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Abstract. This paper provides a systematic presentation of the connection

between the theory of one-dimensional formal groups and the theory of unitary

cobordism. Two new algebraic concepts are introduced: formal power systems
and two-valued formal groups. A presentation of the general theory of formal

power systems is given, and it is shown that cobordism theory gives a nontrivial

example of a system which is not a formal group. A two-valued formal group
is constructed whose ring of coefficients is closely related to the bordism ring

of a symplectic manifold. Finally, applications of formal groups and power
systems are made to the theory of fixed points of periodic transformations of

quasicomplex manifolds.

Bibliography: 17 citations.

The theory of one-dimensional commutative formal groups at the present time
consists of three parts:

1) The general theory at the basis of which lies Lazard’s theorem [8] on the
existence of a universal formal group whose coefficient ring is the ring of polynomials
over the integers.

2) Formal groups over arithmetic rings and fields of finite characteristic — for a
survey of this theory see [4].

3) Commutative formal groups in cobordism theory and in the theory of coho-
mology operations and characteristic classes [12], [13], [5], [9], [14].

Quillen has recently shown that the formal group f(u, v) which occurs in the
topology of “geometrical cobordism” is universal [14]. His proof makes use of
Lazard’s theorem on the existence of a universal formal group whose ring of co-
efficients is a torsion-free polynomial ring.

In the first section of this paper we prove the universality of the group of “geomet-
rical cobordism” directly by starting from its structure, as investigated in Theorem
4.8 of [2], without recourse to Lazard’s theorem. Moreover, in §1 we give formulas
for calculating the cohomology operations in cobordism by means of the Hirzebruch
index.

In connection with the theory of Adams operations in cobordism the operation
of “raising to powers” in formal groups is of particular importance (see [12], [13]).
This operation can be axiomatized and studied for its own sake; in addition there
are topologically important power systems which do lie within formal groups (see
§2a). In §2b we examine a distinctive “two-valued formal group” which is closely
connected with simplicial cobordism theory. §3 and the Appendix are devoted to
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the systematization and development of the application of formal groups to fixed
point theory.

§ 1. Formal groups

First of all we introduce some definitions and general facts concerning the theory
of formal groups. All rings considered in this paper are presumed to be commutative
with unit.

Definition 1.1. A one-dimensional formal commutative group F over a ring R is
a formal power series F (x, y) ∈ R[[x, y]] which satisfies the following conditions:

a) F (x, 0) = F (0, x) = x,
b) F (F (x, y), z) = F (x, F (y, z)),
c) F (x, y) = F (y, x).
In the following a formal series F (x, y) which satisfies axioms a), b) and c) will

simply be called a formal group.

Definition 1.2. A homomorphism φ : F → G of formal groups over a ring R is a
formal series φ(x) ∈ R[[x]] such that φ(0) = 0 and φ(F (x, y)) = G(φ(x), φ(y)).

If the formal series φ1(x) determines the homomorphism φ1 : F → G and the
formal series φ2(x) determines the homomorphism φ2 : G→ H, it follows immedi-
ately from Definition 1.2 that the formal series φ2(φ1(x)) determines the composite
homomorphism φ2 · φ1 : F → H.

For formal groups F and G over R we denote by HomR(F,G) the set of all
homomorphisms from F into G. With respect to the operation

(φ1 + φ2)(x) = G(φ1(x), φ2(x)), φ1, φ2 ∈ HomR(F,G),

the set HomR(F,G) is an Abelian group.
By T (R) we denote for any ring R the category of all formal groups over R

and their homomorphisms. It is not difficult to verify that the category T (R) is
semiadditive, i.e. for any F1, F2, F3 ∈ T (R) the mapping

HomR(F1, F2)×HomR(F2, F3) → HomR(F1, F3),

defined by composition of homomorphisms, is bilinear.
Let F (x, y) = x+ y+

∑
αi,jx

iyj be a formal group over R1, and let r : R1 → R2

be a ring homomorphism. Let r[F ] be the formal series

r[F ](x, y) = x+ y +
∑

r(αi,j)xiyj ,

which is clearly a formal group over R2. If the series φ(x) =
∑
αix

i gives the
homomorphism φ : F → G of formal groups overR1, then the formal series r[φ](x) =∑
φ(ai)xi gives the homomorphism r[φ] : r[F ] → r[G] of formal groups over R2.

Thus any ring homomorphism r : R1 → R2 provides a functor from the category
T (R1) into the category T (R2). Summing up, we may say that over the category
of all commutative rings with unit we have a functor defined which associates with
each ring R the semiadditive category T (R) of all one-dimensional commutative
formal groups over R.

Let R be a torsion-free ring and F (x, y) a formal group over it. As was shown in
[8] (see also [4]), there exists a unique power series f(x) = x+

∑
(an/(n+ 1))xn+1,

an ∈ R, over the ring R⊗Q such that

(1.3) F (x, y) = f−1(f(x) + f(y)).
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Definition 1.4. The power series f(x) = x +
∑

(an/(n + 1))xn+1, which obeys
(1.3), is called the logarithm of the group F (x, y), and is denoted by the symbol
gF (x).

In [4] the notion of an invariant differential on a formal group F (x, y) over a
ring R was introduced, and it is shown there that the collection of all invariant
differentials is the free R-module of rank 1 generated by the form ω = ψ(x)dx,
where ψ(x) = ([∂F (x, y)/∂y]y=0)−1. By the invariant differential on the group
F (x, y) we shall mean the form ω.

If the ring R is torsion free, then ω = dgF (x). We point out that it was demon-
strated in [12] that the logarithm of the formal group f(u, v) of “geometrical cobor-
dism” is the series g(u) = u +

∑
[CPn]un+1/(n + 1). Consequently for the group

f(u, v) we have

ω = dg(u) =

( ∞∑
n=0

[CPn]un

)
du = CP (u)du.

Let
f(u, v) = u+ v +

∑
ei,ju

ivj , ei,j ∈ Ω−2(i+j−1)
U ,

be the formal group of geometrical cobordism.

Lemma 1.5. The elements ei,j, 1 ≤ i < ∞, 1 ≤ j < ∞, generate the whole
cobordism ring ΩU .

Proof. From the formula for the series f(u, v) given in [2] (Theorem 4.8), we obtain

e1,1 = [H1,1]−2[CP 1], e1,i ≈ [H1,i]− [CP i−1], i > 1, ei,j ≈ [Hi,j ], i > 1, j > 1,

where the sign ≈ denotes equality modulo factorizable elements in the ring ΩU .
Since s1([H1,1]) = 2, we have e1,1 = −[CP 1]; since si−1([H1,i]) = 0 for any i > 1,
we have ei,1 ≈ −[CP i−1]. According to the results in [10] and [11], the elements
[Hi,j ], i, j > 1, and [CP i] generate the ring ΩU . This proves the lemma. �

Theorem 1.6 (Lazard–Quillen). The formal group of geometrical cobordism f(u, v)
over the cobordism ring ΩU is a universal formal group, i.e. for any formal group
F (x, y) over any ring R there is a unique ring homomorphism r : ΩU → R such
that F (x, y) = r[f(u, v)].

We show first that for a torsion-free ring R Theorem 1.6 is an easy consequence
of Lemma 1.5. Let R be a torsion-free ring and let F be an arbitrary formal group
over it; let

gF (x) = x+
∑ an

n+ 1
xn+1, an ∈ R.

Consider the ring homomorphism r : ΩU → R ⊗ Q such that r([CPn]) = an. We
have r[gf ] = gF , and, since

F (x, y) = g−1
F (gF (x) + gF (y)) and f(x, y) = g−1

f (gf (x) + gf (y)),

also r[f(x, y)] = F (x, y). Consequently r(ei,j) ∈ R. By now applying Lemma 1.5,
we find that Im r ⊂ R ⊂ R⊗Q. This proves Theorem 1.6 for torsion-free rings.

Proof of Theorem 1.6. Recall that by sn(e), e ∈ Ω−2n
U , we denote the characteristic

number corresponding to the characteristic class
∑
tni . It follows from the proof of

Lemma 1.5 that for any i, j > 1 we have the formula si+j−1(ei,j) = −Ci
i+j . It is

known that the greatest common divisor of the numbers {Ci
n}n=1,...,(n−1) is equal
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to 1 if n 6= pl for any prime p ≥ 2, and is equal to p if n = pl. Consequently a
number λi,n exists such that

(∗)
∑

λi,nC
i
n =

{
1, if n 6= pl,

p, if n = pl,

For each n, let us consider a fixed set of numbers (λi,n) which satisfy (∗). From
[10] and [11] we have that the elements yn =

∑
λi,nei,n−i ∈ Ω−2(n−1)

U , n = 2, 3, . . . ,
form a multiplicative basis for the ring ΩU .

Let R be an arbitrary ring and let F (x, y) = x + y +
∑
αi,jx

iyj be a formal
group over this ring. We define the ring homomorphism r : ΩU → R by the formula
r(yn) =

∑
λi,nαi,n−i; we shall show that r(ei,n−i) = αi,n−i for any i, n. From the

commutative property of the formal group F it follows that αi,n−i = αn−i,i; from
associativity we have

Ci
i+jαi+j,k − Cj

j+kαj+k,i = P (αm,l),

where P (αm,l) is a polynomial in the elements αm,l, m + l < i + j + k. It is clear
that the form of the polynomial P does not depend on the formal group F (x, y).
Since e1,1 = y1, we have r(e1,1) = α1,1. We assume that for any number n < n0

the equation r(ei,n−i) = αi,n−i is already proved. We have

Ci
i+jei+j,k − Cj

j+kej+k,i = P (em,l), m+ l < n0 = i+ j + k,

r(P (em,i)) = P (r(em,l)) = P (αm,l) = Ci
i+jαi+j,k − Cj

j+kαj+k,i.

It follows from the number-theoretical properties of the Cq
p that for any i0 ≥ 1

and n0 = i0 + j0 + k0 the element αi0,j0+k0 can be represented as an integer linear
combination of the elements r(yn0) =

∑
λi,n0αi,j+k, and r(P (em,l)) = Ci

i+jαi+j,k−
Cj

j+kαj+k,i. Since the form of this linear combination depends neither on the ring
R nor on the formal group F , we find that r(ei0,n0−i0) = αi0,n0−i0 . This concludes
the induction, and Theorem 1.6 is proved. �

It will be useful to indicate several important simple consequences of Theorem
1.6:

1. In the class of rings R over Zp the formal group f(u, u) ⊗Z Zp is universal
over the ring ΩU ⊗Z Zp.

2. In the class of formal groups over graded rings the formal group of geometrical
cobordism f(u, v), considered as having the natural grading of cobordism theory, is
universal.

In this case dimu = dim v = dim f(u, v) = 2. Therefore the above refers to
the class of formal groups F over commutative even-graded rings R, where R =∑

i≥0R
−2i, and all components of the series F (u, v) have dimension 2. Of course,

the general case of a graded ring reduces to the latter through the multiplication
of the grading by a number.

3. The semigroup of endomorphisms of the functor T , which assigns to a com-
mutative ring R the set T (R) of all commutative one-dimensional formal groups
over R, is denoted by AT . This semigroup AT coincides with the semigroup of all
ring automorphisms ΩU → ΩU . In the graded case we refer to the functor as Tgr

and the semigroup as AT
gr, which coincides with the semigroup of all dimension

preserving homomorphisms ΩU → ΩU . The “Adams operators” Ψk ∈ AT
gr form
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the center of the semigroup AT
gr. The application of these operators Ψk to a formal

group F (x, y) over any ring proceeds according to the formula

ΨkF (x, y) = x+ y +
∑

ki+j−1αi,jx
iyj ,

where F (x, y) = x+ y +
∑
αi,jx

iyj.
We note that the semigroup A0 of all multiplicative operations in U∗-theory is

naturally imbedded in the semigroup AT
gr (see [12], Appendix 2) by means of the

representation (∗) of the ring AU over ΩU ; the elements of AT are given in the
theory of characteristic classes by rational “Hirzebruch series”

K(1 + u) = Q(u), Q(u) =
u

a(u)
, a(u) = u+

∑
i≥1

λiu
i, λi ∈ ΩU ⊗Q.

