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Formal Detection of Attentional Tunneling in Human

Operator–Automation Interactions
Nicolas Régis, Frédéric Dehais, Emmanuel Rachelson, Charles Thooris, Sergio Pizziol, Mickaël Causse,

and Catherine Tessier

Abstract—The allocation of visual attention is a key factor for
the humans when operating complex systems under time pressure
with multiple information sources. In some situations, attentional
tunneling is likely to appear and leads to excessive focus and poor
decision making. In this study, we propose a formal approach to de-
tect the occurrence of such an attentional impairment that is based
on machine learning techniques. An experiment was conducted to
provoke attentional tunneling during which psycho-physiological
and oculomotor data from 23 participants were collected. Data
from 18 participants were used to train an adaptive neuro-fuzzy
inference system (ANFIS). From a machine learning point of view,
the classification performance of the trained ANFIS proved the
validity of this approach. Furthermore, the resulting classifica-
tion rules were consistent with the attentional tunneling literature.
Finally, the classifier was robust to detect attentional tunneling
when performing over test data from four participants.

Index Terms—Attentional tunneling, cognitive state inference,
fuzzy neural networks, human factors, human–robot interaction.

I. INTRODUCTION

F
OCUSING one’s attention on a single item without being

disturbed by other environmental stimuli is an essential hu-

man mechanism of information processing. However, there is a

tradeoff between attention focus and the ability to process other

events. The operators’ attention allocation is a crucial safety

issue in many domains such as the automotive industry [1] and

aeronautics [2]. Indeed, the inability for a human operator to de-

tect unexpected changes in the environment may lead the opera-

tor to neglect crucial cues (e.g., alarms). Different terminologies

have been put forward to describe this phenomenon [1], [3]–[5],

but attentional tunneling is one of the most commonly used

in human factors. This concept is defined as “the allocation of

attention to a particular channel of information, diagnostic hy-

pothesis or task goal, for a duration that is longer than optimal,

given the expected cost of neglecting events on other channels,

failing to consider other hypotheses, or failing to perform other
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tasks [6].” Thus, such an attentional impairment presents inter-

face designers with a paradox: How can one expect to “cure”

human operators from attentional tunneling if the alarms or

systems designed to warn them are neglected by the operators

themselves? Indeed, as different authors postulate, providing

information from additional warning systems could worsen the

situation as increasing the visual load may induce narrowing

of the visual field [3], [7]. Therefore, rather than adding new

alarms, a more useful solution would be to use cognitive coun-

termeasures [8]–[10]. These countermeasures are derived from

a neuroergonomics approach to cope with cognitive biases [11]

and are based on the temporary removal of information on which

the human operator is focusing. The overfocused information

is replaced by an explicit visual stimulus that is designed to

change the attentional focus. Adaptive systems [12] are an in-

teresting avenue to support this strategy as such systems aim to

infer the human operator’s cognitive and emotional state from

different measurement techniques in order to adapt the nature of

the interaction and overcome cognitive bottlenecks [13]. In this

context, this research provides objective metrics to characterize

attentional tunneling and a formal method for countermeasures

that could be used to trigger an adequate adaptation from the

system.

A. Metrics of Attentional Tunneling

Considering Wickens’ definition of attentional tunneling [6],

a straightforward way to identify this phenomenon is noting

when operators omit unexpected events (e.g., they do not react

to alarms) and persevere in their current action pattern. Such an

expert approach requires analysis of the operators’ behaviors to

infer their attentional state (e.g., actions on the user interface

reaction time). A complementary approach is to derive atten-

tional tunneling from the measurement of physiological signals

and ocular activity. Indeed, this attentional impairment is asso-

ciated with psychological stress [14]–[16]. Several authors have

demonstrated that attentional tunneling results in fewer scanned

areas of interest (AOI) on the user interface [6], a decreased

saccadic activity [17], long eye fixations [18], and the absence

of ocular fixations on relevant cues [2].

B. Formal Inference Techniques

The efficiency of attention tunneling identification depends

not only on the selection of accurate metrics but also on the

type of classification technique. Moreover, classifying atten-

tional tunneling states on the basis of physiological and behav-

ioral metrics requires some flexibility. Physiological metrics are

generally continuous and noisy and there are no mathematical
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models of the links between physiology and attention. Only ex-

pert models are generally used to link physiology and attention.

Fuzzy logic is an inference technique that is well suited for

continuous and noisy inputs [19]. Following a similar approach

proposed by Mandryk and Atkins [20], Pizziol et al. [21] devel-

oped a mathematical model using fuzzy rules to link psycho-

physiological inputs (e.g., the heart rate (HR) used as a psy-

chological stress indicator) and an attentional output (e.g., “the

level” of attentional tunneling). Although this study provided

promising results showing the interest of fuzzy logic for such

modelling, there was a limitation to this approach. Indeed, the

fuzzy rules that link these inputs and outputs had to be set

a priori from expertise.

A consistent method to avoid such drawbacks is to use auto-

mated machine-learning techniques [22], as they allow mathe-

matical links between inputs and outputs to be established from

a statistically sound point of view, rather than relying on ex-

perts. The machine-learning literature provides a wide range of

methods and algorithms to learn efficient classifiers (e.g., neu-

ral networks [12], support vector machines (SVMs) [23], hidden

Markov models [24]) from which one can find the appropriate

method for the specific application. Neuro-fuzzy learning [25]

is well suited in this particular case as in addition to its learn-

ing ability, the method retains the advantages of fuzzy logic.

