0 — NrWg(w) < k (P4)

with w being universally quantified, by convention. Properties similar to (S8) and (S9) also hold for NrWy(w)

stable NrWg(w) < k (812)

inv NrWg(w) > 0 (513)
and

NrOut =k & [¥ w:: NrWg(w)] =k (514)

is a direct consequence of the definitions (D4} and (D5). Sinece, according to (P4), items in every weight category
are eventually bagged, (P3) clearly holds. Therefore, (P4) replaces (P3) in the derivation.
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5.1.3 Refinement 3: shaping local progress

Our next task is to refine the relatively abstract property (P4) so as to make explicit the way in which packing
Is carried out. Two plausible solution strategies are: (i) pack the heaviest items before considering unpacked
items in the lower weight categories, and (ii) pack in each bag the heaviest item the bag can hold. Both solutions
are consistent with the problem specification but the latter strategy provides more opportunities for exploiting
concurrency by packing items of differing weights at the same time. Under this strategy, NrWg{w) is expected
to decrease whenever w is the largest weight among all unbagged items or w is the weight of the largest item
that fits in a particular bag B.

We define two predicates, MazWy{w) and MazFit Wg(w), to capture the two cases

MaxWg(w) = (w = [max I, w’ : item(I,w’,0,0) = w’])° (D6)

MaxFitWg(w) = [3 B = w = [max I',w’ : ftem(D’,w",0,0} A Fit(B,w’) = w] ] (D7)
where

Fit(B,w) = (w < H - WgBag(B)) A [3 w0’ : item(I’,w’,B,n’) = B > (] (D8)

Using transitivity, we substitute for (P4) the properties

Nrwg(w) =k Ak > 0 — NrWg(w) = k A (MaxFitWg(w) V MaxWg(w)) (P5)
NrWg(w) = k A (MaxFitWg(w) vV MaxWg(w)) — NrWg(w) < k (P6)

Since property (P5) (for a particular value of w) is provable given that (P6) holds for all values of w, we need
to consider further only the property (P8).

The structure of the LIS of property (PG) suggests its rewriting into two distinct progress properties; one
corresponding to MaxFit Wg(w) being true whether or not MazWy(w) is true, and the other corresponding to
the case in which MazWg(w) is true but MaexFit Wg(w) is not.

NrWg(w) = k A MaxFitWg(w) — NrWg(w) < k (P7)
NrWg(w) = k A “MaxFitWg(w) A MaxWg(w) — NrWg(w) < k (P8)

In the first case, there are bags that need items of weight w and as a result some of them get packed. In the
second case, there are no bags that can hold items of weight w and some new bag must be created for this
purpose. To accomplish this latter goal further refinement of (P8) must be considered.

For (~MaxFitWg(w) A MazWg(w)) to be true, w must be the heaviest weight among unpacked items and
cannot fit in any existing bag, i.e.,

NoFit(w) = [¥ B : [(ALw,n = item(I,w,Bn)] A B > 0 :: H < WgBag(B) + w] (D9)

When this state occurs, a new bag must be created. By creating bags in this manner, (56) in particular the
portion that describes thal bags are created as needed, is maintained. But, according to the invariant (54) bags
must be created in contiguous order as defined by the predicate NextBag(B) below.

NextBag(B} = (B = [max I,w, B’ n : item(I,w,B’,n) : B’] + 1) (D10)
Using these two definitions we reformulate (P8) as

NrWg(w) = k A NoFit(w) A MaxWg(w) A NextBag(B) (P9)

NrWwg(w) < k A NextBag(B + 1)

SHere we use the operator max, for maximum value. Its meaning here is take the maximum value of every w returned from an
unbagged item.” If there are no such items, the result is zero.
L=} *
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5.1.4 Refinement 4: generating an initial program

By now the specification has acquired sufficient detail to consider transforming it into a concrete program.
Towards this aim, we must find transactions that realize the progress conditions (P7) and (P9) while satisfying
the safety conditions that are also part of the specification. We postulate that the following two ensures
properties hold in order to prove (P7) and (P9).

NrWg(w) = k A MaxFitWg(w) ensures NrWg(w) < k

NrWg(w) = k A NoFit(w) A MaxWg(w) A NextBag(B)
ensures
NrWg(w) < k A NextBag(B + 1)

First we concentrate on (P7). By definition of ensures, any program that satisfies (P7) must include, for
each weight w, a transaction, call it Beg(w), which satisfies

{NrWg(w) = k A MaxFitWg(w)} Bag(w) {NrWg(w) < k} (C2)

One possible design choice is to have Bag{w) select some unbagged item I of weight w and some bag B that can
hold items of weight at most wand pack the item [ in the next available position in B. The following transaction
definition captures this idea:

Bag(w) =
ILBn:
MaxFitWg(w), BestFit(B,w), NextPos(B,n), item(I,w,0,0)t
—_—
item(I,w,B,n)
[ : TRUE —— Bag(w)

BestFit(B,w), similar to MazFitWg(w), determines the weight of the item that could be packed next in B and
NeziPos(B,n) determines the next available packing position in bag B

BestFit(B,w) = w = [max I',w’ : item(I’,w’,0,0) A Fit(B,w’) :: w’] (D11)
NextPos(B,n) = (n = [max I';w’,n’ : item(I’,w’,B,n’} = n’] + 1) (D12)

Finally, by noting that

BestFit(B,w) = MaxFitWg(w)
the definition for Bag{w) becomes

Bag(w) =
LB :
BestFit(B,w), NextPos(B,n), item(I,w,0,0}t
—_
item(I,w,B,n)
| : TRUE — Bag(w)

The first subtransaction of Bag(w) does the packing while the second guarantees that, once created, the trans-
action continues to exist in the dataspace indefinitely. We handle the creation by requiring the existence of
Bag(w) transactions at the start of the program, i.e.,
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INIT= [V w: (1 <w<H):: Bag(w)] (C3)

At this point we are under the obligation to show that Bag(w) satisfies (C2), the unless properties implicit
in (P7) and (P9), and the safety conditions (S1) through ($14). Fortunately, these obligations can be easily
proven by considering only the transactions Bag(w) in isolation from the remainder of the program, still to be
derived. For the sake of brevity the actual proofs are omitted. Here, as elsewhere in the paper, we left out the
proof details for the sake of focusing on the derivation process rather than its low level mechanics.