What sort of Hirzebruch series give integer homomorphisms ΩU → ΩU , i.e.
belong to AT ? How does one distinguish A0 ⊂ AT

gr?
From the point of view of Hirzebruch series the action of a series a = a(u) =

u+
∑
λiu

i+1, λi ∈ ΩU ⊗Q, on the ring ΩU is determined by the formula

a([CPn]) =

[(
u

a(u)

)n+1
]

n

,

where [f(u)]n denotes the nth coefficient of the series f(u). Note that a−1(u) =
u+

∑
[a([CPn])/(n+1)]un+1, where a−1(a(u)) = u. This formula is proved in [13]

(see also [2]) for series a(u) giving homomorphisms ΩU → Z, and carries over with
no difficulty to all series which give homomorphisms ΩU → ΩU .

We must check that the indicated operation (in the “Hirzebruch genus” Q(u) =
u/a(u) sense) of a series a(u) on ΩU does not coincide with the operation (∗) of the
series a(u) ∈ Ω⊗Q[[u]] on the ring ΩU = U∗(point), which defines a multiplicative
cohomology operation in U∗-theory (see [12]). For example, for a(u) = u we have
a([CPn]) = 0, n ≥ 1, and a∗([CPn]) = [CPn]; as is proved in cobordism theory
(see [12] or [2]), for the series a(u) = g(u) =

∑
[CPn]un+1/(n + 1) we have the

formula a∗([CPn]) = 0, n ≥ 1, and for the series a(u) = g−1(u) the formula
a([CPn]) = [CPn].

There arises the transformation of series of the ring Ω⊗Q[[u]]

φ : a(u) → φa(u),

defined by the requirement a[x] = (φa)∗[x] for all x ∈ ΩU , where we already know
that φu = g(u) and φ(g−1(u)) = u. We have

Theorem 1.7. The transformation of series of the ring ΩU ⊗Q[[u]]

g : a(u) 7→ a(g(u))

has the same properties as a[x] = a(g)∗[x] for any element x ∈ ΩU where

g(u) =
∑ [CPn]

n+ 1
un+1, a[CPn] =

[(
u

a(u)

)n+1
]

n

and b∗[x] is the result of the application to the element x ∈ U∗(point) = ΩU of
the multiplicative operation b of AU ⊗ Q, given by its value b(u) = u +

∑
λiu

i,
λi ∈ ΩU ⊗Q, on the geometrical cobordism u ∈ U2(CP∞).
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Proof. Let b ∈ AU ⊗Q be a multiplicative operation and let b̃(ξ) be the exponential
characteristic class of the fiber ξ with values in U∗-theory, which on the Hopf fiber
η over CPn, n ≤ ∞, is given by the series b̃(η) = (b(u)/a)−1; let u ∈ U2(CPn) be
a geometrical cobordism. As was shown in [12], for any U -manifold Xn we have
the formula

b∗([X]) = εDb̃(−τ(Xn)),

where [Xn] ∈ Ω−2n
U is the bordism class of the manifold Xn, ε : X → (point), D is

the Poincaré–Atiyah duality operator, and τ is the tangent fiber.
By using the formulasDuk = (CPn−k) ∈ Un−k(CPn), n <∞, and τ(CPn)+1 =

(n+ 1)η, we obtain

b∗([CPn]) =
n∑

k=0

[CP k]

[(
u

b(u)

)n+1
]

n−k

=
∞∑

k=0

[CP k]
2πi

∫
|u|=ε

(
u

b(u)

)n+1
du

un+1−k
,

∞∑
n=0

b∗([CPn])
n+ 1

tn+1 =
∫ t

0

∞∑
n=0

b∗([CPn])tn dt =

=
∫ t

0

( ∞∑
n=0

∞∑
k=0

[CP k]
2πi

∫
|u|=ε

uk du

b(u)n+1

)
tn dt

=
1

2πi

∫
|u|=ε

∞∑
k=0

[CP k]uk

(∫ t

0

∞∑
n=0

(
t

b(u)

)n
dt

b(u)

)
du

=
1

2πi

∫
|u|=ε

|t|<|b(u)|

− ln
(

1− t

b(u)

)( ∞∑
k=0

[CP k]uk du

)

=
1

2πi

∫
|u|=ε

|t|<|b(u)|

− ln
(

1− t

b(u)

)
dg(u),

where dh(u) is the invariant differential of the formal group f(u, v). By setting
g(u) = v, we obtain from the formula for the inversion of series∫

|u|=ε

|t|<|b(g−1(v))|

− ln
(

1− t

b(g−1(v))

)
dv = (b(g−1(v)))−1(t) = g(b−1(t)).

Thus
∞∑

n=0

b∗([CPn])
n+ 1

tn+1 = g(b−1(t)).

On the other hand, as was indicated above, we have the formula∑ a([CPn])
n+ 1

tn+1 = a−1(t).

Consequently, if b(u) = a(g(u)), then b∗([CPn]) = a([CPn]) for any n. Since the
elements {[CPn]} generate the entire ring ΩU ⊗Q; the theorem is proved. �

Another proof of Theorem 1.7 can be obtained from the properties of the Chern–
Dold character chU (see [2]). Let φ : ΩU → ΩU be a ring homomorphism and let
a(u) = u =

∑
λiu

i be the corresponding Hirzebruch genus. We shall show that
if the multiplicative operation b ∈ AU ⊗ Q acts on the ring U∗(point) = ΩU as a
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homomorphism φ, then its value on the geometrical cobordism u ∈ U2(CP∞) is
equal to the series a(g(u)), where g(u) = u+

∑
[CPn]un+1/(n+ 1). We have

chU (u) = t+
∑

αit
i+1 ∈ H∗(CP∞,ΩU ⊗Q),

αi ∈ Ω−2i
U ⊗Q, t ∈ H2(CP∞,Z), chU (g(u)) = t.

Since a−1(t) =
∑
φ([CPn])tn+1/(n+ 1), we have

a(t) = t+
∑

φ(αi)ti+1 = t+
∑

b∗(αi)ti+1.

Thus
a(g(u)) = g(u) +

∑
b∗(αi)g(ui+1),

chU (a(g(u))) = t+
∑

b∗(αi)ti+1 = b∗(chU (u)) = chU (b(u)).

Since the homomorphism chU : U∗(CP∞)⊗Q→ H∗(CP∞,ΩU ⊗Q) is a monomor-
phism, we find that a(g(u)) = b(u). This proves the theorem.

By Theorem 1.6 any integer Hirzebruch genus, or, equivalently, any homomor-
phism Q : ΩU → Z, defines a formal group over Z, and conversely (similarly for the
ring Zp). In this connection the Hirzebruch genus, which defines this homomor-
phism, can be rational. Equivalent (or strongly isomorphic in the terminology of [4])
formal groups are defined by the Hirzebruch series Q(z) and Q′(z), which are con-
nected by the formula z/Q(z) = φ−1(z/Q′(z)), where φ−1(u) = u +

∑
i≥1 λiu

i+1,
λi ∈ Z. This follows from the fact that the logarithms of the formal groups are
equal to gQ(z) = (z/Q(z))−1, and by definition we have gQ(z) = gQ′(φ(z)).

Let us consider the integer Q-genus given by the rational series gQ(u). Then the
Q′-genus such that gQ(u) = gQ′(φ(u)), φ(u) = u +

∑
i≥1 λiu

i+1, λi ∈ Z, also has
integer values on ΩU . In this connection the meaning of equivalence for Hirzebruch
genera is the same as for formal groups. What sort of examples of formal groups
are considered in topology in connection with the well-known multiplicative classes
c, T, L,A?

1. The Euler characteristic c : ΩU → Z. We have

fc(u, v) =
u+ v − 2uv

1− uv
, gc(u) =

u

1− u
.

As a formal group, this genus is equivalent to the trivial one.
2. The Todd genus T : ΩU → Z. Here we have the law of multiplication

fT (u, v) = u+ v − uv, gT (u) = − ln(1− u), T (z) =
−z

1− e−z
=

−z
g−1

T (z)
.

3. The L-genus τ : ΩU → Z and the A-genus A : ΩU → Z, where g−1(z) =
th z and g−1

A (z) = 1
2 sh(2z). It is easily seen that these are strongly isomorphic to

formal groups; both of them are strongly isomorphic over Z2 to a linear group, and
over Z[1/2] to a multiplicative one (the Todd genus).

4. The Ty-genus (see [3]) Ty([CPn]) =
∑n

i=0(−yi). Here the law of multipli-
cation is defined over the ring Z[[y]] and has the form

fTy
(u, v) =

u+ v + (y − 1)uv
1 + uvy

, gTy
=

1
(y + 1)

ln
(

1 + (1 + y)
u

1− u

)
.

We have for y = −1, 0, 1 the genera c, T and L, respectively. The simple integral
change of variables u = φ(u′) allows us to put fTy

into the form

φ−1fTy
(φ(u′), φ(v′)) = u′ + v′(y − 1)u′v′.
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For all values of y this group reduces either to a linear one or to a multiplicative
one over the p-adic integers Zp.

Thus we see that in topology the multiplicative genera connected with other
non-trivial formal groups over Z,Zp or Z/pZ have not been considered previously.

§ 2. Formal power systems and Adams operators

Definition 2.1. A formal power system over a ring R is a collection of power series
{fk(u), k = ±1,±2, . . . , fk(u) ∈ R[[u]]} such that fk(fl(u)) = fkl(u).

Consider on the ring R[[u]] the operation of inserting one formal power series into
another. With respect to this operation R[[u]] is an associative (noncommutative)
semigroup with unit. The role of the unit is played by the element u. Let Z∗ denote
the multiplicative semigroup of nonzero integers.

Definition 2.2. Any homomorphism f : Z∗ → R[[u]] will be called a formal power
system.

Definition 2.3. We shall say that a formal power system is of type s if for any
number k the series fk(u) has the form

fk(u) = ksu+
∑
i≥1

µi(k)ui+1, µi(k) ∈ R.

We shall always assume the number s to be positive. Not every power system
has type s ≥ 1. For example, fk(u) = uks

. More generally, the case

fk(u) = λ0(k)uks

+O(uks+1) =
∑
i≥0

λi(k)uks+i

is possible.
Here it is especially important to distinguish two cases: 1) λ0(k) = 1, 2) λ0(k) 6≡

1, but R does not have zero divisors. In the first case there exists a substitution
v = B(u) ∈ R[[u]]⊗Q, v = u+O(u2), in the ring such that B(fk(B−1(v))) = vks

(the argument is similar to the proof of Lemma 2.4 below). 2) is the more general
case, where λ0(k) 6≡ 1. Here a similar substitution exists and is correct over a field
of characteristic zero which contains the ring R. Examples of such power systems
may be found readily in the theory of cohomology operations in U∗-theory, by
composing them out of series of operations sω ∈ AU with coefficients in ΩU . We
are interested principally in Adams operations, and shall therefore consider only
systems of type s ≥ 1.

As in the theory of formal groups, an important lemma concerning “rational
linearization” also plays a role in the theory of power systems. We note that the
proof of this lemma presented below is similar to the considerations of Atiyah and
Adams in K-theory (see [1]).

Lemma 2.4. For any formal power system of type s there exists a series, not
depending on k, such that the equation fk(u) = B−1(ksB(u)), where B−1(B(u)) =
u, is valid in the ring R[[u]]⊗Q.

The series B(u) is uniquely defined by the power system, and is called its loga-
rithm.1

1We point out that a formula for the logarithm of a formal group was given in [5] for the
cobordism theory of power systems of type s = 1 for these groups. However, there it is necessary

to make use of important additional information concerning the coefficients of the power systems

of uk as functions of k.
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Proof. We shall show that for a given power system fk = {fk(u)} of type s we
are able to reconstruct, by an inductive process, the series B(u) = u+ λ1u

2 + . . . .
Assume that we have already constructed the series vn = Bn(u) ∈ R[[u]] ⊗ Q

such that for the formal power system {f (n)
k (vn)} = {Bnfk(B−1

n (vn))} we have the
formula f (n)

k (vn) = ksvn + µ(k)vn+1
n + O(vn+2), µ(k) ∈ R. By using the relation

f
(n)
l (f (n)

k (vn)) = f
(n)
k (f (n)

l (vn)), we obtain for all k and l

(kl)svn + (lsµ(k) + µ(l)k(n+1)s)vn+1
n = (kl)svn + (ksµ(l) + µ(k)l(n+1)s)vn+1

n .

