Formal Development and Verification of
a Distributed Railway Control System

Anne E. Haxthausen! and Jan Peleska?

! Dept. of Information Technology, Techn. University of Denmark, DK-2800 Lyngby,
ah@it.dtu.dk
2 BISS, Universitét Bremen, P.O. Box 330440, D-28334 Bremen,
jp@informatik.uni-bremen.de

Abstract. In this article we introduce the concept for a distributed rail-
way control system and present the specification and verification of the
main algorithm used for safe distributed control. Our design and verifi-
cation approach is based on the RAISE method, starting with highly ab-
stract algebraic specifications which are transformed into directly imple-
mentable distributed control processes by applying a series of refinement
and verification steps. Concrete safety requirements are derived from an
abstract version that can be easily validated with respect to soundness
and completeness. Complexity is further reduced by separating the sys-
tem model into a domain model describing the physical system in absence
of control and a controller model introducing the safety-related control
mechanisms as a separate entity monitoring observables of the physical
system to decide whether it is safe for a train to move or for a point to
be switched.

1 Introduction

The present modernisation of European railway networks raises a large variety
of issues related to the design and verification of railway control systems. One
of these problems is the question how to design control systems for small local
networks that can only operate effectively if the costs for initial installation,
operation and maintenance of the control system are low. Today’s centralised
interlocking systems — at least those which are available in Germany — are far too
expensive for such small (possibly privatised) networks. A promising approach is
to distribute the tasks of train control, train protection and interlocking over a
network of cooperating components using the standard communication facilities
offered by mobile telephone providers. On the other hand, a distributed control
concept also introduces new safety issues that could be disregarded as long as
centralised control was applied: First, the new communication medium requires
security and reliability mechanisms that were unnecessary for centralised systems
transmitting control commands to signals and points over wires. Second, the
distribution of a control algorithm over several components raises new design
and verification issues, since the concept of a global state space as available in a
centralised interlocking system can no longer be implemented.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 15461563}, 1999.
© Springer-Verlag Berlin Heidelberg 1999

Formal Development and Verification = 1547

In this article, we will describe the concept of a distributed railway control
system consisting of switch boxes (SB), each one locally controlling a point, and
train control computers (TCC) residing in the train engines and collecting the
local state information from switch boxes along the track to derive the decision
whether the train may enter the next track segment. The system concept does
not require signals along the track, since the “go/no-go” decisions are performed
and indicated in the train control computers. We give an overview over the for-
mal specification and verification of the main control algorithm executed by the
distributed cooperating control components. The system is designed to operate
on simple networks, which means in our context that there are two distinguished
destinations A and B, such that at each track segment of the network there is a
uniquely defined direction to reach A and B, respectively. Typically, this defini-
tion applies to networks which are not highly frequented by trains and connect
two main stations with small intermediate stations (Figure [).

-\ /[

T T T T T

A direction AB —~ -—— directionBA B

Fig. 1. Simple railway network.

Our specification and verification approach is based on the RAISE formal
method and tool set [6] [7] and follows the invent-and-verify paradigm. To ad-
dress safety issues in a systematic way the standard procedure (see [8]) sep-
arating the equipment under control — that is, the railway network with its
trains — from the control system — in our case, the set of TCCs and SBs — is
applied. To this end, we first develop abstract algebraic specifications for the
domain model, i.e., the railway network and the trains to be controlled, and the
safety requirements stating that the system must not perform a transition into a
hazardous state where trains may collide or derailing might occur. These require-
ments are expressed as conditions about the observables of the domain model.
Using stepwise refinement and accompanying verification steps, we introduce
additional observables that may be monitored by a controller giving the “can
move/cannot move” conditions for each train and the “can be switched/cannot
be switched” conditions for each point. The completeness and consistency of
these conditions is verified by proving refinement relations to the higher-level
specifications which already have been proved to be consistent with the initial
safety requirements. The first stage of the invent-and-verify development ends
when the observables of the last refinement needed to control the safety of train
movements and point switching are implementable in the sense that they can

1548 Anne E. Haxthausen and Jan Peleska

be transformed into a concrete state space that may be conveniently partitioned
among a set of distributed cooperating processes. The second stage specifies
and verifies the concrete — i.e., implementable — distributed controller model by
introducing communicating processes which represent train control computers
and switch boxes. The TCC processes collect state information from the SB pro-
cesses to make the“can move/cannot move” decisions. The SB processes store
the relevant state information to take the “can be switched/cannot be switched”
decisions for their local points. The resulting controller is a distributed program
which is underspecified with respect to application-dependent control decisions
— like defining the order in which trains may pass along a single-track section
— which can be made without violating the safety requirements. Concrete con-
troller implementations will resolve this underspecification by choosing a specific
solution for application-dependent control decisions.

