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1. Introduction

Nowadays more and more real-life systems are (automatically) controlled by
computer programs. It is of capital importance to know whether the programs
governing these systems are correct; these questions gave rise to the theory of ver-
ification. In order to model real-life systems, various extensions of finite automata,
such as timed automata [4] and hybrid systems [29], have been studied. Together
with these models, various (temporal) logics, such as LTL [42] and CTL [24, 43],
have been considered, which capture properties of the systems in which we are in-
terested. For instance, an important question is to know whether the system can
reach some prohibited states. This question is known as the reachability problem.
Let C be a class of mathematical models and Φ be a class of properties (expressed
in a given logic), then one can naturally ask the following question: Given M ∈ C
and ϕ ∈ Φ is it true that “M |= ϕ ?”. This question is known as the model-checking
problem.

Timed automata. Timed automata [3, 4] (see also [7] for a survey) are now a
well-established formalism for the modeling and analysis of timed systems in the
verification community. Roughly speaking timed automata are finite state au-
tomata enriched with clocks and clock constraints. A large number of positive
and interesting theoretical results have been obtained on timed automata. Among
them, is the decidability of the reachability problem [3] and the decidability of the
model-checking problem for the quantitative temporal logic TCTL [1]. In parallel
with these theoretical results, efficient verification tools have been implemented
and successfully applied to industrially relevant case studies [30, 38]. Timed au-
tomata have also been studied from the perspective of formal language theory.
In this framework surprising and negative results have quickly occurred. Indeed,
in [4], the authors proved the undecidability of both the universality problem and
the language inclusion problem. These negative results are due in some sense to the
non-closure under complement of timed automata. Nevertheless, formal language
properties of timed automata have been studied in various papers and by various
authors: Kleene-like theorem [8, 16], definition of the determinisable subclass of
event-clock timed automata [5, 25], power of ε-transitions [11], decidability prob-
lems regarding determinisability, complementability, and ε-transitions [15,28,45].

Hybrid systems. Hybrid systems [29] extend timed automata by allowing more
complex continuous dynamics. Indeed, continuous variables are not restricted to
clocks but can evolve as polynomial or exponential function. In the wide class of
hybrid systems, the reachability problem is in general undecidable. In this context,
an interesting question is to identify expressive classes of hybrid systems which
are decidable (for example with respect to the reachability problem). Classes
with this property include: linear hybrid automata [2], (initialized) rectangular
automata [31], weighted (or priced) timed automata [6, 10], and o-minimal hybrid
systems [19, 36].

In order to obtain decidability of the reachability problem, serious restrictions
on either the continuous dynamics or the discrete transitions must be imposed.
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O-minimal hybrid systems are a particularly interesting class of models since they
admit very rich continuous dynamics but impose severe restrictions on the discrete
transitions. Various nice positive results have been obtained in this class: exis-
tence of a finite bisimulation [20,36], decidability of the reachability problem [19],
extension to games [12] and to weighted systems [13]. Hybrid systems with strong
resets [14] extend o-minimal hybrid systems since they remove the o-minimality
hypothesis but keep the restrictions on the discrete transitions.

Our contribution. In this article, we study hybrid systems with strong resets
from the perspective of formal language theory. To the best of our knowledge, this
study has not been done.

Our first result is a Kleene-like theorem based on the new notion of hybrid
regular expressions. This first result is obtained thanks to two key results (Propo-
sitions 3.3 and 3.4) which show that the behaviour of a hybrid system H can be
described by a (classical) finite automaton on an alphabet composed of couples
(a, P ) where a is an event letter of H and P is some piece of a finite partition of
the time. This description using finite automata is made possible by the strong
restrictions on the discrete transitions of the system H.

From these key propositions we derive a series of nice positive results for the
class of hybrid systems, all in contrast with the case of timed automata. Non-
deterministic and deterministic models are equivalent in this class; we also find
that we have closure under boolean operations. Since the reachability problem is
known to be decidable for hybrid systems, it follows that the universality problem
for this class is also decidable. Finally we study the synchronized product of
several o-minimal hybrid systems. Synchronized product is an important notion
in the context of verification; it may be seen as a generalization of the cartesian
product. The synchronized product is not necessarily an o-minimal hybrid system.
We prove the negative result that the reachability problem becomes undecidable
as soon as seven o-minimal hybrid systems are synchronized.

Organization of the paper. In Section 2, we define and illustrate the notion
of a hybrid system. We introduce hybrid regular expressions and prove a hybrid
version of the Kleene Theorem in Section 3. In Section 4, we consider the closure
properties of hybrid languages. Finally in Section 5 we consider synchronized
products of o-minimal hybrid systems.

2. Preliminaries

In this section, we start with some basic definitions related to first order logic
(our presentation is largely inspired from [21]). Then we recall the notion of hybrid
system with strong resets and its canonical transition system. Finally we introduce
the concept of timed languages accepted by hybrid systems.

In first-order logic, a first-order structure M = 〈M, (Ri)i∈I , (fj)j∈J , (ck)k∈K〉
consists of a domain M (some set), a family of relations (Ri)i∈I on M , a family
of functions (fj)j∈J on M and a family of constant (ck)k∈K of M . The relation
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Ri is a subset of Mni and fj is a function from Mnj to M . For instance the
ordered group of real numbers MR = 〈R,≤,+, 0〉 is a first-order structure where
the domain is R (the set of real numbers) equipped with the usual order relation
≤ ⊆ R2, the usual addition function + : R2 → R and the real constant 0. In order
to define first-order formulae, we first need to define the notion of term of a given
structure M. In addition to the symbols of relations, functions and constants,
we also use a countable set of variables x, y, z, . . ., the usual connectives ∨ (or),
∧ (and), ¬ (not), the quantifiers ∀ (for all), ∃ (there exists) and the symbol =
(equal). The terms are defined by the following grammar:

t ::= c | x | f(t, . . . , t),

where c is a constant, x is a variable and f is a n-ary function. The formulae are
defined by the following grammar:

ϕ ::= t1 = t2 | Ri(t1, . . . , tn) | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ∃xϕ | ∀xϕ,

where the ti’s are terms, Ri is a n-ary relation and x is a variable. An example of
first order formula in 〈R,≤,+, 0〉 is given by

∀x∀y x + y = y + x.

