
54

Formal Description Techniques for Object

Management

J. Derrick, P. F. Linington and S. J. Thompson

Computing Laboratory, University of Kent, Canterbury, CT2 7NF,

UK. (Phone: + 44 227 764000, Email: {jdl,pfi,sjt}@ukc.ac.uk.)

Abstract

Open network management is assisted by representing the system resources to be

managed as objects, and providing standard services and protocols for interrogating

and manipulating these objects.

Application of formal techniques can make the specifications more precise, re

ducing the ambiguity inherent in natural language, and can automate some or all of

the process of implementation and testing. This paper examines the use of formal

description techniques to the specification of managed objects. In particular we

examine the relative merits of two formal languages, Object-Z and RAISE, which

have been proposed as suitable for use in object management.

Keywords: Managed objects, Formal methods, Open Distributed Processing.

1 Introduction

Large scale open systems require open management to integrate their components, which

may have been obtained from a number of sources; the cost of system administration will

depend to a large extent on how easy it is to perform this management integration. The

creation of open network management depends upon there being a common representation

for the resources being managed. This can be achieved by the creation of a suitable family

of managed object definitions.

Different implementations of these managed objects, the agents that give access to

them and the managers that control them need to interwork. Confidence in these im

plementations can be increased by testing. However, this testing is expensive and time

consuming, because it is labour intensive.

At present the nature of the resources to be managed and the behaviour they are

expected to Pxhibit are expressed in natural language, structured and organized using

a simple specification technique set out in the Guidelines for the Definition of Managed

Objects (GDMO) [GDMO]. The informal nature of this technique makes the implemen

tation and testing of managed objects expensive, because much skilled effort is needed to

interpret the specifications and construct suitable tests.

A. S. Sethi et al. (eds.), Integrated Network Management IV

© Springer Science+Business Media Dordrecht 1995

642 Part Three Practice and Experience

Formal description techniques offer the prospect of improved quality and cost reduction

by removing errors and ambiguities from the specification and automating aspects of

both implementation and testing. There are potentially large benefits to be gained from

this. The number of managed objects already specified is large and can be expected

to grow during the next few years until there are several thousand. These will range

from objects whose behaviour is standardized internationally, through various levels of

industry agreement to a wide range of vendor specific objects. Interworking will depend on

specification and testing and product cost will depend on the efficiency of these processes.

However, the techniques and languages for formal description are not widely under

stood by the m.ajority of implementors, and the choice of a suitable language for the

application concerned is an important factor in their introduction and acceptance.

Two languages have recently been proposed for the specification of managed objects;

they are Object-Z, based on the well-established Z language, and RAISE. They both

have the necessary expressive power for such specifications, although they differ in the

approaches taken in a number of areas. This paper examines their key features. It also

reviews the tools available to support the languages, particularly with reference to the

writing of managed object specifications and to the construction of tests from them.

However, the ultimate test of the acceptability of the techniques is the extent to which

potential users are prepared to apply them. It is clear from consultation undertaken with

the network management community that familiarity, perceived stability and relation to

current practice are amongst the keys to success. Given that both languages have the

necessary technical capabilities, selection should be based on the likely ease of uptake.

Action to promote the application of formal techniques in this area is timely; thousands

of managed object specifications will be written and processed over the next few years,

and the benefits of the formal techniques must be demonstrated before the bulk of the

specification work takes place if they are to have the maximum impact.

The paper is structured as follows. The background and the requirements for the

specification of managed objects are summarized in section 2. A review of RAISE and

Object-Z is presented in sections 3 and 4. Tool provision is discussed in section 5. Lan

guage standardization and managed object requirements are discussed in sections 6 and

7. Section 8 discusses the testing process, and we present some conclusions in section 9.

2 Overview of network management

The OSI management framework and its associated standards have developed over a

number of years [FormMan,GDMO]. The approach taken is object-oriented, involving

the encapsulation of the resources to be managed as managed objects. These objects are

manipula.ted in a unified way by using the common management information services and

protocols and are defined in an informal way using the guidelines for the definition of

managed objects and associated common object and attribute definitions.

The management framework can now conveniently be seen as a special case of the

more general problem of distributed processing, and it is reviewed here in terms of the

ODP terminology (from ISO/IEC 10746 parts 2 and 3), where appropriate.