The work presented here originated from a collaboration of the authors with
INSY GmbH Berlin, who developed the distributed systems design described in
the next section for their railway control system RELIS 2000 designed for local
railway networks. In this collaboration, the authors focus on the generalisation
and verification of the control concepts used in RELIS 2000. Furthermore, the
second author is cooperating with Transnet (South African Railways) in the field
of development, verification, validation and test of safety-critical systems.

In Section Bl we introduce the general concept for the distributed railway
control system discussed in this article. Similar approaches of “Funkbasierter
Fahrbetrieb (FFB)” — that is, train control based on radio transmission — are
presently investigated by German Railways [3]. Our verification concept de-
scribed in the following sections applies to all of these approaches. Section Bl
presents the formal specification of the system’s domain model. In Section H]
an abstract version of the safety requirements is introduced. The subsequent
sections are concerned with the development of the control system as a series
of refinement and verification steps. In the discussion (Section[d) we sketch the
more general issues of our concept for the development, verification, validation
and test of safety-critical systems.

2 Engineering Concept

In this section, we introduce the technical concept of the distributed railway
control system to be formally specified and verified below. The technical concept
is based on the RELIS 2000 system of INSY GmbH with generalisations and
modifications performed by the authors.

Consider the system configuration depicted in Figure Pl The tasks of train
control, train protection and interlocking are distributed on train control com-
puters (TCC) residing in each train T1, T2 and switch boxes (SB) SB1, SB2,
SB3, each one controlling a single point, the boundary between two segments
(e.g. blocks) of a single track or a railway crossing. The basic principle of the
control algorithm is as follows:

Formal Development and Verification = 1549

O @ (4)
%W 5 &
SB 1 ‘ SB 2 SB3

Fig. 2. Distributed railway control system — trains communicating with switch
boxes.

— Each switch box stores the local safety-related information in its state space.
For example, this information contains the actual state of the traffic lights
guarding the railway crossing, whether a train is approaching the switch box
or the track segments that are presently connected by the local point. The
switch boxes use sensors to detect approaching trains and to decide whether
a train has left the critical area close to a point or a crossing.

— To pass a railway crossing or to enter a new track segment, a train’s TCC
communicates with the relevant switch boxes to make a request for blocking
a crossing, switching a point or just reserving the relevant track segments
at the SB for the train to pass. The decision which switch boxes to address
is based on the location of the train which is determined by means of the
Global Positioning System (GPS) or by using track components signalling
their location to the passing train.

— Depending on their local state, the switch boxes may or may not comply
with the request received from a TCC. In any case, each SB returns its
(possibly updated) local state information to the requesting TCC. After
having collected the response from each relevant SB, the TCC evaluates the
SB states to decide whether it is safe to approach the crossing or to enter
the next track segment.

— For train protection, each TCC blocks the train engine if it is not allowed
to leave a station and triggers the emergency brake if the train approaches
a railway crossing or enters a new track segment without permission from
the associated switch boxes. Furthermore, each TCC monitors the speed of
the train and gives warning messages or triggers the emergency brakes if the
actual speed exceeds the maximum velocity admitted for the type of train
at its actual location in the network.

Observe that in principle, the concept sketched above would admit completely
automatic train control without train engine drivers being present. However,
in the possible realisations presently discussed, this is not intended: The train

1550 Anne E. Haxthausen and Jan Peleska

engine driver has the ultimate responsibility to decide whether it is safe to leave
a station, enter a new track segment or pass a crossing.

In the subsequent sections we will focus on the formal specification and veri-
fication of the control algorithm concerned with “can move/cannot move” deci-
sions for trains and “can be switched/cannot be switched” decisions for points.
To introduce the principles of this algorithm, consider Figure[3 which shows the
local state spaces of two switch boxes SB1, SB2 and trains T1, T2.