The above formula asserts that the addition is a commutative operation. Let
ϕ(x1, . . . , xn) be a first-order formula of the structure M, where the variable xi’s
are not under the scope of a quantifier, and m1, . . . ,mn be elements of M , when
we write M |= ϕ(m1, . . . ,mn), we mean that the formula ϕ(x1, . . . , xn) is true
when the (free) variables xi’s are replaced by the elements mi’s of M . We say that
a subset S ⊆ Mn is first-order definable in M if there exists a first-order formula
ϕ(x1, . . . , xn) such that

S = {(m1, . . . ,mn) | M |= ϕ(m1, . . . ,mn)}.

For instance, the set of non-negative real numbers is definable in MR by the first-
order formula ψ(x) given by x ≥ 0. We say that a function is first-order definable
when its graph is a first-order definable set. In the sequel of the paper, when we
speak of a formula, we always mean a first-order formula and when we say that a
subset or a function is definable over M, we always mean it is first-order definable
over M. General references for first-order logic are [23,33,34,39,44].

Let us now formalize our notion of dynamical system.

Definition 2.1. A dynamical system is a pair (M, γ) where:

• M = 〈M,<, 0, . . .〉 is an expansion of a totally ordered structure with a
symbol of constant 0,

• γ : Mk1 × M → Mk2 is a function definable in M, for some fixed k1,
k2 ∈ N.
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The function γ is called the dynamics of the dynamical system. More generally,
we may consider the case where γ is defined on definable subsets of M, that is
γ : V1 × V → V2 with V1 ⊆ Mk1 , V ⊆ M and V2 ⊆ Mk2 being definable subsets.

Classically when M is the ordered field of reals, we see V as the time, V1 × V
as the space-time, V2 as the output space and V1 as the input space. We keep this
terminology in the more general context of a structure M.

Example 2.2. Consider (M, γ) where each point of the plane has two possible
behaviors: “to go to the right” or “to go up” (see Figure 1). More precisely we
have that M = 〈R, <,+, 0〉 and γ : R3 × R → R2 is defined as follows.

γ(x1, x2, p, t) =

{

(x1 + t, x2) if p ≥ 0,
(x1, x2 + t) if p < 0.

Figure 1. A “non-deterministic” dynamical system.

We are now ready to define the key structure for this paper, a hybrid system
with strong resets1.

Definition 2.3. Given M an ordered structure, a hybrid system with strong resets
on M is given by H = (Loc,Σ, Edg,Dyn, Inv,G,R), where:

• Loc is a finite set of locations (discrete states),
• Σ is a finite alphabet of events,
• Edg ⊆ Loc× Σ× Loc is a finite set of edges,
• Dyn assigns continuous dynamics to each location (there exist some fixed

definable subsets V, V1, V2 such that for each l ∈ Loc, Dyn(l) = γl where
γl : V1 × V → V2 is a definable function), i.e. (M, γl) is a dynamical
system,

• Inv assigns to each location l ∈ Loc a definable subset Inv(l) of V2 called
invariant,

• G assigns to each edge e ∈ Edg a definable subset G(e) of V2 called guard,

1In the sequel of the paper, when we speak of a hybrid system, we always mean a hybrid
system with strong resets.
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• R assigns to each edge e ∈ Edg a definable subset R(e) of V2 called reset.

To define the semantics of a given hybrid system H, we define the canonical
transition system T can

H = (QH,→) with:

• set of states QH is Loc× V2,
• a transition relation → given by:

(l1, y1) → (l2, y2) ⇔ ∃ e ∈ Edg, ∃(l1, y′
1) ∈ Loc× V2 such that

(l1, y1)
t−→ (l1, y

′
1)

a−→ (l2, y2)

where (l1, y1)
t−→ (l1, y′

1) is a continuous transition with t ≥ 0 such that ∃x ∈
V1,∃δ1 ∈ V,

y1 = γl1(x, δ1), y′
1 = γl1(x, δ1 + t) and γl1(x, δ) ∈ Inv(l1) ∀δ, δ1 ≤ δ ≤ δ1 + t

and where (l1, y′
1)

a−→ (l2, y2) is a discrete transition such that

e = (l1, a, l2), y′
1 ∈ G(e) and y2 ∈ R(e).

In our definition of continuous transition, t is the duration spent at location l1.
Note that t ∈ M+, where M+ = {x ∈ M | x ≥ 0}. A canonical run in a hybrid
system is a run of its canonical transition system.

Remark 2.4. Note that our definition of hybrid system allows only resets as
defined in [36], that is, discrete transitions are memoryless: each variable must be
non-deterministically reset into some definable subset.

Below is an example of a hybrid system inspired by the thermostat example
of [2].

Example 2.5. The temperature of a room has to be kept between m and M
degrees. The room is equipped with a thermostat which senses the temperature
and turns a heater on and off. The temperature is governed by two differential
equations. We denote the temperature by the variable x. When the heater is
off, the temperature decreases according to the function x(t) = θe−Kt; when the
heater is on, the temperature increases according to the function x(t) = θe−Kt +
h(1 − e−Kt), where t is the time, θ the initial temperature, and h and K are
parameters for the heater and the room. This situation is described by the hybrid
system of Figure 2.

