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Abstract. The ‘ensembles’ identified by the InterLink working group
on Software Intensive Systems comprise vast numbers of components
adapting and interacting in complex and even unforseen ways. If the
analysis of ensembles is difficult, their synthesis, or engineering, is down-
right intimidating. We show, following a recent three-level approach to
agent-oriented software engineering, that it is possible to specialise that
intimidating task to three levels of abstraction (the ‘micro’, ‘macro’ and
‘meso’ levels), each potentially manageable by interesting extensions of
standard formal software engineering. The result provides challenges for
formal software engineering but opportunites for ensemble engineering.

1 Introduction

Physical ensembles [6] incorporating potentially massive numbers of nodes, which
interact with their physical environment and which may be adaptive and intel-
ligent, offer a promising means of building many complex applications. A neces-
sary condition for the widespread adoption and acceptance of physical ensembles,
however, is trust in the dependability of such systems. Given the complexity of
ensembles, it is our opinion that such trust can be achieved only using formal
engineering methods.

The formal methods that exist today have not been developed to handle the
complexity and scale proposed for physical ensembles. Hence, there is a need
to develop new approaches. The nature of physical ensembles means these new
approaches will vary depending on the level of observation applicable to the
system being developed. Following Zambonelli and Omicini’s summary of agent-
oriented software engineering [21], we adopt three levels for observing ensembles:
the micro, macro and meso levels (see Figure 1).

The micro level is applicable to ensembles which have a manageable number
of components. For the purposes of ensemble engineering, we interpret that to
mean ‘distinct components’: there may be a huge number of identical kinds (at
this level of abstraction) of each component. Otherwise, engineering would be
impractical. At this level, the behaviour of each component and each component
interaction can be formally modelled and analysed. An example of such an en-
semble is the system of sensors and actuators controlling a smart home designed,
for example, for energy efficiency, or assisted living , i.e., allowing an elderly or
disabled person to live alone.
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                micro  -  details of components and their 

                                             interactions

   

            macro   -  collective behaviour

                     of the system

   meso –  assurance that components

   achieve macro behaviour

Fig. 1. Levels of observation

The macro level is applicable to ensembles comprising massive numbers of
components, possibly distributed over a network and operating in a dynamic
and uncontrollable environment. It is not feasible to engineer such systems in
terms of individual components. Instead, means of engineering the collective
behaviour of the components are required. An example of such an ensemble is an
ad hoc sensor network deployed in an urban environment, e.g., to monitor traffic
jams and accidents and wirelessly communicate such information to drivers in
the vicinity [16]. The collective behaviour in this case would be congestion-free
traffic flow.

The meso level is seen as pertaining when an existing micro-level component
is added to an existing macro-level system. In [21], concern centres on verifying
that the deployment of a micro-level system within a macro-level one does not
compromise the behaviour of either system. In our approach, the macro-level
system is the specification of the whole system, the micro level contains the
implementation, and the meso level embodies designs by which the members of
the micro level achieve the behaviour specified at the macro level. For example
in the sensor network, the meso level would contain structures to enable (GPS
aware) vehicles to communicate with traffic sensors and each other. In top-down
development of a system, the meso level bridges the gap between the macro and
micro levels, showing what a micro-level component must achieve in addition to
its unilateral micro-level behaviour. By requiring that the micro- and macro-level
behaviours are not compromised, that returns us to the outlook of [21].
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2 Micro-level ensemble engineering

The key challenge at the micro level of observation is the extension and mod-
ification of traditional formal methods. Much work has been done on formal
methods in the areas of continuous real-time [4, 22], probability [10, 8] and mo-
bility [11, 3], all areas of importance for physical ensembles. However, other areas
of equal importance have received only limited attention; in particular, the areas
of spatial location, autonomy and intelligence, and adaptation.

2.1 Spatial location

The spatial location of components in some ensembles is vital. For example,
in an industrial manufacturing setting the precise location and orientation of a
robot working in a team with other robots is a necessary part of its specification if
collisions are to be avoided and cooperation achieved. Other applications such as
claytronics [5] or free-flight air traffic control [2, 15] also require precise locations
of components to be specified.

For some applications a discrete notion of space may be sufficient, in others
continuous space may be required. In either case, new formal methods should
be developed where space is a first-class concept, rather than just modelled.
Approaches to incorporating real-time into formal methods should offer some
guidance.

2.2 Autonomy and intelligence

In most existing formal methods, components are reactive. They do not have
goals and plans that enable them to act autonomously. Although much work has
been done in the artificial intelligence (AI) community on goal-oriented decision
making, there has been little integration of this work with formal methods, or
with software engineering in general. Most often, AI techniques, when used, are
introduced during the implementation phase of a project, rather than during
high-level requirements analysis and design phases.

Incorporating AI techniques with formal methods is essential if we are to
promote their consideration at the highest levels of system abstraction. Possible
approaches include new formal methods based on agent-based approaches [20]
and machine learning [13], or on non-standard logics, such as fuzzy logic [7] or
non-monotonic logics [1], which can be used to model intelligent decision making
processes.

