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Introduction

The present short survey forms a natural companion to that of Novikov [13], and
it is helpful to read them together. Here we shall be mainly concerned with results
in the development of cobordism theory in the last five years, based on the work
of the authors, of Quillen and others. As an application we describe the beautiful
work of Sullivan on the so-called Adams conjecture in K-theory.

§ 1. Formal groups

In the modern topological apparatus constructed from cobordism theory, the
theory of commutative formal groups and their generalizations plays an important
part. Here we give the necessary introduction to this theory.

Let A he a commutative associative ring with identity, A[x1, . . . , xn] the ring of
polynomials in x1, . . . , xn with coefficients in A and A[[x1, . . . , xn]] the correspond-
ing ring of formal power series.

Definition 1.1. A commutative one-dimensional formal group over A is a power
series F (u, v) ∈ A[[u, v]] such that F (F (u, v), w) = F (u, F (v, w)) and F (u, v) =
F (v, u), where F (u, 0) = u.

Note that the existence of an “inverse element” ϕ(u) ∈ A[[u]] such that F (u, ϕ(u)) =
0 follows from Definition 1.1.

Definition 1.2. A homomorphism Ψ of formal groups G Ψ−→ F , defined over a ring
A, is a series ψ(u) such that F (ψ(u), ψ(v)) = ψ(G(u, v)). If ψ(u) = u+O(u2), then
Ψ is called a strong isomorphism (invertible change of variables).

The base rings A that had to be considered earlier in fundamental examples
were the ring of integers Z, the ring of p-adic integers Zp, the residues modulo
p: Zp = Z/pZ, the ring of algebraic integers in some algebraic number-field or its
p-adic completion. In topology they are rings Ω of some form of cobordisms, in
particular, the ring of unitary cobordisms, which is algebraically isomorphic to the
graded ring of polynomials over Z with polynomial generators of all even degrees.

The reader can find a large collection of examples of formal groups over number
rings in Honda’s beautiful article [17].
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Some very simple examples. a) The linear group over Z, where F0(u, u) = u+v.
b) The multiplicative group over Z, where Fm(u, v) = u+ v ± uv; the change of

variables ψ(u) = ± ln(1± u), which takes the group Fm(u, v) into the linear form,
lies in the ring Q ⊂ Z, so over Z this group is not isomorphic to the linear group.

c) Lazard’s group. Consider the ring B = Z[x1, . . . , xn, . . . ] of integer poly-
nomials in infinitely many variables and the series g(u) = u+

∑
n≥1

un+1xn

n+1 . Then
there is the group

F (u, v) = g−1(g(u) + g(v)),
where g−1(g(u)) = u. The coefficients αij of the series F (u, v) lie in the ring B⊗Q
and generate over Z a subring A ⊂ B ⊗Q, where F (u, v) = u+ v +

∑
i≥1
j≥1

αiju
ivi.

Then the following theorem of Lazard holds.

Theorem 1.1. The ring A of coefficients of the Lazard group is a polynomial ring
over Z with infinitely many generators.

Theorem 1.2. For any commutative one-dimensional formal group over any ring
A′ there exists a unique homomorphism A → A′ under which the Lazard group is
mapped into the given group (“universal property of the Lazard group”).

Theorem 1.3. For any commutative one-dimensional formal group F (u, v) over
any ring A′ there exists a series ϕ(u) ∈ A′[[u]]⊗Q such that

ϕ(u) = u+O(u2) and F (u, v) = ϕ−1(ϕ(u) + ϕ(v)) ∈ A′[[u, v]]⊗Q.

Thus, over the rational numbers all groups can be linearized. The series ϕ(u)
is called the “logarithm” of the formal group F (u, v). Note that the coefficients of
the formal differential dϕ(u) = (

∑
n≥0 ϕnu

n) du lie in A′, where ϕ0 = 1, ϕ(u) =
u +

∑
n≥1

ϕn

n+1 u
n+1. The differential dϕ is called the “invariant differential” of

F (u, v) and is calculated thus: dϕ = du/( ∂
∂vF (u, v))v=0 (see Honda [17]). Over

A′ ⊗Q we also have the equation ϕ(u) = [ 1
k ϕ

−1(kϕ(u))]k=0.
The proofs of Theorems 1.1–1.3 can be found in [4]; expressions of the form

1
k ϕ

−1(kϕ(u)) = 1
k F (u, F (u, . . . ) . . . ) = Ψk(u) are connected with the “Adams

operators” in topology.
A remarkable fact is that the “formal group of geometric cobordisms”, introduced

by Mishchenko and S. P. Novikov in [14], which plays an important role and lias a
simple geometrical meaning, turns out to coincide with Lazard’s universal group.
This was first noticed by Quillen in [7] and led to further important applications
of this group in topology. The invariant differential in this group has the form
dg(u) = (

∑
n≥0[CP

n]un) du, where [CPn] is the class of unitary cobordisms of
complex projective space; the coefficient ring A of the Lazard group coincides with
the ring Ω of unitary cobordisms. Later we shall come across the concept of a
“power system”, which is weaker than that of formal group.

Definition 1.3. A power system of type s ≥ 1 over the ring A is a sequence of
series fk(u) ∈ A[[u]] such that fk(u) = ksu+ O(u2) and fk(fl(u)) = fkl(u), where
k and l are any integers (in rings A with torsion it is convenient to require the
coefficients of fk(u) to be algebraic with respect to the variable k).

Then we have a simple fact (Bukhshtaber and Novikov [4]). Over the ring A⊗Q
there exists a series B(u) ∈ A[[u]] ⊗ Q such that fk(u) = B−1(ksB(u)), where
B−1(B(u)) = u and B(u) = u+O(u2).
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Every group generates a power system over the same ring, but the converse is
in general not true, since the coefficient ring of a power system is far smaller. The
reader can find a number of examples of power systems with their properties and
theorems in [4].

Note that in [4], [21] and later sections of this survey we shall meet “two-valued”
analogues of formal groups, defined by equations (which do not have solutions over
A[[u, v]])

Z2 −Θ1(u, v)Z + Θ2(u, v) = 0;

here Θ1,Θ2, can be regarded as the “sum” and “product” of values of the group
F±(u, v), not lying in the original ring. The “inverse element” of u is a series ϕ(u)
such that Θ2(u, ϕ(u)) = 0. An important case is that when ϕ(u) = u (see §4).

§ 2. Cobordism and bordism theory

I. The axiomatics of bordism theory. General properties. Suppose that
some class of manifolds, closed and with boundary and possibly with additional
structure, is given such that

a) the boundary of a manifold in the class belongs to the class;
b) the direct product of manifolds of the class belongs to the class (“multiplicative

property”);
c) a closed domain with smooth boundary in a manifold of the class belongs to

the class (and also a closed interval belongs to the class) (“excision axiom” and
homotopy invariance).

We say that such a class defines a cobordism (and bordism) theory. We denote
the class by P .

The cycles (singular bordisms in P ) for any complex K are the pairs (M,f),
whereM ∈ P , f : M → K is a continuous mapping andM is a closed manifold. The
singular “films” are the pairs (N, g), where N ∈ P has boundary and g : N → K. In
an obvious way, this gives rise to the group of n-dimensional cycles factored out by
the group of boundaries of films in P for any complex K; this group is denoted by
ΩP

n (K) and called the “bordism group” of K relative to the class P . The group of
“relative bordisms” ΩP

n (K,L) is defined similarly and we have the so-called “exact
sequence of a pair”: · · · → ΩP

n (L) → ΩP
n (K) → ΩP

n (K,L) δ−→ ΩP
n−1(L) → · · · .

A mapping K1
ϕ−→ K2 induces a homomorphism ϕ∗ : ΩP

n (K1) → ΩP
n (K2). The

groups ΩP
n and homomorphisms ϕ∗ are homotopy-invariant (the interval I1 ∈ P ).

For Euclidean space Rq (or for points), the groups ΩP
n (Rq) are in general non-trivial

for n > 0. The direct sum ΩP
∗ =

∑
n ΩP

n (Rq) forms the “ring of scalars in bordism
theory”.

For finite complexes K we define the cobordism groups Ωn
P (K), following the

Alexander–Pontryagin duality law: if K ⊂ SN , where Sn is a sphere and N is
large, then by definition we put Ωn

P (K) = ΩP
N−n(SN , SN \K), and this definition is

independent of N and the embedding K ⊂ SN . The groups Ωi
P have the properties

of cohomology and the relative groups Ωi
P (K,L) are defined. The sum Ω∗

P =∑
n Ωn

P (K,L) forms the “cobordism ring” of the pair: K ⊃ L. For Rq (or a point)
the ring Ω∗

P =
∑

n Ωn
P (Rq) is the analogue of the scalars.