Starting from (P9) and following the same line of reasoning we discover the need for transactions of type
Muake_Bag that satisfy the property

{NrWg(w) A NoFit(w) A MaxWg(w) A NextBag(B)} (C4)
Malke Bag(B,w)
{NrWg(w) < k A NextBag(B + 1)}

One possible definition of Make_Bag{B,w) is

Make Bag(B,w) =
I:

MaxWg(w), NoFit(w), NextBag(B), item(I,w,0,0)f — item(I,w,B,1)
|| : TRUE — Make Bag(B,w)

The requirement
INIT = [Vw,B: (1 <w<H)A(1<B<N):: Make Bag(B,w)] (Cs)

is added to guarantee the inclusion of these transactions in the initial dataspace configuration.

The resulting program consists of H transactions of type Bag and H*N transactions of type M. ake_Bag. The
set of transactions is finite and constant. This first version of Bagger differs from a corresponding UNITY
program only with respect to the fact that transactions are nondeterministic while conditional assignment
statements are deterministic. This version is correct with respect to the specifications from Section 4 except
that we ignored the termination requirement — we will return to it in a later section.

5.2 Stepwise Refinement of the Program

"The program generated in Section 5.1 is the result of a series of specification refinements motivated by logical
arguments that did not take into account the costs associated with executing individual transactions and the
amount of concurrency ultimately achievable under the adopted solution strategy. Our experience to date
strongly suggests that these concerns are more readily addressed through a program refinement process whose
goals are to maximize concurrency and to increase efficiency. Successive program refinements alter the program
while preserving its correctness with respect to the specification. For example, concurrency is enhanced by
increasing the number of transactions that can perform useful work. Individual transactions are replaced by
groups of transactions that carry out the same computational task possibly in parallel. Efficiency is improved by
eliminating queries that examine large portions of the dataspace and by ensuring that transactions are present
in the dataspace only when needed.

5.2.1 Refinement 1: splitting transactions

Our first refinement is concerned with ensuring that later optimizations are applied to a program that exhibits
the maximum possible potential for concurrent execution, under the constraints of the solution strategy that we
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adopted in the previous section. The refinement involves only the transaction space which, for the time being,
continues to be static, i.e., it contains all the transactions the program will ever need, The idea is to increase the
number of transactions in the transaction space through a technique called splitting. Splitting takes advantage
of the nondeterminism present in query satisfaction by replacing a single transaction with several transactions
whose queries are satisfied by disjoint instantiations of the original query.

The simplest form of splitting entails the replacement of a variable bound in the query by a constant, which
appears as a new parameter of the corresponding transaction class. The replaced variable must range over a
finite set. Thus, the transaction space contains a new transaction for each possible instantiation of the variable.
The technique is similar to constrained copying of rules used in some parallel implementations of rule-based
programs [13] to improve run-time performance. Its use in program derivation shares the same general goal
but in a very distinct context. The resulting program automatically satisfies the specification. The assertions
that are part of the specification make no explicit references to the transaction space. Any program property
preserved by the original transaction is also preserved by the transactions generated by splitting, since they
perform only state transitions that were possible originally. Also, fairness is not affected because the number of
new transactions is resiricted to being finite.

In the absence of a particular implementation model, we define the concurrency Cr,s exhibited by a transac-
tion class T in a program state s to be the largest number of transactions of type T that can execute in parallel
(i.e., as if they were connected by the ||-operator) without violating the program specification. Cr , is maximal
with respect to the set of all conceivable instantiations of the respective transaction queries in the state s. For
Instance, the concurrency exhibited by transactions of type Bag is determined by the number of distinct weights
that can be packed at one time

Chag,s = [Ew: 1 <w < Hz min([S1I:item(I,w,0,0) :: 1], [Z B : BestFit(B,w) == 1], 1) ]

Each Bag(w) packs one item whenever there is at least one unbagged item of weight w and at least one bag in
which to pack the item. For distinct values of w, all instances of Bag(w) can execute in parallel.

In order to increase the concurrency exhibited by the program we must be able to pack more than one item
of weight w at a time. Looking at the definition of Cpay s it is clear that, for a given weight w, the largest
number of items we can hope to pack at one time is

min([E I : item(I,w,0,0) :: 1], [¥ B : BestFit(B,w) :: 1))

no matter how large we make the third parameter of the min function, i.e., the number of available packing
transactions. Maximal concurrency can be accomplished equally well by splitting Bag(w) either bag-wise as in

Bag In(B,w) =
In:
BestFit(B,w), NextPos(B,n}, item(I,w,0,0)1
—_—
item(I,w,B,n)
|+ TRUE — BagIn(B,w)

or item-wise as in

Bag Item(l,w) =
Bn:
BestFit(B,w), NextPos(B,n), item(I,w,0,0)t
-
item(I,w,B,n)
| : TRUE — BagItem(I,w)
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Choosing among these two alternatives must involve criteria other than maximizing concurrency. In the case of
this application, one can reasonably expect to see many more items waiting to be packed than bags available for
packing, especially since bags are created as needed. Therefore, many items of equal weight are likely to compete
for few bags if itern-wise splitting is done. Whereas, with bag-wise splitting, few bags are free to choose from a
large selection of equal weight items. Also, our choice of data representation allows easy access to information
about particular items, while information about bags must be computed by considering all the items present in
each bag. For these reasons we opt in favor of bag-wise splitting. Hence, for each possible value of w (1 through
H) and of B (1 through N), we create an instance of Bag_In(B,w) to replace Bag(w).

