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Abstract
A largely unsolved problem in computational biochemistry is the accurate prediction of binding
affinities of small ligands to protein receptors. We present a detailed analysis of the systematic and
random errors present in computational methods through the use of error probability density
functions, specifically for computed interaction energies between chemical fragments comprising
a protein-ligand complex. An HIV-II protease crystal structure with a bound ligand (indinavir) was
chosen as a model protein-ligand complex. The complex was decomposed into twenty-one (21)
interacting fragment pairs, which were studied using a number of computational methods. The
chemically accurate complete basis set coupled cluster theory (CCSD(T)/CBS) interaction
energies were used as reference values to generate our error estimates. In our analysis we observed
significant systematic and random errors in most methods, which was surprising especially for
parameterized classical and semiempirical quantum mechanical calculations. After propagating
these fragment-based error estimates over the entire protein-ligand complex, our total error
estimates for many methods are large compared to the experimentally determined free energy of
binding. Thus, we conclude that statistical error analysis is a necessary addition to any scoring
function attempting to produce reliable binding affinity predictions.
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Introduction
One of the most challenging problems in computational biochemistry is the accurate
prediction of the binding affinity of a small ligand to a protein receptor.1,2 This problem is
challenging because of the role active site water plays in the binding process3, the large
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number of conformational states of the protein and ligand4, tautomeric states of the ligand5,
and the computation of accurate interaction energies for each of the hydrogen bonding and
non-polar contacts at the protein-ligand interface.6 In order to compute an accurate binding
free energy each of these factors needs to be reliably modeled to chemical accuracy (±1
kcal/mol relative to experiment) or beyond.6 Reaching acceptable levels of accuracy in the
computational modeling of large bio-molecular systems is indeed a challenging effort. Dill
has even proposed that a protein with 100 amino acid residues should have each one
modeled to within 0.1 kcal/mol accuracy to yield an acceptable level of error for the entire
protein.7

Over the years, many different types of scoring functions have been developed and used to
model protein-ligand interactions, ranging from empirical scores to physics-based functions
with some even incorporating quantum mechanical calculations.8–11 The most popular
docking and scoring algorithms have been extensively reviewed, and their success rates are
variable across different score functions and different protein-ligand systems.2,12–16

Because of this inconsistency, the notion of consensus scoring, in which several different
docking/scoring programs are used to collectively rank ligands by binding affinity, emerged.
17,18 Consensus scoring generally yields better ordering of ligands by binding affinity,
largely due to the cancellation of errors from each individual scoring function.19 Free-
energy perturbation methods (FEP), which are often used to predict differences in binding
affinity between two similar ligands, also have been successful largely due to the
cancellation of errors.20–23

The evaluation of error in docking and scoring studies, and indeed, in computational biology
in general, has been rather limited. Nonetheless, error analysis can be used to clarify the
ability of a method to reach a defined outcome (e.g. the computation of relative free energies
of binding). For example, simple statistical error analysis can provide insight into how
computed binding affinity errors are diminished in consensus scoring and how relative free
energies obtained from free-energy perturbation calculations have reduced uncertainties.
More importantly, it can form a hypothesis by which improvements in the desired outcome
can be realized.

Errors involved in any kind of calculation or measurement can be categorized as being
systematic or random. Systematic errors are predictable in both sign and magnitude, while
random errors are unpredictable in both sign and magnitude. It is important to note that the
propagation of these types of errors differs in an important way - systematic errors
accumulate as a simple sum (Equation 1) while random errors propagate as the square root
of the sum of squares24 (Equation 2). The systematic error sum over individual sources of
error is simple to correct for, since it represents a predictable shift in the measured (or
calculated) value from the true value. Furthermore, systematic errors largely vanish (due to
error cancellation) when differences in measurements are calculated. On the other hand, the
random error of equation 2 represents a maximum accumulation of individual random error
sources. Large random error is a consequence of using a very imprecise method of
measurement.

(1)

(2)

Faver et al. Page 2

J Chem Theory Comput. Author manuscript; available in PMC 2012 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Another important tool in statistical error analysis is the construction of probability density
functions (pdf’s). A series of repeated measurements can be used to construct a pdf for a
given type of measurement, with which one is able to infer characteristics such as the mean,
standard deviation, variance, skewness, and other properties. For example, the widely
applicable Gaussian distribution (Equation 3) can be used to make inferences about both
systematic and random errors. The mean error (μ) in a set of measurements represents a
systematic shift in the pdf while the variance about the mean error (σ2) determines the
“width” of the distribution due to the accumulation of random errors.