For the point x we have Ωn
P (x) = ΩP

−n(x), by definition.
For certain classes of manifolds the “Poincaré–Atiyah duality law” is valid:

D : Ωi
P (Mn) ≈−→ ΩP

n−i(M
n).
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Examples. The most important examples of classes P are connected with the
introduction of some kind of structure into the stabilized tangent bundle τM of a
manifoldM ; for example, orientation in the bundle τM×Rk for some k ≥ 0, complex
structure in the bundle τM ×Rq, symplectic structure in τM ×Rq or trivialization
of (−τM ) × Rq (framing or the Pontryagin structure), etc. Thus, the classes P of
this kind are connected with some class Q of vector bundles over a complex, that
is, P = P (Q).

The Thom isomorphism. For classes P connected with classes Q of vector bun-
dles, another property is required in addition to a), b), c) above:

d) the space of a bundle of class Q with fibre a disc and base M ∈ P is a manifold
of class P .

If the base space of the bundle η is K, the bundle space with fibre a disc Dn

is Eη and its boundary E̊η is a bundle with fibre Sn−1, then from the definitions
and d), the so-called “Thom isomorphism” follows: ϕP : ΩP

i (K) ≈−→ ΩP
n+i(Eη, E̊η),

which is defined by means of the space of the induced fibering f∗η. The Thom iso-
morphism generates the Poincaré–Atiyah duality for all manifolds of the class P :
D : Ωi

P (Mn) ≈−→ ΩP
n−i(M

n). We can define the fundamental cycle [Mn] ∈ ΩP
n (Mn),

the Čech operation x ∩ y ∈ ΩP
n−q(K) for x ∈ Ωq

P , y ∈ ΩP
n , and prove that the

Poincaré duality is determined by the Čech operation. In addition, for any con-
tinuous mapping f we have the identity f∗(f∗x ∩ y) = x ∩ f∗y, where x ∈ Ωq

P ,
y ∈ ΩP

n .

II. Unitary cobordisms. The fundamental class P of interest to us is the class of
stably quasicomplex manifolds and Q is the class of complex vector bundles. In this
case the groups ΩP

∗ (K) and Ω∗
P (K) are denoted, as usual, by U∗(K) and U∗(K)

and are called “unitary bordisms and cobordisms”. The ring U∗(point) = ΩU
∗ is the

ring of polynomials over Z in generators of even degree, one in each dimension.
Other bordisms of classes P , connected, respectively, with all manifolds, ori-

entable, special unitary, unitnry, stably symplectic or framed manifolds, etc., are
denoted, as usual, by ΩO

∗ , ΩSO
∗ , ΩU

∗ = U∗, ΩSU
∗ , ΩSp

∗ , Ω1
∗ = (bordisms of framed

manifolds). Information on these groups can be found in Novikov’s survey [13].

The ring of operations.

Definition 2.1. A (stable) homology operation is an additive homomorphism
θ : ΩP

∗ (K,L) → ΩP
∗ (K,L), defined simultaneously for all dimensions and all com-

plexes, that commutes with continuous mappings and also with the boundary ho-
momorphism ∂ : ΩP

∗ (K,L)→ ΩP
∗ (L), K ⊃ L.

Such operations form a ring, the “Steenrod ring”AP , which is denoted for unitary
bordisms U∗ by AU . For cobordisms U∗, the ring of operations is defined similarly
and coincides with the ring of operations AU .

If UN is a unitary group, BUN the base of the universal bundle and ηN the bundle
space (with fibre a disc), thenMU denotes the spectrum (MUN ) of the Thom spaces
MUN = EηN/E̊ηN , where EηN is the space of the fibering ηN . The stable homotopy
classes of mappings [K,MU ] coincide with the ring U∗(K). In particular, AU =
[MU,MU ], and the universal Thom isomorphism ϕ : U∗(BUN ) ≈−→ U∗(MUN ) is
defined (see [13]).
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Example. Multiplication by a “scalar” λ ∈ U∗(point) is evidently a cohomology
operation. Note that for U -cobordism we have ΩU

∗ = Z[x1, . . . , xn, . . . ]. For coho-
mology operations in classical homology and cohomology theories the scalars are
just ordinary numbers and commute with all the other operations. For cobordisms
everything is more complicated.

The ring AU was computed by S.P. Novikov in [14]. It can be described as
follows. For any symmetrized decomposition k = dimω =

∑
ki, ki ≥ 0, operators

Sω ∈ AU are defined such that S(0) = 1 and any element of AU has the form of a
formal series

∑
i λiSωi , where dimωi → ∞ as i → ∞ and λi ∈ ΩU

∗ . Formulae for
the composition Sω1 ◦Sω2 were given1 in [14] and follow in the end from the Leibniz
formula Sω(xy) =

∑
(ω1,ω2)=ω Sω1(x)Sω2(y). A superposition of the form Sω ◦ λ is

equal to
λ ◦ Sω +

∑
(ω1,ω2)=ω
dim ω1>0

σ∗ω1
(λ)Sω2 ,

where the additive homomorphisms σ∗ω(λ) on ΩU
∗ are computed by means of the

geometry of the manifolds representing λ ∈ ΩU
∗ . For example, σ∗(q)([CP

n]) =

−(n + 1)[CPn−q]. In particular, the representation ∗ in which Sω
∗−→ σ∗ω and

λ → (multiplication by λ) of the ring of operations AU on the ring of bordisms of
a point U∗(point) is faithful.

Geometric bordisms. There are important subsets of “geometric cobordisms”
V (K) ⊂ U2(K) in any complex K, or the dual sets V (Mn) ⊂ Un−2(Mn) for quasi-
complex manifolds (“geometric bordisms”), consisting of submanifolds of complex
codimension 1. If u ∈ V (K), then Sω(u) = 0 for ω 6= (q) and S(q)u = uq+1.
This property completes the axiomatization of the operations Sω together with the
multiplication formula Sω(xy) =

∑
(ω1,ω2)=ω Sω1(x)Sω2(y).

All possible multiplicative operations α ∈ AU , that is, those for which α(xy) =
α(x)α(y) for all x, y ∈ U∗(K) and all K, are defined by a single series α(u) ∈
U∗(CP∞), where u ∈ V (CP∞) and CP∞ is infinite-dimensional complex projec-
tive space. It should be said that U∗(CP∞) is simply the ring of formal serirs
U∗(CP∞) = Ω∗

U [[u]], where Ω∗
U = U∗(point).

Characteristic classes. The formal group. Having the operations Sω and
the Thom isomorphism, we can construct analogues of the “Chern classes” Cω(η)
(where Ck = C(1,...,1) by definition) in the usual way2 for any UN -bundle η (see
[8]). Here Cω(η) ∈ U∗(the base). For U1-bundles ξ and η the product ξ ⊗ η
is a U1-bundle. The class C1(ξ ⊗ η) = F (C1(ξ), C1(η)) is computed as a formal
series with coefficients in Ω∗

U (see [14], Appendix 1). This gives rise to the formal
group of “geometric cobordisms” F (u, v) = F (C1(ξ), C1(η)) = C1(ξ ⊗ η) = u +
v − [CP 1]uv + · · · . Mishchenko has shown that F (u, v) = g−1(g(u) + g(v)), where

g(u) =
∑

n≥0

CPn

n+ 1
un+1 and dg(u) =

(∑
n≥0 CP

nun
)
du = CP (u) du.

1A description of the ring AU without a formula for the composition was also obtained by
Landweber in [22].

2Note that in the theory of cobordism characteristic classes were introduced at the beginning

(Conner and Floyd) and on this basis cohomology operations were defined and the computation
of the algebra AU given (Novikov).
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Formal groups and operations. The analogues of the Adams operations Ψk ∈
AU ⊗ Z[ 1

k ] are defined by the multiplicativity requirement Ψk(xy) = Ψk(x)Ψk(y)
and Ψk(u) = 1

k g
−1(kg(u)) for u ∈ V (CP∞) ⊂ U2(CP∞), that is, are connected

with taking k-th powers in the formal group F (u, v). They generate a power sys-
tem. Further, Ψk ∈ AU ⊗ Q is defined by Ψ0(u) = g(u) = [ 1k g

−1(kg(u))]k=0 and
determines a projection of the cobordism theory U∗⊗Q onto the usual cohomology
H∗( ;Q) (see [14]).