Although splitting can only improve concurrency, unnecessary splitting should be avoided since it may
complicate later program optimization steps that try to ensure that transactions are present only when needed.
For instance, our current version of Bagger already includes H*N transactions of type Make_Bag, yet bags must
be created one at a time. In this case, splitting Make_Bag cannot improve concurrency.

5.2.2 Refinement 2: addressing termination

The goal of this step is to address the termination requirement (P2) by eliminating transactions whenever they
are no longer needed and by showing that eventually all transactions become unnecessary. This portion of the
derivation process is the first to take advantage of the dynamic nature of the Swarm transaction space, i.e.,
transactions may be deleted as a by-product of being executed. To guarantee termination we want to eliminate
transactions that can no longer be executed. Up to now all transactions were created initially and existed
forever. They had the form:

T=q—a| TRUE —T

where ¢ is the query part of the first subtransaction of T, and « is the action list of that subtransaction. ‘The
special query TRUE causes the transaction to be reasserted unconditionally. Qur intent is to find some property
rfor which we can prove stable r and r = =—g¢. This allows us to safely redefine 7 as

T=q—alj-r—T

because the stability of r guarantees that ¢ will never again become true and, therefore, 7" will never again be
able to modify the dataspace. Of course, since T'is created at initialization, T is guaranteed to exist any time
q is true. The property r need only be strong encugh to prove termination. For both transaction classes in
Bagger, the property ris easily defined as

r(w) = [VI,w’ : item(I’,w’,0,0) :: w’ # w]
One can show that r{w) falsifies the query of the first subtransaction of Bag_In(B,w) and Make_Bag(B,w) by
observing that [V I', w' : item(I',w/,0,0) = w' #w] = =[II  item(l,w,0,0)]. The stability of r{w) is due to

(52), which states that items have a constant weight and (S5), which states that bagged items are stable. The
transaction definitions become

Bag-In(B,w) =

In:
BestFit(B,w), NextPos(B,n), item(I,w,0,0)t
—rde
item(I,w,B,n)
| I:

item(I,w,0,0) — Bag-In(B,w)
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Make Bag(B,w) =
I:

MaxWg(w), NoFit(w), NextBag(B), item(I,w,0,0){
—_—

item(I,w,B,1)

item(I,w,0,0) — Make_Bag(B,w)

At this point, in order to conclude that the termination condition (P2) is met, we need to show is that
GPOST = r(w). This is clearly so since when GPOST is established, there are no unbagged items left
and GPOST is stable.

5.2.3 Refinement 3: reducing query complexity

It is a well-known fact within the expert system community that the pattern matching phase involved in query
evaluation consumes a large portion of the total time needed to execute one cycle in a rule-based program {10].
Nevertheless, our program derivation process often used complex queries, whose evaluation is likely to burden
even the fastest matching algorithm. The goal of this refinement step is to reduce the complexity of these
queries, thus yielding a more efficient program. The basic mechanism we employ throughout this section is
to create new, continuously-updated tuples that hold the values otherwise computed by complex queries. New
safety properties involving these tuples are added to the specification in order to formalize processing obligations
relating to the maintenance of such tuples. The same safety properties are used to prove that transactions, in
which complex queries are replaced by references to these tuples, preserve the original specifications.

In Section 5.2.1, we made the decision to let individual bags be in control of the items packed in them,
Le., bag-wise parallelism, instead of Jetting individual items be in charge of the bag they were to occupy, i.e.,
item-wise parallelism. Intuitively, it is reasonable to expect that complex queries that change with respect to
bags are easier to reduce than complex queries that involve changes to the set of items. This is exactly the
case. The satisfaction of the queries NextPos(B,n), WgBag(B), NextBag(B), Fit(B,u) and NoFit{w) changes
only when the state of a bag changes. References to these complex queries can be replaced by references to
tuples that maintain the values of the original query. Such reductions will yield tuples that are only accessed
by the corresponding bag. Whereas, the satisfaction of the queries BestFit(B,w) and MazWg(w)} changes when
the state of the items changes. In order to maintain these state changes within a tuple, the tuple would have
to be shared by all transactions. This representation would cause a serious decline in the available concurrency.
A technique we use to reduce the need for such globally accessed data is to create an approzimation, ic., a
tuple containing a value that is guaranteed to converge to the correct value. For example, the query MazWg(w )i
in transaction Make_Bag(B,u) involves looking at the weight of all unbagged items to determine the largest
weight. Using a single tuple to represent this exact weight would require every transaction that modified the
set of unbagged items, to access and possibly modify this weight, creating a bottleneck. However, if we create
a tuple that approximates this weight under the restriction that this tuples weight is always at most the actual
largest weight and eventually converges to the actual weight, then only transactions of type Make_Bag(B,w)
need to maintain the approximating tuple. Thus, for each of the complex queries involving the overall state of
the items, a tuple will be used to approximate the value of the query.

Replacing queries by single tuple searches. To make the reduction more clear, we will first expand Best-
Fit(B,w). This is because the queries Fit(B,w) and WyBag(B) are hidden inside BestFit(B,w) in Bag_ In{B,w).
We will return to the actual query for BestFit(B,w) later. The expanded Bag_In(B,w) transaction is

BagIn(B,w) =
In:
w = [max I',w’: item(I’,w’,0,0) A Fit(B,w’) :: w’], NextPos(B,n), item(I,w,0,0)t
—_
item(I,w,B,n)
|| I: item(I,w,0,0) — BagIn(B,w)
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{Please recall that commas represent an alternate notation for the logical and.) We can redefine Fit(B,w) using
a tuple, capacity(B,c), where c represents the spare capacity of the bag, as

Fit(B,w) = [3 ¢ : capacity(B,c) = w < ¢] (D13)
provided the following invariant holds.
inv capacity(B,c) < ¢ = H - WgBag(B) A A" w’ 0’ : item(I’,w’,Bn’) :: B > 0] (S15)

Although (D13) allows us to simplify considerably the query in Bag In{B,w), it adds new processing require-
ments dealing with the creation and updating of the new tuple. The tuple cepacity(D,c) must be asserted into
the tuple space the first time an item is packed in any bag. This is done by Make_Bag(B,w). The tuple must
be updated whenever the spare capacity changes. Thus, Bag_In(B,w) is responsible for updating capacity(B,c).