Consequently
µ(k)

ks(kns − 1)
=

µ(l)
ls(lns − 1)

= λ ∈ R⊗Q,

where λ does not depend on k or l. Let us set Bn+1(u) = vn − λvn+1
n . Direct

substitution now shows that

Bn+1(fk(B−1
n+1(vn+1))) = ksvn+1 +O(vn+2

n+1).

This completes the inductive step. We setB(u) = lim−→Bn(u). ThusB(fk(B−1(B(u)))) =
ksB(u), i.e. fk(u) = B−1(ksB(u)), which completes the proof. �

An important example of a formal power system is the operation of raising to
the power s in the universal formal group f(u, v) over the ring ΩU . The operations
of raising to a power in f(u, v) have the form ksΨks

(u), Ψks ∈ AU . Let us denote
by Λ(s) the subring in ΩU generated by all the coefficients of the formal series

ksΨks

(u) = ksu+
∑

µ
(s)
i (k)ui+1 ∈ ΩU [[u]] = U∗(CP∞)

for all k. In Theorem 4.11 of [2] the coefficients of the series ksΨks

are described
in terms of the manifolds Mn−1

ks ⊂ CPn, k = ±1,±2, . . . , which are the zero cross-
sections of ksth tensor degree of the Hopf fiber η over CPn. In particular, from
this theorem it follows that modulo factorizable elements in the ring ΩU we have
the equation

µ
(s)
i (k) ≈ [M i

ks ]− ks[CP i].

Since τ(M i
ks) = φ∗((i+ 1)η − ηks

), where φ : M i
ks ⊂ CP i+1 is an imbedding map-

ping, we have si([M i
ks ])− si(ks[CP i]) = ks(1− ksi). The calculation of the Chern

numbers si (t-characteristic in the terminology of [13]) of the elements µ(s)
i (k) is

easily performed by the method of [13].

Lemma 2.5. Let Λ(s) =
∑

Λn be the ring generated by the elements µ(s)
i (k) for

all k and i. The smallest value of the t-characteristic on the group Λ is equal to the
greatest common divisor of the numbers ks(kns − 1), k = 2, 3, . . . . In particular,
the ring Λ(s) does not coincide with the ring ΩU for any s, but the rings Λ(s)⊗Q
and ΩU ⊗Q are isomorphic.

Theorem 2.6. The formal power system of type s generated by the Adams oper-
ations fU (u) = {ksΨks}, k = ±1,±2, . . . , and considered over the ring Λ(s), is a
universal formal system of type s on the category of torsion-free rings, i.e. for any
formal power system f = {fk(u)} of type s over any torsion-free ring R there exists
a unique ring homomorphism φ : Λ(s) → R such that f = φ[fU ].
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Proof. Let B(u) = u +
∑
λiu

i+1, λi ∈ R ⊗ Q, be the logarithm of the formal
power system f = {fk}. Consider the ring homomorphism φ : ΩU ⊗ Q → R ⊗ Q,
φ([CPn])/(n+ 1) = λn. Since the coefficients of the formal power system {ksΨks}
generate the entire ring Λ(s), we see that the homomorphism φ, restricted to the
ring Λ(s) ⊂ ΩU ⊗ Q, is integral, i.e. Imφ(Λ(s)) ⊂ R ⊂ R ⊗ Q. This proves the
theorem. �

To each formal power system f = {fk(u)} of type s over a torsion-free ring R
we may associate a formal one-parameter group B−1(B(u) + B(v)) over the ring
R ⊗ Q, where B(u) is the logarithm of the power system. From Theorem 2.6 we
obtain

Corollary 2.7. Let φ : Λ(s) → R be the homomorphism corresponding to the for-
mal power system f = {fk(u)}. In order that the group B−1(B(u) + B(v)) be
defined over the ring R, it is necessary and sufficient that the homomorphism φ the
extendable to a homomorphism φ̂ : ΩU → R.

Thus the question of the relation of the concepts of a formal power system and
a formal one-parameter group over a torsion-free ring R is closely related to the
problem of describing the subrings Λ(s) in ΩU .

We shall demonstrate that the series B−1(ksB(u)) has the form B−1(ksB(u)) =
ksu + ks(ks − 1)λu2 + . . . , λ ∈ R ⊗ Q, where B(u) = u ± λu2 + . . . . Since the
expression ks(ks−1)λ is integer valued for all integers k, it follows that an element
λ ∈ R⊗Q can have in its denominator the Milnor–Kervaire–Adams constant M(s),
equal to the greatest common divisor of the numbers {ks(ks − 1)}. For example,
M(1) = 2, M(2) = 12. For the series B(u) obtained from a formal group over
R the second coefficient λ can have only 2 in the denominator. For all s > 1 a
realization of the universal system indicated in Theorem 2.6 does not, of course,
occur naturally. A natural realization would be one over a subring of the ring ΩU ,
where the second coefficient λ of the logarithm B(u) = u+ λu2 + . . . for a system
of type s = 2l would coincide with the well-known Milnor–Kervaire [6] manifold
V s ∈ Ω−4s

U , where λ = ±V s/M(s), as follows from our considerations on the integer
valuedness of λ ·M(s). For s = 2 such a system will be given below.

It is simplest to describe the connection between the notions of a formal power
system of type s and of a formal one-parameter group for s = 1. We consider
the category of torsion-free rings which are modules over the p-adic integers. The
system fU = {ksΨks

(u)}, considered over the ring Λ(s)⊗ Zp, is a universal formal
system of type s for systems over such rings. Consider in the ring ΩU some fixed
multiplicative system of generators {yi}, dim yi = −2i; let us denote by Λp ⊂ ΩU

the subring generated by the elements y(pj−1), j = 0, 1, . . . , and by πp : ΩU → ΩU

the projection such that

πp(yi) =

{
yi, if i = pj − 1,
0 otherwise.

According to Lemma 2.5 the minimum value of the t-characteristic on the group
∆(1)n ⊂ Λ(1) is equal to the greatest common divisor of the numbers k(kn − 1),
k = 2, 3, . . . . In the canonical factorization of the number {k(kn − 1)} into prime
factors only first powers can appear, and since t(y(pj−1)) = p, j > 0 (see [11]), it
follows that the homomorphism πp : Λ(1) → Λp is an epimorphism. Let us define
f (p) = {π∗p[kΨk]}.
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Corollary 2.8. For any projection of the type πp the coefficients of the series f (p)
U

generate the entire ring Λp, which coincides with the ring of coefficients of the
formal group π∗p(fU (u, v)) = f

(p)
U (u, v).

We consider now the special projection π̄p : ΩU ⊗ Zp → ΩU ⊗ Zp such that
π̄∗p([CP i]) = 0 if i+ 1 6= ph, and π̄∗p([CP i]) = [CP i] if i+ 1 = ph. This projection
was given in [14] starting from the Cartier operation over formal groups. As was
indicated in §1, the projection π̄p can be considered as a “cohomological” operation
on the set of all formal one-parameter groups over any commutative Zp-ring R.

We shall say that the formal group F (u, v) over the Zp-ring R belongs to the
class P if π̄∗p(F (u, v)) = F (u, v). Note that the group π̄∗pfU (u, v) is a universal
formal group for groups of class P over the ring Λp = Im π̄∗p(ΩU ).

From the description of the operator π̄∗p and the definition of the action of the
projection π̄∗p on the collection of groups it follows easily that for a torsion-free
Zp-ring R the group F (u, v) belongs to the class P it and only if its logarithm has
the form gF (u) = u+

∑
λiu

pi

.
We shall say that a formal power system f(u) over a torsion-free Zp-ring R

belongs to the class P it its logarithm has the form B(u) = u+
∑
λiu

pi

.

Lemma 2.9. The power system π̄∗p[kΨk(u)] is a universal formal power system of
type 1 for the class P over the ring Λ = Im π̄∗p(ΩU ).

The proof of this lemma follows easily from Lemma 2.4 and Corollary 2.8.
From Lemmas 2.4, 2.5 and 2.9 we have

Theorem 2.10. Let R be a torsion-free Zp-ring, f(u) a formal power system of
type 1 of the class P over R, and B(u) the logarithm of f(u). Then a formal
one-parameter group F (u, v) = B−1(B(u) + B(v)) in class P is defined over the
ring R, and, moreover, the mapping f(u) 7→ F (u, v) = B−1(B(u) + B(v)) sets up
a one-to-one correspondence between the collection of all formal power systems of
type 1 of class P over R and the collection of all one-parameter formal groups of
class P over R.

We shall now show that for a power system over a ring with torsion, as distinct
from the case of formal groups, the theorem that any system can be lifted to a
system over a torsion-free ring is not true. It will follow from this, in particular, that
the formal system {ksΨks

(u)} over the ring Λ(s) is not universal on the category
of all rings.

Example. Consider the ring R = Zp = Z/pZ; we shall display a power system
which cannot be lifted to a system over the ring Zp of p-adic integers. Let f(u) =
{fk(u) = ku +

∑
i≥1 µi(k)upi}k=µ0(k) be a formal power system. Note that in R

we have the identity xp = x. Since fk(fl(u)) = fkl(u) we have

µ1(kl) = kµ1(l) + lµ1(k), . . . , µi(kl) =
∑

j+q=i
j≥0,q≥0

µj(k)µq(l).

Consequently the value of the function µi(k) for all i ≥ 1 and prime numbers
k can be given arbitrarily. For example, the values of the function µ1(k) for the
primes k = 2, 3, 5, . . . are arbitrary. Such functions µ1(k) form a continuum. For
formal systems of type s = 1, obtained from a system over Zp by means of the
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homomorphism of reduction modulo p, by Lemma 2.4 the function µ1(k) has the
form (k(kp−1 − 1)/p) · γ = µ1(k), where γ is the p-adic unit. Reduction of µ1

(mod p) gives a monomial over Zp. From this we have

Theorem 2.11. There exists a continuum of formal power systems over the ring
R = Zp which are not homomorphic images of any power system over the p-adic
integers (and in general over any torsion-free ring).

§ 2a

We shall display another geometrical realization of a universal power system of
type s = 2 which has an interesting topological meaning. In the universal formal
group f(u, v) the operation u → ū = −Ψ−1(u), f(u, ū) = 0, is the lifting of the
operation of complex conjugation into the cobordism of K-theory. Therefore the
combination of the form uū = −uΨ−1(u) for geometrical cobordism has the sense
of a “square modulus” |u|2 = uū.

Let F (u, v) be a formal group over the ring R and let ū be the element inverse to
u, i.e. F (u, ū) = 0. Consider the element x = uū ∈ R[[u]], and let [u]k = F (u, . . . , u)
(k places), where F (u, . . . , u) = F (u, F (u, . . . )). Define φk(x) = [u]k · [ū]k, where
the product is the ordinary product in the ring R[[u]]. We have

Lemma 2.12. For a formal group F = F (u, v) the values of the series φk(x) =
[u]k[ū]k lie in the ring R[[x]] = R[[uū]] and define a power system of type s = 2
over the ring R.

Proof. Let fU = f(u, v) be a universal group over the ring R = ΩU , and let
f(u, v) = g−1(g(u) + g(v)). Define B−1(−y) = g−1(−√y)g−1(

√
y). Since [u]k =

g−1(kg(u)), we have φk(x) = g−1(kg(u))g−1(−kg(u)) = B−1(−k2g(u)2). Further-
more, x = g−1(g(u))g−1(−g(u)) = B−1(−g(u)2). Therefore B(x) = g(u)2 and
φk(x) = B−1(−k2g(u)2) = B−1(k2B(x)). Consequently φk(x) is a formal power
system of type s = 2 over the ring ΩU , with logarithm B(x). In view of the univer-
sality of the group fU over ΩU this completes the proof of the lemma in the general
case. �

We shall give a topological interpretation of Lemma 2.12. Consider the Thom
spectrum MSp = (MSp(n)) of the symplectic group Sp. In particular MSp(1) =
KP∞ is infinite-dimensional quaternion projective space. The canonical imbedding
S1 → Sp(1) → SU(2) defines a mapping φ : CP∞ → KP∞, and consequently a
mapping φ∗ : U∗(KP∞) → U∗(CP∞), where U∗(KP∞) = ΩU [[x]], dimR(x) = 4,
U∗(CP∞) = ΩU [[u]], dimR u = 2 and φ∗(x) = uū. This follows from the fact that
the canonical Sp(1)-bundle γ over KP∞ restricted to CP∞ goes into η + η̄, and
x = σ2(γ) → σ1(η)σ1(η̄) = uū, where σi is the Chern class in cobordism theory.