The thermostat is a hybrid system definable in 〈R, <,+, ·, 0, 1, ex〉 as soon as h
and K are definable constants. Making this precise in view of Definition 2.3:

• Loc = {l0, l1},
• Σ = {on, off},
• e1 = (l0, on, l1) ∈ Edg, e2 = (l1, off, l0) ∈ Edg,
• Dyn(l0) = γ0 where γ0 : R2 → R is given by γ0(θ, t) = θe−Kt,

Dyn(l1) = γ1 where γ1 : R2 → R is given by γ1(θ, t) = θe−Kt+h(1−e−Kt),
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l0
γ0

x ≥ m

x = m

off

on

x = M

l1
γ1

x ≤ M

Figure 2. Thermostat

• Inv(l0) = {x ∈ R | x ≥ m}, Inv(l1) = {x ∈ R | x ≤ M},
• G(e1) = {m}, G(e2) = {M},
• R(e1) = {m}, R(e2) = {M}.2

In the figures throughout this paper we distinguish between guards and resets
as follows: Given e ∈ Edg, we denote the associated guard by y ∈ G(e) and the
associated reset by y := R(e).

In order to define the notion of o-minimal hybrid system as introduced in [36],
we first recall the notion of o-minimality [41].

Definition 2.6. A totally ordered structure M = 〈M,<, . . .〉 is o-minimal if
every definable subset of M is a finite union of points and open intervals (pos-
sibly unbounded). A hybrid system is o-minimal if the underlying structure is
o-minimal.

In an o-minimal structure, the definable subsets of M are thus the simplest
possible: the ones which are definable with parameters in 〈M,<〉. This assumption
implies that definable subsets of Mn (in the sense of M) admit very nice structure
theorems like Cell decomposition and uniform finiteness [35] (see also [27] for a
good introduction to o-minimality and an extensive bibliography). The following
are examples of o-minimal structures.

Example 2.7. • The ordered group of rationals 〈Q, <,+, 0〉.
• The ordered field of reals 〈R, <,+, ·, 0, 1〉.
• The ordered field of reals with exponential function 〈R, <,+, ·, 0, 1, ex〉 [47].

For more interesting examples of o-minimal structures see [27].

We now consider the language of timed words accepted by a given (o-minimal
or not) hybrid system H. For this, we need to define notions of timed word and
timed language.

Definition 2.8. A timed word w over a finite alphabet Σ is a finite sequence

(a1, t1)(a2, t2) . . . (an, tn)

of pairs of letters ai ∈ Σ and ti ∈ M+. The length of w is equal to n and its
duration is equal to Σn

i=1ti. The timed empty word is of the form (ε, 0) with length
and duration equal to 0.

A timed language over Σ is a set of timed words over Σ.

2On Figure 2 the resets are not explicitly mentioned since they have no effect on x.
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Remark 2.9. Notice that an equivalent notion of timed word is given by the usual
definition (a1, t1)(a2, t1 + t2) . . . (an,

∑n
i=1 ti) as proposed for timed automata [4],

instead of the definition (a1, t1)(a2, t2) . . . (an, tn) here given. Due to the strong
resets condition it is preferable to use the latter one.

In order to consider timed languages accepted by hybrid systems we must in-
troduce an acceptance condition to the definition of the hybrid system H. First
we define the initial condition, Init ⊆ Loc× V2 such that Init = ∪l∈Loc(l, Initl) and
with each Initl definable (with possibly Initl = ∅). The termination condition is
given in a similar way by Term ⊆ Loc× V2.

Definition 2.10. A timed word w = (a1, t1)(a2, t2) . . . (an, tn) is accepted by a
hybrid system H with initial condition Init and termination condition Term if there
exists a canonical run

(l0, y0) → (l1, y1) → (l2, y2) → · · ·→ (ln, yn)

such that

• each transition (li−1, yi−1) → (li, yi) decomposes into

(li−1, yi−1)
ti−→ (li−1, y

′
i−1)

ai−→ (li, yi),

• (l0, y0) ∈ Init,
• (ln, yn) ∈ Term.

The set of timed words accepted by a hybrid system H is denoted by LH.

Note that the timing information attached to each letter from Σ in a timed word
denotes the amount of time which has passed since the last discrete transition on
the run through the transition system. Note also that the timed empty word is
accepted by a hybrid system H if and only if we have Initl ∩ Terml 2= ∅ for some
location l in H.

We now give a very simple example illustrating the above definitions.

Example 2.11. Consider the hybrid system H depicted in Figure 3. We assume
that the dynamics of the two locations are given by γ : R×R → R where γ(x, t) =
x + t (this corresponds to the continuous dynamics of timed automata). The
invariant of each location is the interval [0, 1]. The initial condition for the system
is Init = (l0, {0})∪(l1, ∅) and the termination condition is Term = (l0, ∅)∪(l1, [0, 1]).
Examples of timed words accepted by H are (b, 0.7) and (a, 1)(a, 1)(b, π

4
). It is

straightforward to observe that the timed language accepted by H is given by:

LH = {(a, 1)n(b, t) | n ∈ N and t ∈ R with 0 ≤ t < 1}.

We conclude this section with some comments. The notion of (o-minimal)
hybrid system presented in this section allows very rich dynamics inside each loca-
tion. In contrast, a strong reset condition has to be imposed on the edges. In this
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l0 l1

a, x = 1
x := 0

b, x < 1

x := 0

Figure 3. A simple hybrid system.

way, the decidability of the reachability problem for o-minimal hybrid systems is
ensured (see [18, 37]) assuming the decidability of the underlying structure. Note
that our definition of canonical run in a hybrid system (that is, runs alternating
discrete and continuous transitions) is somewhat more limited than the standard
definition. However, when this condition is relaxed, undecidability of the reacha-
bility problem for o-minimal hybrid systems is quickly reached [17].

3. Hybrid regular expressions

In this section we define the notion of hybrid regular expression, and show the
equivalence between timed languages represented by hybrid regular expressions
and timed languages accepted by hybrid systems. We define such regular expres-
sions in terms of the event alphabet Σ and definable subsets of M+, a natural
when considering the memoryless reset conditions imposed on the edges of the
system.