T T2
ROUTE-SEGMENTS: ROUTE-SEGMENTS:
(81,4+), (82,~~), (84, =) (83,~—), (81,~)
ROUTE-SBs: ROUTE-SBs:
SB1, SB2, ... SB1, ...
DIR: — | POS: S1 DIR: =—— | POS: S3
RESERVATIONS: RESERVATIONS:
[SB1:{S1,52}] [SB2:{S2}] < [SB1:{S3}]
LOCKS: SB1 & T2 LOCKS: none
= =
) / OO0 —— O
T s3 B
= =
A — CO
T~ <
st) s () sa
A A
be) 5o
SB1 SB2
CONNECTED: S71<->S2 CONNECTED: S3<->S4
LOCKED_BY: T1 LOCKED_BY: none
SENSOR: passive SENSOR: passive
RES S1: T7|DIR S1:=— RES S4: -- |DIR S4: <
RES S2: T1|DIR S2: =— RES S2: T1|DIR S2: <
RES S3: T2 |DIR S3: <— RES S3: n.a.| DIR S3: =—
ACTION: none ACTION: none

Fig. 3. Switch boxes, trains and their state spaces.

In state component CONNECTED, the switch box stores which track seg-
ments are presently connected by the local point. (If the SB just separates two
blocks on a single track, this information is static.) In the components DIR S1,
DIR S2,... the directions associated with each track segment are stored: A seg-
ment can either be used only for trains going in direction A — B, or for trains
going in direction B — A or in both directions (A < B). Typically, this infor-
mation is fairly static and will only be changed if deviations from the ordinary
train schedule occur, for example when constructions are going on or when a
train arrives late. As explained below, the segment direction will be evaluated to

Formal Development and Verification 1551

decide whether a train may reserve a switch box. The LOCKED_BY state com-
ponent indicates whether a specific train has the right to pass the switch box. If
such a train is registered in this component, it is impossible to switch the local
point to another direction until the train has passed. For the detection of pass-
ing trains, a state component SENSOR is activated by a set of sensors attached
to the track when a train approaches the point. The component is returned to
state “passive” as soon as the sensors indicate that the last waggon of the train
has passed the point. To decide whether a train may get a reservation for a
segment approaching the switch box and whether a point may be locked for a
train, additional state components RES S1, RES S2,... are maintained at each
switch box for every track segment whose segment direction is approaching the
SB. The ACTION component of the state space is used as a “transaction flag”
for commands which have to be executed on several switch boxes in a synchro-
nised manner: The switch box will refuse new commands, as long as the ACTION
flag indicates such a transaction. Observe that this flag is unnecessary for the
standard reservation commands described next.

The state space of each TCC contains the lists ROUTE-SEGMENTS and
ROUTE-SBs of track segments and switch boxes along the train route. When
leaving a segment and passing a switch box, these entries are removed from
the head of each list. Again, segments are stored together with their directions
—, «—, <. State component DIR stores the direction where the train is heading
to. A train may only move along segments whose direction is compatible with
DIR. In POS, the actual position is stored. In the abstraction presented here,
positions are specified by one or two segments, the former indicating that the
train is on the segment without touching neighbouring segments, the latter in-
dicating that the train is in the critical area of a point (potentially) connecting
the two segments. State component RESERVATIONS stores the switch boxes and
associated segments which have been reserved by the train. LOCKS is a list of
switch boxes whose points have been switched in the direction of the train route
and are locked for the train. Whenever a train is allowed to proceed into the
next segment, this information must be consistent with the corresponding RES-
and LOCKED_BY-components of the switch boxes involved.

To determine, whether a train T1 may enter a new segment S2 (cf. Figure[3),
the train control computer and the relevant switch boxes evaluate the state space
described above as follows:

— To guarantee safety for the train at its local position, two conditions must
be fulfilled:

1. The train direction must be consistent with the direction associated with
the local track segment. (Train T1 going in direction A — B cannot
have its position on segment S3, since the latter has associated direction
B — A)

2. Each train must have a reservation for its local track segment at the next
switch box to be approached by the train (S1 must be reserved for train
T1 at switch box SB1).