Furthermore, under certain conditions [26], the fuzzy rules un-

derlying the behavior of the generated classifier can be translated

into natural language [27], thus allowing an easier interpretation

by researchers.

C. Present Study

The main objective of this research is to provide a formal

method using machine-learning inference techniques to detect

attentional tunneling from the analysis of psycho-physiological

and oculomotor responses that are collected during an experi-

ment [9]. This experiment was designed to provoke attentional

tunneling. Participants were asked to perform a task of manu-

ally controlling a robot while performing target identification.

During the task, a low battery failure was triggered, forcing a

safety procedure that required the robot to return autonomously

to the base. At this stage, the participants were supposed to stop

operating the robot and allow it to return back to the base. The

participants were separated in two groups: the control group,

whose members did not receive any cognitive countermeasures

to help them notice the battery failure, and the countermeasure

group, whose members were assisted with a cognitive counter-

measure.

In this experiment, the battery failure was used as a probe

to determine whether the participants faced attentional tun-

neling or not, in accordance to Wickens’ definition [6]. This

approach allowed labeling of attentional tunneling periods for

supervised machine-learning purposes. Three attentional tun-

neling metrics were employed in this study: the HR, the number

of AOI (NBAOI) glanced at on the user interface, and the switch-

ing rate (SWR). The literature suggests that HR increases with

psychological stress [28]–[34], and NBAOI and SWR decrease

with attentional tunneling [17], [18]. The calculation of the

Fig. 1. Ground Station Interface: 1) “tactical map,” 2) “interactive panel,”
3) “mode annunciator,” 4) “synoptic,” 5) “back to base,” 6) “GPS and ultrasound
status,” 7) “battery status,” 8) “panoramic video.”

attentional tunneling periods and the changes in the three asso-

ciated metrics are presented in Section III.

These three metrics were used to train an adaptive-network-

based fuzzy inference system (ANFIS) to infer attentional tun-

neling according to the labeling that is used in the experiment.

The ANFIS was chosen as it combines the expressive power of

fuzzy representations with the adaptability of neural networks

for more accurate predictions. The performance of this infer-

ence system was assessed in terms of learning and robustness.

A support vector machine was implemented to compare classifi-

cation performances of these two algorithms. The methodology

to train the ANFIS and the performance analysis on the robotic

experiment is described in Section IV.

II. EXPERIMENTAL METHODS

A. Material

The experimental setup consisted of a robot that is equipped

with different sensors and a ground station that is used to control

the robot. The robot can be operated in the “manual” or “super-

vised” mode. In the manual mode, the robot was controlled by

the operator with a joystick. In the supervised mode, the robot

performed waypoint navigation autonomously, but any action

of the operator with the joystick allowed him/her to take over

until the joystick was released. The ground station (see Fig. 1)

used a 24-in display that provided information for control and

supervision of the robot. The operator could not see the robot

and only gathered information regarding the scenario through

the display interface

B. Experimental Scenario

The experimental scenario was designed to induce attentional

tunneling. The scenario consisted of a target localization and

identification task. The target was a black-metal panel with red

stripes and two messages written in white: “OK,” (front side)

“KO” (backside). The mission was 4 min long and composed

of four main segments: S1—“Reach the area,” S2—“Scan for

target,” S3—“Identify target,” and S4—“Battery Failure.”

At the beginning of the mission, the operator navigated the

robot in the supervised mode to reach the search area (S1).
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Upon arrival, the robot began detecting the target (S2). When

the robot was within the vicinity of the target, the operator was

notified to control the robot in the manual mode for identifi-

cation and differentiation of both messages (S3). The use of a

panoramic video [35] and the introduction of a 1-s lag in the con-

trol loop [36] increased the task difficulty and favored excessive

focus. While the operator was involved in the identification task

(S3), a “low-battery event” was sent by the experimenter (S4).

This event triggered a safety procedure that forced the robot

to automatically return to base in the supervised mode unless

the operator overrode this procedure with a command from the

joystick.

As this failure happened at a crucial moment in the mission

when the operator was particularly committed to handling the

robot near the target, it was expected that the operator would not

notice the alerts on the interface warning of the “low-battery”

event and would persist in achieving the target detection task.

Thus, the operator would experience attentional tunneling.

C. Participants

Twenty-three participants (all males but four females, mean

age = 29.52, SD = 9.14), all French defense staff from Institut

Supérieur de l’Aéronautique and de l’Espace and The French

Aerospace Lab were recruited by local flyers and emails. In-

formed consent was received at the start of the experiment. Par-

ticipants were randomly assigned to two independent groups.

1) The control group consisted of 12 participants (all males

but two females, mean age = 28.25, SD = 6.64). No coun-

termeasure was provided to help them detect the battery

failure.

2) The countermeasure group consisted of 11 participants (all

males but two females, mean age = 30.90, SD = 11.45).

A countermeasure was provided to help them detect the

battery failure.

D. Procedure

The participants sat 1 m from the user interface in a closed

room with no visual contact with the outdoor playground where

the robot moved. A ProComp Infinity system (Thought Technol-

ogy) electrocardiogram was applied to the participants’ chests

using Uni-Gel to enhance the quality of the heart beat signal.