Definition 3.1. Let M = 〈M,<, 0, . . .〉 be a structure. Let P = {Pi | 1 ≤ i ≤ n}
be a finite partition of M+ into definable non-empty pieces, and let Σ be a finite
alphabet of events. A hybrid regular expression E is a regular expression over the
alphabet Σ× P, that is, defined by the following grammar

E ::= ∅ | (a, P ) | E ∪ E | E · E | E∗

with a ∈ Σ and P ∈ P.
A hybrid regular language is a timed language L(E) represented by a hybrid

regular expression E in the following sense3 :

• if E = (a, P ) (respectively, ∅), then L(E) = {(a, t) | t ∈ P} (respectively,
∅),

• if E = E1 ∪ E2 (respectively, E1 · E2, E∗
1 ), then L(E) = L(E1) ∪ L(E2)

(respectively, L(E1) · L(E2), L(E1)∗).

3The regular operators are defined on sets of timed words in the classical way as for finite
words.
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Note that we may associate a second semantics, called abstract, with a hybrid
regular expression E. It is defined as the classical one considered over the alphabet
Σ× P, that is,

• if E = (a, P ) (respectively, ∅), then LA(E) = {(a, P )} (respectively, ∅),
• if E = E1∪E2 (respectively, E1 ·E2, E∗

1 ), then LA(E) = LA(E1)∪LA(E2)
(respectively, LA(E1) · LA(E2), LA(E1)∗).

Given a hybrid regular expression E, a finite automaton accepting LA(E) is called
abstract.

Example 3.2. Returning to the example in Figure 3, the hybrid regular expression
representing the language LH (accepted by the hybrid system H) is easily seen to
be the following

(a, {1})∗ · (b, [0, 1)).

With the hybrid regular language LH, one can thus also associate the abstract
finite automaton of Figure 4 over the alphabet {(a, {1}), (b, [0, 1))}.

q0 q1

(a, {1})

(b, [0, 1))

Figure 4. An abstract finite automaton accepting the hybrid
regular expression representing the language LH.

We now state the two key results of this article, which rely heavily on the strong
reset condition. The first result has already been illustrated by Figure 4. Example
3.6 below is another more involved illustration.

Proposition 3.3. Let M = 〈M,+, <, 0, . . .〉 be an expansion of an ordered group,
and let H be a hybrid system with initial and terminal conditions, accepting a
timed language LH. Then one may define

• a finite alphabet Σ×P with Σ the event alphabet of H and P = {Pi | 1 ≤
i ≤ n} a finite partition of M+ definable in M,

• an abstract finite automaton AH accepting a language L = LA(E) for a
hybrid regular expression E over Σ × P such that E represents the timed
language LH.

Proposition 3.4. Let E be a hybrid regular expression. Then there exists a hybrid
system accepting exactly the timed language represented by E.

Combining the previous two propositions allows us to conclude the following.

Theorem 3.5. A timed language L is accepted by a hybrid system if and only if
L is a hybrid regular language.
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What follows is a second example to demonstrate the fundamentals of the equiv-
alence between a hybrid system, a hybrid regular expression and the associated
abstract finite automaton, (Proposition 3.3). Proposition 3.4 will be illustrated
later in Example 4.3.

Example 3.6. Consider the hybrid system in Figure 5. Both locations in the
system have the same dynamics, that is γ(x, t) = x + t. Similarly both locations
share the same invariant, Invl0 = Invl1 = [0, 4]. The initial condition for the
system is Init = (l0, [0, 1])∪(l1, ∅) and the termination condition is Term = (l0, ∅)∪
(l1, [0, 4]). For reasons of clarity, no resets have been included in the figure: all
edges share the same reset R = [0, 1].

This system accepts the hybrid regular language L(E) represented by the fol-
lowing hybrid regular expression

E = [(b, [2, 4])+(a, [0, 2])∗][(b, [2, 4])(b, [2, 4])+(a, [0, 2])∗]∗, (1)

The associated abstract finite automaton is given in Figure 6.

l0 l1

b, x ∈ [3, 4] a, x ∈ [1, 2]

b, x ∈ [3, 4]

b, x ∈ [3, 4]

Figure 5. An example of a hybrid system.

q0 q1

(b, [2, 4]) (a, [0, 2])

(b, [2, 4])

(b, [2, 4])

Figure 6. An abstract automaton for the expression (1)
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We provide some intuition on this example. All incoming edges to the location
l0 of the hybrid system of Figure 5 have the same reset [0, 1], and all outgoing
edges have the same guard [3, 4]. One may check that the set of all possible

durations t ∈ M+ in a continuous transition (l0, y)
t−→ (l0, y′) is equal to the

interval [2, 4]. After such a continuous transition, one may perform a discrete

transition (l0, y′)
b−→ (l0, z). This situation is summarized by the loop on q0 labeled

by (b, [2, 4]) on the automaton of Figure 6.
The alphabet in this example is Σ×P where Σ = {a, b} and P = {[0, 2], [2, 4]}.

To respect Definition 3.1, we should define P equal to {[0, 2), {2}, (2, 4], (4,+∞)}
to give a partition of R+.

We now prove the preceding propositions. The proof of Proposition 3.3 is based
on the following observation. Assume that a location l of the system H has all its
incoming edges with the same reset and all its outgoing edges with the same guard.
Then the set of durations t ∈ M+ which may appear in a continuous transition

(l, y1)
t−→ (l, y2) is a set definable in M. These sets for all locations l give rise to a

finite partition of M+ leading to the definition of P.

Proof of Proposition 3.3. Let H be a hybrid system with initial condition Init and
termination condition Term. We assume for now that the timed language accepted
by H does not include the timed empty word. We perform several transformations
on the system to build a finite automaton accepting a hybrid regular expression
which represents exactly the timed language accepted by H. The transforma-
tion described in (a) and (b) below is a “classical” transformation, used often in
automata theory.

(a) Removing self-loops. Let l ∈ Loc be a location in the hybrid system H
which has a self looping edge e = (l, a, l) ∈ Edg for some a ∈ Σ. Then we
make a copy of the location l so that we have two identical locations l and
l′ (with the same dynamics and invariant as the original location), with
identical incoming and outgoing edges except for the loop e. We replace
the loop with two edges e = (l, a, l′) and e′ = (l′, a, l) with the same guard
and reset as the original edge. See Figure 7.

l

l

l′

e
1

e2

f1

f
2

e1

e2

e1

e2

f1

f2

f2

f1

e

ee′

Figure 7. Step (a): Removing self loops
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In the initial condition, (l, Initl) is replaced by (l, Initl) ∪ (l′, ∅), and in
the termination condition, (l,Terml) is replaced by (l,Terml)∪ (l′,Terml).