We set

φk(x) = (k2Ψk)x = k2x+
∞∑

i=1

µi(k)xi+1, x ∈ U4(KP∞), µi(k) ∈ Ω−4i
U .
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From the properties of the operation Ψk (see [12]) we obtain

φk(φl(x)) = k2φl(x) +
∞∑

i=1

µi(k)(φl(x))i+1

= k2(l2Ψl(x)) +
∞∑

i=1

µi(k)l2i+2Ψl(xi+1)

= l2Ψl(k2Ψk(x)) = l2k2Ψlk(x) = φkl(x).

Here we have used the formula Ψl(µi(k)) = l2iµi(k). Consequently the set of
functions φ(x) = {φk(x)} is a formal power system of type s = 2 over the ring ΩU .
Since k2Ψk(x) = k2Ψk(uū) = [u]k[ū]k, by this means we obtain a topological proof
of Lemma 2.12.

Remark. We note that in §VII of the paper of Novikov [13] in the proof of Theorem
1b in Example 3 the case of groups of generalized quaternions was analyzed and the
“square modulus” system arose there; the properties of this system are required for
carrying out a rigorous proof for this example, without which Theorem 1b cannot
be proved. Indeed, we used the fact that k2Ψk(w) is a series in the variable w
with coefficients in ΩU , where w = σ2(∆1). Moreover, for carrying out the proof
of Theorem 1b, in analogy with Theorem 1 we require the fact that the ∆i are
all obtained from ∆1 by means of the Adams operators, where the ∆i are the
2-dimensional irreducible representations of the group of generalized quaternions.

Let us consider in more detail the logarithm B(x) = −g(u)2 of the formal type 2
power system introduced in Lemma 2.12. Let t and z be the generators of the
cohomology groupsH2(CP∞;Z) andH4(KP∞;Z), respectively. Since φ∗(c2(γ)) =
c1(η)c1(η̄), φ∗(z) = −t2. We have chU (g(u)) = t and chU (B(x)) = −t2 = z.
Consequently

B−1(x) = chU (x)|z=x ∈ H∗(KP∞; ΩU ⊗Q) = ΩU ⊗Q[[z]].

Let Ψ0 be the multiplicative operation in U∗ ⊗Q theory, given by the series

Ψ0(u) = lim
k→0

(
1
k
g−1(kg(u))

)
= g(u) = u+

∑ [CPn]
n+ 1

un+1.

Recall that in [2] and [12] the operation Ψ0 was denoted by the symbol Φ. We have
chU Ψ0(x) = Ψ0 chU (x) = z; here we have used the fact that Ψ0(y) = 0, where
y ∈ Ω−2n

U , n > 0. Since the homomorphism chU : U∗(KP∞) → H∗(KP∞; ΩU ⊗Q)
is a monomorphism, it follows from the equation chU (B(x)) = z = chU (Ψ(x)) that
B(x) = Ψ0(x). According to Theorem 2.3 of [2], we have the formula

chU (u) = t+
∞∑

n=1

[M2n]
tn+1

(n+ 1)!
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for an element u ∈ U2(CP∞), where sω(−τ(M2n)) = 0, ω 6= (n) and s(n)(M2n) =
−(n+ 1)!. Consequently

chU (uū) =

(
t+

∞∑
n=1

[M2n]
tn+1

(n+ 1)!

)(
−t+

∞∑
n=1

(−1)n+1[M2n]
tn+1

(n+ 1)!

)

= −t2
∞∑

n=2

 ∑
i+j=2n
i≥1,j≥1

(−1)i [M
2i−2][M2j−2]

i! j!

 t2n,

and we obtain the formula

B−1(x) = x+
∞∑

n=2

[N4n−4]
xn

(2n)!
, [N4n−4] ∈ Ω−4n+4

U ,

where
[N4n−4] =

∑
i+j=2n
i≥1,j≥1

(−1)n+iCi
2n[M2i−2][M2j−2]

and [M2m] ∈ Ω−2n
U are bordism classes which are uniquely defined by the conditions

sω(−τ(M2m)) = 0, ω 6= (mn) and s(m)(τ(M2m)) = −(m+ 1)!.

We have

Theorem 2.13. The type 2 power system constructed in Lemma 2.12 for the group
f(u, v) of geometrical cobordism is universal in the class of torsion-free rings if
considered over the minimal ring of its coefficients Λ ⊂ ΩU .

The proof follows easily from the fact that the coefficients of the series B−1(x)
and B(x) are not all zero and are algebraically independent in ΩU ⊗Q.

From the preceding lemma we have

Corollary 2.14. For any complex X the image of the mapping [X,KP∞] α7−→
U4(X), which associates with the mapping φ : X → KP∞ its fundamental class
φ∗(σ2(γ)) in U∗-theory, is the region of definition of a power system of type 2 having
the form B−1(k2B(x)), where B−1(x) = g−1(

√
x)g−1(−

√
x). The Adams operators

on this image are given by k2Ψk(x) = B−1(k2B(x)), Ψ0(x) = B(x) ∈ U∗(X)⊗Q.

Questions. Is a type 2 power system defined directly on quaternion Sp-cobordisms
[X,KP∞] → Sp4(X)? Is the image Imα closed with respect to power operations?

What are the inter-relations between the ring of coefficients of the power system
B−1(k2B(x)) with the image of ΩSp → ΩU?

Note that the restriction U∗(MSp(n)) → U∗(MU(n)) → U∗(CP∞1 ×· · ·×CP∞n )
consists of all elements of the form F (|u1|2, . . . , |un|2) ·

∏n
i=1 |ui|2, where F is any

symmetric polynomial (in distinction from classical cohomology, where we have
symmetrical functions of squares).

As was pointed out above, for the series B−1(x) we have

B−1(x) = x+
∞∑

n=2

[N4n−4]
xn

(2n)!
, [N4n−4] ∈ Ω−4n+4

U ,
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where
[N4n−4] =

∑
i+j=2n
i≥1,j≥1

(−1)n+iCi
2n[M2i−2][M2j−2].

In particular,

[N4] = −8[M4] + 6[M2]2 = (2K) ∈ Im(ΩSp → ΩU ),

where K = 8[CP 2]− 9[CP 1]2.

Theorem 2.15. For n ≥ 2 the bordism classes [N4n−4] belong to the image of the
homomorphism Ω−4n+4

Sp → Ω−4n+4
U . In addition, for n ≡ 1 mod 2 the elements

[N4n−4]/2 ∈ Ω−4n+4
U already belong to the group Im(ΩSp → ΩU ).

Proof. Let v ∈ Sp∗(Kp∞) be the canonical element. As is well known, p1(γ) = v
(see [13]) and ω∗(p1(γ)) = σ2(γ) ∈ U4(KP∞), where p1 is the first Pontrjagin
class in the symplectic cobordism of the canonical Sp(1)-fiber γ over KP∞ and
ω : Sp∗ → U∗ is the natural transformation of cobordism theory. We shall calculate
the coefficients of the series

chSp(p1(γ)) = z +
∞∑

n=1

Cn

λn
zn+1 ∈ H4(KP∞,Ω∗Sp ⊗Q) = Ω∗Sp ⊗Q[[z]],

where chSp is the Chern–Dold characteristic in Sp-theory (see [2]), Cn ∈ Ω−4n
Sp are

indivisible elements in the group Ω−4n
Sp , and λn ∈ Z. Since ch γ = ch(η + η̄) =

et + e−t = 2 + t2 + · · ·+ 2t2n/(2n)! + · · · and z → −t2, t ∈ H2(CP∞,Z), we have

chSp(p1(γ)) = − ch2 γ +
∞∑

n=1

(−1)n+1 (2n+ 2)!
2λn

Cn ch2n+2(γ).

By making use of the decomposition principle for quaternion fibers and the addi-
tivity of the first Pontrjagin class we now find that for any Sp(m)-fiber ζ over any
complex X we have

chSp(p1(ζ)) = − ch2(ζ) +
∞∑

n=1

(−1)n+1 (2n+ 2)!
2λn

Cn ch2n+2(ζ).

By Bott’s theorem we have the isomorphism

β : K̃Sp(S4n) '−→ KO4(S4n), β(ζ) = (1− γ1)⊗H ζ,

where γ1 is the Sp(1)-Hopf fiber over S4.
We shall next identify the elements ζ ∈ K̃Sp(S4n) with their images in the group

K(S4n). The formula ch(cβ(ζ)) = ch(ζ) is easily verified, where c : KO4 → K4 is
the homomorphism of complexification.

Let ξn and zn denote the generators of the groups K̃Sp(S4n) = Z andH4n(S4n;Z) =
Z, respectively. From Bott’s results concerning the homomorphism of complexifi-
cation it follows that ch ξn = anzn, where

an =

{
1, if n ≡ 1 mod 2,
2, if n ≡ 0 mod 2.

Thus

chSp(p1(ξn)) = (−1)n (2n)!
2λn−1

Cn−1 ch2n ξn = (−1)n (2n)!
2λn−1

anCn−1 · zn.
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Since
chSp(p1(ξn)) ∈ H4(S4n; Ω∗Sp) ⊂ H4(S4n; Ω∗Sp ⊗Q),

we find that the number ((2n)!/2λn−1)an is an integer for any n.
It follows from [7] that under the composition of homomorphisms

K̃Sp(X)
p1−→ Ω4

Sp(X) ω−→ Ω4
U (X)

µ−→ K̃(X)

the element ζ ∈ K̃Sp(X) goes into the element −ζ ∈ K̃(X), where µ is the
“Riemann–Roch” homomorphism. We have

−anzn = ch(−ξn) = ch(µωp1(ξn)) = µω chSp(p1(ξn))

= µω

(
(−1)n (2n)!

2λn−1
anCn−1zn

)
= (−1)n (2n)!

2λn−1
anTd(ω(Cn−1))zn,

where Td(ω(Cn−1)) is the Todd genus of the quasicomplex manifold ω(Cn−1). Since
the Todd genus of any (8m + 4)-dimensional SU -manifold is even, we find that
nTd(ω(Cn−1)) = anδn for any n, where δn is an integer. We have

(−1)n (2n)!
2λn−1

anδn = 1.

Thus the number 2λn−1/(2n)! an is an integer. On the other hand, it was shown ear-
lier that the number (2n)! an/2λn−1 is an integer also. Consequently 2λn−1/(2n)! an =
±1. Without limiting generality, we may assume that 2λn−1/(2n)! an = 1. Since
an−1 · an = 2 for any n > 0, it follows that an−1 · λn−1/(2n)! = 1, and we find

λn−1 =
(2n)!
an−1

, Cn−1 = (−1)np1(ξn) ∈ Ω−4n+4
Sp

∼= Sp4(S4n),

Td(ω(Cn−1)) = (−1)n−1an.

We have therefore proved the following lemma.

Lemma 2.16. For the canonical element v = p1(γ) ∈ Sp4(KP∞) and the Chern–
Dold characteristic in symmetric cobordism we have the formula

chSp(p1(γ)) = z +
∞∑

n=2

an−1Cn−1
zn

(2n)!
.

From the formula ω chSp p1(γ) = chU σ2(γ) we obtain

B−1(z) = chU σ2(γ) = z +
∞∑

n=2

[N4n−4]
zn

(2n)!

‖

ω chSp p1(γ) = z +
∞∑

n=2

an−1ω(Cn−1)
zn

(2n)!

Consequently in the group Ω−4n+4
U we have the identity

an−1 · ω(Cn−1) = [N4n−4]

for any n. This proves the theorem. �
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Corollary 2.17. The rational envelope of the ring of coefficients of the power
system B−1(k2B(x)) of type s = 2 coincides with the group Hom∗

AU (U∗(MSp),ΩU )
which is the rational envelope of the image ΩSp → ΩU , where AU is the ring of
operations of U∗ cobordism theory.

We note that the element (u + ū) = σ1(ξ + ξ̄) ∈ U2(CP∞) can be expressed in
terms of x = uū = σ2(ξ + ξ̄). We have

(u+ ū) = g−1(g(u)) + g−1(−g(u)) = F (g(u)2) = F (−B(x)) = G(x),

where

F (α2) = g−1(α) + g−1(−α) = −[CP 1]α2 +
∑

2
[M4n+2]
(2n+ 2)!

α2n+2.