A Pertech head-mounted eye-tracker was placed on their heads

to observe their oculomotor behaviors. Participants rested for

3 min to establish a physiological baseline and performed a

13-point eye-tracking exercise to calibrate both sensors.

A briefing was provided on the mission, the user interface, and

the two guidance modes. Participants were trained for 20 min

on controlling the robot through the panoramic video screen

with the two guidance modes. They were told that four inci-

dents (low-battery event, communication breakdown, GPS loss,

and ultrasound sensors loss) might occur during the mission.

However, only the low-battery event occurred during the ex-

periment. The associated procedures and the expected robot

behaviors were explained for each of these incidents. During

the low-battery event, participants were to “release immediately

the joystick and let the robot go back to base”; during the com-

Fig. 2. Interface as the battery failure alarm is triggered.

munication breakdown and the GPS failure, they were to “wait

for the communication or the GPS signal to return”; and during

the ultrasound sensor failure, they were to “use the joystick to

avoid obstacles.”

The participants were also trained on how to diagnose these

four issues from the user interface. The low-battery event caused

three main changes in the user interface (see Fig. 2): the battery

icon turns to orange with an associated “low battery” message

(see Fig. 1, area 7), the mode changes from manual to supervised

and flashes twice (see Fig. 1, area 3), and the segment status

becomes back to base (see Fig. 1, areas 4 and 5). There was

only one change each for the other scenarios—communication

breakdown: “the panoramic video is frozen”; GPS loss: “the

GPS icon becomes red and the mode changes to manual”; ul-

trasound sensor failure: “the ultrasound icons turn to red.” After

the training session, there was a short test to verify participants’

understanding of the instructions and procedures. The experi-

mental scenario that involved the battery failure was initiated

and only occurred in one trial per participant.

E. Failure and Cognitive Countermeasure

As described in Section II-B, the low-battery event triggered

an automatic procedure that forced the robot to return to the

base by the shortest route. The participants were informed of the

occurrence of this event through the user interface as described

in Section II-D.

A cognitive countermeasure was designed to help the par-

ticipants of the countermeasure group to deal with attentional

tunneling. It was hypothesized that the operators would be ex-

cessively focused on the panoramic video window for target

identification (see Fig. 1, area 8). This window was removed for

1 s, replaced by the explanation of the robot behavior for 3 s, and

reappeared with the explanation superimposed for three more

seconds. Finally, the interface returned to its nominal state. The

robot did not move while the cognitive countermeasure was sent

to the operator.

F. Metrics Computation

1) Heart Rate: The electrocardiograph was sampled at

2048 Hz. The BioGraph Infiniti software was used to export
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the HR computed from the interbeat-interval (R–R interval)

every second of the experiment. No complementary spectral

analysis methods were used because of the length of the time

window required to process this kind of analysis (at least 4 to

5 min [33]): only a moving average filter of 5 s was applied to

smooth the HR signal. Because of a commonly observed dif-

ference in HR baseline values among participants, HR values

were standardized: For each participant, the mean HR of the

resting period was subtracted from the HR data [37]. Therefore,

the relevant metrics was the difference between the current HR

and the baseline, expressed in beats per minute.

2) Number of Areas of Interest: The EyeTechLab eye track-

ing software provided timestamped data of the cartesiancoor-

dinates of the participants’ eye gazes on the visual scene at a

25-Hz sampling rate (40 ms between samples). Eight AOI were

defined on the user interface as presented in Fig. 1, identified

by red rectangles. Each eye position was labeled in accordance

to the most relevant AOI; if the eye position was not in an AOI

perimeter it was labeled as “AOI number 0.” The NBAOI was

computed every second of the experiment. Each value of NBAOI

was the number of AOIs used during the last 20 s.

3) Switching Rate: Similarly to NBAOI, SWR relied on the

eye tracking data. SWR was also computed every second, and

corresponded to the number of gaze transitions from one AOI to

another during the last 10.5 s, expressed in number of transitions

per minute. Pizzol et al. [21] provide a more precise definition

of NBAOI and SWR.

4) Data Collection: The raw measurements that constitute

the three metrics were collected with no online processing. The

metrics were computed offline and synchronized. For each par-

ticipant, the final data were stored in a timestamped log as a

sequence of triplets (HR, NBAOI, and SWR), with each triplet

covering 1 s of experiment. Two examples of metrics recordings

can be found on Figs. 9 and 10.

III. EXPERIMENTAL RESULTS

A. Behavioral Results and Expert Labeling of the Periods of

Attentional Tunneling (TUN)

The results of the control group revealed that eight partic-

ipants out of 12 (66.67%) experienced attentional tunneling:

They persisted in examining the target instead of letting the

robot go back to base. Although they felt surprised by the be-

havior of the robot, these participants all declared that they

neither noticed the low-battery event nor the other changes on

the user interface. The other four participants reported that they

had noticed the failure and had decided to let the robot go back

to base. These subjective results were consistent with the ocu-

lomotor measurement that revealed that these four participants

glanced at the battery icon prior to releasing the joystick. These

participants achieved the appropriate situation awareness with

no help and conducted the mission successfully.