Formal description techniques for object management 643

2.1 The CMIS model

The Common Management Information Service (CMIS) describes the communication

mechanism which links a manager to an agent, which in turn gives access to a set of

managed objects. The CMIS model (derived, in part, from the Systems Management

Overview) is essentially a computational model which describes the interaction between

the manager and agent, and necessary aspects of the interaction between the agent and the

managed objects to which it gives access. The agent provides for a degree of coordination

of the management information within a system, allowing control of scoping, filtering and

discrimination mechanisms. This interface includes operations invoked by the manager

which allow it to: create new managed objects (subject to resource constraints); delete

existing managed objects; get attribute values; set attribute values; perform actions;

cancel an incomplete get operation; and for the agent to report events to the manager.

The emphasis on the CMIS as the basis for management standardization reflects the

OSI emphasis on interconnection, rather than system structure. A distributed systems

view of management would now de-emphasize this particular interaction in favour of a

model giving equal visibility to the communication between agent and managed object

(and between managed objects under a single agent).

2.2 Notations for specifying managed objects

The family of management standards includes an informal notation for specifying the

behaviour of managed objects - the "Guidelines for the Definition of Managed Objects"

(GDMO) [GDMO]. This notation provides a framework for the declaration of properties

(based on options from the management object model) and structuring of informal state

ments of behaviour. The notation allows definition of one or more object classes which

express the common properties of their members. The GDMO notation supports:

• identification of the class being defined;

• multiple inheritance from a set of superclasses, or structured specification by as

sociation of the definition with some packages of specification (which do not, of

themselves, necessarily constitute complete objects);

• attributes or attribute groups, including the role of the attribute in the CMIS struc

ture, the default values to be applied on creation and any restrictions on the way

the attribute values may be modified;

• actions, enumerating all those possible and defining their parameterization;

• notifications, enumerating all those possible and defining their parameterization;

• behaviour, which indicates when actions or notifications are appropriate and the

way in which their sequence is constrained; behaviour also defines the way that

attribute values are updated by the occurrence of actions or notifications, and the

way that parameter values carried by actions or notifications are det(~rmined by

attribute values.

The specification may draw upon common object or attribute definitions, which also

include informal descriptions of the corresponding types.

644 Part Three Practice and Experience

The management object model includes support for two hierarchies: an inheritance

hierarchy supporting reuse and refinement of specifications, and a containment hierarchy

associated with the interpretation of object creation and deletion actions. It also supports

'fairly arbitrary' assertions of compatibility called allomorphisms.

The ODP viewpoints [IS010746] can be used to group together different concerns in

managed object definitions. In the longer term this approach may simplify the relation

of managed object definitions for OSI profiles.

2.3 The requirements for the formal description of managed

objects

From the above discussion it can be seen that a formal description technique which is to

be used for the specification of managed objects and of their manipulation will need to

support:

1. the naming and name binding mechanisms for the managed objects;

2. the inheritance and containment relationships between objects and the ability to

create templates representing these relations;

3. the definition of sets of actions and notifications, with their parameterization;

4. the definition of attribute types, including initial or default values and range restric

tion, matching rules and links to supporting abstract syntax definitions;

5. behaviour, in terms of rules for the occurrence of actions or notifications and the

relation of their parameters to object attributes;

6. rules for the creation and deletion of objects;

7. rules for the concurrency constraints implicit in the use of CMIS.

In addition, future development may require statements of the interaction between

managed objects which are independently defined. Capturing the full meaning of the

linkage between the resources in a complex system will increasingly imply the statement

of the effect that the changes applied to one managed object will have on others.

3 The Languages Z and Object-Z

The Z specification language [Spivey] has been developed over the past ten years, and

is based upon set theory and first-order predicate calculus. It has proved (together with

VDM) to be one of the most enduring formal description techniques, and has had signif

icant industrial usage and support. Recently Z has been selected for the specification of

the information model of the ODP Trader [Trader].

The development of Z has been supported through ZIP - A Unification Initiative for Z

Standards, Methods and Tools. The project, [ZIP], had four main themes: standardisation

of Z; methods support for Z; tools for Z and foundations of Z (for example, logic, proof

rules). The project lasted for three years and finished at the end of January 1993.

Formal description techniques for object management 645

There are three main reasons for extending Z to facilitate an object-oriented style.