Generally speaking, there are many multiplicative projectors in the rings AU⊗Zp

for prime p (see [7], [14]). The canonical projector πp was determined by Quillen
([7]), namely π∗p[CPn] = 0 for n 6= ph − 1, and π∗p[CP ph−1] = [CP ph−1]. Quillen
found this projector by starting from the theory of formal groups. The projection
operators are important because they single out smaller homology theories that are
more convenient, for example, for the computation of homotopy groups by means
of the Adams spectral sequence, which was introduced into cobordism theory in
[14]. However, we must be able to compute the rings of operations of these smaller
theories; here we can use the previously known structure of the ring of operations
AU in unitary cobordism theory if the projector is sufficiently simple. Quillen
carried out this programme in [7] by finding a successful projector. The role of
formal groups in the structure of the theory of operations became obvious; it was
also confirmed by results of the authors and Kasparov on fixed points of mappings.
Here we should mention especially the results of Mishchenko [11] (see also [4] and
§5) on manifolds fixed under the action of groups with a non-trivial normal bundle.

Chern characters. We note also that formal groups are closely connected with
analogues to the so-called “Chern character”. The classical Chern character ch is
an additive-multiplicative function of bundles with values in rational cohomology.
Novikov showed in [14] that such a function from bundles with values in the cobor-
dism ring is determined by its value on the U1-bundle η, on which it is equal to
exp(g(u)), where u = C1(η), g(u) =

∑
n≥0

CP n

n+1 u
n+1. Another abstract concept

of the Chern character, due to Dold, is not connected with bundles; it is just the
isomorphism of theories chU : U∗ ⊗Q → H∗( ; Ω∗

U ⊗Q), which is the identity on
the homology of a point. Here too the series g(u) appears. As Bukhshtaber [2] has
proved, ch−1

U (t) = g(u) for a basis element t ∈ H2(CP∞). In [2] he studied the
general Chern–Dold character in unitary cobordism and gave several applications,
which were developed further in [3], [4] and [21].

III. The Hirzebruch genera. As Novikov has shown in [15], the so-called “mul-
tiplicative Hirzebruch genera” Q(z), or homomorphisms Q : ΩU

∗ → Z such that
Q(CPn) = [Q(z)n+1]n = 1

2πi

∫
|z|=ε

Qn+1

zn+1 dz, can be computed in terms of g−1(z);
namely Q(z) = z

g−1
Q (z)

, where

gQ(u) =
∑
n≥0

Q(CPn)
n+ 1

un+1 and g−1
Q (gQ(u)) = u.

Thus, all the fundamental concepts and facts of the theory of unitary cohordism,
both modern and classical, can he expressed hy means of Lazard’s formal group.

Information from K-theory. Finally, we stop to consider ordinary complex K-
theoryK∗(X), whereKi(X) = Ki+2(X) for all i (Bott periodicity), K0(X) consists
of stable classes of complex bundles over X and K1(X) of homolopy classes of
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mappings X → UN , where N > dimX. If λi is the exterior power, λi =
∑

i≥0 λ
iti,

then λt(x + y) = λy(x)λt(y) is the exponential operation. For symmetric powers
Si we have St =

∑
i≥0 Sit

i = 1
λt

. Further, if Qk =
∑N

i=1 t
k
i (N → ∞) and Qk =

Qk(σ1, . . . , σk), where σk(t1, . . . , tN ) are the elementary symmetric functions, then
the virtual representation, the so-called Adams operator, is just Qk(λ1, . . . , λk) =
Ψk. It turns out that Ψk(x + y) = Ψk(x) + Ψk(y), Ψk(xy) = Ψk(x)Ψk(y) and
Ψk ◦ Ψl = Ψkl. Further, for the U1-bundle η ∈ K0(X) we have Ψk(η) = ηk.
The Adams operator Ψk does not commute with the Bott periodicity operator
β : Ki → Ki−2. We have the formula Ψk ·β = kβ ·Ψk. Hence the operators Ψk are
defined in the theory K∗ ⊗ Z[ 1

k ]. The cohomology of a point in K-theory has the
form K∗(point) = Z[β, β−1] and Ψkβ = kβΨk. This completes the description of
the operations in K-theory. The analogues of “geometric cobordisms” in K-theory
are the U1-bundles; more precisely, they are the elements u = β−1(ξ − 1) ∈ K2(X)
for the U1-bundle ξ = βu+1. Here kΨk(u) = β−1((βu+1)k−1), and F (u, v) = u+
v−βuv = β−1((βu+1)(βv+1)−1) is the multiplicative group. Thus, the well-known
Riemann–Roch–Grothendieck homomorphism r : U∗(X) → K∗(X) corresponds to
the homomorphism of the universal Lazard group onto the multiplicative group,
where r(λ) = T

(
λ · β dim λ

2
)
, T is the Todd genus, and λ ∈ Ω∗

U .

§ 3. The formal group of geometric cobordisms

The multiplication law in the formal group of geometric cobordisms. Let
η → CPn, n ≤ ∞, be the canonical complex one-dimensional bundle over the pro-
jective space CPn. As already noted in §2, the formal series c1(η1⊗η2) = F (u, v) ∈
U2(CP∞ × CP∞) = ΩU [[u, v]], u = c1(η1), v = c1(η2), gives a multiplication law
in the one-dimensional formal group of geometric cobordisms over the ring ΩU .

Theorem 3.1. a) The following formula holds:

F (u, v) =
u+ v +

∑
[Hr,t]urvt

CP (u) · CP (v)
,

where Hr,t the algebraic suhmanifold of complex codimension 1 in CP r ×CP t that
consists of the zeros of the sections of the bundle η1 ⊗ η2 → CP r × CP t and thus
realizes the cycle [CP r−1 × CP t + CP r × CP t−1] ∈ H2(r+t−1)(CP r × CP t).

b) The logarithm of the group F (u, v) has the form g(u) =
∑

n≥0
[CP n]
n+1 un+1.

Proof. Let F (u, v) = u+ v+
∑
eiju

ivj and let λ : CP r ×CP t → CP∞ ×CP∞ be
the standard embedding. Then

εDλ∗F (u, v) = [Hr,t] = [CP r−1][CP t] + [CP r][CP t−1] +
∑

eij [CP r−i][CP t−j ],

where D is the Poincaŕe–Atiyah duality operator, ε : U∗(CP r × CP t)→ ΩU is the
augmentation to a point and [CP r−i] = εDU i if u = c1(η) ∈ U2(CP r). Thus,
u + v +

∑
[Hr,t]urvt = F (u, v)CP (u)CP (v). This proves a). Now we have the

formula

dg(u) =
du

∂F (u, v)
∂v

∣∣∣
v=0

,

so that

dg(u) =
CP (u) du

1 +
∑

([Hr,1]− [CP 1][CP r−1])ur
.
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It is easy to show, for example by comparison of Chern numbers, that [Hr,1] =
[CP 1][CP r−1]. Hence dg(u) = CP (u). This completes the proof. �

The universal property of the formal group of geometric cobordisms. As
is shown in [9] and [12], the ring ΩU is multiplicatively generated by the elements
[Hr,t], and according to [16], the ring ΩU ⊗ Q is multiplicatively generated by
the elements [CPn], n ≥ 0. From Theorem 3.1 we now find that the subring of
ΩU generated by the coefficients of the multiplication law of the formal group of
geometric cobordisms coincides with ΩU , and the coefficients of the logarithm of
this group are algebraically independent and generate the ring ΩU ⊗ Q. We shall
now show that from these facts it follows trivially that the group F (u, v) over ΩU is
universal on the category of commutative rings without torsion. Let G(u, v) be any
formal group over a ringR without torsion, and let gG(u) =

∑ an

n+1 u
n+1, an ∈ R, be

its logarithm. We consider the ring homomorphism r : ΩU → R⊗Q, r[CPn] = an.
Since G(u, v) = g−1(g(u) + g(v)), we have r(F (u, v)) =

∑
r(eij)uivj = G(u, v).

Hence r(eij) ∈ R, that is, Im(r : ΩU → R ⊗ Q) ⊂ R. Since the Lazard universal
group is defined over a ring without torsion, we have thus proved the theorem.

Theorem 3.2. The formal group of geometric cobordisms coincides with the Lazard
universal formal group, that is, the homomorphism of the Lazard ring A into ΩU

corresponding to the group F (u, v) (see §1) is an isomorphism.