(3)

With these ideas in mind, the success of consensus scoring can readily be rationalized in the
terminology of error analysis. As more scoring functions are included in the consensus
score, the predicted value of the binding affinity for a given ligand approaches the mean
value across all scoring function predictions. As we approach the mean binding affinity,
random error from individual scoring functions is minimized, systematic errors largely
cancel, and ranking ligands by binding affinity is much more successful. When free energy
perturbation methods are used to calculate relative free energies of binding, usually only one
functional group interaction is modified between the ligands being compared. This
essentially reduces the dimensionality of the error sources to one, which decreases random
error. Since these methods only calculate differences in energies, the random error in the
final answer is usually very small, and systematic errors mostly cancel.

An application of simple error analysis to the calculation of interaction energies of protein-
ligand systems has been outlined in a Gedanken experiment by Merz.6 It involves
decomposing a protein-ligand complex into independent, chemically meaningful fragment
pairs. For example, a ligand may have a hydroxyl moiety hydrogen bound to the backbone
carbonyl of a residue in the binding pocket of the receptor, while also containing a
hydrophobic carbon chain several angstroms away exhibiting favorable van der Waals
interactions with a phenylalanine side chain.25 These are clearly distinguishable interacting
fragments both contributing to the total binding affinity of the whole ligand. However, it is
well known that functional groups are not completely independent entities with respect to
total free energy of binding. The concept of cooperativity (also termed additivity/non-
additivity) has been described and examined in several protein-ligand systems.7,26 The free
energy changes of individual interacting fragments cannot simply be summed to produce a
global free energy of binding for a protein-ligand complex. However, evidence from
statistical mechanics26 and isothermal titration calorimetry experiments27 suggests that
enthalpy changes are additive across several interactions in a protein-ligand complex. Even
so, in some cases strong secondary electrostatic interactions can arise in systems with
multiple proximally close polar groups (DNA base pairs28, for example) and can introduce
non-additivity in the computation of enthalpy of interaction.

As discussed in Merz’s Gedanken experiment and elsewhere, through the use of the
thermodynamic cycle outlined in Figure 1 the free energy change of a ligand upon binding
to a protein receptor can be obtained. The final expression (equation 4) contains an
electronic interaction energy term, an enthalpy correction term, an entropy term, and a
change in the solvation free energy term.
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(4)

(5)

(6)

(7)

(8)

The present work concentrates only on errors from the electronic interaction energy, ΔE. In
doing so we assume that the errors from ΔHcorr, ΔS, and ΔΔGSolv are zero (which is
certainly not the case, but serves as a computational expediency). We refer to such an error
estimate as the best-case scenario error, BCSerror., because it ignores the error from these
three remaining terms of equation 4. For the sake of simplicity, we assume here as a first
approximation that errors in the calculated interaction energies are purely random (even for
variational quantum-based methods since the variational principle does not apply to
differences between ground state energies). The random errors in the calculation of
interaction energies of chemical fragments 1, 2, and 3, etc. now propagate as

(9)

By neglecting the random error from the enthalpy, entropy, and solvation energies, the
overall propagated error (Equation 9) is a lower bound to the free energy error estimate and
therefore can be thought of as the best-case scenario estimate. In addition to calculating the
BCSerror, we also decompose errors from computational methods into systematic and
random portions by using Gaussian error probability density functions. By using error
probability density functions, we show that it is possible to remove the estimated systematic
error for each interaction and thereby decrease the estimation of remaining random error.

It is well known that enthalpy and entropy tend to act against one another in free energy
calculations in a phenomenon called enthalpy-entropy compensation. These two terms often
have opposite signs and similar magnitudes and thus largely cancel each other in Equation 4.
In terms of error estimation, however, the magnitudes of random errors in each term are not
known. We can only estimate their probable range based on studies such as the current one.
When calculating overall random error bars in the free energy, estimated errors from the
individual terms must be propagated according to equation 2, which only increases with the
addition of terms. In addition, while it is true that the errors in any of the three remaining
terms of Equation 4 could cancel favorably with a portion of the predicted error in ΔE, by
exploiting this we would be calculating the (sometimes) correct ΔGbind for clearly the wrong
reasons. The goal of molecular docking is to routinely predict binding free energies both
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accurately and precisely, so the error should be diminished in each of the terms of equation
4. As a side note, any calculation of the entropy term depends on the potential energy
surface of the system and thus depends on enthalpy measurements. Because of this, errors in
enthalpy estimations can lead to distorted potential energy surfaces and have unpredictable
effects on the entropy term.

