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Abstract 

Open network management is assisted by representing the system resources to be 

managed as objects, and providing standard services and protocols for interrogating 

and manipulating these objects. 

Application of formal techniques can make the specifications more precise, re

ducing the ambiguity inherent in natural language, and can automate some or all of 

the process of implementation and testing. This paper examines the use of formal 

description techniques to the specification of managed objects. In particular we 

examine the relative merits of two formal languages, Object-Z and RAISE, which 

have been proposed as suitable for use in object management. 
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1 Introduction 

Large scale open systems require open management to integrate their components, which 

may have been obtained from a number of sources; the cost of system administration will 

depend to a large extent on how easy it is to perform this management integration. The 

creation of open network management depends upon there being a common representation 

for the resources being managed. This can be achieved by the creation of a suitable family 

of managed object definitions. 

Different implementations of these managed objects, the agents that give access to 

them and the managers that control them need to interwork. Confidence in these im

plementations can be increased by testing. However, this testing is expensive and time 

consuming, because it is labour intensive. 

At present the nature of the resources to be managed and the behaviour they are 

expected to Pxhibit are expressed in natural language, structured and organized using 

a simple specification technique set out in the Guidelines for the Definition of Managed 

Objects (GDMO) [GDMO]. The informal nature of this technique makes the implemen

tation and testing of managed objects expensive, because much skilled effort is needed to 

interpret the specifications and construct suitable tests. 
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Formal description techniques offer the prospect of improved quality and cost reduction 

by removing errors and ambiguities from the specification and automating aspects of 

both implementation and testing. There are potentially large benefits to be gained from 

this. The number of managed objects already specified is large and can be expected 

to grow during the next few years until there are several thousand. These will range 

from objects whose behaviour is standardized internationally, through various levels of 

industry agreement to a wide range of vendor specific objects. Interworking will depend on 

specification and testing and product cost will depend on the efficiency of these processes. 

However, the techniques and languages for formal description are not widely under

stood by the m.ajority of implementors, and the choice of a suitable language for the 

application concerned is an important factor in their introduction and acceptance. 

Two languages have recently been proposed for the specification of managed objects; 

they are Object-Z, based on the well-established Z language, and RAISE. They both 

have the necessary expressive power for such specifications, although they differ in the 

approaches taken in a number of areas. This paper examines their key features. It also 

reviews the tools available to support the languages, particularly with reference to the 

writing of managed object specifications and to the construction of tests from them. 

However, the ultimate test of the acceptability of the techniques is the extent to which 

potential users are prepared to apply them. It is clear from consultation undertaken with 

the network management community that familiarity, perceived stability and relation to 

current practice are amongst the keys to success. Given that both languages have the 

necessary technical capabilities, selection should be based on the likely ease of uptake. 

Action to promote the application of formal techniques in this area is timely; thousands 

of managed object specifications will be written and processed over the next few years, 

and the benefits of the formal techniques must be demonstrated before the bulk of the 

specification work takes place if they are to have the maximum impact. 

The paper is structured as follows. The background and the requirements for the 

specification of managed objects are summarized in section 2. A review of RAISE and 

Object-Z is presented in sections 3 and 4. Tool provision is discussed in section 5. Lan

guage standardization and managed object requirements are discussed in sections 6 and 

7. Section 8 discusses the testing process, and we present some conclusions in section 9. 

2 Overview of network management 

The OSI management framework and its associated standards have developed over a 

number of years [FormMan,GDMO]. The approach taken is object-oriented, involving 

the encapsulation of the resources to be managed as managed objects. These objects are 

manipula.ted in a unified way by using the common management information services and 

protocols and are defined in an informal way using the guidelines for the definition of 

managed objects and associated common object and attribute definitions. 

The management framework can now conveniently be seen as a special case of the 

more general problem of distributed processing, and it is reviewed here in terms of the 

ODP terminology (from ISO/IEC 10746 parts 2 and 3), where appropriate. 
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2.1 The CMIS model 

The Common Management Information Service (CMIS) describes the communication 

mechanism which links a manager to an agent, which in turn gives access to a set of 

managed objects. The CMIS model (derived, in part, from the Systems Management 

Overview) is essentially a computational model which describes the interaction between 

the manager and agent, and necessary aspects of the interaction between the agent and the 

managed objects to which it gives access. The agent provides for a degree of coordination 

of the management information within a system, allowing control of scoping, filtering and 

discrimination mechanisms. This interface includes operations invoked by the manager 

which allow it to: create new managed objects (subject to resource constraints); delete 

existing managed objects; get attribute values; set attribute values; perform actions; 

cancel an incomplete get operation; and for the agent to report events to the manager. 