The Hirzebruch genera from the point of view of the theory of formal
groups. By Theorem 3.2, any integral Hirzebruch genus, or, what is the same
thing, a homomorphism ΩU → Z, determines a formal group over Z, and conversely,
any formal group over Z determines a Hirzebruch genus. Here the Hirzebruch genus
defining the homomorphism ΩU → Z may have rational coefficients. Equivalent
(strongly isomorphic) formal groups are determined by Hirzebruch series Q(z),
Q′(z) connected by the formula z

Q(z) = ϕ−1( z
Q′(z) ), where ϕ−1(u) = u+

∑
λiu

i+1,
λi ∈ Z. This follows from the fact that the logarithms of the formal groups are equal
to gQ(z) = ( z

Q(z) )
−1, and we have by definition gQ(z) = gQ′(ϕ(z)). Suppose that

we are given an integral Hirzebruch genus, given by a rational series gQ(u). Then
the Q′-genus such that gQ(u) = gQ′(ϕ(u)), ϕ(u) = u+

∑
µiu

i+1, µi ∈ Z, also has
integer values on ΩU . This is the sense in which Hirzebruch genera are equivalent
as formal groups. We shall consider what kinds of formal groups have already been
used in topology in connection with the well-known multiplicative genera c, T , L, A.
Consider the Ty-genus (see [18]). Since Ty([CPn]) =

∑n
i=0(−y)i, the corresponding

formal group over the ring Z[[y]] has the form FTy = u+v+(y−1)uv
1+uvy . For y = −1, 0, 1,

we obtain formal groups corresponding to the Euler characteristic c, the Todd genus
T and the Hirzebruch L-genus. For all values of y the uroup FTy

(u, v) is equivalent
either to a linear group or to a multiplicative group. We now note that the A-genus
is equivalent as a formal group to the L-genus, and we find that up to equivalence
all the Hirzebruch genera previously discussed in topology are connected either with
linear or with multiplicative groups.

Multiplicative cohomology operations and Hirzebruch genera. Every mul-
tiplicative cohomology operation in cobordisms is given uniquely on the one hand
by the ring homomorphism ϕ∗ : ΩU → ΩU which it induces by the representation in
§1, and on the other hand by its values on the geometric cobordism u ∈ U2(CP∞),
that is, by the formal series ϕ(u) = u + O(u2) ∈ U2(CP∞) = ΩU [[u]]. Note
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that the series ϕ(u) gives a strong isomorphism of the universal group F (u, v) =
u+ v +

∑
ei,ju

ivj with the group

ϕ(F (u, v)) = u+ v +
∑

ϕ∗(ei,j)uivj .

In the theory of characteristic classes ring homomorphisms ΩU → ΩU are given
by “Hirzebruch series” K(1 + u) = Q(u),

Q(u) =
u

a(u)
, a(u) = u+

∑
λiu

i, λi ∈ ΩU ⊗Q.

From the point of view of Hirzebruch series, the action of the series a(u) on the
ring ΩU is given by the formula a([CPn]) = [( u

a(u) )
n+1]n, where [f(u)]n is tne n-th

coefficient of the series f(u). Thus, every formal series a(u) = u+O(u2) gives a ring
homomorphism a∗ : ΩU → ΩU as a multiplicative operation in cobordisms, and also
a ring homomorphism a : ΩU → ΩU defined by the Hirzebruch genus Q(u) = u

a(u) .
These two actions of the series a(u) = u + O(u2) on ΩU do not coincide. For
example, for a(u) = u we have a∗([CPn]) = [CPn], a([CPn]) = 0, n > 0. As
Bukhshtaber and Novikov have shown in [4], we have1

Theorem 3.3. The mapping g : a(u)→ a(g(u)) of the ring of series has the prop-
erty that a(u)[x] = a(g(u))∗[x] for any element x, where g(u) =

∑
n≥0

[CP n]
n+1 un+1

is the logarithm of the formal group of geometric cobordisms.

The generalized Todd characteristic class.

Definition 3.1. The generalized Todd class of a complex bundle ξ over X is the
characteristic class T (ξ) ∈ H∗(X,ΩU ⊗ Q) corresponding to the series Q(u) =

u
g−1(u) , g

−1(g(u)) = u.

Consider a continuous mapping f : M2n →M2m of quasicomplex manifolds and
denote by τ(f) the element (τ(M2n) − f∗τ(M2m)) ∈ K̃(M2n), where τ is the
tangent bundle.

Theorem 3.4 (see [2]). We have the formula chU D[f ] = f!T (τ(f)), where [f ] is
the bordism class of f , chU is the Chern–Dold character (see §2), and f! is the
Gysin cohomology homomorphism.

In [2] Bukhshtaber has given various formulae expressing the generalized Todd
class T (ξ) in terms of classical characteristic classes of the bundle ξ. In a number of
cases these formulae make it possible to compute the bordism class of f effectively.
We quote the simplest of these formulae.

Theorem 3.5. Let η be the one-dimensional bundle over X and u = c1(η) ∈
H2(X,Z); then T (η) = u

g−1(u) and g−1(u) = chU σ1(η) = u +
∑

[M2n] un+1

(n+1)! ,
where [M2n] = σ1(ξn+1) ∈ U2(S2n+2) ≈ Ω−2n

U ; here sω(−τ(M2n)) = 0, ω 6= (n),
s(n)(M2n) = −(n+1)!, σ1(ξn+1) is the first Chern cobordism class of the generator
ξn+1 ∈ K(S2n+2) and sω is the Chern number corresponding to the decomposi-
tion ω.

1This result in a similar formulation was also obtained by Adams [23].



10 V. M. BUKHSHTABER, A. S. MISHCHENKO, AND S. P. NOVIKOV

§ 4. Two-valued formal groups and power systems

The concept of a two-valued formal group. Let F (u, v) = u + v + . . . be a
one-dimensional formal group over a commutative ring R with unit element 1, let
ū = −u+O(u2) ∈ R[[u]] be the formal series giving the inverse element in the group
F (u, v), that is, F (u, ū) = 0, and let gF (u) be the logarithm of the group F (u, v).
In [4] it was shown that the formal series F (u, v) · F (ū, v̄) + F (u, v̄) · F (ū, v) =
|F (u, v)|2 + |F (u, v̄)|2 and |F (u, v)|2 · |F (u, v̄)|2 in the ring R[[u, v]] actually belong
to the ring R[[x, y]] ⊂ R[[u, v]], where x = uū = |u|2, y = |v|2, that is, have the form
Θ1(x, y) and Θ2(x, y), respectively. Consider over R[[x, y]] the quadratic equation
Y[x, y] = Z2−Θ1(x, y)+Θ2(x, y) = 0 and let B(x) = x+O(x2) ∈ R[[x]]⊗Q denote
the series having the form gF (u)gF (ū) = −g2

F (u) in the R[[u]]⊗Q ⊃ R[[x, y]]⊗Q.
As noted by Novikov in [4], over a ring R without torsion the solutions of the
equation Y(x, y) = 0 have the form

(4.1) F±(x, y) = B−1(
√
B(x)±

√
B(y))2.

These solutions are obviously not formal series in x and y, but, as (4.1) shows, have
a peculiar associativity. Such quadratic equations were called two-valued formal
groups in [4].

Two-valued formal groups and symplectic cobordisms. We consider the
two-valued formal cobordism group constructed from the formal group of geometric
cobordisms. As was shown in [4], the series B−1(z) in (4.1) coincides with the formal
series

chU (x) = z +
∞∑

n=2

[N4n−4]
zn

(2n!)
∈ H∗(CP∞,ΩU ⊗Q),

where z is a generator of the group H4(CP∞,Z) and

s(2n−2)[N4n−4] = (−1)n 2 · (2n)! 6= 0.

Theorem 4.1 (see [4]). For any n ≥ 2, the bordism classes [N4n−4] belong to the
image of the homomorphism Ω−4n+4

Sp → Ω−4n+4
U . For n ≡ 1 mod 2 the elements

[N4n−4]/2 ∈ ΩU already belong to the group Im(ΩSp → ΩU ).

The canonical mapping of spectra ω : MSp→MU corresponding to the embed-
ding Sp(n) ⊂ U(2n) defines an epimorphism AU → U∗(MSp(n)) and hence an em-
bedding of the ring HomAU (U∗(MSp),ΩU ) in ΩU . We identify HomAU (U∗(MSp),ΩU )
with its image in ΩU . There is an embedding i : Im(ΩSp → ΩU ) ⊂ HomAU (U∗(MSp),ΩU ),
where the homomorpliism i⊗Z[ 12 ] is an isomorphism; this follows easily from [12].
As an addition to Theorem 4.1 we note that the elements [N8n−4]/2 belong to the
group HomAU (U∗(MSp),ΩU ), but do not belong to Im(ΩSp → ΩU ) (see [4]). In [4]
it was shown that Theorem 4.1 and the properties of the Chern character described
in [2] imply the following result:

Theorem 4.2. Let Λ ⊂ ΩU be the ring generated by the coefficients of the two-
valued cobordism formal group:

a) Λ ⊂ HomAU (U∗(MSp),ΩU ),
b) Λ[12 ] ≈ Ω∗

Sp(∗)⊗ Z[ 12 ].