Lemma 2.18. For any k the series Gk(x) = F (−k2B(x)) lie in ΩU [[x]] and de-
termine over the ring ΩU [1/[CP 1]] a formal type 2 power system by means of the
formula φk(w) = F (k2F−1(w)), where w = u+ ū = G(x).

The first assertion of the lemma follows from the fact that GK(x) = [u]k +[ū]k =
σ1(ξk + ξ̄k). The second assertion follows from the invertibility of the series F (α2)
in the ring ΩU [[1/[CP 1]α2]], as a consequence of which −B(x) = F−1(G(x)) and
Gk(x) = F (k2F−1(G(x))).

Corollary 2.19. Let F (u, v) = u + v + α1,1uv + . . . be a formal group over the
ring R. If we map the element α1,1 into R, then the formal power system of type
s = 2, defined by the series φk(w) = [u]k + [u]k ∈ R[[w]], w = u+u, is defined over
the ring R.

Let φ(x) = {φk(x)} be a type s = 2 power system over a torsion-free ring. It is
natural to pose the problem:

(∗) Describe all rings R such that 1) Λ ⊂ R; 2) there exists over the ring R a
one-dimensional formal group F (u, v) from which the original formal power system
{φk(w)} is obtained as a system of the form {[u]k[ū]k}, x = uū.

We note that the set of all such pairs (R,F (u, v)) forms a category in which
the morphisms (R1, F1) → (R2, F2) are the ring homomorphisms R1 → R2 which
preserve the ring Λ and take the group F1 into the group F2. Next we shall display
a universal formal group in this category, and by this means we shall obtain a
complete solution to the problem posed above.

We consider first the case where Λ = ΩU and φ(x) = {φk(x) = [u]k[ū]k =
B−1(k2B(x))}, x = uū.

Lemma 2.20. The power system φ(x) = {B−1(k2B(x))} together with the se-
ries G(x) = F (−B(x)) = u + ū completely determines the original formal group
f(u, v) = g−1(g(u) + g(v)).

Proof. By knowing the series G(x) we can calculate the series ū = θ(u) from the
equation u + θ(u) = G(u · θ(u)). Then, knowing the series B(x), we can calculate
the series g(u) from the equation B(u · θ(u)) = −g(u)2. �

Remark. The proof of Lemma 2.20 actually uses the fact that the elements u and
ū are the roots of the equation

y2 − (u+ ū)y + uū = y2 −G(x)y + x = 0

over ΩU [[x]].
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From the formula introduced above it follows that the coefficients of the series
F (x) and B(x) are algebraically independent and generate the entire ring ΩU ⊗Q.
We have

F (x) =
∑
i≥0

yix
i+1, yi ∈ Ω−4i−2

U ⊗Q; B(x) =
∑
i≥0

zix
i+1, zi ∈ Ω−4i

U ⊗Q

and
ΩU ⊗Q = Q[yi]⊗Q[zi].

Now let φk(x) = {φk(x)} be an arbitrary type s = 2 formal power system over
a torsion-free ring Λ and let B(x) =

∑
βix

i+1 be its logarithm. Consider the
ring homomorphism χ : ΩU ⊗ Q → Λ ⊗ Q[yi], defined by the equation χ(zi) = βi,
χ(yi) = yi, and let R denote the subring of Λ ⊗ Q[yi] which is generated by the
ring Λ and the image of the ring ΩU → ΩU ⊗Q under the homomorphism χ. The
one-dimensional formal group F (u, v), which is the image of the group f(u, v) over
ΩU , is defined over R. From the universality of the group f(u, v) and from Lemma
2.20 it follows easily that the group F (u, v) over R is a universal solution of problem
(∗) for the system {φk(x)} over Λ ⊂ R.

We note that from the proof of Lemma 2.20 there follows a direct construction for
the formal group F (u, v) over R from the system {φk(x)} = {B(k2B(x))} over Λ.
Indeed, it is necessary to carry out the following procedure. Consider the ring
Λ ⊗ Q[yi] and over it the series F (x) =

∑
yix

i+1 and the corresponding series
G(x) = F (−B(x)); then, as in Lemma 2.20, with respect to the series B(x) and
G(x), find the series gF (u) ∈ Λ ⊗ Q[[u, yi]]. The ring R is then the minimal
extension of the ring Λ in Λ ⊗ Q[yi], which contains the ring of coefficients of the
group F (u, v) = gF

−1(gF (u) + gF (v)).

§2b

We next turn our attention to the case where the power system B−1(k2B(x)) =
k2Ψk(uū) is related to a distinctive “two-valued formal group”

F±(x, y) = B−1((
√
B(x)±

√
B(y))2),

in which the operation of raising to a power is single valued, and indeed

B−1(k2B(x)) = F±(x, . . . , x︸ ︷︷ ︸
k places

).

If x = uū, y = vv̄, then F±(x, y) = {|f(u, v)|2; |f(u, v̄)|2} and for the U(1)-fibers
ξ, η over CF∞ × CP∞, where u = σ1(ξ), v = σ1(η), we have

F±(x, y) = {σ2(ξη + ξ̄η̄);σ2(ξη̄ + ξ̄η)}, x = σ2(ξ + ξ̄), y = σ2(η + η̄).

Lemma 2.21. The sum F+(x, y)+F−(x, y) and the product F+(x, y) ·F−(x, y) of
values for the two-valued group do not contain roots and lie in the ring ΩU [[x, y]].

Proof. Consider the mapping CP∞×CP∞ → KP∞×KP∞ whose image U∗(KP∞×
KP∞) → U∗(CP∞ × CP∞) is precisely ΩU [[x, y]] ⊂ ΩU [[u, v]], x = uū, y = vv̄.
Since x = σ2(ξ + ξ̄) and y = σ2(η + η̄), we have that σ2((ξ + ξ̄)(η + η̄)) = a lies in
ΩU [[x, y]]; moreover

a = σ2(ξη+ ξ̄η̄)σ2(ξη̄+ ξ̄η)+σ1(ξη+ ξ̄η̄)σ1(ξη̄+ ξ̄η) = F+(x, y)+F−(x, y)+σ1σ
′
1.
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Next,
σ1(ξη + ξ̄η̄) = g−1(g(u) + g(v)) + g−1(−g(u)− g(v)),

σ1(ξη̄ + ξ̄η) = g−1(g(u)− g(v)) + g−1(g(v)− g(u)).
Let g(u) = γ, g(v) = δ. Therefore

σ1 ·σ′1 = σ1(ξη+ ξ̄η̄)σ1(ξη̄+ ξ̄η) = [g−1(γ+δ)+g−1(−γ−δ)][g−1(γ−δ)+g−1(δ−γ)],
i.e. σ1 · σ′1 is a function of γ2 and δ2. Also, since γ2 = g(u)2 = −B(x) and
δ2 = g(v)2 = −B(y), the product σ1(ξη + ξ̄η̄)σ1(ξη̄ + ξ̄η) is a function of x and y.
Since

F+(x, y) + F−(x, y) = σ2((ξ + ξ̄)(η + η̄))−)− σ1(ξη + ξ̄η̄)σ1(ξη̄ + ξ̄η),

it follows that F+(x, y) + F−(x, y) ∈ ΩU [[x, y]].
We conclude the proof by noting that

F+(x, y) · F−(x, y) = σ2(ξη + ξ̄η̄)σ2(ξη̄ + ξ̄η) = σ4((ξ + ξ̄)(η + η̄)) ∈ ΩU [[x, y]]. �

Let us set

F+(x, y) + F−(x, y) = Θ1(x, y), F+(x, y) · F−(x, y) = Θ2(x, y).

It now follows from Lemma 2.21 that the law of multiplication in the two-valued
formal group F±(x, y) = B−1((

√
B(x)±

√
B(y))2) is given by solving the quadratic

equation
Z2 −Θ1(x, y)Z + Θ2(x, y) = 0

over the ring ΩU [[x, y]]. Let Λ ⊂ ΩU denote the minimal subring in ΩU generated
by the coefficients of the series Θ1(x, y) and Θ2(x, y). We have Λ =

∑
n≥0 Λ4n,

Λ4n ⊂ Ω−4n
U .

Our next problem is to describe the ring Λ, which it is natural to look upon
as the ring of coefficients of the two-valued formal group F±(x, y). In the ring Λ
it is useful to distinguish the two subrings Λ′ and Λ′′ which are generated by the
coefficients of the series Θ1(x, y) and Θ2(x, y) respectively. As will be shown next,
neither of the rings Λ′ and Λ′′ coincides with Λ. It is interesting to note that the
ring of coefficients of the formal power system φ(x) = {φk(x)} = {B−1(k2B(x))}
lies in, but does not coincide with, the ring Λ′. This follows from the facts that
φ1(x) = x and φ2(x) = Θ1(x, x), and that for any k ≥ 3 the formula

φk(x) = Θ1(φk−1(x), x)− φk−2(x)

is valid.
The canonical mapping of the spectra MSp → MU , which corresponds to the

inclusion mapping Sp(n) ⊂ U(2n), defines an epimorphism AU → U∗(MSp), and
consequently the inclusion of the ring HomAU (U∗(MSp),ΩU ) in ΩU . We shall next
identify the ring HomAU (U∗(MSp),ΩU ) with its image in ΩU .

Theorem 2.22. The quadratic equation

Z2 −Θ1(x, y)Z + Θ2(x, y) = 0,

which determines the law of multiplication in the two-valued formal group F±(x, y),
is defined over the ring HomAU (U∗(MSp),ΩU ), and, moreover,

HomAU (U∗(MSp),ΩU )⊗ Z

[
1
2

]
∼= Λ⊗ Z

[
1
2

]
,

where Λ is the ring of coefficients of the group F±(x, y).
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Remark 2.23. Apparently the rings HomAU (U∗(MSp),ΩU ) and Λ are isomorphic,
but at the present time the authors do not have a rigorous proof of this fact.

Let ΩU (Z) be the subring of ΩU ⊗ Q which is generated by the elements all of
whose Chern numbers are integers. As was shown in [2], the ring ΩU (Z) is isomor-
phic to the ring of coefficients of the logarithm of the universal formal group f(u, v),
i.e. ΩU (Z) = Z[ 12 [CP 1], . . . , [CPn]/(n+1), . . . ]. The Chern–Dold characteristic chU

for any complex X defines a natural transformation

chU : H∗(X) → HomAU (U∗(X),ΩU (Z))

(see [2], Theorem 1.9), which, as is easily shown, is an isomorphism for torsion-free
complexes in the homology. We have

chU : H∗(MSp) ≈−→ HomAU (U∗(MSp),ΩU (Z)).

The inclusion mapping ΩU ⊂ ΩU (Z) and the canonical homomorphism AU →
U∗(MSp) lead to the commutative diagram

HomAU (U∗(MSp),ΩU ) //

��

ΩU

��
H∗(MSp) λ // ΩU (Z),

in which all the homomorphisms are monomorphisms.
Since λ(h) = (chU v, h) and chU x = B−1(x), where h ∈ H∗(MSp), v is the gen-

erator of the AU -module U∗(MSp), and x is the generator of the group U4(KP∞),
it follows that the ring Imλ ⊂ ΩU (Z) coincides with the ring of coefficients of the
logarithm of the power system {B−1(k2B(x))}. Thus it follows from the diagram
that the ring HomAU (U∗(MSp),ΩU ) coincides with the subring of ΩU whose ele-
ments are monomials in the elements yi ∈ ΩU (Z) with integral coefficients, where
B(x) = x+

∑
yix

i+1.
As an immediate check it is easy to see that the coefficients of the series

Θ1(x, y) = F+(x, y) + F−(x, y) and Θ2(x, y) = F+(x, y) · F−(x, y),

where

F±(x, y) = B−1((
√
B(x)±

√
B(y))2) = B−1

(x√B(x)
x

±

√
B(y)
y

)2


are polynomials with integral coefficients from among the coefficients of the series
B(x). The proof of the first part of the theorem is therefore complete.

For the proof of the second part of the theorem we require a lemma, which is
itself of some interest.

Lemma 2.24. Let Λ =
∑

Λ4n be the ring of coefficients of a two-valued formal
group. The minimum positive value of the t-characteristic on the group Λ4n is equal
to 2s(n)p if 2n = pi − 1, where p is a prime, and is equal to 2s(n) if 2n 6= pi − 1 for
all p, where

s(n) =

{
3, if n = 2j − 1,
2, if n 6= 2j − 1.
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Now, since

HomAU (U∗(MSp),ΩU )⊗ Z

[
1
2

]
⊂ ΩU

[
1
2

]
is a polynomial ring, the proof of the second part of the theorem is easily obtained,
via a standard argument concerning the t-characteristic, from the results of [11]
and Lemma 2.24.