Encapsulation structures the specification. Data types and the operations upon them

are declared together in classes. State is then local to a class as opposed to global state

as in Z. Inheritance allows the inclusion of previously defined classes in class definitions.

A hierarchy of classes and their subclasses can be developed as the Guidelines for the

Definition of Managed Objects indicate. Polymorphism is the property that an object

of a subclass can ,be substituted where an object of a superclass is expected.

Object-Z [Object-Z] is a specification language based on Z but with extensions to

support an object-oriented specification style. Object-Z uses the concept of a class to

encapsulate the descriptions of an object's state with its related operations. In addition,

Object-Z provides support for inheritance, instantiation and polymorphism. Object-Z

does not increase the expressive power of the Z notation, and both offer the same spec

ification paradigm, which captures the relational aspects of state transitions within the

system under study; it does, however, contain syntactic and semantic extensions to enable

the object-oriented specification style to be supported explicitly.

Whilst Object-Z is not the only proposal to extend the Z language to support an

object-oriented style, it is probably the most mature of the approaches; for a survey see

[OOZ]. However, Object-Z is not currently in a stable form, and research is still being

undertal,en into the language and its semantics; this is in contrast to RAISE [RSL] which

could be described as a finished product. There are clear disadvantages in using a language

which is still in the process of evolving. However, by adopting a flexible approach, there is

the possibility that the final version of Object-Z can be tailored to the needs of Managed

Object specifications and ODP standards, [Cusack 92]. Indeed, this is the stated intent

of some researchers in this area [Cusack 91].

A further factor to consider is the availability of tool support for Object-Z. RAISE has

a clear advantage in this respect. Currently there is little or no tool support for Object-Z;

tool support for Z exists, but the RAISE tools, coming from a single source, are better

integrated.

Technical Assessment

Z specifications consist of schemas (to declare the state) and operations (which change

the state). Like Z, Object-Z uses this state-based model to describe systems. This is the

only model directly supported, in contrast to RAISE which offers a variety of styles to

the specifier. Object-Z specifications use classes to encapsulate together the state and

the operations on it. Object-Z provides direct support for expressing constraints and

properties of an object's history, which makes temporal behaviour easier to describe and

reason about. This can, for example, be used to express deadlock and liveness constraints.

Encapsulation, the definition of classes and objects, is achieved in Object-Z via a class

definition mechanism. An Object-Z class is taken to represent a set of models; that is, a

class is analogous to an ODP class type in which a class will determine the set of possible

realizations that can implement it.

An object is then represented as a named member of a class. In Object-Z classes and

objects have to be narned, unlike RAISE where both a named and a. nameless encapsula

tion mechanism are supported.

646 Part Three Practice and Experience

A visibility list in an Object-Z class nominates certain features of a class to be exter

nally visible. In contrast RAISE uses hiding in classes to hide certain features. However,

the expressive power is the same, although the specification style will obviously differ.

Object-Z supports incremental and multiple ;nheritance through class inclusion. The

current definition of inheritance in Object-Z is compatible with that used for Managed

Objects. A subclass incorporates all the features of its super-classes. As with RAISE

renaming is possible for class entities upon inheritance.

There are a variety of proposed inheritance schemes that could be used in Object.-Z,

although no single one has dominated. Further work is needed in this area to define a

notion of inheritance that directly supports ODP and Managed Object specification.

Object-Z supports ad hoc polymorphism, which is the property that an object of

a subclass can be substituted when an object of a superclass is expected. Parametric

polymorphism, as appears in languages such as Standard ML [SML], is not supported

within Z or Object-Z; however, there is no explicit requirement from Managed Object

specifications to support this.

The approaches taken by Z and RAISE with regards to subtyping are similar. RAISE

supports subtyping, but defines maximal types to enable tool support for (static) type

checking. There have been proposals from BT researchers to extend typing to define

Object-Z classes as class types (thereby following ODP more closely), this approach would

lead to sub typing. However, the issue of whether to extend Z to support subtyping appears

not to have been fully resolved.

The development process of producing a new specification from an old one by adding

more detail is known as refinement in Z and Object-Z [King]. There has been little work on

the role of refinement in Object-Z. However, it is likely that an extension of the Z concept

of refinement to Object-Z will be technically possible. In addition, using inheritance as

the basis for a refinement relation is also a possibility (the subclass is the super-class with

more constraints or with more detail added).