1552 Anne E. Haxthausen and Jan Peleska

— To enter the next segment (S2 for train T1), three safety conditions must be
fulfilled:

1. The train direction must be consistent with the direction of the segment
to be entered. (S1 has direction A < B, so this is consistent with T1’s
train direction A — B.)

2. The next SB must be locked for the train (SB1 is locked by T1, so this
condition is fulfilled for T1).

3. The train must have a reservation for the next segment S2 at every switch
box where S2 is an approaching segment. (In Figure B, S2 approaches
both SB1 and SB2, so T1 must reserve S2 at both switch boxes. In
contrast to that, T2 only needed to reserve S3 at SB1 before entering S3
from S4.)

— In order to fulfil these three conditions, the train signals its wish to enter
the next segment to the associated switch boxes. Each switch box enters the
train’s reservation for the next segment if this is not already reserved for
another train. If reservation is possible and the SB is not locked by another
train, it will switch its point into the required direction if necessary and lock
the point for the requesting train.

— If the three conditions are fulfilled the train may enter the next segment. As
soon as the train has passed the next SB, the SB will delete the lock and
all reservations made by the train. (In Figure [3, SB1 will unlock its point
and delete all references to T1, as soon as the train has passed the point and
entered S2. Note that T1 is still completely safe at its new location, since
each train wishing to enter S2 from either S1 or S4 also needs a reservation
of S2 at SB2, and this is still blocked by T1.) The train will update its own
state space accordingly.

In the sections below, this informal system concept is described and verified
in a formal way. Observe that in this article we deal with untimed control and
safety mechanisms only. Time-dependent conditions — for example, “when is last
time point (depending on speed and position) to trigger the emergency brakes
in order to prevent the train from entering the next segment ?” — are imported
into the specifications at a later stage as a “timed refinement” of the untimed
control mechanisms discussed here.

3 Domain Model

In this section we show (parts of) a domain model capturing those physical
objects and events of the uncontrolled railway system which are relevant for the
development of the railway control system. We divide the model into a static
part and a dynamic (state based) part. Other authors have established similar
railway domain models [T, [4] [5].

Formal Development and Verification 1553

3.1 Static Part of the Model

The static part of the model comprise definitions of data types for objects. The
physical objects we consider include the trains, the points (switch boxes) and
the railway network.

Trains
Each train has a unique identification belonging to the following, not further
specified type:

type Trainld

Points
Each point has a unique identification belonging to the following, not further
specified type:

type Pointld

Railway Network
A railway network consists of segments connected according to the network
topology.

Each segment has a unique identification belonging to the following, not
further specified type:

type Segment

In our model, the network topology is specified by a predicate (are_neighbours)
which defines which segment ends are neighbours:

value
are_neighbours : SegmentEnd x SegmentEnd — Bool

where a segment end is a pair consisting of a segment identification and one of
two possible ends:

type
SegmentEnd = Segment x End, End == a_end | b_end

The are_neighbours predicate must satisfy a number of axioms (not presented
here) ensuring that the network is directed.

3.2 Dynamic Part of the Model

As trains move along the segments of the network and points are switched, the
state of the railway may change over time. We use a discrete, event-based model
to describe state transitions.

1554 Anne E. Haxthausen and Jan Peleska

The State Space

At this early phase of development, we do not yet know, what the exact state
space is, but only that the state space should contain information about some
dynamic properties of objects which we will explain below. Therefore, we just
introduce a name for the type of states without giving any datatype representa-
tion:

type State

and characterise this type implicitly by specifying state observer functions of the
form obs : State x ... — T which can be used to capture information (of type
T) about the state.

Dynamic Properties of Trains
Each train has a position and a direction which may change over time.

We assume that the length of segments is chosen such that any train has a
position on one or two neighbouring segments or it has passed an end point of
the network:

type
Position ==
single(seg-of : Segment) | double(fst : Segment, snd : Segment) | error

A position of the form single(s) indicates that the train is residing on a single
segment s, a position of the form double(s1, s2), where s1 and s2 are two neigh-
bouring segments, indicates that the train is residing on one or both segments
in the critical area of the point potentially connecting these segments. The error
position is used to model the case where a train has passed an end point of the
network.