Clearly, experimental interaction energies/enthalpies would be desirable to use as a
reference for these error functions, but in most cases this will not be possible. As a
substitute, we use converged quantum mechanical methods such as CCSD(T) with complete
basis set extrapolations (CBS) to provide the reference energy we need to make meaningful
error estimates.29,30 Such methods have been known to routinely achieve what is termed
“chemical accuracy” or the ability to compute energies to within ±1 kcal/mol of
experimental observations.31

Prior to presenting the results it is worth hypothesizing what the expected error types would
be for computed interaction energies of hydrogen bonded and non-polar complexes at
different levels of theory. Highly parametric methods like semiempirical or force field
methods would be expected, on the face of it, to have very significant random errors rather
than systematic errors. On the other hand, quantum chemical methods like Hartree-Fock
(HF) or density functional theory (DFT), which do not correct for dispersion, would be
expected to have very large systematic errors and relatively smaller random errors. One
might suppose that more sophisticated correlated methods such as second-order perturbation
theory (MP2) would have smaller systematic errors than HF or DFT; however, MP2 is
known to exhibit significant overbinding of dispersion-bound complexes (especially with
larger basis sets), and hence MP2 may also exhibit significant systematic errors. Because
MP2 performs better for hydrogen-bonding interactions than for dispersion-bound
interactions, these errors may also appear to have a significant random component.
Interestingly, our analysis shows that systematic errors are a significant component in all
cases, which arises because all methods examined tend to give too weak interaction energies
with respect to our reference level of theory. If the computed interaction energy errors were
better centered at the zero error point then error cancellation would possibly be beneficial in
the computation of the total interaction energy, but this was found to not be the case for the
model systems examined. The good news is that the systematic error can be estimated and
corrected for while reducing the remaining random error and this then becomes the main
challenge in improving the prediction of interaction energies.

In order to demonstrate our error hypothesis on a real system, we have chosen to examine
the HIV-II/indinavir crystal structure32 in detail (PDBID: 1HSG, see Figure 2). This system
was chosen because of its large number and diversity of chemical contacts. In addition, the
experimentally observed binding free energy has been reported33,34 to be −12.8 kcal/mol
indicating an overall strong level of interaction between the protein and indinavir. We have
decomposed the protein-ligand complex into 21 distinct, chemically important fragment-
based interactions (Figure 3). Each pair of interacting fragments was evaluated in terms of
gas-phase electronic interaction energies with a number of different computational methods
including force field methods, semiempirical quantum mechanical methods, density
functional methods, and ab initio wave function methods. By comparing the calculated
interaction energy of each fragment pair for a given method to a reference, one can calculate
the BCSerror and generate pdf’s to describe the error for the full protein-ligand interaction.

Methods
The HIV II-protease/indinavir complex structure was obtained from the protein databank
(PDBID: 1HSG).32 Hydrogen atoms were added to the structure with the program Reduce35,
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followed by optimization of their positions with the AMBER FF99SB force field.36 Close
contacts (less than 3 Å) in the resulting structure were highlighted in the visualization
program Chimera37, which were then manually examined. In many cases, one member of an
interacting fragment pair would be adjacent to a polarizing group such as the peptide bond
along the protein backbone. These polarizing groups, although not directly interacting with
the other fragment partner, were included in the fragment structures to model the
polarization effect on the fragments. Any time an aromatic fragment was involved the entire
aromatic ring was included.

After manually determining all the chemically important fragment pairs, the fragments were
generated by cutting the covalent bonds joining them to the remainder of the molecule, and
replacing the bonds with linker hydrogen atoms. The hydrogen bond distances were set to
1.1 Å for carbon-hydrogen bonds and 1.0 Å for nitrogen-hydrogen bonds. The resulting 21
interacting fragment pair structures are displayed in Figure 3 and their interaction energies
can be found in the supplementary material, available free of charge via the Internet at
http://pubs.acs.org, or for an interactive version visit
http://crunch.qtp.ufl.edu/~faver/error/1hsg.