In contrast, all 11 participants from the countermeasure group

noticed the battery failure and understood the behavior of the

robot. The eye-tracking analysis showed that all of the partic-

ipants who gazed at the alarm released the joystick to let the

robot go back to base. In this group, 10 out of 11 participants

made the decision to stop the mission and let the robot go back

to base in the supervised mode. Only one deliberately persisted

in identifying the target for 50 s until the battery failed and there-

fore did not achieve the mission. That participant believed that

the remaining power was enough to finish the mission despite

the occurrence of the battery failure. His data were not used in

this study.

There is no straightforward method to measure the level of

attentional tunneling. However, thanks to an expert approach as

described in Section I-A, small periods could be labeled with

an attentional tunneling level (TUN) of 1 or 0 during the last

segment of the experiment (S4). Indeed, according to Wickens’

definition, the detection of the unexpected battery failure event

was used as an attentional tunneling probe [6] which led to two

types of labels:

1) TUN = 1: Eight samples were labeled with TUN = 1

from the failure until the end of the experiment. They

correspond to the eight participants from the control group

who did not glance at the battery failure icon and persisted

in examining the target instead of letting the robot go back

to base. These samples were used to train the ANFIS.

2) TUN = 0: Ten samples were labeled with TUN = 0 from

20 s after the failure until the end of the experiment. They

correspond to the ten participants from the countermeasure

group, who noticed the failure immediately and followed

the associated procedure (let the robot go back to base

in supervised mode). Discarding the first 20 s nullifies

noise because of the cardiac response latency [38] after

the failure. These samples were used to train the ANFIS.

3) TUN = 1/0: Four participants were labeled with TUN =

1 until they glanced at any of the following: the mode

annunciator (AOI3), the synopsis (AOI4), the “back to

base” sign (AOI5), and the battery status (AOI7). They

were labeled with TUN = 0 afterward until the end of the

experiment. They correspond to the four participants from

the control group who reported that they had noticed the

failure and had decided to let the robot go back to base.

These data were used neither for the inferential analysis

nor for the training of the ANFIS but only to test the model.

B. Inferential Analysis of the Input Raw Data

The approach thus far has consisted of definingthe three

different physiological and oculomotor metrics (HR, NBAOI,

and SWR) that characterize the psycho-physiological evolution

of each participant along the experiment. Parametric repeated-

measures ANOVA and Fisher’s least significant difference test

were used to examine the effects of the mission segment type on

the three metrics. A categorical explanatory variable was used in

the analysis to check for differences between the two categories

of participants depicted previously, TUN = 0 (n = 10) and

TUN = 1 (n = 8). The four participants from the TUN = 1/0

group were not included in the analysis. All tests were conducted

at α = 0.05.

1) Heart rate (see Fig. 3): The two-way repeated-measures

ANOVA showed a significant group × segment type inter-

action, F (3, 48) = 13.60, p < 0.001, η2
p = 0.46 on HR.



5

Fig. 3. Mean heart rate changes across the four mission segments for each
category of participants. Error bars represent the standard error of the mean.

Fig. 4. Mean number of scanned AOI according to the four segments for each
category of participants. Error bars represent the standard error of the mean.

Paired comparisons indicated that the mean HR change

differed between the TUN = 0 and the TUN = 1 groups

during S4 (p = 0.001), which is the segment containing

the battery failure. HR significantly declined between S3

and S4 in the TUN = 0 group (p < 0.001); on the con-

trary, it significantly increased between S3 and S4 in the

TUN = 1 group (p = 0.018).

2) Number of scanned AOIs (see Fig. 4): There was a sig-

nificant group × segment type interaction, F (3, 48) =

21.35, p < 0.001, η2
p = 0.57 on NBAOI. Paired compar-

isons showed that the number of scanned AOIs differed

between the TUN = 0 and the TUN = 1 groups during S4

(p < 0.001). Paired comparisons revealed that the NBAOI

significantly increased from S3 to S4 in the TUN = 0 group

(p < 0.001), whereasthis value dropped in the TUN = 1

group (p = 0.021).

3) Switching rate (see Fig. 5): The same analysis performed

on the gaze SWR (gaze transitions from AOI to AOI per

minute) also revealed a group × segment type interaction,

F (3, 48) = 16.98, p < 0.001, η2
p = 0.51) on SWR. During

S4, the transition rate differed between the TUN = 0 and

the TUN = 1 groups (p < 0.001). In the latter segment, the

Fig. 5. Gaze SWR according to the four segments for each category of par-
ticipants. Error bars represent the standard error of the mean.

mean transition rate increased drastically in the TUN = 0

group (p < 0.001), whereas it decreased in the TUN = 1

group (p = 0.038).

These results are consistent with the previous literature on at-

tentional tunneling. Participants from the TUN = 1 group were

highly focused on the demanding identification task during S4 as

revealed by the decrease of the NBAOI and SWR. Their inability

to successfully perform this critical task generated stress [39],

associated with the higher HR during S4 [28]–[34]. Conversely,

participants from the TUN = 0 group did not faced such stress.

Their HR was relatively lower during S4. One has to consider

that these participants noticed the alarm and just let the robot

go back to base autonomously as stated by the procedure. Con-

sistently with [6], [17], and [18], NBAOI decreased on S4 for

the TUN = 1 group (participants facing attentional tunneling

consulted less instruments) and raised for the TUN = 0 group.