Since the railway network is directed according to our simple network as-
sumption described in the introduction, there are two possible train directions:

type Direction == dirAB | dirBA
We introduce the following functions to observe the mentioned properties:
value /* state observers */

position : State x Trainld — Position,
direction : State x Trainld — Direction

! Our engineering concept can be adapted to railway systems for which this assump-
tion does not hold by using lists of segments for train positions instead of the here
proposed representation.

Formal Development and Verification 1555

Dynamic Properties of Points

Points may be switched. Hence, the connections between segment ends of the
railway network may change over time. We introduce the following function to
observe this:

value /x state observer */
are_connected : State x SegmentEnd x SegmentEnd — Bool

The are_connected observer must satisfy some axioms (not presented here) en-
suring that some physical laws are satisfied, e.g. that only neighbouring segments
are connected and there is exactly one connection in each point.

Events
We consider the following events:

— trains move from one position to their next position
— points are switched

It should be noted that in this uncontrolled model, events may lead to unsafe
states.

For each kind of event we introduce a state constructor which can be used
to make the associated state changes:

value /x state constructors */
move : State x Trainld — State,
switch : State x Pointld x SegmentEnd — State

Their behaviour is defined by observer axioms. For instance, the following axiom
states that moving a train does not change how segment ends are connected

axiom /* observer axioms x*/
[are_connected _move]
V o : State, t : Trainld, sel, se2 : SegmentEnd e
are_connected(move(o, t), sel, se2) = are_connected(o, sel, se2)

and the following axiom states that moving a train affects the position of the
train itself:

[position_move |
V o : State, t1, t2 : Trainld »
position(move(o, t1), t2) =
if t2 = t1 then
next_position(o, position(c, t2), direction(o, t2))
else position(o, t2) end
pre safe(o)

where safe is a function defined in next section, and next_position(c, pos, dir)
is an auxiliary function defined below. It gives the next position after pos in
direction dir.

1556 Anne E. Haxthausen and Jan Peleska

value
next_position : State x Position x Direction — Position

axiom
V o : State, s1, s2 : Segment, dir : Direction e
next_position(o, double(sl, s2), dir) = single(s2),

YV o : State, s1, s2 : Segment, dir : Direction ¢
are_connected (to-end(s1, dir), from_end(s2, dir)) =
next_position(o, single(s1), dir) = double(sl, s2),

V o : State, s1 : Segment, dir : Direction ¢
(V 2 : Segment ¢
~ are_connected(to_end(sl, dir), from_end(s2, dir))
) =
next_position(o, single(sl), dir) = error

The first axiom states that the next possible position of a train having a posi-
tion on two segments, sl and s2, is its front segment s2. The second and the
third axiom define the next possible position for trains in direction dir having a
position on a single segment s1. If the “to-end” in direction dir of segment sl is
connected to the “from-end” in direction dir of some segment s2 then the train
will have its next possible position on sl and s2, otherwise the train is at an
end point of the railway network and will have error (modelling derailing) as its
next possible position. The “to-end” in direction dir of segment s is defined as
follows

value
to_end : Segment x Direction — SegmentEnd
to_end(s, dir) = if dir = dirAB then (s, b_end) else (s, a_end) end

The “from-end” is the opposite end of the “to-end”.
There are similar observer axioms for switch.

4 Safety Requirements

Our goal is to develop a train control & interlocking system satisfying the fol-
lowing two safety requirements:

No collision: Two trains must not reside on the same segment.

No derailing: Trains must not derail (by passing an end point of the network
or by entering a point from a segment which is not connected with the next
segment).

The notion of safety can be formalised by defining a predicate which can be used
to test whether a state is safe:

Formal Development and Verification = 1557

value
safe : State — Bool
safe(o) = no_collision(c) A no_derailing(o),

no_collision : State — Bool
no_collision(c) =
(V t1, t2 : Trainld « t1 # t2 =

segments(position(o, t1)) N segments(position(c, t2)) = {}
)

no_derailing : State — Bool
no_derailing(o) =
(V t : Trainld »
position(o, t) # error A
(V s1, s2 : Segment ¢ position(o, t) = double(sl, s2) =
are_connected
(o, to_end(sl, direction(o, t)), from_end(s2, direction(o, t)))))

Here segments is an auxiliary function giving the segments of a position.

5 Development of the Railway Control System: First
Stage

The purpose of the railway control system is to prevent events to happen when
they may lead to an unsafe state. We develop an implementable controller model
by stepwise refinement following the invent-and-verify paradigm. The develop-
ment is divided into two major stages of which we describe the first in this
section.