The gas-phase electronic interaction energies of the 21 independent chemically meaningful
fragment complexes (Figure 3) were calculated using the following computational methods:
the generalized AMBER force field (GAFF)38, AMOEBA39, MMFF40, AM141, AM1-
FS142, PM343, PM644, PM6-DH245, PDDG46, Hartree-Fock (HF), second-order Møller-
Plesset perturbation theory (MP2), the M06-L density functional47, B97-D48, and coupled-
cluster29 with single, double, and perturbative triple excitations (CCSD(T)). Basis sets for
the quantum mechanical methods ranged from the 6-31G* Pople type basis set49 to the aug-
cc-pVXZ (X=D,T,Q - hereafter referred to as aXZ) Dunning type basis sets.50 In addition,
extrapolation to the complete basis set (CBS) limit was also used.30 The CCSD(T)
calculations were evaluated using the “heavy augmented” haDZ and haTZ basis sets, which
place diffuse functions only on heavy (non-hydrogen) atoms.51,52 In our error analysis, the
CCSD(T)/CBS energies were used as our reference, which were evaluated as

(10)

(11)

where the notation CBS[aTZ-aQZ] represents the complete basis set extrapolation from
energies calculated with the aTZ and aQZ basis sets. In each quantum-based method, basis
set superposition error (BSSE) was accounted for using the counterpoise correction. The
Hartree-Fock and MP2 interaction energies were calculated with the Gaussian 03 program.53

The M06-L and PM6 interaction energies were calculated with Gaussian 09.54 AM1, PM3,
and PDDG interaction energies were evaluated with the DivCon program.55 The GAFF
energies were calculated using the AMBER 10 suite.56 Most of the CCSD(T) computations
were performed using MOLPRO.57 The larger CCSD(T) computations were performed
using NWChem58 on the Jaguar supercomputer at Oak Ridge National Laboratory. MMFF
calculations were performed with the Schrödinger suite.59

Results and Discussion
Our analysis of various error scoring functions for the set of computational methods across
all fragment pairs is shown in Table 1. The second column of Table 1, the BCS random error
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bar, is the evaluation of equation 9 and gives a measure of error assuming that all errors in
the electronic interaction energies are purely random. If this were true it would suggest that,
for example, PM3 total interaction energies for ligand binding can be off by as much as 14.7
kcal/mol and we would be left with no reliable statistical way to narrow this error window.
This would of course be unacceptable because this error bar is actually larger in magnitude
than the experimental binding affinity itself (−12.8 kcal/mol). The random error bar for
GAFF is about half as large in magnitude, but still represents a large portion of the
experimental binding affinity. When quantum effects are accounted for, e.g. MP2/CBS, we
are able to narrow the range of accumulated random errors down to ~1 kcal/mol if we use
the complete basis set extrapolations.

Upon examination of the mean errors over the 21 fragment systems (see column 3 of Table
1), it is apparent that there is a significant systematic error component in the majority of the
methods studied. Further evidence is shown in Figure 4, which plots the interaction energy
deviations from the CCSD(T)/CBS reference for each fragment pair for a subset of the
methods examined. Interestingly, most of the calculated interaction energies are less
strongly binding than those calculated with the CCSD(T)/CBS reference indicating far less
random error character in the computed interaction energy errors. Systematic errors can be
distinguished from the random sources of error by choosing an appropriate probability
distribution function to describe the measurement data. If we choose the Gaussian
distribution as defined by equation 3, we need to calculate two parameters, the mean error μ,
and the variance σ2. The values for each computational method are shown in columns three
and four of Table 1.

If we choose to model our calculations (measurements) with the Gaussian pdf, the calculated
value of μ represents a shift of the distribution (systematic error), and σ2 represents a
measure of the width of the distribution (random error). For example, GAFF interaction
energies have an average deviation from our reference of 0.94 kcal/mol, which shifts the
Gaussian distribution by this amount. The variation about this mean error is 1.66 (kcal/
mol)2, which gives a measure of the width of the distribution and the random error of
measurement (see Figure 5). By using these values, we can also obtain an estimate of the
total systematic and random error from all fragment interactions comprising the protein/
ligand complex by evaluating functions similar to equations 1 and 2. However, now we are
using the parameters of the probability distribution function, μ and σ2, assuming for now
that they are representative of all the chemical interactions.