The emphasis on the CMIS as the basis for management standardization reflects the 

OSI emphasis on interconnection, rather than system structure. A distributed systems 

view of management would now de-emphasize this particular interaction in favour of a 

model giving equal visibility to the communication between agent and managed object 

(and between managed objects under a single agent). 

2.2 Notations for specifying managed objects 

The family of management standards includes an informal notation for specifying the 

behaviour of managed objects - the "Guidelines for the Definition of Managed Objects" 

(GDMO) [GDMO]. This notation provides a framework for the declaration of properties 

(based on options from the management object model) and structuring of informal state

ments of behaviour. The notation allows definition of one or more object classes which 

express the common properties of their members. The GDMO notation supports: 

• identification of the class being defined; 

• multiple inheritance from a set of superclasses, or structured specification by as

sociation of the definition with some packages of specification (which do not, of 

themselves, necessarily constitute complete objects); 

• attributes or attribute groups, including the role of the attribute in the CMIS struc

ture, the default values to be applied on creation and any restrictions on the way 

the attribute values may be modified; 

• actions, enumerating all those possible and defining their parameterization; 

• notifications, enumerating all those possible and defining their parameterization; 

• behaviour, which indicates when actions or notifications are appropriate and the 

way in which their sequence is constrained; behaviour also defines the way that 

attribute values are updated by the occurrence of actions or notifications, and the 

way that parameter values carried by actions or notifications are det(~rmined by 

attribute values. 

The specification may draw upon common object or attribute definitions, which also 

include informal descriptions of the corresponding types. 
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The management object model includes support for two hierarchies: an inheritance 

hierarchy supporting reuse and refinement of specifications, and a containment hierarchy 

associated with the interpretation of object creation and deletion actions. It also supports 

'fairly arbitrary' assertions of compatibility called allomorphisms. 

The ODP viewpoints [IS010746] can be used to group together different concerns in 

managed object definitions. In the longer term this approach may simplify the relation 

of managed object definitions for OSI profiles. 

2.3 The requirements for the formal description of managed 

objects 

From the above discussion it can be seen that a formal description technique which is to 

be used for the specification of managed objects and of their manipulation will need to 

support: 

1. the naming and name binding mechanisms for the managed objects; 

2. the inheritance and containment relationships between objects and the ability to 

create templates representing these relations; 

3. the definition of sets of actions and notifications, with their parameterization; 

4. the definition of attribute types, including initial or default values and range restric

tion, matching rules and links to supporting abstract syntax definitions; 

5. behaviour, in terms of rules for the occurrence of actions or notifications and the 

relation of their parameters to object attributes; 

6. rules for the creation and deletion of objects; 

7. rules for the concurrency constraints implicit in the use of CMIS. 

In addition, future development may require statements of the interaction between 

managed objects which are independently defined. Capturing the full meaning of the 

linkage between the resources in a complex system will increasingly imply the statement 

of the effect that the changes applied to one managed object will have on others. 

3 The Languages Z and Object-Z 

The Z specification language [Spivey] has been developed over the past ten years, and 

is based upon set theory and first-order predicate calculus. It has proved (together with 

VDM) to be one of the most enduring formal description techniques, and has had signif

icant industrial usage and support. Recently Z has been selected for the specification of 

the information model of the ODP Trader [Trader]. 

The development of Z has been supported through ZIP - A Unification Initiative for Z 

Standards, Methods and Tools. The project, [ZIP], had four main themes: standardisation 

of Z; methods support for Z; tools for Z and foundations of Z (for example, logic, proof 

rules). The project lasted for three years and finished at the end of January 1993. 
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There are three main reasons for extending Z to facilitate an object-oriented style. 

Encapsulation structures the specification. Data types and the operations upon them 

are declared together in classes. State is then local to a class as opposed to global state 

as in Z. Inheritance allows the inclusion of previously defined classes in class definitions. 

A hierarchy of classes and their subclasses can be developed as the Guidelines for the 

Definition of Managed Objects indicate. Polymorphism is the property that an object 

of a subclass can ,be substituted where an object of a superclass is expected. 