Note that after the transformation, the hybrid regular language LH′

accepted by the transformed system H′ is equal to LH. Indeed, if a timed
word (a1, t1)(a2, t2) . . . (an, tn) belongs to LH′ it also belongs to LH (re-
place all occurrences of l′ with l). Conversely any timed word of LH also
belongs to LH′ . Indeed the related canonical run ρ of T can

H can be trans-
formed into a canonical run ρ′ of T can

H′ , such that each occurrence of l in
ρ is replaced by either l or l′ in ρ′; ρ′ begins with l if ρ begins with l and
ρ′ ends with either l or l′ if ρ ends with l.

(b) Normalizing guards and resets for each location. Our aim in this
step is to ensure that for any given location l, all outgoing edges share
the same guard, and all incoming edges share the same reset. This will be
achieved in two steps, the first of which will deal with the resets. Consider
a location l in H. Let e1, . . . , en ∈ Edg be edges in the system with target
location l, and let R1, . . . ,Rm be the resets of these edges. Note that
m ≤ n since two or more edges may share the same reset. We partition the
edges by the resets into m subsets. Let the new states labeled l1, . . . , lm
be m copies of l with the same dynamics and invariant. Each location
li, (i = 1, . . . ,m), has identical copies of all outgoing edges from l. The
location li has as incoming edges copies of only those edges ej , j = 1, . . . , n,
where R(ej) = Ri. See Figure 8.

l

l1

l2

R
1

R2

R1

R2

Figure 8. Step (b): Normalize resets for each location

In the case that Initl 2= ∅ we take an extra copy of l (additional to
li, i = 1, . . . ,m) denoted by lI which has the same invariant, dynamics
and outgoing edges of l, but has no incoming edges. In the initial condi-
tion, (l, Initl) is replaced by

(lI , Initl) ∪
⋃

1≤i≤m

(li, ∅).

The location lI is called initial. In the case that Initl = ∅, then (l, Initl) is
simply replaced by

⋃

1≤i≤m(li, ∅).
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Next we consider the termination condition. Suppose that a canonical
run ρ which is accepted by H has a discrete transition with reset R as its
final transition in H, ending in a state (l, y). Hence y ∈ R ∩ Terml. So
for each copy li of l such that Ri ∩ Terml 2= ∅ we add an extra copy of li
denoted lT,i with the same invariant, dynamics and incoming edges as li,
but with no outgoing edges. Such a location lT,i is called terminal. Then
the term (l,Terml) in the termination condition is replaced by

⋃

1≤i≤m

((lT,i,Terml) ∪ (li, ∅)).

In this way, a canonical run that is accepted by the original system is
translated into a canonical run of the transformed system which begins
with an initial location (of the form lI) and ends at a terminal location
(of the form lT,i for some i).

It is clear from a similar argument to case (a) above that the hybrid
regular language LH is unchanged, and that given a location l, all incoming
edges will share the same reset.

Note that the removing self-loops transformation is necessary in order
to guarantee the correctness of the normalizing guards and resets trans-
formation. Notice also that the latter transformation does not introduce
new self-loops in the automaton.

We perform a similar operation on the outgoing edges of locations to
ensure that all such edges from a given location will share the same guard.
Let l be a location in our hybrid system with outgoing edges e1, . . . , en,
with guards G1, . . . ,Gm with m ≤ n. We replace location l by m copies of
l labeled l1, . . . , lm with the same dynamics and invariants as l. For each
i = 1, . . . ,m, li has incoming edges identical to those of l, and we include
only outgoing edges ej , j = 1, . . . , n, such that G(ej) = Gi.

In the case that Initl 2= ∅, we take m extra copies lI,i, i = 1, . . . ,m, with
no incoming edges, and replace (l, Initl) in the initial condition with

⋃

1≤i≤m

((lI,i, Initl) ∪ (li, ∅)).

Again, the locations lI,i are called initial. In the case that Initl = ∅, we
simply replace (l, Initl) by

⋃

1≤i≤m(li, ∅).
Let R be the (unique) reset for all the edges that have location l as

target. If Terml ∩R 2= ∅, we take one extra copy of l labeled lT with no
outgoing edges, and replace (l,Terml) in the termination condition by

(lT ,Terml) ∪
⋃

1≤i≤m

(li, ∅).

The location lT is called terminal. If Terml ∩R = ∅, we replace (l,Terml)
by

⋃

1≤i≤m(li, ∅).
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By the same reasoning as above we have a hybrid system which accepts
the same language LH as the original system. See Figure 9.

l

l1

l2

G1

G
2

G1

G2

Figure 9. Step (b): Normalize guards for each location

(c) Relabeling locations and edges. Our aim now is to define a finite
partition P of M+ which encapsulates all of the timing information. The
hybrid system is then replaced by a graph denoted GH with the same set
of locations and edges as H; locations will be labeled by pieces of P and
edges will be labeled from Σ.

After steps (a) and (b), for any given location l in our system, all
incoming edges have the same reset, say R, and all outgoing edges have
the same guard, say G, and let l have invariant Inv. Then the set of
possible time durations which may pass at location l is a definable subset
of M+:

T (l) = {t ∈ M+ | ∃x̄ ∈ V1 ∃ȳ1, ȳ2 ∈ V2 ∃δ1, δ2 ∈ V (δ2 = t + δ1) ∧ (γl(x̄, δ1) = ȳ1)

∧ (γl(x̄, δ2) = ȳ2) ∧ (ȳ1 ∈ R) ∧ (ȳ2 ∈ G) ∧ ∀δ δ1 ≤ δ ≤ δ2 γl(x̄, δ) ∈ Inv}.