In addition, the SWR decreased for the TUN = 1 group on S4

(participants facing attentional tunneling had a reduced saccadic

activity) as opposed to the TUN = 0 group.

IV. ATTENTIONAL TUNNELING DETECTION

This section presents the machine learning method that was

most appropriate for this application, ANFIS, and focuses on its

implementation and tuning.

Machine learning aims at automatically generalizing abstract

concepts from numerical experimental data. In particular, as-

signing discrete labels to different measurements, given pre-

vious examples of correctly labeled measurements, is known

as classification within the supervised statistical learning lit-

erature [22]. Assessing whether a person is currently facing

attentional tunneling, given the current values of the metrics

and previous examples, is hence a classification task. The clas-

sification task at hand consists in finding a mapping from the

triplets x = (HR, NBAOI, and SWR) to a label TUN in {0; 1}.

A. Adaptive-Network-Based Fuzzy Inference System to

Classify Attentional States

An ANFIS classifier is a five-layered neural network using

fuzzy membership functions for the activation neurons of the
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Fig. 6. Example of an adaptive network-based Sugeno-type fuzzy inference
system.

input layer [hence the name of “fuzzy inference system (FIS)”].

More specifically, as shown in Fig. 6, in the first-order Sugeno

fuzzy model [40] that was employed, the following five layers

are used.

1) The first layer (see “inputmf” layer in Fig. 6) is a fuzzyfica-

tion level where each neuron corresponds to a membership

function; it takes the metrics as inputs and outputs the val-

ues of the membership functions. The training phase tunes

the parameters of these membership functions (e.g., their

center position).

2) The second layer introduces nonlinear logical depen-

dences between fuzzified metrics by combining the out-

puts of the first layer. This combination is done using

“and” rules that multiply their inputs together.

3) The third layer takes all output values from the second

layer and normalizes them so that they sum to one. In

Fig. 6, the second and third layers have been merged into

the “rule” layer for clarity. Note that these two layers have

no tunable parameters.

4) Then, the fourth layer (see “outputmf” layer in Fig. 6)

is a recombination layer between normalized rules that

multiplies the output of the third layer by a first-order

polynomial of the metrics (hence the name “first-order

Sugeno model”). Its neuron parameters are the polynomial

coefficients. Note that, for the sake of clarity, the direct

connections from the input layer to “outputmf” are not

drawn on Fig. 6.

5) Finally, the fifth layer holds a single neuron in which

a weighted average of all outputs from the fourth layer

results in the ANFIS continuous output value.

The MATLAB fuzzy logic toolbox was used to perform the

calculations. As recommended by Jang and Sun [25], the train-

ing algorithm used is a hybrid combination of least-squares

fitting (for the outputmf parameters) and back propagation gra-

dient descent (for the inputmf parameters). Contrary to a zero-

order Sugeno fuzzy model, the output value in a first-order

Sugeno is input-dependent because of the first-order polyno-

mial of the metrics. This feature allows for more flexibility in

modeling the relationships between the inputs and the output but

Fig. 7. Data distribution between training, checking, and testing datasets.

threatens the transparency of the model (i.e., its interpretabil-

ity) [41], [42].

B. Training Data

ANFIS requires a reference dataset of pairs (x, TUN) where x

is the triplet of psycho-physiological parameters (HR, NBAOI,

and SWR) and TUN is the level of attentional tunneling. The

only appropriate samples are the labeled samples from the seg-

ment 4 (cf. Section III-A). Only the samples from the eight

participants from the TUN = 1 group and from the ten par-

ticipants from the TUN = 0 group were used to train the

ANFIS and constituted the reference dataset. Cross validation

was performed to control the ANFIS training in order to im-

prove its generalization. The reference dataset had to be split

in two smaller datasets: the training dataset and the checking

dataset. A 70/30% balance was achieved: six out of the eight

“TUN = 1” participants and seven out of the ten “TUN = 0”

participants were randomly selected and their labeled samples

constituted the training dataset (representing 72.2% of the 18

participants). The data from the other two TUN = 1 participants

and the three TUN = 0 participants formed the checking dataset

(representing 27.8% of the 18 participants). The data from the

four remaining participants were used later on to test the AN-

FIS classifier on new data and evaluate its robustness after the

training. They constituted the testing dataset.

A summary of the data distribution is presented in Fig. 7.

C. Parameters of the Fuzzy Inference System

The first step before training the ANFIS is to choose the

structure of the FIS itself. This structure depends on the num-

ber of inputs and on the number of membership functions for

each input. The classical approach at this stage is to use grid

partitioning to define the number of membership functions for

each input. The subtractive clustering method was used instead

in order to let the algorithm discover a statistically sound num-

ber of clusters in the training data without biasing it with ex-

pert knowledge. The other advantage of this method is that it
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Fig. 8. Error evolution during the training process. The error on the training
dataset constantly decreases (bottom curve), while the error on the checking
dataset begins to increase after the 38th epoch.

considerably reduces the number of rules that have to be trained

by the adaptive neural network, which results in a faster com-

putation and an easier interpretation of the rules after training.

Yager and Filev explain in greater detail the mountain cluster-

ing method from which subtractive clustering is derived [43].