There is no explicit process algebra support for communication or concurrent aspects

in either Z or Object-Z. Object-Z deals with the specification of concurrent properties by

using linear temporal logic [Duke]. Temporal logic allows the intended execution sequences

of objects of a class to be constrained in abstract ways. The resulting style of specification

of concurrent and distributed systems is different from that using process algebras or the

concurrent aspects of RAISE. Concepts needed for managed object specifications which

cannot be provided by the use of linear temporal logic include dynamic aggregation of

objects and sharing of one object by other objects. In addition, the duration of methods

would need to be modelled via the use of an explicit attribute of a class which gives the

current tirne and time constraints on it. Further work is needed to address these areas.

4 RAISE and the Specification Language, RSL

RAISE (Rigorous Approach to Industrial Software Engineering) is the name of an EC

funded ESPRIT project (315) which ran from 1985-1990; research in this direction is

currently continuing in the LaCoS (5383) and MORSE ESPRIT projects. The major

results of the project include: definition of the (wide-spectrum) specification language,

Formal description techniques for object management 647

RSL [RSL]; a formal (denotational) definition of RSL and a set of proof rules for reasoning

about RSL specifications and designs; a methodology for program development and design

in RAISE; and a set of tools to support formal development within RAISE.

RAISE has been used on a small number of pilot projects and by a number of the

partners in LaCoS at a larger scale, and courses to disseminate information about various

aspects of RAISE program development are offered by a number of bodies.

RSL is in a reasonably stable form, resulting as it does from a process intended to

produce a standard. An early aim of the LaCoS project was to review the language, and

apart from a small number of minor changes, it was deemed to need no modification.

(Sorne work in the MORSE project is directed towards adding rea.l-time information to

the system, but this is not relevant to the specification of managed objects.)

RSL allows specification in three different paradigms: declarative (a style close to pro

gramming in Standard ML [SMLJ, a strict functional programming language); imperative,

using expressions which can cause side-effects; and concurrent, using an amalgam of CCS

[Milner] and CSP [Hoare].

As might be expected, it has the advantages and disadvantages of a committee de

sign: three programming paradigms are addressed, and both model-oriented and algebraic

(property-oriented) specifications can be written.

The design appears successfully to have integrated the three programming paradigms.

The language is expression-oriented, with a 'pure' functional core. On top of this are added

expressions which can read or write to variables, and take input from and give output to

communication channels. Sufficient checks (or imprecations) are made to ensure that side

effects and communications are restricted to appropriate parts of the language - axioms

are expected not to have side-effects, for instance.

The development relation for the language contrasts with the notion of refinement

familiar from VDM and Z; development is a stricter relation, requiring as it does theory

extension, but on the other hand it makes modularisation of development easier to achieve,

an aspect which may also carry over to test generation.

Certain aspects of language design are questionable. For example, the logical 'and'

and 'or' operations are not symmetric since they are lazy in their evaluation of a second

argument, a property which leads to a distressing lack of symmetry in the rules of proof

for the language. In addition, the notion of concurrency differs subtly from both of those

familiar from CSP and CCS, which makes intuitive understanding of its behaviour more

difficult for the non-specialist user. However, without doubt it is suitable for specifying

substantial .systems.

Since the language is for specification and not for direct execution, it is possible for

the type system to incorporate undecidable logical assertions: an object can be in a

type if (and only if) it meets a particular logical property. Mechanical type checking for

programming languages is essential if certain sorts of trivial error are to be found, and

the same would apply to specifications. The language has a system of maximal types to

which the richer types can be reduced: adherence to the maximal-type system is machine

checkable. (A similar approach is used for Z.)

648 Part Three Practice and Experience

Technical Assessinent

Classes in RSL are intended to denote sets of models, each of which may be described as

objects; schemes are named classes. At its simplest, a class introduces

• a collection of type names and named types;

• a collection of variables;

• a collection of names of specified type (a signature, in other words); specifications

will include variable (and channel) access descriptions;

• a collection of axioms which describe properties of the named values.

The axioms may completely specify a value, either explicitly in a declarative definition

or implicitly through a set of algebraic axioms, or only specify some of its properties.