Recall that some locations are initial. Thus in the case of initial locations,
we have instead the following set:

TI(l) = {t ∈ M+ | ∃x̄ ∈ V1 ∃ȳ1, ȳ2 ∈ V2 ∃δ1, δ2 ∈ V (δ2 = t + δ1) ∧ (γl(x̄, δ1) = ȳ1)

∧ (γl(x̄, δ2) = ȳ2) ∧ (ȳ1 ∈ Initl) ∧ (ȳ2 ∈ G) ∧ ∀δ δ1 ≤ δ ≤ δ2 γl(x̄, δ) ∈ Inv}.

Notice that the sets T (l) and TI(l) may be empty. It is clear that there
exists a finite partition P of M+ into non-empty sets which respects the
sets defined above since there is a finite number of locations. Each piece of
P is a definable subset of M+. Then the sets T (l) and TI(l) are rewritten
as finite (possibly empty) unions of partition pieces.

The graph GH is defined as follows. All information is removed from
each location l (except for the property of being initial or terminal) and
replaced with the label T (l) (respectively TI(l)), a union of partition pieces
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of the time M+. Similarly, we remove the resets and guards from edges
e ∈ Edg leaving only the event label from Σ.

(d) Reducing definable subsets to partition pieces and relabeling
edges. This is the last step of the transformation; here we define the
abstract finite automaton AH introduced in the statement of Proposi-
tion 3.3. For each location l in the graph GH with label T = P1 ∪ . . .∪ Pn

(with Pi a piece of P for i = 1, . . . , n), l is replaced by n copies of the lo-
cation labeled l1, . . . , ln with identical incoming and outgoing edges. The
label of li is the piece Pi. If l is initial, each copy is initial. If l is terminal,
each copy of l is terminal. In this way,each location in the graph is labeled
by a single partition piece. See Figure 10.

P1 ∪ P2

P1

P2

Figure 10. Step (d): Reduce definable sets labeling locations to
partition pieces

It remains to move the labels of the locations to the edges. Let l be
a location with label P . For each outgoing edge e with label a ∈ Σ we
relabel the edge (a, P ) and remove the label P from the location. We then
consider our graph as a finite automaton AH in the usual sense with initial
and terminal states those locations labeled in this way in the earlier stage
of the construction. Our finite automaton is labeled from Σ× P where P
is the finite partition of the time M+ defined above. Below we prove that
the finite automaton defined in this way accepts the language LA(E) for a
hybrid regular expression E representing the timed language accepted by
the original hybrid system H.

The automaton AH accepts a language over the alphabet Σ×P represented by
a (classical) regular expression E. We must show that E seen as a hybrid regular
expression represents exactly LH, the timed language accepted by H.

We know that after steps (a) and (b), the transformed hybrid system accepts
the same timed language LH as the original hybrid system H. So let H denote
the transformed system, and argue directly on it.

Let w be a timed word accepted by H, with w = (a1, t1) . . . (an, tn) for some
n ∈ N \ {0}. Then there exists a canonical run ρ of T can

H

(l0, y0) → (l1, y1) → · · ·→ (ln, yn)
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such that l0 is an initial location with (l0, y0) ∈ Init, ln is a terminal location with
(ln, yn) ∈ Term, and each transition (li−1, yi−1) → (li, yi) decomposes into

(li−1, yi−1)
ti−→ (li−1, y

′
i−1)

ai−→ (li, yi).

Consider first (a1, t1). There exists an edge e1 labeled with a1 connecting the
initial location l0 to the location l1, and there exist δ ∈ V , x̄ ∈ V1 such that
γl0(x̄, δ) ∈ Initl0 , γl0(x, δ + t1) ∈ G(e1) and γl0(x̄, δ′) ∈ Inv(l0) for all δ′ such that
δ ≤ δ′ ≤ δ + t1. Then it is clear that t1 ∈ TI(l0). Let P1 be the partition piece
of TI(l0) in which t1 appears. Then in the automaton AH, there exists an edge
connecting an initial state q0 to some state q1 labeled with (a1, P1) ∈ Σ× P.

Consider next (ai, ti), the i-th letter in the word w, where 1 < i ≤ n. In ρ we
have reached a state (li−1, yi−1) such that the location li−1 has an outgoing edge
ei labeled with ai and there exists x̄ ∈ V1, δ ∈ V such that γli−1

(x̄, δ) ∈ R(ei−1),
γli−1

(x̄, δ + ti) ∈ G(ei), and γli−1
(x̄, δ′) ∈ Inv(li−1) for all δ′ such that δ ≤ δ′ ≤

δ + ti. In the automaton AH we have reached a state qi−1 via a path labeled
(a1, P1) . . . (ai−1, Pi−1) where tk ∈ Pk for 1 ≤ k < i. Then by definition there
exists an edge from qi−1 to a state qi labeled with (ai, Pi) where the target state
of this edge was derived from the location li in H.

In the particular case of (an, tn), notice that the last transition labeled by an

ends in the state (ln, yn) and that ln is terminal. Thus in the automaton AH the
corresponding state qn is terminal.

We have shown that if w = (a1, t1) . . . (an, tn) is a timed word accepted by H,
then the word (a1, P1) . . . (an, Pn) over the alphabet Σ × P is accepted by AH.
This means that w belongs to L(E), the timed language represented by the hybrid
regular expression E.

The converse is proved in a similar way. Let w = (a1, t1) . . . (an, tn) be a
timed word appearing in L(E). Then there exists partition pieces P1, . . . , Pn (not
necessarily distinct) such that ti ∈ Pi for i = 1, . . . , n, and such that the word
(a1, P1) . . . (an, Pn) is accepted by the finite automaton AH. By the same kind of
argument as above, we prove that the word w is accepted by H.

Finally, if the language accepted by the original hybrid system H includes the
timed empty word, we add this information to the hybrid regular expression E
as ∅∗. It is clear that E ∪ ∅∗ is still a hybrid regular expression. We also add to
the automaton AH a new state which is both initial and terminal. !