Since the ring Λ is essentially smaller than ΩU , there exist many one-dimensional
formal groups over ΩU⊗Q the squares of whose moduli generate a two-valued formal
cobordism group. Bukhshtaber has shown in [21] that the minimal group (in the
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sense of the coefficient ring) among such one-dimensional groups over ΩU ⊗ Q is
uniquely determined by the multiplicative projector κ∗ : ΩU [ 12 ] → ΩU [ 12 ], whose
value on the geometric cobordism u ∈ U2(CP∞) is equal to κ(u) =

√
(−uū) =

u+O(u2) ∈ U2(CP∞)[ 12 ]. Bukhshtaber has proved [21]:

Theorem 4.3. a) For the element σ ∈ ΩU to belong to HomAU (U∗(MSp),ΩU ) ⊂
ΩU it is necessary and sufficient that κ∗(σ) = σ.

b) HomAU (U∗(MSp),ΩU ) ∼= Im κ ∩ ΩU .

Corollary 4.1. The composition of the mappings

Sp∗(X)[ 12 ] ω−→ U∗(X)[ 12 ] ω−→ Im(κU∗(X)[ 12 ])

establishes an isomorphism of the cohomology theory Sp∗[ 12 ] with the theory selected
in U∗[ 12 ] by the projection operator κ.

Algebraic properties of two-valued formal groups. Bukhshtaber in [21] has
given an axiomatic definition of the two-valued formal group Y(x, y) = Z2 −
Θ1(x, y)Z + Θ2(x, y) = 0, including as a special case the quadratic equation deter-
mined by the square of the modulus of a one-dimensional formal group. We do not
repeat this definition here because it is unwieldy, but only note that in the defi-
nition the existence of a formal series ϕ(x) such that Θ2(x, ϕ(x)) = 0 is required.
The series ϕ(x) behaves as an inverse element and plays an important part in the
classification of two-valued formal groups. For example, we have

Theorem 4.4. The two-valued formal group of cobordisms over the ring Λ ⊂ ΩU

of coefficients of the series Θ1(x, y) and Θ2(x, y) is universal for two-valued groups
over rings R without torsion in which ϕ(x) = x, that is, Θ2(x, x) = 0.

Formal power systems not lying in formal groups. Let Y(x, y) = Z2−Θ1(x, y)Z+
Θ2(x, y) = 0 be the two-valued formal group over the ring R[[x, y]] defined by
the square of the modulus of the one-dimensional group F (u, v) ∈ R[[u, v]]. We
consider the sequence of formal series ϕk(x) ∈ R[[x]]: ϕ0(x) = 0, ϕ1(x) = x,
ϕ2(x) = Θ1(x, x), . . . , ϕn(x) = Θ1(x, ϕn−1(x))− ϕn−2(x), . . . The series ϕk(x) =
k2x + O(x2), considered in the ring R[[u]] ⊃ R[[x]], have the form [u]k[ū]k, where
[u]k is the k-th power of u in the group F (u, v). Hence the sequence of series ϕk(x)
forms a formal power system of type s = 2. In the case when R = ΩU and F (u, v) is
the formal group of geometric cobordisms, it is easy to show (see [4]) that {ϕk(x)}
is not the system formed by taking powers in any formal group over ΩU . Note
that the system {ϕk(x)} has important topological applications and first appeared
implicitly in Novikov’s paper [15] on the classification of fixed points under the
action of 2-groups of generalized quaternions on quasicomplex manifolds.

In conclusion we show that the construction of the power system ϕk(x) has a
natural generalization. Let F (u, v) be a formal group over a ring R without torsion
and let gF (u) be its logarithm. We consider a complete set (ξ0 = 1, . . . , ξm−1)
of m-th roots of 1. Put B−1

m (−y) =
∏m−1

j=0 g−1
F (ξj m

√
y), x =

∏m−1
j=0 g−1

F (ξjgF (u)).
Then −Bm(x) = gF (u)m, and we obtain a formal power system

F
(m)
k (x) = B−1

m (kmBm(x)) =
m−1∏
j=0

g−1
F (kξjgF (u))

of type s = m. The coefficients of the series F (m)
k (x) automatically lie in the ring R

for formal groups F (u, v) with complex multiplication by ξj (raising to the power



12 V. M. BUKHSHTABER, A. S. MISHCHENKO, AND S. P. NOVIKOV

ξj). This construction goes through for the formal group of geometric cohordisms
over ΩU ⊗Zp and m = p− 1, where Zp is the ring of p-adic integers. As in the case
m = 2, we can also consider an m-valued formal group given by an algebraic equa-
tion of degree whose solution is of the form F (x, y) = B−1

m ( m
√
Bm(x)+ m

√
Bm(y))m.

§ 5. Fixed points of periodic mappings in terms of formal qroups

Conner and Floyd [6] first showed that the language of bordism theory is ex-
tremely convenient for the study of fixed points of smooth periodic maps. The use
of formal groups enables us to systematize and generalize further the results in this
field.

Basic constructions and concepts. Let Mn be a smooth quasicomplex closed
manifold, T a smooth mapping of Mn with T p = id, p a prime, and suppose that T
preserves the quasicomplex structure ofMn. It is easy to show that the setX ⊂Mn

of fixed points of T , that is, points x ∈Mn such that Tx = x, forms a disjoint union
of finitely many closed submanifolds Ni with the natural quasicomplex structure.
We can choose tubular neighbourhoods Ui of the Ni in such a way that the Ui

are the spaces of the normal bundles of the embeddings of Ni in Mn, and the
action of T is linear on Ui and free outside the zero sections Ni ⊂ Ui. Thus, the
boundaries of the tubular neighbourhoods ∂Ui are quasicomplex manifolds with free
action of Zp and so determine a bordism element α(T ) of the infinite-dimensional
lens space BZp, α(T ) ∈ Un−1(BZp). The element α(T ) is determined only by the
behaviour of T near the fixed submanifolds Ni. It is clear that α(T ) = 0 since⋃

i ∂Ui = ∂(Mn \
⋃

i Ui) and the action of T on the manifold Mn \
⋃
Ui is free.

Hence the problem of classifying smooth quasicomplex manifolds acted on by Zp

in terms of bordisms reduces to the following two questions: a) the description of
the action of Zp near the set of fixed points and b) the discovery of sets of fixed
submanifolds for which α(T ) = 0.

Statement of the problem. We begin by making precise what we mean by clas-
sification of the action of Zp in terms of bordisms. We shall say that a quasicomplex
manifold Mn acted on by the group Zp is bordant to zero if there exists a quasi-
complex manifold with boundary W and a quasicomplex action T ′ on it such that
(T ′)p = id, ∂W = M , T ′/∂W = T . We shall study classes of bordant manifolds in
the sense described above. The behaviour of the transformation T near the fixed
submanifold is easily described. It is known that if the group Zp acts on a complex
bundle ξ leaving the base invariant, then ξ can be represented as a sum ξ =

⊕p
i=1 ξi,

and the action of Zp is determined on the bundle ξi by one of the irreducible uni-
tary representations of Zp. Thus, if T is a generator of Zp, ζ = exp( 2πi

p ), then
T (x) = ζix for x ∈ ξi. In the class of bordant manifolds acted on by Zp the fixed
component Ni defines a bordism of the sum of (p− 1) bundles, that is,

β(Ni) ∈ Uki

(
p−1∏
j=1

BU(lij)

)
where dimNi = ki, dim ξj = lij .

Thus, if Ωn
U,p is the group of n-dimensional bordisms acted on by Zp, there exists

a mapping

β : Ωn
U,p →

⊕
k+2

∑
li=n

Uk

(∏
BU(li)

)
,



FORMAL GROUPS AND THEIR ROLE IN THE APPARATUS OF ALGEBR. TOPOLOGY 13

associating a manifold acted on by Zp with a set of bordisms defined by the com-
ponents of the fixed submanifold.

The second problem is whether for any bordism

x ∈
⊕

k+2
∑

li=n

Uk

(∏
BU(li)

)
the element x can be realized as the set of fixed points of some quasicomplex action
of Zp. As already described, there is a mapping

α :
⊕

k+2
∑

li=n

Uk

(∏
BU(li)

)
→ Un−1(BZp),

where for α(x) = 0 the element x can be realized as the set of fixed points of an
action of Zp. In other words, if A is the ring of all bordisms

A =
⊕

(k,l1,...,lp−1)

Uk

(∏
BU(li)

)
then the sequence Ω∗

U,p

β−→ A
α−→ U∗(BZp) is exact. It is easy to see that α is an

epimorphism and Kerβ ≈ pΩ∗
U . An interesting case is that of an action of Zp,

where the fixed submanifold consists only of isolated points or of a submanifold
with trivial normal bundle. In the latter case the fixed submanifold is defined by a
bordism x ∈ Ωk

U , and a set of weights x1, . . . , x 1
2 (n−k) of a representation of Zp in

the normal bundle.