The definition of a chess n1ay be deemed to extend one or more classes, thereby giving a

multiple inheritance mechanism. Inheritance is, by default, strict, but a non-strict version

can be modelled by means of hiding and renaming. Classes can be defined parametrically

over one another, which gives, as a special case, parametric polymorphism (as in SML

and other functional languages, and in the templates of ANSI C++).

Types in the language are flexible, and not restricted to statically-checkable types.

This allows, for instance, range restrictions to be type specifications.

Object creation and deletion have to be dealt with rather inelegantly using object

arrays, which allow the specification of a collection of objects of unbounded size. Creation

and deletion are themselves modelled by the setting of the appropriate boolean flag in an

object.

RSL supports synchronous concurrency explicitly. Asynchronous communication can

be modelled in standard ways.

Behavioural descriptions are possible in a number of styles. Pre- and post-conditions

allow conditions to be placed on when actions take place and on their effects. Higher

level algebraic specifications allow the identification of sequences of actions which have

congruent effects.

The module system and development relation allow separation of concerns within

program development - it is envisaged that this may also facilitate test generation from

specifications.

5 Tool Support

The tool support associated with the two languages differs in approach. The RAISE tool

set is 1nature and powerful and could be seen as an industrial specifiers' tool set, but needs

a workstation to run it. It provides proof facilities which could be an advantage when

investigating automatic test generation. The tool set includes a structure-oriented editor

(including a (maximal-)type checker); pretty printers generating LaTeX; translators for

the constructive part of the language into Ada. and C++; justification (i.e verification)

tools.

The structure editors, which allow interactive construction of schemes, objects etc.

are impressive. The justification editor supports interactive construction of proofs using

Fonnal description techniques for object management 649

a menu/mouse style interface. However, it is slow, and the tool is clearly not as mature

as the structure editors. Support for larger-scale developments is very limited.

In contrast to RAISE, there exist a number of other sources of tools to support the

specification process in Z. These include type checkers, syntax checkers and proof support

tools, however, none are integrated in the same manner as the RAISE toolset. The ZIP

project contains an overview of the available tools [ZIP]. ICL, for example, supply a veri

fication environment for Z in their ProofPower system. The Formaliser specification tool,

developed by Logica, is a generic tool (which is not tied to one specific language, although

the bias is towards supporting Z specifications) to create and type check specifications

via use of a structure editor. Unlike the RAISE toolset, these are not integrated into one

system, and thus the tool support will appeal to different constituents in each case.

6 Language Standardization

Z has recently passed a work item ballot in ISO, and so will move towards standardisation

through this body. There have been a variety of extensions proposed to the Z language

which are claimed to be object-oriented, [OOZ]. Object-Z is one of the most mature of

the object-oriented extensions to the Z language in terms of the number of applications

written in the language and the international take-up of the language. However, there

can be no guarantee that it will remain in the forefront or that it will be an appropriate

language for standardization. It is extremely unlikely that standardization of Object-Z

will begin within the next three years.

Standardising RSL is a work package in the LaCoS project, with two man years of

effort devoted to it. The aim is to achieve ISO standardisation in about five years time.

However, progress depends on support from other ISO National Bodies.

7 ODP and Managed Object Requirements

Both Object-Z and RAISE satisfy the general requirements made of formal description

techniques supporting ODP specifications. One weakness is that Object-Z is still unstable

and does not have a full semantics, although it can be translated into Z and that does

have a stable semantics. Consequently there are no introductory texts nor is there a wide

range of examples available.

There are more specific modelling concepts needed in ODP and Managed Object

definitions. The main ODP modelling concepts include template, type, subtype, class

type, polymorphism and inheritance. All of these are supported or can be supported in

Object-Z.

There is work to be done on Managed Object concepts of conditional packages, atomic

synchronization and allomorphic classes, and it is possible that extensions to Object-Z

will be needed or desired.

Z and Object-Z offer less built-in design paradigms than RAISE. However, all the

concepts provided by RAISE can also be modelled in Z and Object-Z. For example,

RAISE supports concurrency by use of channels and concurrent combinators. Object-Z

does not offer these, but communication can be modelled by the unification of inputs and

650 Part Three Practice and Experience

outputs to classes and operations. Behavioural descriptions are possible through via pre

and post-conditions in a style similar to that available in RAISE.