(12)

(13)

Note that both equations 12 and 13 depend on the number of chemical interactions. This
shows the size-dependence of our error estimates as discussed earlier by Merz.6 Errors in
energy calculations may be inconsequential when dealing with small systems, but as more
molecular contacts become involved, propagated error may have significant effects on
energy calculations.
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Using equations 12 and 13, we find that the predicted systematic error for the total
interaction energy of the protein-ligand complex with GAFF is 19.74 kcal/mol (column 5 of
Table 1). The predicted overall random error bar is 5.90 kcal/mol (column 6). These values
of random error are lower than the BCSerror values because we have removed the systematic
components of the overall errors in each method. We can narrow this random error bar even
further by constructing pdf’s for different types of interactions – e.g. nonpolar and polar
interactions. In this way, the systematic error for each type of chemical interaction could be
removed independently, while leaving less random error in the overall interaction energies.

Keeping with the GAFF energies as an example, we calculated the mean error and variance
of the 15 nonpolar interactions to be 1.17 kcal/mol and 1.83 (kcal/mol)2 and the mean error
and variance of the 6 polar interactions to be 0.35 kcal/mol and 1.03 (kcal/mol)2. To
compute the total systematic and random errors due to all interactions, we use equations 12
and 13, but with different values of μ and σ2 depending the interaction type. The overall
systematic error by differentiating between nonpolar and polar interactions is predicted to be
19.65 kcal/mol, slightly less than the mean error by averaging over all interactions. The
overall random error bar is now calculated to be 5.80 kcal/mol, less than the value calculated
previously using one value of variance for all interactions. As more pdf’s for different
classes of interactions are used, and more data points are added to them, we expect that the
overall systematic error in interaction energies can be more reliably removed and the
random error bars can be minimized.

Conclusion
Using benchmark-quality quantum mechanical CCSD(T)/CBS results we have been able to
establish reference values for 21 fragment interaction energies present in the complex of
indinavir and HIV-II protease. Using these reference values we established the errors
associated with the use of less sophisticated computational techniques including force fields,
semiempirical methods, and DFT calculations. Using error analysis tools we estimated
random and systematic errors present in each computational method by constructing
probability density functions. We found that all computational methods predominantly gave
interaction energies that were less binding than the reference energies yielding a significant
systematic error component in each case. Semiempirical methods performed the poorest
overall, yielding large random and systematic errors in all cases. The GAFF force field
significantly outperformed the semiempirical methods. The HF calculations had large
systematic errors due to the lack of dispersion, but had relatively small random errors. The
MO6-L functional performed impressively, even with the small 6-31G* basis set, giving
remarkably small systematic and random errors.

Our error analysis suggests one way in which any scoring algorithm based on energy could
be improved. Given a scoring function, comparisons of interaction energies for many types
of interactions in different geometries with chemically accurate quantum mechanical
calculations could be used to derive error probability density functions for several classes of
interactions. By constructing these pdf’s, the predicted systematic error involved in each
interaction present could be removed. The remaining random component of error could then
be reported with the energy scores to provide insight into their reliability. The results
presented herein offer only a start along this direction in the sense that the number of
interactions, their type and geometry distribution is largely limited to the indinavir/HIV-II
system studied. In order develop accurate pdf’s to correct a broad range of interactions one
would require the collection of a large number of unique interacting fragments to serve as
reference systems to assemble the pdf’s for any given scoring function. Such a set of
interacting fragments could then provide a basis by which any systematic errors in a
physics-based score function could be corrected for assuming that additivity is largely
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dominant in the computation of interaction energies. The additivity or non-additivity of the
interactions for a given protein-ligand complex is poorly understood and understanding this
aspect of the problem would be essential to effectively apply any systematic error correction
scheme.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Thermodynamic cycle used to estimate the free energy of binding of a drug molecule to a
protein receptor. PS=protein-substrate complex, P=protein and S=substrate
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Figure 2.
Crystal structure of HIV-II protease bound to indinavir (PDBID: 1HSG). The inner window
displays an example of the fragment systems studied, which includes a glycine residue
interacting with a pyridine ring in the ligand.
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Figure 3.
The 21 chemical fragment pairs comprising the 1HSG protein/ligand complex used in this
study.
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Figure 4.
The difference between example methods and the CCSD(T)/CBS reference method in
interaction energy of each of the 21 fragment systems. Most methods generally
underestimate the interaction energy, which implies a portion of the errors is systematic in
nature
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Figure 5.
Error distribution of GAFF interaction energies of the 21 fragment systems fit to a Gaussian
probability density function. The systematic error in the GAFF interaction energies (using
CCSD(T)/CBS as a reference) is predicted to be 0.94 kcal/mol per interaction and the
variance (random error) about this shift is 1.66 (kcal/mol)2.
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