Basic formulae. The interesting connections with the formal group in cobor-
disms are centred around the description of the homomorphism α (for a detailed
description see [4]). It is known that the cobordism ring of the space BZp can be
represented in the form

(5.1) U∗(BZp) = ΩU [[u]]/pΨp(u) = 0.

For isolated fixed points with a set of weights (x1, . . . , xn) we then have the formula
obtained by Kasparov [5], Mishchenko [10] and Novikov [15],

(5.2) α(x1, . . . , xn) =
n∏

j=1

u

g−1(xjg(u))
∩ α(1, . . . , 1),

where g(u) is the logarithm of the formal group. It follows from (5.1) that the right-
hand side of (5.2) makes sense. In the general case the manifolds CP k with the Hopf
line-bundle and weight x form a multiplicative basis of A over ΩU . This means that
the elements of A are determined by a sequence of numbers ((k1, x1), . . . , (kl, xl)),∑

(ki + 1) = n.
We consider a meromorphic differential Ω with poles at z = u on the formal

group f(u, v), where Ω = Ω(u, z) dz = dg(z)
f(u,z) , z̄ = g−1(−g(z)), invariant with

respect to the displacement u → f(u,w), z → f(z, w), Ω → Ω. This differential is
the analogue to dz/(u− z) on the linear group. Let t = z/u and dt = dz/u, where
u is a parameter. Then Ω = Ω(u, z) dz = G(u, t) dt, where G has a pole at t = 1
for all z and u. As shown in [11] (see also [4]), we then have the formula

??? =
[ l∏

q=1

G(g−1(xqg(u)), tq)
u

g−1(xqg(u))

]
k1,...,kl

∩ α2n−1(1, . . . , 1),
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where [ ]k1,...,kl
denotes the coefficient of tk1

1 . . . tkl

l .

The connection with the Atiyah–Bott formula. Apart from the description of
admissible fixed-point sets it is interesting to ask in what manifolds these admissible
fixed-point sets can be realized, that is, to describe the mapping Kerα → ΩU ⊗
Z/pZ. It turns out that the permissible set

(x1, . . . , xn)−
n∏

j=1

u

xjΨxj (u)
∩ (11, . . . , 1n),

where
uk ∩ (11, . . . , 1n) = (11, . . . 1n−k),

can be realized on a manifold of class[ n∏
j=1

u

xjΨxj (u)

]
n

∈ Ω2n
U ⊗ Z/pZ.

From Atiyah and Bott’s paper [1] we can extract the following formula for the
Todd genus of Mn in terms of the weiglits of the mapping at the fixed points

(5.3) −T (Mn) ≡
∑

j

Tr
( n∏

k=1

(
1− exp

(
−

2πixj
k

p

))−1)
mod p,

where Tr: Q( p
√

1) → Q is the number-theoretic trace and the summation in (5.3)
is taken over all fixed points. It was of interest to obtain a result for cobordisms
similar to that of Atiyah and Bott. This problem is connected with the construction
of a homomorphism γ : A → ΩU ⊗ Qp that coincides with

∏
j

u
xjΨ

xj (u)
on Kerα.

Here we understand by the ring A only the fixed submanifold with trivial bundle.
As shown in [4], the formula for the homomorphism γ has the form

(5.4) γ(x1, . . . , xn) =
[

1
x1 · · ·xn

( n∏
j=1

u

Ψxj (u)

)
u

Ψp(u)

]
n

.

Applying the Todd genus F : ΩU → Z to (5.4), we obtain a numerical function

(5.5) γ(x1, . . . , xn) =
[

pu

1− (1− u)p

n∏
k=1

u

1− (1− u)xk

]
n

.

However, it does not coincide with the Atiyah and Bott function

(5.6) AB(x1, . . . , xn) = Tr
( n∏

k=1

(
1− exp

(
−2πixk

p

))−1)
.

The functions (5.5) and (5.6) coincide only on Kerα. More precisely, letKΦ(x1, . . . , xn)m,
0 ≤ m ≤ n− 1, be the composition of the function

(5.7)
[

u

Ψp(u)

n∏
k=1

u

xkΨxk(u)

]
m

with the Todd genus. Note that for an admissible set of fixed points (5.7) vanishes.

Theorem 5.1 (see [4]).

AB(x1, . . . , xn) = γ(x1, . . . , xn) +
n−1∑
m=0

KΦ(x1, . . . , xn)m mod pZp,
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It follows from Theorem 5.1 that Atiyah and Bott’s results on the calculation of
the Todd genus as an invariant of the fixed points is a reduction of the analogous
problem in cobordisms by means of the Todd genus. It is of interest to note, as
Faddeev has pointed out, that the Atiyah–Bott formula can be expressed in terms of
the formal group corresponding to the multiplicative homomorphism T : ΩU → Z,
the so-called multiplicative formal group. Namely (see [4])

AB(x1, . . . , xn) =
n∑

m=0

[
pu

〈u〉p

n∏
k=1

u

〈u〉xk

]
m

= −
[
p〈u〉p−1

〈u〉p

n∏
k=1

u

〈u〉xk

]
m

mod pZp,

where 〈u〉q is the q-th power of u in the formal group f(u, v) = u+ u− uv.

The action of the circle on quasicomplex manifolds. Gusein-Zade has re-
cently studied the fixed points under the action of the circle S1 on quasicomplex
manifolds. As in the case of Zp, we can construct the Conner–Floyd exact sequence
0 → U∗(S1)

γ−→
⊕
U∗(
∏
BU(ni))

α−→ U∗(S1, {Zs}s) → 0, where the middle term
describes the structure of the action of S1 near the fixed points and the last term
denotes the bordism group of the action of S1 without fixed points (stationary
points are allowed). Gusein-Zade’s remarkable result consists of the description of
the last term of this sequence. Namely

(5.8) U∗(S1, {Zs}s) ≈
⊕

U∗

(∏
i

BU(ni)×BU(1)
)
.

After (5.8) is established, the description of the homomorphism α is easily reduced
to an algebraic problem using the language of formal groups. Because of their
complexity we do not give the formulae here. (See the account of Gusein-Zade’s
results in [21].)

Appendix I 1. Steenrod powers in cobordisms and a new method of
computing the bordism ring of quasicomplex manifolds 2

The Thom isomorphisms in cobordisms. For any complex bundle ξ over X,
dim ξ = n, the universal Thom class u(ξ) ∈ U2n(M(ξ)) is defined, corresponding
to the classifying map M(ξ) → MU(n), where M(ξ) is the Thom complex of ξ.
Multiplication by the element u(ξ) determines the functorial Thom isomorphism
ϕ(ξ) : Uq(X) → Ũq+2n(M(ξ)), ϕ(ξ)(α) = u(ξ)α. Consider a pair of complexes
i : Y ⊂ X, and let ξ′ denote the restriction of ξ to Y . The following homomorphism
is defined:

ϕ(ξ, ξ′) : Ũq(X/Y )→ Ũq+2n(M(ξ)/M(ξ′)), ϕ(ξ, ξ′)(α) = u(ξ)α.

Since i∗u(ξ) = u(ξ′) and ϕ(ξ), ϕ(ξ′) are isomorphisms, ϕ(ξ, ξ) is an isomorphism.
Let ξ and η be bundles over X. Consider the composition of mappings

∆: M(ξ + η)/M(ξ′ + η′)
j−→M(ξ × η)/M(ξ′ × η′) ≈−→

≈−→ (M(ξ) ∧M(η))/(M(ξ′) ∧M(η′))→M(ξ) ∧ (M(η)/M(η′)),

1The appendix was written by Bukhshtaber on work of Dieck [19] and Quillen [20].
2The bordism ring of quasicomplex manifolds has already been computed (Milnor, Novikov)

by using the Adams spectral sequence. The aim of the new method proposed by Quillen is to
avoid using this sequence.
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where M(ξ×η) is the Thom complex of the bundle ξ×η over X×X, the mapping
j is defined by the diagonal X → X × X and (X × Y )/X × ∗ ∪ ∗ × Y = X ∧ Y ,
where ∗ is a distinguished point. The following homomorphism is defined:

Φ(ξ) : Ũq(M(η)/M(η′))→ Ũq+2n(M(ξ + η)/M(ξ′ + η′)),

Φ(ξ)α = ∆∗(u(ξ) · α).

Since u(ξ × η) = u(ξ) · u(η) ∈ U∗(M(ξ × η)), we have Φ(ξ)ϕ(η) = ϕ(ξ + η, ξ′ + η′),
so that Φ(ξ) is an isomorphism.