Object-Z [Object-Z] is a specification language based on Z but with extensions to 

support an object-oriented specification style. Object-Z uses the concept of a class to 

encapsulate the descriptions of an object's state with its related operations. In addition, 

Object-Z provides support for inheritance, instantiation and polymorphism. Object-Z 

does not increase the expressive power of the Z notation, and both offer the same spec

ification paradigm, which captures the relational aspects of state transitions within the 

system under study; it does, however, contain syntactic and semantic extensions to enable 

the object-oriented specification style to be supported explicitly. 

Whilst Object-Z is not the only proposal to extend the Z language to support an 

object-oriented style, it is probably the most mature of the approaches; for a survey see 

[OOZ]. However, Object-Z is not currently in a stable form, and research is still being 

undertal,en into the language and its semantics; this is in contrast to RAISE [RSL] which 

could be described as a finished product. There are clear disadvantages in using a language 

which is still in the process of evolving. However, by adopting a flexible approach, there is 

the possibility that the final version of Object-Z can be tailored to the needs of Managed 

Object specifications and ODP standards, [Cusack 92]. Indeed, this is the stated intent 

of some researchers in this area [Cusack 91]. 

A further factor to consider is the availability of tool support for Object-Z. RAISE has 

a clear advantage in this respect. Currently there is little or no tool support for Object-Z; 

tool support for Z exists, but the RAISE tools, coming from a single source, are better 

integrated. 

Technical Assessment 

Z specifications consist of schemas (to declare the state) and operations (which change 

the state). Like Z, Object-Z uses this state-based model to describe systems. This is the 

only model directly supported, in contrast to RAISE which offers a variety of styles to 

the specifier. Object-Z specifications use classes to encapsulate together the state and 

the operations on it. Object-Z provides direct support for expressing constraints and 

properties of an object's history, which makes temporal behaviour easier to describe and 

reason about. This can, for example, be used to express deadlock and liveness constraints. 

Encapsulation, the definition of classes and objects, is achieved in Object-Z via a class 

definition mechanism. An Object-Z class is taken to represent a set of models; that is, a 

class is analogous to an ODP class type in which a class will determine the set of possible 

realizations that can implement it. 

An object is then represented as a named member of a class. In Object-Z classes and 

objects have to be narned, unlike RAISE where both a named and a. nameless encapsula

tion mechanism are supported. 
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A visibility list in an Object-Z class nominates certain features of a class to be exter

nally visible. In contrast RAISE uses hiding in classes to hide certain features. However, 

the expressive power is the same, although the specification style will obviously differ. 

Object-Z supports incremental and multiple ;nheritance through class inclusion. The 

current definition of inheritance in Object-Z is compatible with that used for Managed 

Objects. A subclass incorporates all the features of its super-classes. As with RAISE 

renaming is possible for class entities upon inheritance. 

There are a variety of proposed inheritance schemes that could be used in Object.-Z, 

although no single one has dominated. Further work is needed in this area to define a 

notion of inheritance that directly supports ODP and Managed Object specification. 

Object-Z supports ad hoc polymorphism, which is the property that an object of 

a subclass can be substituted when an object of a superclass is expected. Parametric 

polymorphism, as appears in languages such as Standard ML [SML], is not supported 

within Z or Object-Z; however, there is no explicit requirement from Managed Object 

specifications to support this. 

The approaches taken by Z and RAISE with regards to subtyping are similar. RAISE 

supports subtyping, but defines maximal types to enable tool support for (static) type 

checking. There have been proposals from BT researchers to extend typing to define 

Object-Z classes as class types (thereby following ODP more closely), this approach would 

lead to sub typing. However, the issue of whether to extend Z to support subtyping appears 

not to have been fully resolved. 

The development process of producing a new specification from an old one by adding 

more detail is known as refinement in Z and Object-Z [King]. There has been little work on 

the role of refinement in Object-Z. However, it is likely that an extension of the Z concept 

of refinement to Object-Z will be technically possible. In addition, using inheritance as 

the basis for a refinement relation is also a possibility (the subclass is the super-class with 

more constraints or with more detail added). 