According to this method,1 five clusters have been elicited, cov-

ering all the samples in the input three-dimensional (3-D) space.

Each cluster is a 3-D set, decomposed in one membership func-

tion per input dimension. The resulting FIS is therefore com-

posed of five rules corresponding to the five rules to be trained

as presented in Fig. 6.

D. Training of the Adaptive-Network-Based Fuzzy Inference

System

The training of the ANFIS is possible once the FIS has been

set. The tunable parameters of the ANFIS are updated during a

repetition of training epochs. Each training epoch is therefore a

local optimization of the ANFIS ability to classify the training

dataset properly. However, neural networks such as ANFIS are

prone to overfitting (because of excessive training epochs, the

ANFIS becomes specific in modeling the training dataset, but

performs poorly on new data). To avoid this, cross validation

was performed: After each training epoch that is based on the

training dataset, the ANFIS classified the checking dataset and

the classification error was evaluated (checking error). Overfit-

ting appeared after 38 training epochs, as the trained ANFIS

did not improve in classifying the checking data despite new

training epochs (see Fig. 8). Training is therefore stopped at the

38th epoch. The resulting training error is 2.9% corresponding

to the minimum of the checking error (8.9%).

E. Performance on the Training Data

The performance of the ANFIS was evaluated on labeled

samples from the segment S4 only, where the ANFIS TUN

level prediction can be compared with the expert TUN level.

1For the sake of reproducibility, a range of influence of 0.4, a squash factor of
1.25, an accept ratio of 0.5, and a reject ratio of 0.15 were chosen as parameters
of the subclust MATLAB function.

Fig. 9. Evolution of the three metrics for the participant DUPNI (from the
TUN = 1 group) during the whole experiment and associated TUN level inferred
by the trained ANFIS. F: battery failure time, E: end of the mission.

Fig. 10. Evolution of the three metrics for the participant JACRA (from the
TUN = 0 group) during the whole experiment and associated TUN level inferred
by the trained ANFIS. F: battery failure time, E: end of the mission.

There is a slight dissymmetry in the fitting between training

data and the ANFIS prediction. If one separates (TUN = 0) and

(TUN = 1) participants within the training set, then the false

positive (type II error) rate is 4% and the false negative (type

I error) rate is 0%. Two examples of the ANFIS output on the

training data can be found in Figs. 9 and 10. The TUN level was

computed with the trained ANFIS for the whole mission.

In Fig. 9, the HR rose around the end of S2 and kept a

high variability across S3 and S4. NBAOI remained between 5

and 7 before S3, progressively dropped during S3 and remained

around 2 till the end of the experiment. SWR also dropped during

S3 to reach values close to 0 until the end of the experiment.

The TUN level increased during S3 and remained close to 1

until the end of the experiment. These evolutions supported the
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TABLE I

CROSS VALIDATION ERROR WITH THE SVM WITH DIFFERENT KERNEL

FUNCTION TYPES

expert hypothesis: Participant DUPNI experienced attentional

tunneling during the all of S4.

In Fig. 10, HR rose abruptly at the beginning of S3 and S4.

NBAOI slowly decreased from values around 8 during S2 to

reach its minimum values around 2 during S3 and rose back

to values around 7 during S4. SWR follows a similar evolution

as NBAOI. These evolutions supported the expert hypothesis:

Participant JACRA did not face attentional tunneling during the

whole segment 4.

F. Support Vector Machine Comparison

Using the same training and checking datasets, the same clas-

sification task was performed with a SVM trained with the

Bioinformatics toolbox in MATLAB. Here, the SVM is used as

the reference method to compare the results obtained with the

ANFIS. For more details about the SVM, see [44]; [45]–[47].

The results of the SVM cross validation, with different kernel

function types, are presented in Table I.

The linear kernel performs best in this experiment; therefore,

this kernel was employed for the SVM. Comparing and analyz-

ing the checking error differences between the different kernels

is beyond the scope of this paper.

In order to compare the predictions of both methods in terms

of binary outputs (0 or 1, instead of continuous values), the

continuous ANFIS output was rounded to the nearest integer and

only the sign of the SVM output was considered. The rounded

predictions of the ANFIS have been compared with the expert

TUN values on the checking dataset and an error of 1.1% was

found. It is a better score than the 1.9% obtained with the linear

kernel SVM (see Table I).

Furthermore, the prediction discrepancy between the two

classifiers was studied in order to verify whether there was

agreement when one was misclassified an example. It appeared

that all elements misclassified by the ANFIS were also misclas-

sified by the SVM predictor. Therefore, both methods exhibit

consistent behavior. Consequently, for the 1.1% of the check-

ing set misclassified by the ANFIS, one can conjecture that the

checking examples are either outliers or exhibit values that are

too different from the training set to be classified accurately.

G. Adaptive-Network-Based Fuzzy Inference System Analysis

1) Adaptive-Network-Based Fuzzy Inference System Rules

Interpretation: The clusters determined by the subtractive clus-

tering method and a representation of the trained fuzzy rules can

be found in Fig. 11.