Managed objects have already been specified in RSL, VDM, Z and Object-Z, and

no overriding problerns have been found [North], [SimMar], [Rudkin]. In Britain, British

Telecom's (BT) Confonn.ance Test Laboratory has done work on developing automatic test

generation from process algebras, and has undertaken work on how this can be integrated

into an object-oriented Z environment. In addition, there is current research (at the

National Physical Laboratory (;'\!PL) in Britain) on the development of test generation

using Prolog and LOTOS [Ashford].

8 The Testing Process

Most of the current expertise in formalized conformance testing is based on the testing

of communications protocols, which emphasises the procedural aspects of behaviour, in

terms of the sequence of observable events.

This aspect of managed object behaviour is important, but it is also necessary to

test the consistency of the management information model used to define the managed

object state, and to test longer term consistency between periods of communication and

between different managed objects. Doing this requires a flexible approach to testing and

the combination of a variety of test techniques.

For OSI, the testing methodology and framework is defined in ISO 9646, [IS09646].

This defines a series of test configurations, procedures and tools for test definition. The

tools defined provide structure but are not truly formal, so that the scope for tool support

is limited.

The munber of test steps involved in a non-trivial management application will be very

large. Figures of thousands or tens of thousands of test steps are typical. When operating

on this scale, the cost per step of test realization must be kept very low; the process must

be m.ade as automatic as possible. It is here that the use of formal specifications for the

managed objects can have major pay-backs. The current specifications use a semi-formal

framework to organize information, but the heart of the behaviour specification is based

on natural language, and so requires human interpretation to create the test steps.

However, the techniques for automated test generation are still being explored. Work

transferred from the protocol theatre can be adopted, but is not necessarily the most

effective way to create cost effective testing of all aspects of managed objects.

Formal Methods in the Testing Process

The ultimate airn of using formal methods in the testing process is to develop tools

which will assist with the generation of sensible tests from formal specifications. There

are currently two drawbacks to this approach.

First, fully autom.atic techniques generate too many tests, and hence test selection and

test structure become necessary for the output to be usable. Secondly, automatic tech

niques do not acknowledge the relative importance of different parts of the specification.

Test generation and selection from formal specifications are active research topics in

Formal description techniques for object management 651

the UK; with representative work coming from both the commercial sector (eg BT) and

government institutions (eg NPL).

One thread of BT's work has been to extend its LOTOS-based CO-OP work to man

aged objects [CusWez]. The object-oriented specifications are described by a labelled

transition system, which allows general techniques, developed by Brinksma and others,

to be applied.

\Nark at NPL has focussed on a number of areas. In aiming to generate tests for

the Transport class 4 protocol [Ashford], a formalisation of test purposes as well as of

the specifica.tions themselves has shown promising results. More speculatively, there is

discussion of exploiting the different description styles available in RSL to derive tests at

different levels of abstraction. Related work, using the proof obligations generated during

formal development to guide the search for tests is also under way.

A major manufacturer has introduced a testing methodology internally, with some

degree of success. It is based on augmenting an IDL (Interface Definition Language) with

pre- and post- conditions, whilst the user specifies separately which 'interesting' sets of

parameters should form part of the tests. This gives some weight to the view that formal

specifications of managed objects should take the form of augmented GDMO descriptions.

9 Conclusions and recommendations

The formal specification of managed objects is feasible using existing languages; the spec

ifications produced are likely to be more precise than the existing informal or semi-formal

techniques, which depend, in the last analysis, on the interpretation of English text.

However, there is considerable resistance to the use of such techniques in industry, and

a lack of information about the languages and their application. An education campaign

would be needed to ensure that the necessary information is made available to those

involved in the specification, implementation and testing of managed objects. Due account

needs to be taken of both the de jure and the de facto standardization mechanisms, and

any actions taken need to be coordinated with other initiative in Europe, America and

Japan.

The technical assessment of the languages (Object)-Z and RAISE indicates that either

of these two languages could be used to produced specifications of managed objects. The

styles would be different, reflecting the capabilities of the two languages, but the essence

of the existing informal specifications could be captured. The choice of language thus rests

primarily on non-technical factors such as user familiarity and degree of standardization,

and on the quality of the tools available to support each language.