There is no explicit process algebra support for communication or concurrent aspects 

in either Z or Object-Z. Object-Z deals with the specification of concurrent properties by 

using linear temporal logic [Duke]. Temporal logic allows the intended execution sequences 

of objects of a class to be constrained in abstract ways. The resulting style of specification 

of concurrent and distributed systems is different from that using process algebras or the 

concurrent aspects of RAISE. Concepts needed for managed object specifications which 

cannot be provided by the use of linear temporal logic include dynamic aggregation of 

objects and sharing of one object by other objects. In addition, the duration of methods 

would need to be modelled via the use of an explicit attribute of a class which gives the 

current tirne and time constraints on it. Further work is needed to address these areas. 

4 RAISE and the Specification Language, RSL 

RAISE (Rigorous Approach to Industrial Software Engineering) is the name of an EC 

funded ESPRIT project (315) which ran from 1985-1990; research in this direction is 

currently continuing in the LaCoS (5383) and MORSE ESPRIT projects. The major 

results of the project include: definition of the (wide-spectrum) specification language, 
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RSL [RSL]; a formal ( denotational) definition of RSL and a set of proof rules for reasoning 

about RSL specifications and designs; a methodology for program development and design 

in RAISE; and a set of tools to support formal development within RAISE. 

RAISE has been used on a small number of pilot projects and by a number of the 

partners in LaCoS at a larger scale, and courses to disseminate information about various 

aspects of RAISE program development are offered by a number of bodies. 

RSL is in a reasonably stable form, resulting as it does from a process intended to 

produce a standard. An early aim of the LaCoS project was to review the language, and 

apart from a small number of minor changes, it was deemed to need no modification. 

(Sorne work in the MORSE project is directed towards adding rea.l-time information to 

the system, but this is not relevant to the specification of managed objects.) 

RSL allows specification in three different paradigms: declarative (a style close to pro

gramming in Standard ML [SMLJ, a strict functional programming language); imperative, 

using expressions which can cause side-effects; and concurrent, using an amalgam of CCS 

[Milner] and CSP [Hoare]. 

As might be expected, it has the advantages and disadvantages of a committee de

sign: three programming paradigms are addressed, and both model-oriented and algebraic 

(property-oriented) specifications can be written. 

The design appears successfully to have integrated the three programming paradigms. 

The language is expression-oriented, with a 'pure' functional core. On top of this are added 

expressions which can read or write to variables, and take input from and give output to 

communication channels. Sufficient checks (or imprecations) are made to ensure that side

effects and communications are restricted to appropriate parts of the language - axioms 

are expected not to have side-effects, for instance. 

The development relation for the language contrasts with the notion of refinement 

familiar from VDM and Z; development is a stricter relation, requiring as it does theory 

extension, but on the other hand it makes modularisation of development easier to achieve, 

an aspect which may also carry over to test generation. 

Certain aspects of language design are questionable. For example, the logical 'and' 

and 'or' operations are not symmetric since they are lazy in their evaluation of a second 

argument, a property which leads to a distressing lack of symmetry in the rules of proof 

for the language. In addition, the notion of concurrency differs subtly from both of those 

familiar from CSP and CCS, which makes intuitive understanding of its behaviour more 

difficult for the non-specialist user. However, without doubt it is suitable for specifying 

substantial .systems. 

Since the language is for specification and not for direct execution, it is possible for 

the type system to incorporate undecidable logical assertions: an object can be in a 

type if (and only if) it meets a particular logical property. Mechanical type checking for 

programming languages is essential if certain sorts of trivial error are to be found, and 

the same would apply to specifications. The language has a system of maximal types to 

which the richer types can be reduced: adherence to the maximal-type system is machine 

checkable. (A similar approach is used for Z.) 
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Technical Assessinent 

Classes in RSL are intended to denote sets of models, each of which may be described as 

objects; schemes are named classes. At its simplest, a class introduces 

• a collection of type names and named types; 

• a collection of variables; 

• a collection of names of specified type (a signature, in other words); specifications 

will include variable (and channel) access descriptions; 

• a collection of axioms which describe properties of the named values. 

The axioms may completely specify a value, either explicitly in a declarative definition 

or implicitly through a set of algebraic axioms, or only specify some of its properties. 

The definition of a chess n1ay be deemed to extend one or more classes, thereby giving a 

multiple inheritance mechanism. Inheritance is, by default, strict, but a non-strict version 

can be modelled by means of hiding and renaming. Classes can be defined parametrically 

over one another, which gives, as a special case, parametric polymorphism (as in SML 

and other functional languages, and in the templates of ANSI C++). 

Types in the language are flexible, and not restricted to statically-checkable types. 