Proof of Lemma 2.24. Let x and y be the generators of the group U4(KP∞ ×
KP∞). We have

Θ1(x, y) = 2x+ 2y +
∑

βi,jx
iyj , βi,j = βj,i ∈ Ω−4(i+j−1)

U ,

Θ2(x, y) = x2 − 2xy + y2
∑

αi,jx
iyj , αi,j = αj,i ∈ Ω−4(i+j−2)

U .

Let z1 and z2 be the generators of the group H4(KP∞×KP∞). By using Corollary
2.4 of [2] we obtain immediately from the definitions of the series Θ1(x, y) and
Θ2(x, y) that

chU Θ1(x, y) = 2z1 + 2z2 + 4
∑
m≥1

(−1)m [M4m]
(2m+ 1)!

m+1∑
l=0

C2l
2m+2z

l
1z

m−l+1
2 ,

chU Θ2(x, y) = z2
1 − 2z1z2 + z2

2

+ 4
∑
m≥1

(−1)m [M4m]
(2m+ 1)!

m+1∑
l=0

(C2l
2m − 2C2l−2

2m + C2l−4
2m ) · zl

1z
m−l+2
2 ,

where s2m([M4m]) = −(2m+ 1)!. On the other hand,

chU x = B−1(x) = z1 +
∑
m≥1

[N4m]
zm+1
1

(2m+ 2)!
,

where s2m([N4m]) = (−1)m+1 · 2(2m+ 2)!. By combining these formulas we find

a) s2m(βm+1,0) = 0, s2m(βl,m−l+1) = (−1)m+14C2l
2m+2, 0 < l < m+ 1,

b) s2m(αm+2,0) = 0, s2m(αm+1,1) = (−1)m+14(C2
2m − C0

2m),

s2m(αl,m−l+2) = (−1)m+14(C2l
2m − 2C2l−2

2m + C2l−4
2m ), 1 < l < m+ 1.

We set φn,i = C2i
2n − C2i−2

2n . From equations a) and b) we obtain that the smallest
value of the t-characteristic on the group Λ4n is equal to the greatest common
divisor of the numbers {4C2l

2n+2, 4φn,1}l=1,...,n. Since the greatest common divisor
of the numbers {C2l

2n+2}l 6=0,n+1 is even for n + 1 = 2j , and odd for the remaining
n, by using the formula φn,l + C2l

2n+2 = 2C2l
2n+1, we complete the proof of the

lemma. �

Remark. It follows from a) that the coefficients of the series Θ1(x, y) = F+(x, y)+
F−(x, y) do not generate the entire ring of coefficients of the two-valued formal
group. From b) there follows a similar assertion for the series Θ2(x, y) = F+(x, y) ·
F−(x, y).

Let F (u, v) be a formal group over the ring R, and let gF (u) be its logarithm.
Consider the complete set (ξ0 = 1, ξ1, . . . , ξm−1) of mth roots of unity. Let

B−1
m (−y) =

m−1∏
j=0

g−1
F (ξj m

√
y), x =

m−1∏
j=0

g−1
F (ξjgF (u))⊗Q[[u]].
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Then −Bm(x) = gF (u)m and we obtain the formal power system

F
(m)
k (x) = B−1

m (kmBm(x)) =
m−1∏
j=0

g−1
F (kξjgF (u))

of typem. The coefficients of the series F (m)
k (x) = B−1

m (kmBm(x)) automatically lie
in the ring R for a formal group F (u, v) with complex multiplication by ξj (raising
to the power ξj). The particular case m = 2 of this construction was examined in
detail in Lemma 2.12.2

Example. Consider the formal group f (p)(u, v) = Π̄∗p(f(u, v)), where Π̄∗p is Quillen’s
p-adic projection of geometric cobordism and f(u, v) is the universal formal group
over ΩU . As we have already noted, the logarithm g(p)(u) of the group f (p)(u, v)
has the form

g(p)(u) = π̄∗pg(u) =
∑
h≥0

[CP ph−1]
ph

uph

.

Let m = (p− 1); then

ξph

j = ξj and g(p)(ξju) = ξjg
(p)(u), (g(p))−1(ξjg(p)(u)) = ξju.

We have

x = −up−1 =
p−2∏
j=0

(g(p))−1(ξjg(p)(u)), Bp−1(x) = −(g(p)(u))p−1 = Bp−1(−up−1).

Thus formal raising to a power F (p−1)
k (x) = B−1

p−1(k
p−1Bp−1(x)) for the group

f (p)(u, v) is “integer valued”, and F
(p−1)
k (x) = kp−1Ψk(−up−1). Consequently in

U∗p -theory the (p−1)th powers of geometrical cobordism are the region of definition
of a power system of type s = p− 1.

We now note that the roots of unity of degree p − 1 lie in the ring of p-adic
integers Zp. Therefore g−1(ξjg(u)) ∈ ΩU [[u]]⊗ Zp and

p−2∏
j=0

g−1(ξjg(u)) = x ∈ ΩU [[u]]⊗ Zp,

p−2∏
j=0

g−1(kξjg(u)) ∈ ΩU [[u]]⊗ Zp,

and the series Bm(x) defines a power system of type m = p − 1, whose p-adic
projection was displayed in the example.

The Adams operators are evaluated for an element x by the formula kp−1Ψk(x) =
B−1

p−1(k
p−1Bp−1(x)) in U∗ ⊗ Zp-theory.

In analogy with Theorem 2.13 we have

Theorem 2.25. The power system B−1
p−1(k

p−1Bp−1(x)) of type s = p− 1, consid-
ered over the minimal ring of its coefficients, is universal in the class of all power
systems of type (p− 1) over torsion-free Zp-rings.

The proof, as did that for Theorem 2.13, follows from the fact that the coefficients
of the series Bp−1(x) are all different from zero and algebraically independent in
ΩU ⊗Qp, where Qp is the field of p-adic numbers.

2Here it is also appropriate to speak of the “manifold of the formal group”

F (x, y) = −B−1
m [( m

p
Bm(x) + m

p
Bm(y))m].

It would be interesting to know the nature of the ring of coefficients in this case.
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§ 3. Fixed points of transformations of order p

We turn now to a different question which is also connected with the formal group
of geometrical cobordism and a type s = 1 system associated with it; namely, to the
theory of fixed points of transformations T (T 0 = 1) of quasicomplex manifolds (see
[5]; [9]; [13]), which act so that the manifolds of fixed points have trivial normal
bundle (or, for example, only isolated fixed points P1, . . . ,Pq ∈ Mn, T (Pj) =
Pj .). If the transformation dT |Pj has eigenvalues λ(j)

k = exp{2πix(j)
k /p}, k =

1, . . . , n, j = 1, . . . , q, then the “Conner–Floyd invariants” α2n−1(x
(j)
1 , . . . , x

(j)
n ) ∈

U2n−1(BZp) and it is known that

U∗(BZp) = ΩU [[u]]/pΨp(u) = 0 (see [12]),

α2n−1(x1, . . . , xn) =
n∏

j=1

u

g−1(xjg(u))
∩ α2n−1(1, . . . , 1),

where uk∩α2n−1(1, . . . , 1) = α2(n−k)−1(1, . . . , 1) (see [5], [9], [13]) and g−1(xg(u)) =
xΨx(u). Here it is already clear that only the coefficients of the power system enter
into the expression for U∗(BZp) and α2n−1(x1, . . . , xn). There is still one further
question: on which classes of ΩU can the group Zp = Z/pZ act? As is shown in [5]
and [9], the basis relations

0 = α2n−1(x1, . . . , xn)−
n∏

j=1

u

xjΨxj (u)
∩ α2n−1(1, . . . , 1)

and

0 = p
Ψp(u)
u

∩ α2n−1(1, . . . , 1),

are realized on the manifolds Mn(x1, . . . , xn) and Mn(p), and determine the ele-
ments n∏

j=1

u

xjΨxj (u)


n

∈ Ω2n
U (mod pΩU ) and

[
p
Ψp(u)
u

]
n

∈ Ω2n
U (mod pΩU ),

whence it follows that the cobordism class of manifolds with action Zp of this sort
coincides (mod pΩU ) with the ΩU -module Λ̃(1) = ΩU · Λ+(1), where Λ+(1) is the
positive part of the ring Λ(1) of coefficients of the power system g−1(kg(u)). On
the other hand, from Atiyah and Bott’s results [15] for the complex d′′ on forms of
type (0, q) and holomorphic transformations T : Mn → Mn we may introduce the
following formula for the Todd genus T (Mn) mod p, for example.

Lemma 3.1. Let λ(j)
k = exp{2πix(j)

k /p} be the eigenvalues of the transformation
dT on the fixed points Pj, j = 1, . . . , q, k = 1, . . . , n. Then

− T (Mn) ≡
q∑

j=1

p− 1
n∏

k=1

−x(j)
k

∞∑
l=−[ n

p−1 ]
(−p)l

 n∏
k=1

−x(j)
k z

1− exp
{
−x(j)

k

(
z + zp

p

)}


n+l(p−1)

mod p.

This formula and its proof were communicated by D. K. Faddeev.
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Proof. For the Euler characteristic χ(T ) of the indicated elliptic complex we have
the Atiyah–Bott formula:

χ(T ) =
q∑

j=1

1
det(1− dT )Pj

=
q∑

j=1

n∏
k=1

1

1− exp
{
− 2πix

(j)
k

p

} .
Since (1/p)

∑
l∈Zp

χ(T 1) = φ is the alternating sum of the dimensions of the invari-
ant spaces of the action T on the homologies of the complex and χ(1) = T (Mn),
we have

χ(1) = T (Mn) =
q∑

j=1

p−1∑
l=1

n∏
k=1

1

1− exp
{
− 2πix

(j)
k l

p

} + pφ.

If Tr : Q( p
√

1) → Q is the number-theoretic trace, then by definition we have

−T (Mn) ≡
q∑

j=1

Tr

 n∏
k=1

1

1− exp
{
− 2πix

(j)
k

p

}
 mod p.

The field Q( p
√

1) and the field Q axe imbedded in their p-adic completions k =
Qp(ε), ε = p

√
1, andQp. There exists in the field k an element λ such that λp−1 = −p

and k = Qp(λ). Next, Tr(λs) = 0 for s 6≡ 0 (mod (p − 1)) and Tr(λk(p−1)) =
(−1)kpk(p− 1). Since ε = exp(z + zp/p)|z=λ, we have

exp
{
−2πixk

p

}
= ε−xk = exp

{
−
(
xkz + xk

zp

p

)}
(in k). Therefore

n∏
k=1

1
1− ε−xk

=
n∏

k=1

1

1− exp
{
−
(
xkz + xk

zp

p

)}∣∣∣∣∣
z=λ

=
1

zn
n∏

k=1

−xk

n∏
k=1

xkz

1− exp
{
−xk

(
z + zp

p

)} =
(−1)n

zn
n∏

k=1

xk

(
1 +

∞∑
s=1

Ps(x1, . . . , xn)λs

)
.

Therefore

Tr

(
n∏

k=1

1
1− ε−xk

)

=
p− 1
n∏

k=1

−xk

∞∑
l=−[ n

p−1 ]
(−p)k

 n∏
k=1

xkz

1− exp
{
−xk

(
z + zp

p

)}


n+l(p−1)

.

The proof of the lemma is concluded by summing over the fixed points. �

For p > n+ 1 this gives the formula

T (Mn) =
k∑

j=1

(−1)n

x
(j)
1 . . . x

(j)
n

[∏ −x(j)
k

1− exp{−x(j)
k z}

]
n

,

proved in [13] as a consequence of Tamura’s results.
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We see that by Atiyah and Bott’s procedure each fixed point is assigned a rational
invariant. How does the analogous procedure look in bordism theory?