Before showing the changes to Bag.fn(B,w), let us consider also the query NextPos(B,n). A tuple
nezi_pos(B,n) can be directly utilized provided the specifications are strengthened to include the following
invariant.

inv next_pos(B,n) < NextPos(B,n) (S16)

When bag B is created by filling its first position, Make_Bag(B,w) creates nexi_pos(B,2) and whenever an
unbagged item of weight w is placed in bag B, Bag./n(B,w) replaces newi_pos(B,n} with nezt_pos{B,n+1). We
now show the changes to Beg_In(B,uw) caused by introducing capacity(B,c) and next.pos(B,n). The changes to
Make_Bag(B,w) are presented later when reduction of its queries is performed

Bag In(B,w) =
Ine:
w = [max I',w’ : item(P’,w’,0,0) A w’ < ¢ W), capacity(B,c)i,
next_pos(B,n)f, item(I,w,0,0)
-
item(L,w,B,n), capacity(B,c-w), next_pos(B,n+1)
| I: item(I,w,0,0) — BagIn(B,w)

We turn our attention to Make_Bag(B,w) to reduce the queries NoFii{w) and NeziBag(B). The reduction
of the query MazWg(w) will be discussed later. The only reduction that can be performed on NoFit{w) is to
redefine the predicate using cepacity(B,c), but all existing bags must still be checked.

NoFit{w) = [V B,c : capacity(B,c) :: ¢ < w] (D14)
To reduce NexiBag(B), the tuple nezt_bag(B} can be introduced to keep track of the next bag to be created.
inv next_bag(B) < NextBag(B) (817)

Because initially the next bag to be created is the first bag, we require that INIT = next.bag(1). Whenever
the first item of weight wis placed in a bag B, nezi_bag(B+1) must be asserted by Make.Bag(B,w). The resulting
definition of Make_Bag(B,w), including the changes from the reduction of Bag_In(B,w) is as follows.

Make Bag(B,w) =
I:
MaxWg(w), [V B',¢’ : capacity(B’,¢’) : ¢’ < w], next_bag(B){, item(I,w,0,0)t
item(I,w,B,1}, next_bag(B+1), capacity(B,H-w), next-pos(B,2)
| I: item(I,w,0,0) —+ Make Bag(B,w)
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Approximating queries by single tuple searches. We desire (as earlier) to replace by single tuples
complex queries whose values change due to changes in the set of items. For example, ideally we want to include
in the specification

inv bestfit(B,w) < BestFit(B,w)
where BestFit(B,w) can be rewritten as

BestFit(B,w) = [3 ¢ : capacity(B,c) :: w = [max I';w’ : item(I’,w’,0,0) A w* < ¢ 12 w’]

Because bagging elsewhere may use up all of the items of weight w, this tuple would have to be shared by
all Bag_In transactions, which must check its value with only one allowed access at a time. This type of shared
tuple would severely limit the available concurrency. In an attempt to distribute access to shared information
we create a tuple that approximates the global state for each local operation and eventually converges to that
state, while obeying the specifications. Applying this technique, our solution is to make the tuple best_fil{B,w)
approximate and gradually converge to BestFit(B,w’). We define convergence as

inv1>[Ew: bestfit(B,w) 1] >0 (518)
inv best_fit(B,w) A BestFit(B,w’) A capacity(B,c) = ¢ > w > w’ (S19)
bestfit(B,w) A BestFit(B,w’) A w > w’ — best_fit(B,w-1) (P10)

and detect convergence by

inv best_fit(B,w) A item(I,w,0,0) = BestFit(B,w) (520)
To ensure convergence we add to Bag_In(B,w} a subtransaction of the form

| - [V I',w’ : item(I’w’,0,0) :: w’ # w], bestfit(B,w)t, w > 0
—_—
best fit(B,w-1)

"The next step is to substitute the LHS of (520) for BestFit(B,w) in Bag.In{B,w). This poses a problem
because we can no longer use the ensures (as in 5.1.4) to prove (P7) the original leads-to property on which
Bag_In(B,w) was based. The reason is that we used the set of Bag_In transactions to prove (P7) and now we are
altering their meaning. We need to prove (P7) differently by examining the global effect of the local convergence
of best fit(B,w). Such a proof splits (P7) into two leads-to properties on which transitivity can be applied:

NrWg(w) = k A MaxFitWg(w) (P11)

[EE—

NrWg(w) = k A MaxFitWg(w) A NearFit(w)

and :
NrWg(w) = k A MaxFitWg(w) A NearFit(w) (P12)
Nrwg(w) < k

where
NearFit(w) = [3 B :: best.fit(B,w)) (D15)

We can see that the new subtransaction helps to prove (P11) through induction, and the first subtransaction
of Bag-In(B,w) with BestFit(B,w) properly replaced helps to prove (P12). Bag In(B,w) becomes
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BagIn(B,w) =
In,c:
best fit(B,w){, capacity(B,c)t, next_pos(B,n)1, item(I,w,0,0)§
—
item(I,w,B,n), capacity(B,c-w), next.pos(B,n+1), best_fit(B,min(w,c-w))
I [VIw: item(I’,w’,0,0) :: w’ # w], best_fit(B,w)f, w > 0
—_—

best fit(B,w-1)
| I: item(I,w,0,0) — BagIn(B,w)

The assertion of bes!_fit(B,min(w,c-w)] is necessary to maintain the invariant (S19) by keeping w < ¢ for
capacity(B,c).