2.3 Adaptation

Components in ensembles will need to adapt their behaviour to respond to un-
forseen changes in their environment. It is possible to model changes in behaviour
within a single specification using, for example, appropriate operators for com-
bining behaviours [19]. It is also possible to do so if the state spaces of the various
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adaptations have a uniform abstraction [17]. However, deciding on the kinds of
changes which are allowable for truly adaptive components is difficult.

Research on changing high-level requirements of real-time specifications has
shown that all such changes can be modelled as a sequence of refinements and a
minimal set of basic rules [18]. Similarly, changes to component configurations
in an object-oriented setting can be modelled as a sequence of refinements and
a minimal set of rules [9]. Hence, it seems feasible that a formal calculus of
specification change could be developed.

By establishing a formal relationship between pairs of specifications, such
a calculus would enable us to reason about changes to a given specification. In
particular, it would enable us to determine the effect a change has on established
properties of the specification. This would potentially enable us to reason about
the effects of adaptation, and to determine the limits of adaptability that would
maintain critical properties at both the component and system levels.

3 Macro-level ensemble engineering

A macro-level system can be specified simply as a combination of all the micro-
level components (described unilaterally), conjoined with a condition ensuring
that the result behaves as desired. Typically that condition captures behaviour
that is thought of as being emergent : not a consequence of the behaviours of the
unilateral micro-level components. Without it, the specification would allow un-
desirable behaviours resulting from the undisciplined interaction of components
at the micro level. Such a specification trades clarity for any hint of implementa-
tion strategy. It is at the meso level that the emergent condition is to be achieved,
somehow, from the micro components.

In the traffic-sensor example, the micro-level might describe the system in
terms of components (cars, public transport and commercial vehicles) ‘interact-
ing’ on the roads; there are many instances of each component. Then the macro
specification would contain those, mediated by a predicate ensuring the smooth
flow of traffic. Such behaviour is of course emergent when viewed from the level
of an individual vehicle.

It is to be expected that, because of the huge number of components in an
ensemble, macro-level behaviour is captured using distributions (in the sense of
statistics) and even notions of convergence in space or time (to describe the ef-
fects of adaptability in achieving what might be termed ‘societal stability’). That
must in turn affect the definition of conformance of a design to its specification.
But conformance ‘at a certain confidence level’ may not sit well with abstraction
[14] and so must be investigated.

4 Meso-level ensemble engineering

The goal of the meso level is to ensure that refinement holds when a macro-scale
specification, MacroSpecification, is augmented with a micro-scale component,
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MicroComponent, as part of the design process. In terms of the symbol v for
‘valid refinement’,

MacroSpecification v MicroComponent ∧ MacroSpecification′ .

Now the right-hand side specifies a design in which the ingredients combine
to achieve the ensemble specification on the left. In the traffic-sensor example,
a design achieving free traffic flow might incorporate the relay of information
from traffic sensors to vehicles which use GPS and data from neighbouring cars
to regulate their velocity (speed in current route or change of route) to avoid
traffic jams. It is important to acknowledge the role played by human drivers in
the adaptability necessary to achieve emergence: each smart car might offer its
driver a choice of possibilities and different driver preferences might be expected
to substitute for the randomisation required in network routing algorithms to
avoid repeated blockages.

Designs at the meso level are complicated by the fact that components in both
the micro and macro levels may be mobile and hence the systems may merge,
blurring their boundaries. From the viewpoint of just the micro level, it would
be usual to place assumptions on the environment of a component. Similarly,
to engineer a macro-level system requires assumptions about the interactions
between the components.

To exploit the proposed formal approach, we need to formalise the allowable
meso-level interaction patterns and verify that the behaviour and assumptions of
the components in the micro-level system conform to these patterns. Suitable for-
malisms could be built on process algebras, especially those supporting mobility
[11, 3], adding elements of, for example, game theory to capture the more com-
plex behaviour possible with autonomous, intelligent components. Also relevant
to such formalisms is current work on languages for orchestrating distributed
systems [12] at the meso level.

5 Summary

To engineer physical ensembles formally, we propose extensions to traditional
formal methods and the way they are applied at three levels of observation:

1. At the micro level where we have a manageable number of distinct compo-
nents, we require extensions to existing formal methods which

– have a first-class concept of spatial location,
– incorporate AI techniques to capture autonomy and intelligence, and
– have theories, beyond refinement, relating specifications in order to rea-

son about adaptability .

2. At the macro level where the number of components is massive and it is not
feasible to think in terms of individual components, we need a notion of an
emergence condition which captures the desired collective behaviour of the
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system and, importantly, rules out undesirable behaviours. We also need to
investigate the conformance of designs to specifications where behaviour is
statistically defined.

3. At the meso level where we introduce micro-level components as part of de-
signing a macro-scale system, we need formalisms which allow us to capture
and reason about complex interaction patterns. It is at this level that we
move from the clarity of emergence predicates at the macro level, to the
strategies employed to satisfy those predicates at the micro-level.
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