This allows, for instance, range restrictions to be type specifications. 

Object creation and deletion have to be dealt with rather inelegantly using object 

arrays, which allow the specification of a collection of objects of unbounded size. Creation 

and deletion are themselves modelled by the setting of the appropriate boolean flag in an 

object. 

RSL supports synchronous concurrency explicitly. Asynchronous communication can 

be modelled in standard ways. 

Behavioural descriptions are possible in a number of styles. Pre- and post-conditions 

allow conditions to be placed on when actions take place and on their effects. Higher

level algebraic specifications allow the identification of sequences of actions which have 

congruent effects. 

The module system and development relation allow separation of concerns within 

program development - it is envisaged that this may also facilitate test generation from 

specifications. 

5 Tool Support 

The tool support associated with the two languages differs in approach. The RAISE tool 

set is 1nature and powerful and could be seen as an industrial specifiers' tool set, but needs 

a workstation to run it. It provides proof facilities which could be an advantage when 

investigating automatic test generation. The tool set includes a structure-oriented editor 

(including a (maximal-)type checker); pretty printers generating LaTeX; translators for 

the constructive part of the language into Ada. and C++; justification (i.e verification) 

tools. 

The structure editors, which allow interactive construction of schemes, objects etc. 

are impressive. The justification editor supports interactive construction of proofs using 
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a menu/mouse style interface. However, it is slow, and the tool is clearly not as mature 

as the structure editors. Support for larger-scale developments is very limited. 

In contrast to RAISE, there exist a number of other sources of tools to support the 

specification process in Z. These include type checkers, syntax checkers and proof support 

tools, however, none are integrated in the same manner as the RAISE toolset. The ZIP 

project contains an overview of the available tools [ZIP]. ICL, for example, supply a veri

fication environment for Z in their ProofPower system. The Formaliser specification tool, 

developed by Logica, is a generic tool (which is not tied to one specific language, although 

the bias is towards supporting Z specifications) to create and type check specifications 

via use of a structure editor. Unlike the RAISE toolset, these are not integrated into one 

system, and thus the tool support will appeal to different constituents in each case. 

6 Language Standardization 

Z has recently passed a work item ballot in ISO, and so will move towards standardisation 

through this body. There have been a variety of extensions proposed to the Z language 

which are claimed to be object-oriented, [OOZ]. Object-Z is one of the most mature of 

the object-oriented extensions to the Z language in terms of the number of applications 

written in the language and the international take-up of the language. However, there 

can be no guarantee that it will remain in the forefront or that it will be an appropriate 

language for standardization. It is extremely unlikely that standardization of Object-Z 

will begin within the next three years. 

Standardising RSL is a work package in the LaCoS project, with two man years of 

effort devoted to it. The aim is to achieve ISO standardisation in about five years time. 

However, progress depends on support from other ISO National Bodies. 

7 ODP and Managed Object Requirements 

Both Object-Z and RAISE satisfy the general requirements made of formal description 

techniques supporting ODP specifications. One weakness is that Object-Z is still unstable 

and does not have a full semantics, although it can be translated into Z and that does 

have a stable semantics. Consequently there are no introductory texts nor is there a wide 

range of examples available. 

There are more specific modelling concepts needed in ODP and Managed Object 

definitions. The main ODP modelling concepts include template, type, subtype, class 

type, polymorphism and inheritance. All of these are supported or can be supported in 

Object-Z. 

There is work to be done on Managed Object concepts of conditional packages, atomic 

synchronization and allomorphic classes, and it is possible that extensions to Object-Z 

will be needed or desired. 

Z and Object-Z offer less built-in design paradigms than RAISE. However, all the 

concepts provided by RAISE can also be modelled in Z and Object-Z. For example, 

RAISE supports concurrency by use of channels and concurrent combinators. Object-Z 

does not offer these, but communication can be modelled by the unification of inputs and 
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outputs to classes and operations. Behavioural descriptions are possible through via pre

and post-conditions in a style similar to that available in RAISE. 

Managed objects have already been specified in RSL, VDM, Z and Object-Z, and 

no overriding problerns have been found [North], [SimMar], [Rudkin]. In Britain, British 

Telecom's (BT) Confonn.ance Test Laboratory has done work on developing automatic test 

generation from process algebras, and has undertaken work on how this can be integrated 

into an object-oriented Z environment. In addition, there is current research (at the 

National Physical Laboratory (;'\!PL) in Britain) on the development of test generation 

using Prolog and LOTOS [Ashford]. 