Steenrod exterior powers. Let S∞ = limS2n+1 be the infinite-dimensional
sphere and S∞ → BZp = L∞p be the universal Zp-bundle. For any X with dis-
tinguished point ∗, let E(X) denote the space (S∞ ∪ ∗) ∧X ∧ · · · ∧X︸ ︷︷ ︸

p times

. There is a

canonical action of the group Zp defined on E(x) whose restriction to X ∧ · · · ∧X
is represented by a permutation of the factors. Put Ep(X) = E(X)/Zp. The corre-
spondence X 7→ Ep(X) is obviously functorial with respect to mappings X → Y .
Consider the bundle ξ×· · ·× ξ over the complex V = S∞×X×· · ·×X lifted from
X × · · · ×X. Since Zp acts freely on V , the bundle ξ(p) = (ξ× · · · × ξ)/Zp → V/Zp

is defined. We have the equation Ep(M(ξ)) = M(ξ(p)).

Definition I.1. By an exterior Steenrod power in U -cobordism we mean a collection
Pe = {P 2n

e , n ∈ Z} of natural mappings P 2n
e : Ũ2n(X)→ Ũ2np(Ep(X)), such that:

1) i∗P 2n
e (a) = ap ∈ Ũ2np(X ∧ · · · ∧ X), where i : X ∧ · · · ∧ X → Ep(X),

i(x1, . . . , xp) = (e, x1, . . . , xp), e ∈ S∞ is the embedding;
2) P 2(n+m)

e (ab) = T ∗(P 2n
e (a)P 2m

e (b)) ∈ Ũ2(n+m)p(Ep(X∧Y )), where a ∈ Ũ2n(X),
b ∈ Ũ2m(Y ), ab ∈ Ũ2(n+m)(X ∧ Y ) and T : Ep(X ∧ Y ) → Ep(X) ∧ Ep(Y ),
T (e, x1, y1, . . . , xp, yp) = (e, x1, . . . , xp, e, y1, . . . , yn);

3) P 2n
e (u(ξ)) = u(ξ(p)) ∈ Ũ2np(M(ξ(p))), where ξ is a bundle over X, dimX = n.

It follows from the axioms that for the canonical element un ∈ U2n(MU(n))
we have the formula P 2n

e un = u(ηn,(p)), where ηn is the universal U(n)-bundle
over BU(n). Now let the element e ∈ Ũ2n(X) be represented by the mapping
f : S2kX → MU(k + n). Since S2kX = M(k)/M(k′), where k is the trivial
k-dimensional bundle over X and k′ is its restriction to ∗ ∈ X, we see that
Ep(S2kX) = M(k(p))/M(k′(p)), where k′(p) is the restriction of the bundle k(p) to the
subcomplex Y ⊂ (S∞ ×X × · · · ×X)/Zp formed by points (e, x1, . . . , xp) in which
at least one coordinate xi = ∗ ∈ X. Since Ep(X) = M(0)/M(0′) the mapping
∆: Ep(S2kX) = M(k(p))/M(k′(p))→ Ep(X) ∧Ep(S2kX) is defined and induces an
isomorphism Φ(k(p)) : U∗(Ep(X))→ U∗(Ep(S2kX)), Φ(k(p))(a) = ∆∗(u(k(p)) · a).

Since f∗uk+n = u(k) · a, we get Ep(f)∗(u(ηk+n,(p))) = Φ(k(p))(P 2n
e a). From the

properties of the isomorphism Φ(k(p)) it easily follows that this formula uniquely
determines an element P 2n

e (a) ∈ Ũ2np(Ep(X)). Thus, the exterior Steenrod powers
in cobordism exist and are unique.

Steenrod powers in cobordism. The diagonal map X → X ∧ · · · ∧ X defines
an embedding i : (L∞p ∪ ∗) ∧X = (S∞ ∪ ∗) ∧ Z/Zp → Ep(X).

Definition I.2. By a Steenrod power we mean a collection of natural mappings
P = {P 2n : Ũ2n(X)→ Ũ2np((L∞p ∪ ∗) ∧X), n ∈ Z} such that P 2n(a) = i∗P 2n

e a.
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Let j : BU(n) → BU(n) × · · · × BU(n) be the diagonal map. The embedding
i : (L∞p ∪ ∗) ∧MU(n)→ Ep(MU(n)) decomposes into the composition (L∞p ∪ ∗) ∧

MU(n) λ−→ M((j∗ηn)(p))
j̄−→ M(ηn,(p)) = Ep(MU(n)). Let Cp be p-dimensional

complex linear space on which Zp acts by permuting coordinates. Consider the
complex bundle ṽ = S∞ ×Zp

Cp → L∞p . It follows immediately that M((j∗ηn)(p))
is the Thom space of the bundle ṽ ⊗ ηn → L∞p × BU(n). We shall compute the
Chern class σnp(ṽ ⊗ ηn) ∈ U2np(L∞p × BU(n)). Splitting the representation of Zp

in Cp into a sum of one-dimensional representations, we find that ṽ is isomorphic
to the sum of bundles 1 +

∑p−1
q=1 η

q, where η is the canonical bundle over L∞p . Next
we represent ηn in the form of a sum of formal one-dimensional bundles

∑n
l=1 µl:

σnp(ṽ ⊗ ηn) =
n∏

l=1

p−1∏
q=0

σ1(ηq ⊗ µl) =
n∏

l=1

p−1∏
q=0

(σ1(ηq) + σ1(µl) +
∑

ei,jσ1(ηq)iσ1(µl)j),

where ei,j ∈ Ω−2(i+j−1)
U are the coefficients of the formal group of geometric cobor-

disms. We denote the ring generated by the elements ei,j by A ⊂ ΩU . Since the
elements σ1(ηq) ∈ U2(L∞p ) are represented by formal series in u = σ1(η) with
coefficients from the subring A ⊂ ΩU , we have

(I.1) σnp(ṽ ⊗ ηn) = σn(ηn)(wn + σn(ηn)p−1 +
∑

wn−|ω|αω(u)σω(ηn)),

where w = σp−1(
∑p−1

q=1 η
q), σω(ηn) is the characteristic class corresponding to the

partition ω = (i1, . . . , in), |ω| =
∑
ik and αω(u) ∈ U∗(L∞p ) is a polynomial in

u = σi(η) with coefficients in A. We now note that the space (L∞p ∪ ∗)∧MU(n) is
the Thom complex of the bundle ηn → L∞p BU(n) in which the mapping of Thom
complexes λ : (L∞p ∪∗)∧MU(n)→ML((j∗ηn)(p)) is the identity on the base. Recall
that the cohomology operations Sω(un) can be defined by the formula Sω(un) =
un ·σω(ηn). We have P 2nun = i∗P 2n

e un = λ∗j∗u(ηn,(p)) = λ∗u((j∗ηn)(p)) = wnun+
up

n +
∑
wn−|ω|αω(u)Sω(un). Here we use the fact that if we restrict the Thom class

u(ξ) to the zero section of the bundle ξ, it becomes by definition the characteristic
class σn(ξ), where n = dim ξ.

Theorem I.1. Suppose that the element a ∈ U2n(X) is represented by the mapping
f : S2kX →MU(k + n); then in the ring U∗(L∞p ×X) we have the formula

wkP 2na = wn+ka+
∑

wn−|ω|αω(u)Sω(a).

where w = σp−1(
∑p−1

q=1 η
q) ∈ U∗(L∞p ) and αω(u) ∈ U∗(L∞p ) are polynomials in u

with coefficients in A, the ring generated by the coefficients of the multiplication
law of the formal group of geometric cobordisms.

Proof. Let u(k) ∈ Ũ2k(S2k) = Z be a generator. Then f∗uk+n = u(k) · a. Hence
f∗P 2(k+n)uk+n = T ∗(P 2ku(k) · P 2n(a)), where T : (L∞p ∪ ∗) ∧ S2kX → (L∞ ∪ ∗) ∧
S2k∧(L∞p ∪∗)∧X. The element u(k) is represented by the inclusion S2k ⊂MU(k),
so that P 2ku(k) = wku(k). If we now use the formula for the element P 2(k+n)uk+n,
we obtain the proof of the theorem. �
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Computation of the bordism ring of quasicomplex manifolds. Standard
arguments of homotopy theory not using information about the ring ΩU show
that if the canonical mapping µ : U∗(X) → H∗(X,Z) is an epimorphism and the
group H∗(X,Z) has no torsion, then the group U∗(X) is a free ΩU -module (see
[8], Appendix). Since the construction of characteristic classes σω(ξ) in cobordism
can also be carried out independently of results on the ring ΩU , and in addition,
µσω(ξ) = cω(ξ) ∈ H2|ω|(X,Z), where cω are the classical Chern classes (see [6],
Appendix), we find that the groups U∗(BU(n)× BU(k)) and U∗(MU(n)), n ≥ 1,
k ≥ 1, are free ΩU -modules. In particular, U∗(CP∞ × CP∞) = ΩU [[u, v]], where
u, v are the first Chern cobordism classes of the canonical one-dimensional bundles
η1 and η2. Let A = Z[y1, . . . , y2] be the universal Lazard group and ϕ : A→ ΩU the
ring homomorphism corresponding to the formal group of geometric cobordisms

F (u, v) = σ1(η1 ⊗ η2) ∈ U2(CP∞ × CP∞).