The same process is applied to Make_Bag(B,w) to reduce the complex query MazWg(w). The result includes
the introduction of an approximating tuple, maz_wg(w). Convergence is defined as

inv1=[Zw: maxwg(w): 1] (s21)
inv max_ wg(w) A MaxWg(w’) = w > w’ (522)
max_wg(w) A MaxWg(w’) A w > w’ — max.wg(w-1) (P13)

Convergence is detected by

inv max_wg(w) A item(I,w,0,0) = MaxWg(w) (523)

A subtransaction is added to Make_Bag(B,w) to guarantee convergence and MazWg({w) is replaced in the first
subtransaction to detect convergence, as was done with besi_fit(B,w). The tuple maz_wg(H) must be present
initially in the dataspace.

Make Bag(B,w) =
I:
max.wg(w), [V B’,c’ : capacity(B’,¢’) :: ¢’ < w], next_bag(B)t, item(I,w,0,0)f
—
item(L,w,B,1), next_bag(B+1), capacity(B,H-w), next_pos(B,2), best_fit(B,min{w,H-w))
I [FMIw:item(I’w,0,0) :: w’ # w], max.wg(w)f, w > 0 — max_wg(w-1)
I I: item(I,w,0,0) — Make Bag(B,w)

At this point the initialization requirements become

INIT = [Vw,B:(1<w<H)A (1 <B<N):: Make Bag(B,w)] (C6)
AMwB:(1<w<HYA(1<B<N): BaglIn(B,w)]
A max_wg(H) A next_bag(l)

5.2.4 Refinement 4: maintaining only necessary transactions

Our final goal is to restrict the number of transactions present in the transaction space at any one time in order
to reduce the time and space complexity. To do so we take advantage of Swarm’s ability to dynamically create
new transactions. Ideally, we want a transaction to exist only in those states in which it can perform some
useful work, i.e., alter the current state. This is not always possible. In some cases, transactions must perform
unavoidable waiting. In other cases, a state change may render some transactions useless but the elimination
of the transaction cannot take place until it is selected for execution. This latter case will not be observed in
this example.
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Given a transaction 7, we analyze its queries and seek to discover a predicate P that provides a reasonable
characterization for the set of states in which T' can make a useful contribution. In addition, we want to select
Pin such a way that (1) any transaction that establishes P can also create T without much added complexity;
and (2) the only transaction that invalidates P is T itself. Upon finding such a P, we attempt to alter the
program in order to achieve inv P < 7"

In the case of Make.Bag(B,w) it is clear that no useful work can be performed unless the next empty bag
is B and the largest weight among all items is approximated by w, (i.e., P = maz_wg{w) A nextbag(B)).
Based on this observation, it is reasonable to attempt to modify the program so as to enforce

inv (max_wg(w) A next_bag(B)) <> Make_Bag(B,w) (524)

Since the LHS of (524) is affected only by transactions of type Make_Bag, enforcing this invariant involves only
a redefinition of Make_Bag(B,w). We approach the task by considering the subtransactions of M ake_Bag{B,w)
and their impact on the LIS of (524). The first two subtransactions are mutually exclusive and replace
nezt bag(B) and maz.wg(w) by next.bag(B+1) and maz_wg(w-1), respectively. To preserve the invariant, we
must create corresponding instances of Make_Bag, i.e., Make_Bag(B+1,w) and Make_Bag(B,w-1), and we must
ensure that the third subtransaction is prevented from recreating Make_Bag(B,w) whenever either of the other
subtransactions succeeds. The final result is

Make Bag{B,w) =
I:

max_wg(w), [V B’,¢’ : capacity(B’,¢’) :: ¢’ < w], next_bag(B){, item(I,w,0,0)t
J—

item(I,w,B,1), next_bag(B+1), Make.Bag(B+1,w),

capacity(B,H-w), next_pos(B,2), best_fit(B,min(w,H-w))

[V Iw : item(I”,w’,0,0) = w’ # w], max_wg(w)i, w > 0
— ’
max.wg(w-1), Make_Bag(B,w-1)

[ LB :
item(I,w,0,0), capacity(B’,c’), w < ¢’ — Make_Bag(B,w)

Having established (§24) and by noticing that the tuples nezt_bag(B)and maz_wg(w) are not referenced anywhere
else in the program, the transaction above can be further simplified leading to the following transaction.

Make Bag(B,w) =
I:
[V B',¢’ : capacity(B’,¢’) :: ¢’ < w), item(I,w,0,0)}
—

itern(L,w,B,1), Make_Bag(B-1,w),
capacity(B,H-w), best_fit(B,min(w,H-w)), next_pos(B,2)

[
[V I',w’ : item(I’,w’,0,0) = w’ # w], w > 0 — Make_Bag(B,w-1)

I LB :
item(I,w,0,0), capacity(B‘,c‘), w < ¢’ — Make_Bag(B,w)

None of these transformations have any impact on the other properties of the program.

For Bag.In(B,w}, one way to accomplish the same task is to require

inv best_fit{B,w) < BagIn(B,w) (S25)

20



(ie., P = best_fit(B,w)). This time the changes are not limited to a single definition because Make_Bag(B,w)
can create tuples of type best.fit. To satisfy (S25), Make_Bag must create a transaction Bag_In(B,w,} whenever
it creates a tuple best_fit(B,w). (See final version of the program in Figure 2.)

The transaction type definition for Bag_In(B,w) becomes

Bag In(B,w) =
In,c:
best.fit(B,w){, capacity(B,c)f, next.pos(B,n)t, item(I,w,0,0)t
item(I,w,B,n), capacity(B,c-w), next_pos(B,n-+1),
best_fit(B,min{w,c-w)), Bag In(B,min(w,c-w))

[V I'w’ @ item(I’,w’,0,0) :: w’ # w), best fit(B,w)}, w > 0
—_—

bestfit(B,w-1), Bag In(B,w-1)

The subtransaction tasked with recreating the earlier version of Bag_In(B,w) disappears all together because it
is always the case that one of the other subtransactions succeeds.