As mentioned in Section IV-A, contrary to a zero-order

Sugeno model, the transparency is not granted with a first-order

Fig. 11. Clusters and rules representation of the trained ANFIS. The first
three columns represent the three inputs. Each column is composed of five lines
corresponding to the five clusters elicited by the subtractive clustering algorithm.
The Gaussian curves represent the associated membership functions. The yellow
levels (between 0 and 1) are the membership function activations depending on
the three input values (vertical red lines). The activations of the output rules are
computed line by line, depending on the activation of the three input membership
functions (a rule is fully activated when the three membership functions are fully
activated). The contribution of each output rule is then defuzzified in the right
column. Finally, the TUN output is computed via a weighted sum of the five
output contributions (vertical red line in the bottom right rectangle).

Fig. 12. Fuzzy domain definition used to translate the ANFIS rules in natural
language and associated thresholds in the metrics domains.

Sugeno. It appears that the first-order features in this model

are negligible when compared with their constant counterparts

(i.e., the first-order polynomial coefficients in the fourth layer

are negligible when compared with the zero-order coefficients).

Therefore, this model behaves almost like a zero-order Sugeno

and preserves its interpretability from a linguistic point of view.

In order to translate the five fuzzy rules in the natural lan-

guage, seven fuzzy domains were defined from “very low” to

“very high” (see Fig. 12). Among the five rules that are trained

by the ANFIS, three of them “pull” the TUN output to 0 when

they are activated (see rules 1, 4, and 5, Fig. 11). These rules are

activated when:

1) (HR is low) and (NBAOI is high) and (SWR is medium

low);
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TABLE II

CROSS-VALIDATION ERROR COMPARISON BETWEEN THE TWO-INPUT AND THE

THREE-INPUT CLASSIFIERS

2) (HR is low) and (NBAOI is high) and (SWR is medium

high);

3) (HR is low) and (NBAOI is very high) and (SWR is low).

The remaining two (rules 2 and 3) that “pull” the output to

one are activated when:

1) (HR is medium) and (NBAOI is low) and (SWR is very

low);

2) (HR is high) and (NBAOI is very low) and (SWR is very

low).

2) Metrics Importance in the Adaptive-Network-Based Fuzzy

Inference System Performance: In order to evaluate the role of

the three metrics used as inputs in the diagnosis of attentional

tunneling, the performance of the previously trained three-input

classifier was compared with three classifiers trained with a

combination of only two inputs out of three. The same training

method was used to train these new classifiers. The number of

epochs at which the checking error increased varied from one

classifier to another. The results presented in Table II reveal

that the three metrics contributed to the attentional tunneling

classification as the checking error is minimal when using them

together as inputs. NBAOI appeared to be the most important

metric among the three as the checking error raises to 21.2%

when training the ANFIS without this metric. SWR also played a

more important role in predicting attentional tunneling than HR,

which appeared to only slightly improve the diagnosis (checking

error is 11.8% without HR compared with 8.9% when added as

the third input).

H. Adaptive-Network-Based Fuzzy Inference System Testing:

Classification Over New Data

In order to check the robustness of the ANFIS classifier, it

was tested on the four participants from the TUN = 1/0 group

who detected the failure before the end of the experiment, and

whose data were used neither for training nor for checking.

Consistently with the expert approach used to label the sam-

ples (see Section III-A), we first determined from the data:

1) the level of attentional tunneling at the moment of the

failure; and

2) the time when the participants switched from attentional

tunneling (TUN = 1) to a nominal behavior (TUN = 0).

The comparison between the latter expert results and the out-

puts of the ANFIS classifier appears to be consistent as presented

in Table III. An example of the inference of the level of atten-

tional tunneling of one of these four participants can be found

in Fig. 13.

TABLE III

COMPARISON BETWEEN EXPECTED THE TUN LEVEL

AND ANFIS CLASSIFICATION

Fig. 13. Evolution of the three metrics for the participant HOSAL from the
TUN = 1/0 group and associated TUN level computed by the trained ANFIS.
F : battery failure time, E : end of the mission.

V. DISCUSSION

In this paper, the ANFIS method was applied to the detec-

tion of attentional tunneling. This formal approach was tested

a posteriori on data collected during an experiment conducted

in the domain of human operator–robot interactions. The train-

ing of the algorithm was performed using samples from the last

segment of the mission when a failure occurred. The absence of

perception of the visual alerts associated with the failure and the

persistence of the participants in their initial goal were used as

objective indicators of attentional tunneling. The inputs of the

ANFIS consisted of a set of three physiological and oculomo-

tor parameters that are known to be associated with attentional

tunneling in the human factor literature.

For the machine-learning purpose, the first objective was to

ensure that it was possible to collect data from participants who

faced attentional tunneling versus participants who did not. The
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experiment was successful in generating these two types of

behaviors. Indeed, eight participants faced attentional tunneling

from the battery failure until the end of the experiment, whereas

ten did not during the same segment. These behavioral results

were consistent with the psychophysiological and oculomotor

measurements. Indeed, during S4 (segment after failure), the

group who faced attentional tunneling (TUN = 1) exhibited a

higher HR, a lower saccadic activity, and fewer scanned AOI

than the group who noticed the alarm (TUN = 0). Furthermore,

the inferential analysis on the three metrics showed significant

segment type× group interaction that validated the choice of the

three metrics to derive attentional tunneling. Indeed, the group

who faced attentional tunneling (TUN = 1) had a significantly

higher HR, a lower saccadic activity, and fewer scanned AOI on

S4 than on S3 even though the task they performed over these

two segments was similar. This result highlighted a change in

the metrics that was not accounted for a change in the task

but that was consistent with the literature showing a raise in

attentional tunneling. These results were encouraging for trying

to automate the diagnosis of attentional tunneling with a formal

machine-learning method as ANFIS.