In the first major stage of development we design a full state space keeping
information not only about the dynamic properties described in the domain
model, but also about new dynamic data (observables) like segment reservations
which may be monitored by the controller to evaluate the “can move/cannot
move” and “can be switched/cannot be switched” conditions. New data like
segment reservations also give rise to new state constructors modelling events
like making a reservation.

Our strategy for fulfilling the safety requirements is to invent

1. a state invariant consistent(o), and

2. for each constructor con, a guard (condition) can_con(o, ...) which can be
used by the controller to decide whether it should allow events (correspond-
ing to application of that constructor) to happen

such that the following strong safety requirements are fulfilled:

1. States satisfying the state invariant must also be safe.
2. Any state transition made by a state constructor must preserve the state
invariant when the associated guard is true.

1558 Anne E. Haxthausen and Jan Peleska

3. If the guards for two different events are both true in a state satisfying the
state invariant, then a state change made by one of the events must not
make the guard for the other event false.

These requirements ensure that if the initial state satisfies the state invariant,
and the railway control system only allows events to happen when the corre-
sponding guards are true then the system will stay safe.

The first strong safety requirement can be formalised by the following theory:

[consistent_is_safe |
V o : State consistent(o) = safe(o)

The second strong safety requirement can be formalised by a theory

[safe_con |
V ...« consistent(c) A can_con(o, ...) = consistent(con(o, ...))

for each constructor con, and the third strong safety requirement can be for-
malised by a theory typically of the form

[safe_conl_con2]
Voo
consistent(o) A can_conl(o, x) A can_con2(o, y)
= can_con2(conl(o, x), y)

for each pair of constructors, conl and con2.
The state space, state invariant, guards etc. are found by stepwise refinement
and verification.

5.1 First Specification

The first specification is an abstract, algebraic specification extending the do-
main model with the following declarations:

value /x state invariant */
consistent : State — Bool
value /* guards for constructors */
can_move : State X Trainld — Bool,
can_switch : State x Pointld x SegmentEnd — Bool

As the State is not yet explicit, and the set of observers is not complete, we
cannot yet give complete explicit definitions of the state invariant and guards.
Instead we specify requirements to the guards by implications of the form

axiom /* requirements to guard can_con */
[can_con_implicationl]
V ... can_con(o, ...) A consistent(c) = ...

and requirements to the state invariant by an implication of the form:

Formal Development and Verification 1559

axiom /* requirements to consistent x/
[consistent_implicationl]
V o : State * consistent(c) = pl(o)

We use implications so that we can enrich the requirements in later steps with
additional constraints.

5.2 Second to Fourth Specification

Each of the next three specifications are algebraic and obtained from the pre-
vious specification by adding declarations of new observers, state constructors
and guards, observer-constructor axioms for new observers and/or constructors
and requirement axioms (in form of implications) for new guards. Furthermore,
the requirements to the state invariant is enriched in specification number ¢ by
adding the axiom

axiom /# requirements to consistent */
[consistent_implicationi]
V o : State ¢ consistent(c) = pi(o)

(where pi(o) is a predicate), and the requirements to some of the previous
guards can_con are refined by making the predicate of the right-hand side of
the [can_con_implication] axioms stronger.

Below, we give a short survey of which concepts are added in the second to
fourth specification.

Second Specification
In the second specification, two new concepts are introduced:

— segment registrations for trains, and
— segment directions

The idea is, that a train must only be allowed to move to a segment if it is
registered on that segment and if its direction is consistent with the direction of
that segment.

Third Specification

In the third specification, segment reservations at switch boxes is introduced
and segment registrations is defined in terms of that. Furthermore, a concept
of locking of points is introduced. The idea is that a train must lock a point
in order to pass it, and when a train has locked a point, the point cannot be
switched before the train has passed the point.

Fourth Specification
In the fourth specification, a notion of train routes is introduced, and sensors at
the switch boxes sense when trains are passing.