Finally, having established the invariant relation between best_fit(B,w) and Bag_In(B,w), we can eliminate
the former throughout the program. Moreover, if we allow Bag_In(B,w) to carry two extra parameters, the
invariant,

inv capacity(B,c} A ¢ > 0 A next_pos(B,n) < Bag.In(B,w,c,n) Aw > 0 (S26)

can also be established resulting in the simpler transaction definition below (with some related changes in
Make_Bag(B,w)). :

Bag In(B,w,c,n) =
I:
item(I,w,0,0)t — item(I,w,Bn), Bag_In(B,min(w,c-w),c-w,n+1)

[V Pw’ : item(T",w’,0,0) i w’ # w], w > 0 —— Bag.In(B,w-1,¢,n)

The final Swarm program is given in its entirety in Figure 2. The special query NOR. can be used in the
subtransaction of each transaction definition in place of ¥V I,w’ : item(I’,w’,0,0) :: w’ # w] to further reduce
query complexity.

Finally, we must address termination of the program to show that the derivation process does not violate
(P2), i.e., GPOST — TERM. Therefore, it must be shown that

v I,w,B,n: item(I,w,Bn) :: B > 0] (P16)
[ES

—{3 B,w :: Make Bag(B,w)] A =[3 B,w,c,n = BagIn(B,w,c,n)]
By the bagging policy (S8), the above progress condition can be restated as

=[3 Iw = item(I,w,0,0)] (P17)

=3 B,w :: Make Bag(B,w)] A —[3 B,w,c,n :: Bag In(B,w,c,n)]
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Program Bagger (H, N, weight : natural(H), natural(N), weight{1..H] of natural)

tuple types
(Lw,B,n : natural(I), natural(w), 0 < w < H, natural(B), natural(n) :: item(I,w,Bn)]

transaction types
[B,c,n,w : natural(B), natural(c), 0 < ¢ < H, natural(n), natural(w), 0 < w < H =:
Bag.In(B,wen} =
I:
item(L,w,0,0)t — item(I,w,B,n), BagIn{B,min(w,c-w),c-w,n+1)

NOR, w > 0 — BagIn(B,w-1,c,n)
Make_Bag{B,uw) =
b item(L,w,0,0)f, [V B’ w’,¢’,;n’ : Bag In(B’,w’c’n’) 1 ¢’ < w]
i—;;n(I,w,B,l), Make_Bag(B+1,w), Bag.In(B,min(w,H-w),H-w,2)
H NOR, w > 0 — Make_Bag(B,w-1)

| LB,w' ' n’:
item(I,w,0,0}, Bag In(B’,w’,¢’,n’), w < ¢’ — Make Bag(B,w)
]

initialization

[1:0<I< N item(T, weight(I),0,0), Make Bag(1,H)]

Figure 2: Final concurrent version of Bagger.
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Due to the use of approximating tuples to reduce query complexity and the replacement of the transaction
class name for tuples, the proof of (P17) results from applying the transitivity of leads-to to the following two
progress conditions.

=3 Lw o item(I,w,0,0)] (P18)
—

[V B :: Make_Bag(B,0)] A [V B,c,n :: Bag.In(B,0,c,n)]

and

[V B :: Make Bag(B,0)] A [V B,c,n :: BagIn(B,0,c,n)] (P19)
sy

—[d B,w :: Make_Bag(B,w)] A =[3 B,w,c,n :: Bag.In(B,w,c,n)]

The proof of (P18) is a consequence of using a variant function defined over the parameter win each transaction
definition and showing the value of w decreases to zero. Informally, we can show that due to the initialization of
all items to a weight greater than zero by (D2), items having a constant weight in (52), the stability of bagged
times in (S5), and the NOR clause in each transaction definition (Figure 2), w decreases incrementally to zero
when —[3 Lw :: item(I,w,0,0)]. The proof of (P19) follows directly from the transaction definitions, such that
in order for the transaction to be reasserted, either there must exist an unbagged item or the weight parameter
of the transaction must be greater than zero.

The final version of the program is compact and highly concurrent. The strategy used to develop the program
is formal in the sense that every refinement can be shown to be correct—even though, for the sake of brevity,
many of the proof details were omitted. The strategy is economical, i.e., most proofs involve only small parts
of the program or the specification. To a large extent, this is due to the use of a UNITY-like proof system but
also, due to the way in which we structured the overall derivation process. This same careful structuring of the
process, we believe, makes it feasible to use our derivation strategy on larger problems.

6 Implementing the Program

In this section, we explain how a Swarm program can be translated to a traditional rule-based programming
language, OPS5, and discuss the results of executing the translated program on a parallel rule-based system.
The performance of the parallel execution will be compared against that of the original sequential program from
[19].

The program derived in Section 4, henceforth called the concurrent Bagger, has the property that the
queries of subtransaction making up each individual transaction are disjoint. This enables us to map each
subtransaction m a transaction class definition to a distinet OPS5 rule and to use a WME to indicate the
existence of each transaction instance in the dataspace. The resulting OPS5 program can be easily executed in
PARS without violating the Swarm semantics. The synchronous version of PARS (for Parallel Asynchronous
Rule-based System) [17] is a running system that ensures serializability attempts to maximize the number of
rule instances executed in each cycle. A parallel program is serializable if the parallel execution of a program
is equivalent to some serial execution. There are two types of rule interference that can violate serializability,
disabling and clashing [16]. Disabling occurs when two rules are instantiated and one rule’s actions delete
(add) a WME that the other rule positively (negatively) matches against.® If a cycle of disabling exists among
mmstantiated rules, in order to execute sequentially the cycle must be broken by disallowing one instantiation
to execute. Clashing occurs if either one rule instance adds (deletes) a WME that another deletes (adds) and
one instance disables the other or the interleaving of the add and delete actions of the two rule instances can
give results that could not be achieved serfally. In PARS, rules that clash are not allowed to execute in parallel.

5A WME is positively matched against i the match is successful because the WME exists. A WME is negafively matched against
if the match is successful because no such WME exists.
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We used the synchronous PARS implementation that allows every instantiation possible to execute during each
eycle provided the serializability constraints are not violated.