Let us define the function γp(x1, . . . , xn) ∈ ΩU [1/p] such that under the action
of T on Mn, T p = 1, with isolated fixed points P1, . . . ,Pq having weights x(j)

k ,
j = 1, . . . , q, k = 1, . . . , n, the relation

q∑
j=1

γp(x
(j)
1 , . . . , x(j)

n ) ≡ [Mn] mod pΩU

is valid. Consider the ΩU ⊗ Zp-free resolution of the module U∗(BZp,point):

0 → F1
d−→ F0 → U∗(BZp,point) → 0,

where for the generators of U∗(BZp, ∗) we take the elements α2n−1(x1, . . . , xn) ∈
U2n−1(BZp,point) and the minimal module of relations is spanned by the relations

a(x1, . . . , xn) = α2n−1(x1, . . . , xn)−

(
n∏

i=1

u

xiΨxi(u)

)
∩ α2n−1(1, . . . , 1)

and

an = pα2n−1(1, . . . , 1) +
(
pΨp(u)
u

)
∩ α2n−1(1, . . . , 1).

Let Φ: F1 → ΩU ⊗ Zp denote the ΩU ⊗ Zp-module such that

Φ(a(x1, . . . , xn)) =

[
n∏

i=1

u

xiΨxi(u)

]
n

∈ ΩU ⊗ Zp and Φ(an) = −
[
pΨp(u)
u

]
n

.

As we pointed out above, for any set of weights (x1, . . . , xn) we have the congruence
Φ(a(x1, . . . , xn)) ≡ [Mn] mod p, where Mn is a quasicomplex manifold on which
the relation a(x1, . . . , xn) is realized. Relative to the operation of multiplying out
the relations in U∗(BZp) the group F1 is a ring, and, as is clear, the homomorphism
Φ mod p : F1 → ΩU (mod ΩU ) coincides with the well-known ring homomorphism
which associates with each relation in F1 a bordism class mod p of the manifold
on which this relation is realized. The homomorphism Φ can be extended to a
homomorphism

γp : F0 → ΩU ⊗Qp, γp(dF1) = Φ.

Lemma 3.2. For any set of weights (x1, . . . , xn) we have the formula

γp(x1, . . . , xn) =

[
1

x1 · · ·xn

(
n∏

i=1

u

xiΨxi(u)

)
u

Ψp(u)

]
n

,

In particular,

γp(1, . . . , 1) =
[
pΨp(u)
u

]
n

.

Proof. In the free ΩU ⊗ Zp-module F0 we have the identity

α2n−1(x1, . . . , xn) = a(x1, . . . , xn) +
n−1∑
k=0

 n∏
j=1

u

xjΨxj (u)


k

α2n−2k−1,

[
u

xiΨxi(u)

]
k

∈ Ω2k
U ⊗ Zp, α2n−2k−1 = α2n−2k−1(1, . . . , 1).



26 V. M. BUHSTABER AND S. P. NOVIKOV

Also, since γp : F0 → ΩU ⊗Qp is an ΩU ⊗ Zp-module homomorphism and

γp(a(x1, . . . , xn)) =

[
n∏

i=1

u

xiΨxi

]
n

,

it is sufficient to prove the lemma for the set of weights (1, . . . , 1). We have

−an +
n−1∑
k=0

[
pΨp(u)
u

]
k

α2n−2k−1 = 0, n ≥ 1,

γp(an) +
n−1∑
k=0

[
pΨp(u)
u

]
k

γp(α2n−2k−1) = 0,

[
pΨp(u)
u

]
n

+
n−1∑
k=0

[
pΨp(u)
u

]
k

γp(α2n−2k−1) = 0,

(
pΨp(u)
u

)1 +
∞∑

j=1

γp(α2j−1)uj

 = p,

1 +
∞∑

j=1

γp(α2j−1)uj =
u

Ψp(u)
,

and the lemma is proved. �

It follows immediately from the definition of the homomorphism Φ: F1 → ΩU ⊗
Zp that Im Φ(F1) = Λ̃(1) ⊗ Zp ⊂ ΩU ⊗ Zp, where Λ̃(1) = Λ+(1) · ΩU and Λ(1) is
the ring of coefficients of the power system {kΨk(u)}k=±1,±2,....

Lemma 3.3. The group Im γp(F0) ⊂ ΩU ⊗Qp coincides with the ΩU ⊗Zp-module
spanned by the system of polynomial generators δn,p of the ring ΩU (Z)⊗Zp of coef-
ficients of the logarithm of the formal group f(u, v)⊗Zp, where 1 +

∑∞
n=1 δn,pt

n =
t/Ψp(t).

The proof of the lemma follows easily by evaluating the t-characteristic of the
coefficients of the series Ψp(t) = g−1(pg(u))/p, by means of the fact that all the
Chern numbers of the coefficients of the series pΨp(u) are divisible by p, and from
the form of the functions γp(x1, . . . , xn) given in Lemma 3.2.

From the exactness of the sequence

0 → F1 → F0 → U∗(BZp,point) → 0

we now find that a ΩU ⊗ Zp-module homomorphism

γp : U∗(BZp,point) → γ(F0)/Φ(F1)

is defined, where Φ(F1) = Λ̃(1)⊗ Zp and γ(F0)/Φ(F1) ⊂ ΩU (Z)/Λ̃(1)⊗ Zp, which
is clearly an epimorphism. By collecting these results together, we arrive at the
following theorem.

Theorem 3.4. Functions γp(x1, . . . , xn) of the fixed points are defined which take
on values in the ring ΩU (Z)⊗Zp of coefficients of the logarithm g(u) =

∑
([CPn]/(n+

1))un+1 of the formal group f(u, v)⊗ Zp for which
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a) for the action of the transformation T on the quasicomplex manifold Mn,
T p = 1, with the fixed manifold of classes λj ∈ ΩU , having weights (x(j)

k ) ∈ Z∗p in
the (trivial) normal bundles, we have the relations

[Mn] ≡
∑

j

λjγp(x
(j)
1 , . . . , x(j)

mj
) mod pΩU , [Mn] ∈ Λ̃(1), mi + dimλi = n,

and

γp(x1, . . . , xm) =

 u

Ψp(u)

m∏
j=1

u

xjΨxj (u)


m

;

b) the factor module over ΩU ⊗ Zp, equal to ΩU (Z)/Λ̃(1) ⊗ Zp, contains the
nontrivial image of the module U∗(BZp,point), γp coinciding under the homomor-
phism with the factor module with respect to Λ̃(1) of the submodule in ΩU (Z)⊗Zp

which is spanned by the system of polynomial generators δn,p.

Here Λ̃(1) is the ΩU -module which is generated by the ring Λ+(1) of coefficients
of the power system {g−1(kg(u))} of type s = 1, and 1 +

∑
n≥1 δn,pt

n = t/Ψp(t).

Remark. If one deals with the action of a transformation T , T p = 1, having
isolated fixed points, then we have the group Uisol(Zp) ⊂ U∗(BZp), spanned by all
the elements α2n−1(x1, . . . , xn) (without the structure of an ΩU -module), with the
resolution over Zp:

0 → G1
d−→ G→ Uisol(Zp) → 0.

where G0 and G1 are free and the generator of G1 is a formal relation. As above,
homomorphisms

Φ: G1 → ΩU ⊗ Zp and Φ′ : G0 → ΩU ⊗Qp

are defined, where Φ′d = Φ. The factor group Φ′(G0)/Φ(G1) is a p-group and there
exists a homomorphism

γ : Uisol(Zp) → Φ′(G0)/Φ(G1).

We now consider the mappings U∗ → K∗ and U∗ → K∗ generated by the Todd
genus. For the T -genus we have

T (γp(x1, . . . , xn)) =

[
pu

1− (1− u)p

n∏
k=1

u

1− (1− u)xk

]
n

∈ Qp.

For example, T (γ2(1, . . . , 1)) = 1/2n.
Under the action of the group Zp on the manifold Mn with isolated fixed points

P1, . . . ,Pq having weights x(j)
k , k = 1, . . . , n, j = 1, . . . , q, we have the formula

T (Mn) ≡
q∑

j=1

T (γp(x
(j)
1 , . . . , x(j)

n )) mod pZp,

where pZp ⊂ Qp. At first sight this formula differs from the Atiyah–Bott formula
given in Lemma 3.1. The question arises of how to reconcile these two formulas.3

Another question, similar to the subject of the Stong–Hattori theorem [7], is: does
the set of relations given by Atiyah–Bott–Singer for the action of Zp on all possible

3An answer to this question is given in the Appendix.
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elliptic complexes define an extension Ωv(Z) ⊗ Zp of the cobordism ring (more
precisely, the module Λ̃(1) and the ring Λ(1) in ΩU )?

We now show that the results of [17] permit us to generalize our construction to
the case of the action of a transformation T , T p = 1, for which the manifolds of
fixed points have arbitrary normal bundle.

Let T be a transformation of order p on the manifold Mn. As was shown in [16],
the normal bundle νj at any fixed point manifold Nj ⊃ Mn can be represented
in the form νj =

⊗p−1
k=1 νjk, where the action of the group Zp on the fiber νjk is

given by multiplication by the number exp(2πik/p). Thus the set of all fixed point
submanifolds of the transformation T together with their normal bundles defines
an element of the group A =

∑
U∗(
∏p−1

k=1BU(lk)), where the sum extends over all
sets l1, . . . , lp−1, li ≥ 0. By using the mapping BU(n) × BU(m) → BU(n + m)
(Whitney sum), a multiplication can be introduced into A. It is not difficult to
show that A becomes a polynomial ring ΩU [aj,k], j ∈ Z∗p , k ≥ 0, where aj,k is the
bordism class of the imbedding CP k ⊂ CP∞ = BU(1), considered together with
the action of the transformation T = exp(2πij/p) on the Hopf fiber over CP k.
We introduce a grading into A by setting dim aj,k = 2(k + 1). We next describe
the fixed point submanifolds Nm in terms of the generators aj,k. For example, a
fixed point with weights (x1, . . . , xn) is described by the monomial a0,x1 , . . . , a0,xn

.
Consider the canonical homomorphism α : A → U∗(BZp,point), corresponding to
the free action of the group Zp on the sphere bundle associated with the normal
fiber at a fixed point submanifold. Let α((x1, k1), . . . , (xl, kl)) denote the image
under α of the monomial

ax1,k1 . . . axl,kl
, α((x1, k1), . . . , (xl, kl)) ∈ U2n−1(BZp,point),

where n =
∑l

m=1(km + 1). From [17] we take the following description of the
elements α((x1, k1), . . . , (xl, kl)).

Consider the formal series

G(u, t) =
∂
∂tg(ut)
f(u, ut̄)

= 1 +
∞∑

n=1

Gn(u)tn,

where g(ut) =
∑∞

n=0([CP
n]/(n + 1))(ut)n+1 is the logarithm of the formal group

f(u, v) and ut̄ = g−1(−g(ut)).4 Clearly Gn(0) = 1 for any n ≥ 1. We set

Ψx,n(u) =
Ψx(u)

Gn(xΨx(u))
.

We have Ψx,0(u) = Ψx(u) and Ψ1,n(u) = u/Gn(u). From [17] we find that for any
set ((x1, k1), . . . , (xl, kl)),

∑l
m=1(km + 1) = n, we have

α((x1, k1), . . . , (xl, kl)) =

 l∏
j=1

u

xjΨxj ,kj (u)

 ∩ α2n−1(1, . . . , 1).

4Note that under the substitution t → z/u (u is a parameter) the differential G(u, t) dt goes

into the meromorphic differential dg(z)/f(u, z̄) on the group, which is invariant with respect to
the shift u→ f(u, w), z → f(z, w).
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Since Ψ1,0(u) = u, from [16] we find that the relation

α((x1, k1), . . . , (xl, kl)) =

 l∏
j=1

u

xjΨxj ,kj (u)

 ∩ α2n−1(1, . . . , 1).

is realized in the manifold Mn determined by the element l∏
j=1

u

xjΨxj ,kj (u)


n

∈ Ω2n
v mod pΩU .

By repeating the proof of Lemma 3.2, we obtain the following theorem.

Theorem 3.5. A homomorphism γp : A⊗ Zp → ΩU ⊗Qp is defined such that for
any set ((x1, k1), . . . , (xl, kl)) we have the formula

γp((x1, k1), . . . , (xl, kl)) =

[
1

x1 . . . xl

(
l∏

j=1

u

xjΨxj ,kj (u)

)
u

Ψp(u)

]
n

, n =
l∑

m=1

(km+1),

and if the element a ∈ A corresponds to the union of all the fixed point submanifolds
of the action of the group Zp on Mn, then γp(a) ≡ [Mn] mod p.