1560 Anne E. Haxthausen and Jan Peleska

5.3 Fifth Specification

Finally, in the fifth specification we are able to define a concrete state space
consisting of a state space for each train and a state space for each switch box:

type
State = {| o : State’ « is_wff(o) |},
State’ = (Trainld - TrainState) x (SwitchboxId # SwitchboxState)

where TrainState and SwitchboxState are given explicit formal representations
for the local train state and switch box state, respectively. These representations
correspond to the informal descriptions in Figure [3. We only consider states
(defined by a predicate is_wff) which satisfy the axioms of physical laws (like
“only neighbouring segments are connected”) of the domain model.

With this explicit definition of State, it is now possible to replace all ax-
ioms with explicit function definitions in terms of functions defined for the two
new types TrainState and SwitchbozState. For instance, the observer function
direction can be defined as follows

direction : State x Trainld — Direction
direction((o_t, 0-8), t) = T.direction(o_t(t))

where T.direction is an observer function defined for train states (of type Train-
State), and the state invariant can be given a definition of the form

consistent : State — Bool
consistent(a) = pl(o) A ... A p5(o)

5.4 Verification

Implementation Relations

In each of the development steps (from specification number i to specification
number ¢ + 1, i = 1,...,4) above, we have used the RAISE justification tools to
prove that the new specification is a refinement of the previous specification, i.e.
the new specification provides declarations of at least all the types and functions
provided by the previous specification, and that all the axioms of the previous
specification are consequences of the axioms of the new specification.

Satisfaction of Safety Requirements

For each of the first four specifications we prove that it is consistent with the
strong safety requirements stated in the beginning of this section, and finally for
the fifth specification we prove that it fully satisfies these requirements.

The [consistent_is_safe] theory is verified to hold already for the first specifi-
cation. Then, since refinements preserve theories, we know that it also holds for
the second to fifth specification.

Verification of the [can_con/ theories is done stepwise: For specification num-
ber i we prove

Formal Development and Verification 1561

V ... consistent(c) A can_con(o, ...) = pi(con(a, ...))
Then, since refinements preserve theories, the fifth specification satisfies

V ...« consistent(o) A can_con(o, ...) =
(pl(con(a, ...)) A ... A p5(con(a, ...)))

which is equivalent to the [can_con] theory, cf. the definition of consistent in the
fifth specification.
Verification of the [can_coni_con2] theories is done similarly.

6 Development of the Railway Control System: Second
Stage

The fifth specification presented above introduced explicit implementable states
for trains and switch boxes. However, at that stage no architectural require-
ments were present, so that different centralised or distributed system designs
may be elaborated as correct implementations of this specification. The second
stage of our development introduces a concrete architectural design and com-
munication protocol for a distributed railway controller consisting of concurrent
communicating processes

value
controller : State = in any out any Unit
controller(o_t, o_s) =
(I { TCC[t].main(o-t(t)) | t : Trainld})

|
(I { SB[s].main(os(s)) | s : SwitchboxId})

where TCC|t].main(o¢(t)) is a process representing the train control computer
in train ¢, and SB[s].main(cs(s)) is a process representing switch box s. These
processes are defined in terms of the guards, state constructors and observers
defined in the first major stage, and follow the protocol described in section 2
The transition from the last specification stage to the distributed design stage is
performed according to a standardised procedure resulting in designs which are
consistent to the specification in a natural way (cf. Figure [d):

— The global specification state is mapped in one-one correspondence to the
distributed components: For global state (o-t, o_s), train tid and switch
box bid, o_t(tid) is mapped to TrainState[tid] and o_s(bid) is mapped to
SwitchboxState[bid].

— Application of each constructor con on a train state and/or a switch box
state is guarded by a channel command and the corresponding can_con guard
defined in the fifth specification layer. Observe that the train and switch box
state spaces have been designed in such a way that each guard evaluation can
be based on the local state space only. For example, a train control computer
will allow the train to move if it is triggered by the do_move channel and the
can_move guard evaluates to true on the local state space.

1562 Anne E. Haxthausen and Jan Peleska

— For correct implementation of the fifth specification layer, corresponding
state components in trains and switch boxes (for example, the reservation
state and the lock state described in section B)) must be consistent, whenever
a guard using this state information is evaluated. To ensure this, a commu-
nication protocol between trains and switch boxes is designed to implement
the reservation constructor introduced in the specifications: Train tid sends
a reservation request on channel C[tid,bid].res to switch box bid. The switch
box evaluates a local guard and responds by returning its possibly updated
state space to the train via channel Cltid,bid].SBstate. This information is
used by the TCC to update its local information about reservations and

locks.
do_move
TCC[1]
,,,,,,,,,,,
do_res TrainState[1]
C[1,2].SBstate
C[1,1].SBstate
C[1,1].res
C[1,2].res
SBI[1] SBI[2]
SwitchboxState[1] SwitchboxState[2]

Fig. 4. Distributed architecture with train control computers, switch boxes and
communication channels.