In Section 6.1 we explain and illustrate the translation process. In Section 6.2 we review the sequential
version of Bagger found in [19], henceforth called the original Bagger. We summarize the results of the parallel
execution of the concurrent Bagger in Section 6.3,

6.1 Returning to Traditional Rule-Based Languages

In this section we explain how the class of Swarm programs previously described is translated into OPS5. In the
derived program three main constructs are used that are not directly available in OPS5: (1) transactions, (2)
the ||-operator with subtransactions and (3) a dynamic knowledge base. We will concentrate on how these can
be represented in OPS5. Other concepts such as the use of ¥, special queries, global constants and data tuples
have direct correspondents. As an example of the translation, Figure 3 gives the OPS5 rules corresponding to
the transaction class Bag.In.

» Transactions: It is necessary to define a WME for each transaction instance present in the dataspace.
In the concurrent Bagger, two types of working memory elements are used for this purpose.

(Bag-In “bag <B> "wgt <w> “cap <¢> "pos <n>)
(Make-Bag ~bag <B> “wgt <w>)

The translation must ensure that whenever a transaction is present in the transaction space, the corre-
sponding WME is in working memory.

¢ The ||-Operator with subtransactions: Because in Swarm a single transaction is chosen

non-deterministically for execution, any enabled transaction that is chosen can successfully execute without
violating correctness criteria. In the class of Swarm programs to which the concurrent Bagger belongs, a
transaction is enabled by a single transaction, allowing no interference among subtransactions of the same
transaction. This restricted enabling allows multiple subtransactions of a transaction to be separated into
distinct rules, each controlled by the WME representing the parent transaction. Therefore, the conflict
set in the rule-based program can contain at most one rule per transaction (i-e., one subtransaction per
transaction can be in the conflict set during any cycle.) Then any sequential execution ordering is correct
because that same ordering can be executed in Swarm. In OPS5, we do not have to be concerned about
interference between subtransactions of different transactions because only a single rule is executed per
cycle. Because PARS executes all possible instantiations in each cycle, this interference is a concern, but
it is handled by the serializability constraints of the system.

¢ Dynamic Knowledge Base: The subtransactions, now individual rules, are responsible for explicit
addition and deletion of the WME representing the parent transaction, as was performed in the Swarm
program. This simulates the presence and absence of transactions in the transaction space. In Swarm,
transactions are deleted implicitly as a by-product of their execution. To maintain correctness, the WME
in the LHS of the rule that represents the transaction class must be treated as the transaction was treated
by the corresponding subtransaction. Thus, it must be explicitly deleted after each firing of the rule, ie.,
the LHS of the rule is satisfied and the actions of the RHS are performed.

We rely on the absence of matching rules for termination of the rule-based program in OPS5. Since the rule
translation does not viclate any correctness conditions, we know that eventually all items will be bagged, and
that all WMEs of type Hake_Bag and Bag_In will have a wgt attribute value of zero. Since we no longer need to
show that all transactions are deleted from the transaction space, we must show that when these WMEs have a
zero value for the wgt attribute, there is no possible match of the LHS of all rules. Looking at the definition of
each rule and using the fact that items always have a weight greater than zero, we see that no rules can match,
thereby causing termination of the OPS5 program.
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Swarm Transaction

Bag_In(B,w,c,n) =
I:

itern(I,w,0,0)§ — item{I,w,Bn), BagIn{B,min(w,c-w),c-w,n+1)

|
NOR, w > 0 — Bag_In(B,w-1,c,n)

OPS5 Rules

Rule Bs1 corresponds 1o the first subtransaction of Bag_In(B,w,c,n).

(p Bsi
{(Bag-In “bag <B> "wgt <w> “cap <¢> "pos <n>) <bag-item>}
{(item “wgt <w> “bag 0 ~“pos 0) <item-change>}
-
(modify <bag-item> ~“wgt (compute <w> :min <¢> — <w>)
“cap (compute <c> - <w>}
“pos (compute <n> + 1))
(modify <item-change> “bag <B> "“pos <n>)
)

Rule Bs2 the second subtransaction for Bag_In(B,w,c,n)..

(p Bs2
{(Bag-In ~bag <B> ~wgt <w> “wgt {<w> > 0}) <bag-item>}
-(item "“wgt <w> “bag 0 ~pos 0)
-->
(modify <bag-item> ~“wgt (compute <w> - 1))

Figure 3: The Translation of Bag.n(B,w,c,n) to OPS5
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6.2 Original Bagger Implementation

Farlier we made the point that one of the reasons significant performance improvements have not been achieved
by executing multiple rules simultaneously is because researchers in parallel rule-based systems use programs
written for sequential execution as a testbed. It is our hypothesis that when these programs are derived without
sequential controls or biases that the amount of available concurrency increases, translating to more parallelism
during execution.

The original Bagger [19] takes advantage of the available conflict resolution strategy, especially relying on
specificity. Essentially, it groups unbagged items according to weight, and packs all of those with the heaviest
weight first (one at a time), creating bags as needed, before packing any items of the next heaviest weight. This
process relies on sequential tasking and context switching. The program as described is inherently sequential.
Because of the specificity conflict resolution rule used, it appears as though multiple rules can execute. But
when conflict resolution is made explicit in the rules, as it must be for implementation on a parallel rule-based
system [11], only a single rule can execute in any given state. Thus, the resulls given for parallel ezecution
would be the same as those for sequential execution. The program has been proven to correctly obey the same
general specifications as the derived program but with this explicit tasking information given [8]. It is to this
program that we compare our results of the parallel execution of the concurrent Bagger to validate our original
hypothesis.