An objective of this study was to test the efficiency of us-

ing ANFIS to identify degraded attentional states. The results

on the training dataset show that this approach was appropri-

ate to identify the links between attentional tunneling and the

psycho-physiological metrics. Indeed, when using the contin-

uous output, the ANFIS matched the checking dataset with an

error of 8.9%. When rounded, the ANFIS output matched the

checking dataset with 1.1% error. The performance on this task

is better than the performance of the SVM, one of the reference

techniques in the machine-learning domain.

The classifier also proved to be robust over new data from the

four participants kept for testing and could identify the moment

when the participants stopped facing attentional tunneling. This

promising result shows that it is possible to train the ANFIS on

a restricted set of participants who faced attentional tunneling,

and then to use this trained ANFIS as an attentional tunneling

inference system. Indeed the rules learned from the training

were relevant and could be generalized to diagnose attentional

tunneling across new participants.

Another great interest of ANFIS is that it provides objective

rules that could be interpreted in terms of natural language.

This advantage is particularly relevant for human factor pur-

poses as it allows experts to compare them with known relation-

ships between metrics and cognitive performance. The results

of our study revealed that the rules of our classifier were consis-

tent with the literature about attentional tunneling. Indeed, they

highlighted that attentional tunneling was related with a strong

reduction of the NBAOI and a decrease in the SWR which corre-

sponded respectively to fewer scanned AOI on the user interface

and a decreased saccadic activity as proposed by [2], [18]. Fur-

thermore, the HR indicator confirmed that this narrowing of the

visual field on specific sources was accompanied with psycho-

logical stress as previously demonstrated by [14]–[16]. On top

of giving the rules in the natural language, the ANFIS provided

numerical thresholds that could be identified while translating

the fuzzy domains into the metrics domain.

Furthermore, our results suggested that the contribution of the

NBAOI metric is most important to the classification, followed

by SWR and finally HR. This order is coherent with the observed

effect sizes (η2
p ) in the inferential analysis (group × segment

type interaction). The proportion of the variance attributable

to each metrics was ordered identically (NBAOI, η2
p = 0.57;

SWR, η2
p = 0.51; HR, η2

p = 0.46). From the human factors

point of view, it means that the identification of attentional

tunneling could not be optimized without the other two metrics

(SWR and HR). In other words, an operator who gazes upon

a very limited number of AOIs would not be considered as

facing attentional tunneling without demonstrating a low SWR

between these AOIs and a high HR.

Although the ANFIS classifier performance is promising to

detect attentional tunneling, its efficiency remains limited con-

sidering domains of applications such as aviation or unmanned

vehicles where safety is at stake. Indeed, a challenge of this

research is to design real-time algorithms that automatically

trigger cognitive countermeasures and a lack of reliability could

lead to trigger spurious countermeasures. Such an intervention

must be considered as a last resort when the other traditional

alerts prove to be inefficient to cure attentional tunneling. There-

fore, the first step to refine this approach would be to integrate

more metrics such as the blink rate, the vergence, and the pupil

size, which are known to be relevant indicators of attentional

tunneling [48], [49], [1]. The inclusion of such metrics would

improve the accuracy and precision of the classifier, therefore

making it a more reliable source of information to trigger an

adaptation of the interface. Another way to avoid spurious in-

tervention would be to take the whole context of the system into

account, as it could disable the attentional tunneling diagnosis

in inappropriate conditions [50].

Additionally, a strong limitation of our study is that a single

probe (i.e., the battery failure) was used to infer the occurrence

of attentional tunneling. This approach limited the ability to

train the ANFIS on a binary reference that does not allow inter-

pretation of intermediate outputs (e.g., TUN = 0.5) from both

a mathematical and a cognitive point of view. A possible way

to overcome this issue would be to use a dual-task paradigm

to derive intermediate levels of attentional focus from the per-

formance on the secondary task (e.g., reaction time and correct

response) [51]. The performance would be used as the label

to train the ANFIS which, after training, would provide a link

between the psycho-physiological measurements and this indi-

cator of attentional focus.
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[26] A. Riid and E. Rüstern, “Transparent fuzzy systems and modeling with

transparency protection,” in Proc. IFAC Symp. Artif. Intell. Real Time

Control, 2000, pp. 229–234.
[27] L. A. Zadeh, “Fuzzy logic = Computing with words,” IEEE Trans. Fuzzy

Syst., vol. 4, no. 2, pp. 103–111, May 1996.
[28] M. Causse, B. Baracat, J. Pastor, and F. Dehais, “Reward and uncertainty

favor risky decision-making in pilots: evidence from cardiovascular and
oculometric measurements,” Appl. Psychophysiol. Biofeedback, vol. 36,
no. 4, pp. 231–242, 2011.

[29] M. Causse, J. M. Sénard, J. F. Démonet, and J. Pastor, “Monitoring cog-
nitive and emotional processes through pupil and cardiac response dur-
ing dynamic versus logical task,” Appl. Psychophysiology Biofeedback,
vol. 35, no. 2, pp. 115–123, 2010.
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