Z has a wide user base, and has a successful history of use. As an extension of Z,

Object-Z would benefit from the position of Z in the market place. RAISE on the other

hand is relatively untried; however, it is clearly powerful and offers the specifier several

different design paradigms, as opposed to the single one supported by Object-Z. The

most significant factor in selecting a language is its acceptability to the intended user

community. From this point of view, traditional Z is the clear winner, although no formal

technique is really widely established with implementors.

652 Part Three Practice and Experience

References

[Ashford] Automatic Test Case Generation using Prolog", S.J. Ashford, NPL Report DITC

215/95, 1993.

[en sack 91] Object Oriented Modelling in Z For Open Distributed Systems", E Cusack, BT,

1991.

[Cusack 92] Using Z in Communications Engineering", E Cusack, BT, 1992.

[Cus\tl/ez] Deriving tests for objects specified in Z", E. Cusack, C. Wezeman, in Proceedings

of Z User Meeting, December 1992, Springer Verlag, 1992.

[Duke] Towards a semantics for Object-Z", David Duke and Roger Duke in VDM'90: VDM

and Z, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1990.

[FormMan] Liaison to CCITT SG VII concerning the use of Formal Techniques for the specifi

cation of Managed Objects", ISO /IEC JTC1/SC21/WG4 N1644, December 1992.

[GD!viO] Information Technology- Open Systems Interconnection- Structure of Management

Information - Part 4: Guidelines for the Definition of Managed Objects" ISO /IEC

J 0165-4 (X.722).

[Hoare] Communicating Sequential Processes", C A R Hoare in Prentice Hall International

Series in Computer Science, 1987.

[lS09646] htformation Technology - Open Systems Interconnection - Conformance Testing

Methodology and Framework, Parts 1-5", ISO /IEC 9646.

[TS010746] Basic Reference Model of Open Distributed Processing- Part 2: Descriptive Model,

Part 3: Prescriptive Model", ISO/IEC 10746, July 1994.

[King]

[Milner]

[North]

[Object-Z]

[OOZ]

[RSL]

[Rudkin]

[SimMar]

[SJVIL]

[Spivey]

[Trader]

[ZIP]

Z and the refinement calculus", S King in D Bjorner, CAR Hoare and H Langmaack

(eels) VDM'90: VDM and Z, LNCS, Springer-Verlag, Berlin, 1990.

Communication and Concurrency", R Milner in Prentice Hall, 1989.

RSL specification of the Log Managed Object", N D North, NPL Report, 1992.

Object-Z: An object oriented extension to Z", D. Carrington et. al., in S Vuong

(Pel), Formal Description Techniques 1989, North Holland, 1990.

Object Orientation in Z", S. Stepney et. al. (eels.), Springer Verlag, 1992.

The RAISE Specification Language", The Raise Language Group, Prentice-Hall,

1992.

Modelling information objects in Z", Steve Rudkin in J de Meer (eel) International

Workshp on ODP, October 1991, North Holland 1992.

Using VDM to specify OSI managed objects", Linda Simon and Lynn S Marshall

in K R Parker and G A Rose (eels), Formal Description Techniques 1991, North

Holland 1992.

The Definition of Standard ML", Robin Milner, et.al., MIT Press, 1991.

The Z Notation, A Reference Manual", J. M. Spivey, Prentice Hall, 2nd Edition,

1992.

Working Document on Topic 9.1 - Trader", ISO/IEC JTC1/SC21/WG7 N743,

November 1992.

ZIP Project Final Repmt" in Bulletin of EATCS, 54, October 1994.

Formal description techniques for object management 653

Biography

Peter Linington has been Professor of Computer Communication in the University of Kent at

Canterbury since 1987. His research interests span networks and distributed systems, currently

concentrating on distributed multimedia systems exploiting audio and video information. In

ISO, he is currently involved in the standardization of Open Distributed Processing. He chairs

the BSI panel on ODP and leads the UK delegation to the international meetings. He also chairs

the internal technical 1eview committee for the Esprit ISA project (previously ANSA).

John Derrick has been a Lecturer in Computer Science at the University of Kent since

1990. His research interests include applications of formal techniques to ODP and distributed

computing. His current projects include developing techniques for the use of FDTs within ODP

and formal definitions of consistency and conformance.

Simon Thompson has lectured in Computer Science at the University of Kent since 1983.

His interests include functional programming, constructive type theory and the application of

formal and logical methods in computing science.