6.3 Results for Implementation

Once in OPS5, the actual implementation into PARS was straightforward. It is important to remember that:
(1) the original Bagger (Section 6.2) could exhibit no parallelism if executed in PARS and (2) the amount of
available concurrency in the concurrent Bagger (Section 5) depends on the number of available bags, which are
created only as needed. In this section, we show the results of executing the original (OPS5) Bagger and the
concurrent (Swarm) Bagger on two data sets called run-7 and run-2. The data in run-I permits only limited
parallelism because (a) the average number of items per bag is low, and (b) more than one item of the current
largest weight ¢an fit in a bag restricting new bags from being created early in the computation. The data from
run-2 does not suffer from these restriction and takes greater advantage of the available concurrency. Details of
the sample data from each run is presented in Table 1.

example | total number | maximum | distribution of | total weight | minimum number
of items bag weight item weights of items of bags needed

run-1 10 7 1 @ wgt=5 28 4
2 @ wgt—=4
3 @ wgt=3
2 @ wgt=2
2 @ wgt=1
run-2 34 9 7 Q wgt=5 62 7
27 @ wgt=1

Table 1: Example Details

The resulis of executing both programs, the original and the concurrent, are given in Table 2. A cycle in
both executions is the match-select-act phases typical in a rule-based program. In PARS, all non-interfering
instantiations that enter the conflict set are executed, thus the term parallel cycle. In the case of the original
Bagger, only one possible instantiation can be executed per cycle given any program state. The average number
of parallel rules per cycle is the total number of rule firings divided by the number of execution cycles. The
maximum number is the greatest number of rules that were executed in parallel in any one cycle of the execution.
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example | system | total number | total number of | average number | maximum number
of cycles parallel cycles of parallel rules of parallel rules
executed per cycle | executed per cycle

run-1 OPS5 20

PARS 16 1.3 2
run-2 QPS5 46

PARS 20 3.3 8

Table 2: Implementation Details

It is clear from looking at Table 2 that the concurrent Bagger executes in fewer cycles. For run-f the total
number of cycles decreases only 20%. This is because after the first item is placed in the first bag, the remaining
largest unbagged item also fits in that bag, so a new bag cannot be created on the next cycle. This occurs three
times during the packing of only four bags. In contrast, run-2 gets a 57% decrease in the number of cycles.
Improvements can be made to the amount of parallelism exhibited in implementation by knowing a priori the
largest item weight in order to avoid wasted sequential cycles early in the computation in which Make-Bag (from
the derived program) must decrement to that weight. If there was no counting necessary to reach the initial
largest item, the number of cycles in run-1 would decrease to 14, a decrease of 30% and the number of cycles in
run-2 would further decrease to 16, a 65% decrease.

As stated earlier the maximum amount of concurrency available in the concurrent Baggerin a particular state
is the number of non-full bags plus one, for the possible creation of a new bag. In this program a transaction
either packs an item, decrements a counter, or waits (only for class M ake-Bag). An execution that maximizes
concurrency would have every bag packing an item and one new bag created on every cycle. For example, after
4 cycles of exploiting the maximal concurrency, bag#1 has 4 items, bag#2 has 3 items, bag#3 has 2 items
and bag#4 has 1 item. The average number of rules that executed simultaneously is 2.5. In general, an upper
bound on the average over all cycles of the maximum available concurrency at each cycle is %{‘—l, where n is
the minimal number of bags needed for packing all the items without regard to their individual weights. In
run-I this bound is 2.5 as given in the example above and for run-2 this bound is 5. The overhead consisting
of the other possible operations of the transactions limits the actual amount of parallelism that can be realized.
Returning to Table 2, the average number of rules executed in parallel in run-1 comes within 52% of the upper
bound despite its poor data, while run-2 comes within 66%. For run-2, if Make_Bag had a priori knowledge of
the initial largest item weight, the average number of rules that executed simultaneously would increase to 4,
coming within 80% of the bound.

7 Discussion

When compared with current rule-based programming languages, Swarm malkes available a richer repertoire
of programming constructs . However, the derivation process using the Swarm computational model can be
used for deriving any rule-based program, provided that the features of the target language are considered in
the derivation process. For instance, if we are interested in QPS5 then we may want to make sure that in the
final program subtransactions appearing in the same transaction have disjoint queries, as is the case with the
concurrent Bagger. If the program does not fit into this schema, its translation to QPS5 may still be possible,
but no longer a mechanical transformation.

In general, it is necessary to define an appropriate schema (i.e., restricted Swarm structure) which ensures
that the resulting Swarm program has a direct translation into the target language, and to bias the derivation
process toward this schema. As a matter of fact, a similar situation is commonly encountered in the derivation
of concurrent programs where the derivation process starts with a very general problem specification that is
gradually refined toward a specific target architecture (e.g., shared memory or message passing). In rule-based
program derivation we simply have a different target, not a desired architecture, but an existing rule-based
language.
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8 Conclusions

The theme of this paper is the formal derivation of concurrent rule-based programs from their specifications.
Our program derivation strategy applies, adapts, and extends techniques already well established in concurrent
programming to the domain of rule-based programming. Our aim is {o apply formal techniques in a manner
which frees the programmer from considering unnecessary details. The emphasis is on clean formal thinking in
a practical setting. Our program derivation strategy is divided into two major tasks. The first task relies on
specification refinement. Techniques similar to those employed in the derivation of UNITY programs are used
to produce a correct rule-based program having a static knowledge base, i.e., a fixed set of rules. The approach
has direct applicability to the generation of programs targeted to currently popular rule-based programming
languages, such as OPS5. The second task involves program refinement and is specific to the development of
concurrent rule-based programs. It relies heavily on the availability of a computational model, such as Swarm,
that has the ability to dynamically restructure the knowledge base. Here, the concern with achieving high
degrees of concurrency and with reducing query complexity guides the program transformation. To complete the
example, we explained how a Swarm program could be translated to OPS5 specifically, given some restrictions,
while maintaining the correctness criteria. The execution of derived program on a parallel rule-based system
showed improvement over the execution of the original prograrn developed initially for sequential execution.

Acknowledgement: Special thanks go to Dr. James Schmolze of Tufts University for executing the concurrent
Baggeron PARS.
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