Remark 3.7. The success of this method is due to the strong reset condition
imposed by the definition of a hybrid system. Without this condition, the subsets
defined in step (c) will not be defined correctly for every edge. Note also that the
definable subsets which form the partition pieces of M+ may have arbitrarily many
connected components. If the underlying structure is o-minimal, the partition
pieces are simple intervals.

No assumption is made about the decidability of the underlying theory M.
In the case of an undecidable theory, the preceding proof is not constructive.
Nevertheless, when the theory is decidable, the proof becomes constructive.
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Lemma 3.8. If the underlying theory M is decidable, then the abstract finite au-
tomaton AH defined from the hybrid system H in Proposition 3.3 can be effectively
constructed.

Proof. Let AH be the abstract finite automaton defined in the proof of Proposi-
tion 3.3. By looking at this proof, we show that this automaton can be constructed.
In step (b), it is decidable whether two resets (resp. two guards) are equal since
they are definable sets. Similarly, it is also decidable whether or not the sets Initl,
Terml, and Ri∩Terml are empty. In step(c), one may decide whether T (l) or TI(l)
is empty, and one can construct the definable pieces of the partition P that are
non-empty (by giving the formulae defining them). Finally each T (l) and TI(l) can
be written as a finite union of partition pieces since the inclusion of two definable
sets is decidable. !

We now proceed to the proof of Proposition 3.4. An illustration of this propo-
sition is given in Example 4.3 below.

Proof of Proposition 3.4. Let E be a hybrid regular expression, constructed using
a finite alphabet of events Σ and a finite partition P of M+ into definable subsets.
Then by Proposition 3.3 there exists a finite abstract automaton A with edges
labeled from Σ × P which accepts LA(E). This automaton can be transformed
into a hybrid system H with resets, invariants and guards strongly related to the
partition pieces of P. We construct the hybrid system from A in such a way as to
accept exactly the hybrid regular language L(E) represented by E. The key idea
is to use only one variable x for the output space V2 which behaves like a clock
(the dynamics in each location are the same as for timed automata). For a given
edge in the automaton A with label (a, P ) for some a ∈ Σ and P ∈ P, we relabel
the edge as follows. The event label will remain unchanged. For the guard we
have G = P and the reset x := 0.

The termination condition Term of the new system H is equal to
⋃

l(l,Terml)
with Terml = {0} when l is a terminal state of A and Terml = ∅ when l is a
non-terminal state of A. Similarly the initial condition Init is equal to (l0, {0}) ∪
⋃

l '=l0
(l, ∅) where l0 is the initial state of A.

The last thing to consider is the invariants. Consider a location l in our system
so far, and suppose it has outgoing edges with guards which are partition pieces
P1, . . . , Pn for some n ∈ N. Then the invariant Inv(l) of l will be the set of all x ∈
M+ bounded by the supremum value of the partition pieces P1, . . . , Pn. Indeed,
an edge with label (a, P ) in the automaton A has an equivalent edge in the hybrid
system H which can only be taken if the clock has a value within the partition
piece P (by definition of the resets and the initial condition). The invariants
specified above ensure that the system cannot simply stay at one location; it is
impelled to take one of the available discrete transitions available. Notice that
each invariant Inv(l) is a definable set. Indeed, the partition pieces P1, . . . , Pn are
definable by ϕ1(x), . . . ,ϕn(x) respectively, and therefore Inv(l) is definable by the
formula φ(x) : x ≥ 0 ∧ ∃y x ≤ y ∧ (ϕ1(y) ∨ . . . ∨ ϕn(y)).
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It is easy to verify that the hybrid system H defined in this way accepts exactly
the hybrid regular language L(E) represented by the expression E. !

Remark 3.9. Contrarily to Proposition 3.3, one can symbolically construct the
system H in the previous proof even if the underlying theory in undecidable.
However, in this general framework, we can not check if a given label is empty or
not; in particular it would not be possible to check emptiness.

Propositions 3.3 and 3.4 give a number of interesting immediate corollaries, in-
cluding a pumping type lemma for hybrid regular languages. The first corollary
is a consequence of the proof of Proposition 3.4. The second corollary is a conse-
quence of the (classical) pumping lemma applied to the automaton AH defined in
Proposition 3.3. We use the definition of the pumping lemma property for timed
words suggested in [9].

Corollary 3.10. Let M = 〈M,<,+, 0, . . .〉 be an expansion of an ordered group,
and let H be a hybrid system over M. Then H is equivalent in accepting power to
a hybrid system with a 1-dimensional output space.

Corollary 3.11. Let L be a hybrid regular language. Then there exists a constant
K > 0 such that for all timed words u ∈ L with length (respectively, duration) of
u greater than K there exists timed words v, w, z with w 2= (ε, 0) which satisfy

u = vwz and for every integer n ≥ 0 vwnz ∈ L.

We conclude this section with comparisons with some related works.
The notion of regular expression exists for timed automata [8]. The key differ-

ence is the need for extra operations in order to entirely define the language class.
It is necessary to include intersection as well as an interval operator, which allows
the overall duration of some subexpression to be specified. The latter operation
demonstrates the obvious difference between our definition of hybrid systems and
timed automata; the interval operator is a way of encoding into a regular expres-
sion the memory in the resets of the automaton. Since we insist on all discrete
transitions being memoryless, this operator is not compatible with our definition.

In [48] the authors define a notion of hybrid regular expression slightly different
from our notion. It involves an extra operation which uses linear inequalities. This
operation is used to encode information about the resets, guards, invariants and
dynamics of the system. Their definition of hybrid regular expression works for
a class of linear hybrid systems (we recall that linear hybrid systems have linear
guards, resets and invariants, and no strong reset condition).

In [26], the author studies the class of timed automata with a single clock
which is reset at each transition (epsilon-transitions are allowed). Among other
results, he proposes a notion of regular expression and obtains a Kleene theorem.
These results are close to some of our results in the following sense. The timed
automata studied in [26] are hybrid systems as the one defined in Proposition 3.4
except that the underlying structure is limited to the o-minimal decidable structure
〈R, <,+, ·, 0, 1〉. However epsilon-transitions are allowed contrarily to our model.
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The regular expressions proposed in [26] are very close to ours. They are defined
over a finite alphabet Σ × P such that P is a partition of R+ into definable
subsets of 〈R, <,+, ·, 0, 1〉, that is, into intervals with rational bounds. More details
concerning the comparison of our results with those of [26] are given at the end of
Section 4 where we discuss the power of epsilon-transitions in our model.