8 The Testing Process 

Most of the current expertise in formalized conformance testing is based on the testing 

of communications protocols, which emphasises the procedural aspects of behaviour, in 

terms of the sequence of observable events. 

This aspect of managed object behaviour is important, but it is also necessary to 

test the consistency of the management information model used to define the managed 

object state, and to test longer term consistency between periods of communication and 

between different managed objects. Doing this requires a flexible approach to testing and 

the combination of a variety of test techniques. 

For OSI, the testing methodology and framework is defined in ISO 9646, [IS09646]. 

This defines a series of test configurations, procedures and tools for test definition. The 

tools defined provide structure but are not truly formal, so that the scope for tool support 

is limited. 

The munber of test steps involved in a non-trivial management application will be very 

large. Figures of thousands or tens of thousands of test steps are typical. When operating 

on this scale, the cost per step of test realization must be kept very low; the process must 

be m.ade as automatic as possible. It is here that the use of formal specifications for the 

managed objects can have major pay-backs. The current specifications use a semi-formal 

framework to organize information, but the heart of the behaviour specification is based 

on natural language, and so requires human interpretation to create the test steps. 

However, the techniques for automated test generation are still being explored. Work 

transferred from the protocol theatre can be adopted, but is not necessarily the most 

effective way to create cost effective testing of all aspects of managed objects. 

Formal Methods in the Testing Process 

The ultimate airn of using formal methods in the testing process is to develop tools 

which will assist with the generation of sensible tests from formal specifications. There 

are currently two drawbacks to this approach. 

First, fully autom.atic techniques generate too many tests, and hence test selection and 

test structure become necessary for the output to be usable. Secondly, automatic tech

niques do not acknowledge the relative importance of different parts of the specification. 

Test generation and selection from formal specifications are active research topics in 
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the UK; with representative work coming from both the commercial sector ( eg BT) and 

government institutions (eg NPL). 

One thread of BT's work has been to extend its LOTOS-based CO-OP work to man

aged objects [CusWez]. The object-oriented specifications are described by a labelled 

transition system, which allows general techniques, developed by Brinksma and others, 

to be applied. 

\Nark at NPL has focussed on a number of areas. In aiming to generate tests for 

the Transport class 4 protocol [Ashford], a formalisation of test purposes as well as of 

the specifica.tions themselves has shown promising results. More speculatively, there is 

discussion of exploiting the different description styles available in RSL to derive tests at 

different levels of abstraction. Related work, using the proof obligations generated during 

formal development to guide the search for tests is also under way. 

A major manufacturer has introduced a testing methodology internally, with some 

degree of success. It is based on augmenting an IDL (Interface Definition Language) with 

pre- and post- conditions, whilst the user specifies separately which 'interesting' sets of 

parameters should form part of the tests. This gives some weight to the view that formal 

specifications of managed objects should take the form of augmented GDMO descriptions. 

9 Conclusions and recommendations 

The formal specification of managed objects is feasible using existing languages; the spec

ifications produced are likely to be more precise than the existing informal or semi-formal 

techniques, which depend, in the last analysis, on the interpretation of English text. 

However, there is considerable resistance to the use of such techniques in industry, and 

a lack of information about the languages and their application. An education campaign 

would be needed to ensure that the necessary information is made available to those 

involved in the specification, implementation and testing of managed objects. Due account 

needs to be taken of both the de jure and the de facto standardization mechanisms, and 

any actions taken need to be coordinated with other initiative in Europe, America and 

Japan. 

The technical assessment of the languages (Object )-Z and RAISE indicates that either 

of these two languages could be used to produced specifications of managed objects. The 

styles would be different, reflecting the capabilities of the two languages, but the essence 

of the existing informal specifications could be captured. The choice of language thus rests 

primarily on non-technical factors such as user familiarity and degree of standardization, 

and on the quality of the tools available to support each language. 

Z has a wide user base, and has a successful history of use. As an extension of Z, 

Object-Z would benefit from the position of Z in the market place. RAISE on the other 

hand is relatively untried; however, it is clearly powerful and offers the specifier several 

different design paradigms, as opposed to the single one supported by Object-Z. The 

most significant factor in selecting a language is its acceptability to the intended user 

community. From this point of view, traditional Z is the clear winner, although no formal 

technique is really widely established with implementors. 
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