7 Discussion

In this article, we have presented the engineering concept and the design and
verification of a control algorithm for a distributed railway control system. We
consider the following aspects of our work to be the main advantages in compar-
ison to other work that has been performed in the field of design and verification
of similar systems (see [2] as an example of another practically relevant approach
to formal specification and verification in the railway domain):

— Our refinement approach starting with highly abstract algebraic specifi-
cations and ending with concrete distributed programs helps to separate
general aspects of train control mechanisms and their safety from concrete
application-specific design decisions.

— Our verification concept is independent on the size of the underlying network
topology. In contrast to that, experiments with model checking have led
to unmanageable explosions of the state space, as soon as more complex
networks were involved or a larger number of trains had to be controlled.

Formal Development and Verification 1563

— Within the restrictions of the simple network definition given above, the
network topologies covered by our algorithm are fairly general: There are no
limits regarding the size of the network, the number tracks involved or the
places where points may occur. In contrast to that, approaches using com-
positional reasoning and structural induction over the underlying network
topologies only seem to work for unrealistically simplified networks.

— Starting with a most abstract version of safety requirements, our approach
allows to verify their completeness and trace their “implementation” in the
more concrete refinements of the abstract control algorithm in a straight-
forward manner. For approaches defining only implementation-specific safety
requirements without reference to a more abstract safety concept, it is nearly
infeasible to check safety requirements with respect to completeness.

We would like to emphasise that the control algorithm presented here rep-
resents just a building block in a more general approach for the development,
verification, validation and test (VVT) of safety-critical systems which is inves-
tigated by the authors’ research groups at DTU and the Bremen Institute of
Safe Systems (BISS). In this wider context, our research work covers

— A systems engineering approach for safety-critical systems which is driven
by hazard analysis, risk analysis and a design approach taking VVT issues
into consideration right from the beginning of the development life cycle,

— Software-architectures for safety controllers,

— Automated real-time testing for embedded hardware/software components,

— An integrated standardised concept for verification, validation and test of
safety-critical embedded controllers, applying combinations of VVT meth-
ods, each one optimised for a specific step in the system development life
cycle.

References

[1] D. Bjgrner, C.W. George, B. Stig Hansen, H. Laustrup, and S. Prehn. A rail-
way system, coordination’97, case study workshop example. Technical Report 93,
UNU/IIST, P.O.Box 3058, Macau, 1997.

[2] B. Dehbonei and F. Mejia. Formal development of safety-critical software systems
in railway signalling. In M. G. Hinchey and J. P. Bowen, editors, Applications of
Formal Methods, pages 227-252. Prentice Hall Int., 1995.

[3] Regionalstrecken. Eisenbahntechnische Rundschau (ETR) 46 (1997), Heft 6, 323-
331.

[4] K. Mark Hansen. Linking Safety Analysis to Safety Requirements — exemplified by
Railway Interlocking Systems. PhD thesis, Department of Information Technology,
Technical University of Danmark, Lyngby, 1996.

[5] K. Mark Hansen. Formalising railway interlocking systems. In Proceedings of
Second FMERail Workshop, October 1998.

[6] The RAISE Language Group. The RAISE Specification Language. The BCS Prac-
titioners Series. Prentice Hall Int., 1992.

[7] The RAISE Method Group. The RAISE Development Method. The BCS Practi-
tioners Series. Prentice Hall Int., 1995.

[8] N. Storey. Safety-Critical Computer Systems. Addison Wesley, 1996.

	Introduction
	Engineering Concept
	Domain Model
	Static Part of the Model
	Dynamic Part of the Model

	Safety Requirements
	Development of the Railway Control System: First Stage
	First Specification
	Second to Fourth Specification
	Fifth Specification
	Verification

	Development of the Railway Control System: Second Stage
	Discussion