In §3 we showed by direct computation that the coefficients of the logarithm g(u)
of the group F (u, v) are algebraically independent. But since the coefficients of
the logarithm of the Lazard group generate the ring A ⊗ Q, we see that ϕ is a
monomorphism.

Consider the formal series Θp(u) = [u]p
u = p+α1u+ . . . over ΩU [[u]], where [u]p

is the p-th power of u in the formal group.

Lemma I.1. There is an exact sequence

ΩU
Θp(u)−−−−→ Uq(L∞p ) u−→ Uq+2(L∞p ),

where u = σ1(η), η is the canonical bundle over L∞p , and the homomorphisms in
the sequence are multiplications by Θp(u) and u.

Proof. The symbol η always denotes the canonical bundle over CP∞. Consider
the bundle ηp → CP∞, and denote by E → CP∞ the bundle with fibre a
disc D2 associated with ηp. Then ∂E = L∞p , E/∂E = M(ηp). By considering
the homomorphism µ : U∗(L∞p ) → H∗(L∞p , Z), it follows that the homomorphism
U∗(E) = U∗(CP∞)→ U∗(L∞p ) is an epimorphism, and since σ1(ηp) = [u]p, we find

that there is an exact sequence 0 ← U∗(L∞p ) ← U∗(CP∞)
[u]p←−− Ũ∗(M(ηp)) ← 0.

The lemma now follows because the homomorphism of multiplication by u in the
ring U∗(CP∞) = ΩU [[u]] is a monomorphism. �

Theorem I.2. The homomorphism ϕ : Z[y1, . . . , yn, . . . ]→ ΩU of the Lazard group
into ΩU corresponding to the formal group of geometric cobordisms is an isomor-
phism.

Proof. We only have to prove that ϕ is an epimorphism. We put C = Imϕ ⊂ ΩU

and prove that for any n ≥ 0 there is an isomorphism U∗(Sn) = C
∑

q≥0 U
q(Sn).

We note first that because of the isomorphism Uq(Sn) ' Uq+1(Sn+1) and because
Uq(Sn) is finitely generated for each q, it is sufficient to prove that for any prime
p there is an isomorphism Ũev(Sn) ⊗ Zp = C ·

∑
q>0 U

2q(Sn) ⊗ Zp. Put Rp =
C ·

∑
q>0 U

2q(Sn) ⊗ Zp. Assume that for all j < q we have already proved the
isomorphism R−2j

p = Ũ−2j(Sn) ⊗ Zp. For q = 0 this isomorphism is obvious. Let
the element a ∈ Ũ−2q(Sn) be represented by the mapping f : S2kSn →MU(k− q);
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then by Theorem I.1 we have the formula

(I.2) wkP−2qa = wk−qa+
∑

wn−|ω|αω(u) · Sω(a).

The element w ∈ U2np(L∞p ) is represented by a formal scries of the form
(p − 1)!up−1 + O(up) with coefficients in the ring C. By the inductive hypoth-
esis Sω(a) ∈ Rp, |ω| > 0, and from (I.2) we have for any m the formula

(I.3) um(wqP−2qa− a) = ψ(u) ∈ U∗(L∞p × S∞) ≈ U∗(L∞p )⊗ΩU
U∗(Sn),

where ψ(u) ∈ Rp[[u]]. We assume that m ≥ 1 is the smallest of the numbers for
which (I.3) holds. Since ψ(0) = 0, we have ψ(u) = uψ1(u), ψ1(u) ∈ Rp[[u]], and we
obtain the formula u(um−1(wqP−2qa− a)− ψ1(u)) = 0. Then by Lemma I.1 there
exists an element y ∈ U∗(Sq) such that

(I.4) um−1(wqP−2aa− a) = ψ1(u) + yΘp(u) ∈ U∗(L∞p × Sn).

Considering the restriction of this equation to U∗(L∞p ), we find that y′Θp(u) = 0,
where y′ = ε(y), ε : U∗(Sn)→ U∗(∗). Hence, if m > 1, by the inductive hypothesis
y · Θp(u) ∈ Rp[[u]], which contradicts the minimality of m. But if m = 1, then
by considering the restriction of (I.4) to the group U∗(Sn), we find that −a =
ψ1(0) + py, that is, a ∈ Rp. �

Appendix II 1. The Adams conjecture

The Adams conjecture is concerned with the computation of the image of the
J-homomorphism in real K-theory (see [13]). Here is its precise formulation: for
any bundle ξ there is an integer N such that J(kN (Ψk(ξ)− ξ)) = 0 for any k ≥ 1.
The Adams conjecture allows us to construct an upper bound for the image of
the J-homomorphism. It was known that the Adams conjecture is valid for one-
dimensional and orientable two-dimensional bundles and also for their direct sums.
To prove the Adams conjecture it is sufficient to verify it for the classifying bundles
on Grassmann manifolds. We shall give an outline of Sullivan’s proof of the Adams
conjecture.2 The basic idea is to transform the K-functor into another functor
in which the Adams operations Ψk, so to speak, preserve the dimension of the
“bundle”. The precise meaning can be stated in the form of the following lemma.

Lemma II.1. Let Bn be a sequence of complexes, γn : En → Bn sphere bundles with
fibre Sn−1, fn : Bn → Bn−1 mappings such that f∗(γn+1) = γn⊕ 1, fn ∼ γn+1 ·hn,
where hn : Bn → En+1 is a homotopy equivalence. Let an : Bn → Bn he a stable
operation of the functor lim−→[ , Bn], that is, fnan ∼ an+1f , which is invertible. If
Jn : Bn → BGn is the natural J-mapping, Gn ≈ (Ωn−1Sn−1)0, then Jn ∼ Jnan.

Note that the operations Ψk for the sequence Bn = BO(n) do not satisfy the
conditions of the lemma. Sullivan found an appropriate theory Kˆ(X), in which
certain analogues of the Ψk do satisfy the conditions of the lemma. Let X be an
arbitrary CW -complex. By the completion X̂ of X we mean the (unique) complex

1Appendix II was written hy Mishchenko.
2The proof of the Adaim conjecture began three years ago with Quillen’s idea of applying

a property of the étale-topology of Grassmann manifolds. (D. Quillen, Some remarks on étale

homotopy theory and a conjecture of Adams. Topology 7 (1968), 111–116). In 1970, besides

an account of Sullivan’s proof, there appeared a proof by Quillen based on reducing the Adams
conjecture to bundles with finite structure group and differing from his original idea.
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that satisfies the condition [Y, X̂] = lim
{F,f}

[Y, F ]. Here {F, f} is the category of

all mappings f : X → F , where F runs through the complexes having all their
homotopy groups finite. We then put Kˆ(X) = [X,BOˆ]. It is easy to see that the
spaces BO(n)̂ satisfy the conditions of the lemma if we take bundles with fibre
(Sn−1)̂ as the γn. On the other hand, since all the homotopy groups of BGn are
finite, there exists a natural mapping Jˆ: BO(n)→ BGn such that the diagram

BO
̂ //

J ""EE
EE

EE
EE

BOˆ

Jˆ{{xxxxxxxx

BG

is commutative. Finally, we can define the operations (Ψk )̂ in the groups Kˆ(X)
such that (Ψkx)̂ = (Ψk )̂ (xˆ). If we can prove that the operations (Ψk )̂ preserve
the geometric dimension of the bundle, in other words, that there exist mappings
(Ψk

n)̂ : BO(n)̂ → BO(n)̂ such that (Ψk )̂ = lim(Ψk
n)̂ , then the Adams conjecture

follows from the lemma. To prove the latter assertion Sullivan uses the fact that
the Grassmann manifolds Gn,k are algebraic varieties over the field of rational
numbers. Consequently the Galois group Gal(C,Q) acts on Gn,k. It turns out that
the induced action on the étale cohomology with coefficients in a finite group is
determined only by the representation of Gal(C,Q) in the group of permutations of
all roots of unity, that is, the homomorphism Gal(C,Q)→ (Ẑ)∗. By using Artin’s
theorem on the isomorphism of étale cohomology with coefficients in a finite group
and the usual cohomology of a manifold, we obtain an action of (Ẑ)∗ on the space
(Gn,k )̂ . An easy verification shows that the action of the element (k) ∈ (Ẑ)∗

coincides with the operation (Ψk )̂ .
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