Appendix

The Atiyah–Bott formula, the functions γp(x1, . . . , xn) of fixed points
in bordism and the Conner–Floyd equation

Let ε be a primitive pth root of unity, and let Tr: Q(ε) → Q be the number-
theoretic trace.

Definition 1. The Atiyah–Bott function AB(x1, . . . , xn) of fixed points is the
function which associates with each set of weights (x1, . . . , xn), xj ∈ Zp, the rational
number

AB(x1, . . . , xn) = −Tr

 n∏
k=1

1

1− exp
{

2πi
p xk

}
 .

As a corollary of the Atiyah–Bott formula for fixed points, we have

Theorem 2. Let f : Mn → Mn be a holomorphic transverse mapping of period
p of the compact complex manifold Mn, and let P1, . . . ,Pq be its fixed points. If
the mapping df |Pj in the tangent space at the fixed point Pj has the eigenvalue
λ

(j)
k = exp(2πix(j)

k /p), k = 1, . . . , n, then the number
n∑

j=1

AB(x(j)
1 , . . . , x(j)

n )

is an integer and coincides modulo p with the Todd genus T (Mn) of the manifold
Mn.

Proof. According to the Atiyah–Bott theorem for an elliptic complex d′′, for forms
of type (0, 1) we have

χ(f) =
q∑

j=1

n∏
k=1

1

1− exp
{

2πi
p x

(j)
k

} ,
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where

χ(f) =
∞∑

m=0

(−1)m Tr f∗|M0,m(Mn).

As is known, χ(1) = T (Mn) and (1/p)
∑

m∈Zp
χ(fm) = φ is the alternating sum of

the dimensions of the invariant subspaces under the action of the transformation
f∗ on the cohomologies H0,m(Mn). Consequently

T (Mn) = −
q∑

j=1

p−1∑
m=1

n∏
k=1

1

1− exp
{

2πi
p x

(j)
k ·m

} + pφ.

By now making use of the definition of the number-theoretic trace and the Atiyah–
Bott function, the theorem is proven. �

We shall calculate Tr(
∏n

k=1 1/(1 − ζxk)), where ζ = exp(2πi/p). Let us set
θ = 1− ζ. We shall perform all calculations in the field Qp(θ). By the symbol ' we
mean equality modulo the group pZp ⊂ Qp(θ). The following lemma, like Lemma
3.1, has been provided at our request by D. K. Faddeev.

Lemma 3. For the Atiyah–Bott function AB(x1, . . . , xn) we have the formulas

AB(x1, . . . , xn) '

[
p〈u〉p−1

〈u〉p

n∏
k=1

u

〈u〉xk

]
n

,

AB(x1, . . . , xn) '
n∑

m=0

[
p〈u〉
〈u〉p

n∏
k=1

u

〈u〉xk

]
m

,

where 〈u〉q = 1 − (1 − u)q is the qth power of the element u in the formal group
f(u, v) = u+ v − uv and [φ(u)]k is the coefficient of uk in the power series φ(u).

Proof. First of all note that Tr(θk) ' 0 for all k > 1. We have
n∏

k=1

1
1− ζxk

=
n∏

k=1

1
1− (1− θ)xk

=
1
θn

n∏
k=1

θ

1− (1− θ)xk
=

1
θn

∞∑
k=0

Akθ
k,

where Ak ∈ Zp, and

Tr

(
1
θn

∞∑
k=0

Akθ
k

)
= Tr

(
1
θn

n∑
k=0

Akθ
k

)
=

∞∑
k=0

Ak Tr(θk−n).

Let us set Tr θ−s = Bs and introduce the two formal series

A(u) =
∞∑

k=0

Aku
k and B(u) =

∞∑
k=0

Bku
k.

Thus we must calculate the coefficient of uk in the series A(u)B(u). We have

B(u) = Tr

(
1 +

∞∑
s=1

θ−sus

)
= Tr

(
1

1− θ−1u

)
= Tr

(
θ

θ − u

)
= Tr

(
1 +

u

θ − u

)
= (p− 1) + uTr

(
1

θ − u

)
.
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First note that if φα(u) is the minimal polynomial of the element α with respect to
extension Qp(θ)|Qp, then

Tr
1

α− u
= −φ

′
α(u)
φα(u)

.

Since
ζp − 1
ζ − 1

=
(1− θ)p − 1

−θ
=

1− (1− θ)p

θ
,

it follows that

φθ(u) =
1− (1− u)p

u
.

We have

−Tr
(

1
θ − u

)
=
φ′θ(u)
φθ(u)

=
p(1− u)p−1

1− (1− u)p
− 1
u
.

Thus

B(u) = (p− 1) + u

(
p(1− u)p−1

1− (1− u)p
− 1
u

)
=
p(1− (1− u)p−1)

1− (1− u)p
,

Tr

(
n∏

k=1

1
1− ζxk

)
' [A(u) ·B(u)]n '

[
p(1− (1− u)p−1)

1− (1− u)p

n∏
k=1

u

1− (1− u)xk

]
n

,

and we obtain the first formula

Tr

(
n∏

k=1

1
1− ζxk

)
=

[
p〈u〉p−1

〈u〉p

n∏
k=1

u

〈u〉xk

]
n

.

Next
p(1− (1− u)p−1)

1− (1− u)p
= p

(1− u)− (1− u)p

(1− u)(1− (1− u)p)

=
p

1− u
− pu

(1− u)(1− (1− u)p)
' − pu

1− (1− u)p
(1 + u+ u2 + . . . ),

and we obtain the second formula

Tr

(
n∏

k=1

1
1− ζxk

)
'

n∑
m=0

[
pu

1− (1− u)p

n∏
k=1

u

1− (1− u)xk

]
m

.

The lemma is therefore proven. �

In §3 the functions of the fixed points γp(x1, . . . , xn) having values in the ring
ΩU ⊗Q,

γp(x1, . . . , xn) =

[
u

Ψp(u)

n∏
k=1

u

xkΨxk(u)

]
n

were constructed. By considering the composition of the function γp with the
Todd genus T : ΩU → Z, we obtain a function (which we continue to denote by
γp(x1, . . . , xn)) which associates to a set of weights the rational number mod pZp

γp(x1, . . . , xn) =

[
pu

1− (1− u)p

n∏
k=1

u

1− (1− u)xk

]
n

=

[
pu

〈u〉p

n∏
k=1

u

〈u〉xk

]
n

which is such that under the conditions of Theorem 2 the number
n∑

j=1

γp(x
(j)
1 , . . . , x(j)

n )
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is a p-adic integer and coincides modulo p with the Todd genus.
We now recall the Conner–Floyd equation introduced in [13]. If the group Zp

acts complexly on the manifold Mn with fixed points P1, . . . ,Pq, at which it has
the set of weights (x(j)

1 , · · ·x(j)
n ), j = 1, . . . , q, then the Conner–Floyd equation

q∑
j=1

u
n∏

k=1

u

x
(j)
k Ψx

(j)
k (u)

= 0

is satisfied, where u is the formal variable which generates the ring ΩU [[u]] under
the relations pΨp(u) = 0 and un = 0. Consequently there is an element φ ∈ ΩU [[u]]
such that the equation

q∑
j=1

u

Ψp(u)

(
n∏

k=1

u

x
(j)
k Ψx

(j)
k (u)

)
= pφ

is valid in the ring ΩU [[u]] ⊗ Q. Thus, if (x(j)
1 , . . . , x

(j)
n ) are the sets of weights

of the action of the group Zp on the manifold Mn, then they are related by the
Conner-Floyd equation

q∑
j=1

u

Ψp(u)

[
n∏

k=1

u

x
(j)
k Ψx

(j)
k (u)

]
m

' 0, m = 0, . . . , n− 1.

By considering the Todd genus T : ΩU → Z, we obtain the Conner–Floyd equation
q∑

j=1

[(
pu

1− (1− u)p

n∏
k=1

u

1− (1− u)x
(j)
k

)]
m

' 0, m = 0, . . . , n− 1,

corresponding to the Todd genus.

Definition 4. The Conner–Floyd functions CF (x1, . . . , xn)m, m = 0, . . . , n− 1, of
fixed points are the functions which associate with each set of weights (x1, . . . , xn)
the rational numbers

CF (x1, . . . , xn)m =

[
pu

〈u〉p

n∏
k=1

u

〈u〉xk

]
m

, m = 0, . . . , n− 1.

Summarizing, we obtain the following theorem.

Theorem 5. The Atiyah–Bott and Conner–Floyd functions of fixed points and the
functions γp(x1, . . . , xn) are related by the equation

AB(x1, . . . , xn)− γp(x1, . . . , xn) '
n−1∑
m=0

CF (x1, . . . , xn)m.

We can now answer the question about the relation of the formulas for fixed
points taken from the Atiyah–Bott theory and cobordism theory.

Let f : Mn → Mn be a holomorphic transverse mapping of period p of the
compact complex manifold Mn, and let P1, . . . ,Pq be its fixed points. Let the
mapping df |Pj in the tangent space at the fixed point Pj have eigenvalues λ(j)

k =
exp(2πix(j)

k /p), k = 1, . . . , n. Then the formula which expresses the Todd genus in
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terms of the weights (x(j)
1 , . . . , x

(j)
n ), taken from the Atiyah–Bott theorem, has the

form

(6) T (Mn) '
q∑

j=1

n∑
m=0

[
pu

1− (1− u)p

n∏
k=1

u

1− (1− u)x
(j)
k

]
m

(see Theorem 2 and Lemma 3). A similar formula, from cobordism theory, has the
form

(7) T (Mn) '
q∑

j=1

[
pu

1− (1− u)p

n∏
k=1

u

1− (1− u)x
(j)
k

]
n

,

and the difference between the first and second formula is exactly the sum in the
Conner–Floyd equation, expressed for the Todd genus T : ΩU → Z:

n−1∑
m=0

 q∑
j=1

[
pu

1− (1− u)p

n∏
k=1

u

1− (1− u)x
(j)
k

]
m

 ' 0,

(see §IV of [13]).
In conclusion the authors wish to point out that out of the fundamental results

of this paper the two different proofs of the theorem concerning the relation of the
cohomology operations to the Hirzebruch series were obtained independently (and
in the text of §1 both proofs are presented).

The basic concepts, the general assertions about formal power systems and the
principal examples given of them, particularly the “square modulus” systems of
type 2, to a large measure are due to Novikov, while the investigation of the loga-
rithm;

of these systems by means of the Chern–Dold character, the precise definition
and investigation of the ring of coefficients of the “two-valued formal groups” and
their connection with Sp-cobordism are for the most part due to Buhštaber.

The remaining results were obtained in collaboration, while the important lemma
of §3 and also Lemma 3 of the Appendix, were proved at our request by D. K. Fad-
deev, to whom the authors express their deep gratitude, We also thank Ju. I. Manin
and I. R. Šafarevič for discussions and valuable advice concerning the theory of for-
mal groups and algebraic number theory.
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[2] V. M. Buhštaber, The Chern–Dold character in cobordisms. I, Mat. Sb. 83 (125) (1970),
575–595 = Math. USSR Sb. 12 (1970),

[3] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der
Math. und ihrer Grenzgebiete, Heft 9, Springer-Verlag, Berlin, 1956; English transl., Die
Grundlehren der math. Wissenschaften, Band 131, Springer-Verlag, New York, 1966. MR 18,

509; 34 #2573.

[4] T. Honda, Formal groups and zeta-functions, Osaka J. Math. 5 (1968), 199–213; Russian
transl., Matematika 13 (1969), no. 6, 3–17. MR 40 #2683.

[5] G. G. Kasparov, Invariants of classical lens manifolds in cobordism theory, Izv. Akad. Nauk
SSSR Ser. Mat. 33 (1969), 735–747 = Math. USSR Izv. 3 (1969), 695–706.

[6] J. W. Milnor and M. A. Kervaire, Bernoulli numbers, homotopy groups, and a theorem of

Rohlin, Proc. Internat. Congress Math. (Edinburgh, 1958), Cambridge Univ. Press, New
York, 1960, pp. 454–458. MR 22 #12531.



34 V. M. BUHSTABER AND S. P. NOVIKOV

[7] P. Conner and E. Floyd, The relation of cobordism to K-theories, Lecture Notes in Math,
no. 28, Springer-Verlag, New York, 1966; Russian transl., Appendix to the Russian transl. of

[16], “Mir”, Moscow, 1969. MR 35 #7344.
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