We conclude this section with a last comment concerning infinite words. Notice
that an analogue of Theorem 3.5 could be obtained for hybrid systems with Büchi
acceptance condition and hybrid omega regular expressions.

4. Closure properties of hybrid regular languages

In this section we consider the most natural questions related to determinism,
complementation, emptiness and universality for hybrid systems where M is an
expansion of an ordered group.

First we require a compatible definition of determinism. The following definition
was originally given for timed automata [4], but is naturally extended to the hybrid
systems case.

Definition 4.1. We say that a hybrid system is deterministic if for all locations
l ∈ Loc, and for every pair of outgoing edges e1 and e2 from l with the same label
a from Σ, the guards G(e1) and G(e2) are mutually exclusive.

In the case of timed automata [4], the class of deterministic timed languages is
strictly included in the class of non-deterministic timed languages, and the non-
deterministic class is not closed under complement. However, our characterization
of hybrid regular languages using abstract finite automata allows us to conclude
the following.

Theorem 4.2. Let H be a non-deterministic hybrid system accepting a timed
language L. Then there exists a deterministic hybrid system accepting L.

Proof. Given a hybrid system H accepting a timed language LH, by Proposi-
tion 3.3 above we may define a finite alphabet Σ×P, a hybrid regular expression
E over Σ × P such that LH = L(E) and a finite abstract automaton AH which
accepts LA(E). Then there exists a deterministic finite automaton A′ over Σ×P
accepting the same language LA(E) as AH. Looking at the proof of Proposi-
tion 3.4, we easily check that the hybrid system H′ resulting from A′ remains
deterministic. Hence we obtain in this way a deterministic hybrid system accept-
ing exactly L(E) = LH. !

Example 4.3. We recall Example 3.6. Note that this example is non-deterministic.
When determinizing the finite automaton in Figure 6, we obtain the automaton
in Figure 11.

Following Proposition 3.4, we then build the deterministic hybrid system shown
in Figure 12. For clarity the invariants have been left off the figure: all locations
share the invariant Inv(li) = [0, 4] for i = 0, 1, 2. The initial condition Init is
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{q0} {q0, q1}

{q1}

(b, [2, 4]) (a, [0, 2])

(b, [2, 4])

(b, [2, 4])

(a, [0, 2])

Figure 11. A deterministic finite automaton for the expression (1).

equal to (l0, {0}) ∪ (l1, ∅) ∪ (l2, ∅) and the termination condition Term is equal to
(l0, ∅}) ∪ (l1, {0}) ∪ (l2, {0}).

l0 l1

l2

b, x ∈ [2, 4]
x := 0

a, x ∈ [0, 2]
x := 0

b, x ∈ [2, 4]
x := 0

a, x ∈ [0, 2]
x := 0

b, x ∈ [2, 4]
x := 0

Figure 12. A deterministic hybrid system for the expression (1).
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With the same ideas as for Theorem 4.2, we prove the closure under complement
of the class of hybrid regular languages. Since this class is closed under union, it
is also closed under intersection.

Theorem 4.4. The family of hybrid regular languages is closed under boolean
operations.

Proof. We only need to prove the closure under complement. Let H be a hybrid
system accepting a timed language LH. By Proposition 3.3 there exists a hybrid
regular expression E over Σ × P such that LH = L(E) and a finite abstract
automaton AH accepting LA(E). We consider A′, the finite automaton accepting
the complement L′ of the language LA(E) over the alphabet Σ × P, and E′ the
related (classical) regular expression over this alphabet. This expression seen
as a hybrid regular expression represents a timed language L(E′) which is the
complement of L(E). Indeed, P is a partition of M+. So by applying Proposition
3.4 to the automaton A′, we may define a hybrid system H′ accepting exactly
L(E′) and the theorem is proved. !

Remark 4.5. Notice that the previous proof is not constructive. Nevertheless,
the hybrid system H′ can be effectively constructed from the given hybrid system
H as soon as the underlying theory is decidable. So in this case the family of
hybrid regular languages is effectively closed under boolean operations.

It is well known [4] that in the case of timed automata, the deterministic timed
languages are strictly included in the non-deterministic timed languages, and the
language family is not closed under complement. Consider the timed automaton
in Figure 13. This is the classical example of a timed automaton which accepts a
timed language whose complement is not accepted by a timed automaton [32]. It
is clear that this timed automaton is not a hybrid system as defined in this article,
since the clock variable x is not reset on each edge. Indeed, x cannot be reset on
the loop of location 2, though on all other edges it would be reasonable to reset
the clock to zero. Hence our method cannot be applied in the more general setting
of timed automata.

By Corollary 3.10, the hybrid systems which we have studied are equivalent in
accepting power to hybrid systems using only one variable for the output space.
In comparison with the timed automaton of Figure 13, such hybrid systems have
strong reset conditions on the unique variable but in counterpart they have pow-
erful dynamics on the locations. We have shown that the family of languages
accepted by such systems are closed under complementation.

We now turn to the problems of emptiness and universality for hybrid systems.
From this point forward in the paper it is necessary to suppose decidability of
the underlying theory. It is already known (see [18]) that the emptiness problem
is decidable for o-minimal hybrid systems as soon as the underlying o-minimal
structure is decidable. This result is often mentioned as the reachability problem.
The following theorem applies in a more general setting.
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1 2 3
a, x := 0 a, x = 1

a a a

Figure 13. A timed automaton whose complement language is
not accepted by a timed automaton.

Theorem 4.6. Let M = 〈M,<,+, 0, . . .〉 be a decidable expansion of an ordered
group. Then the emptiness problem for hybrid systems over M is decidable.

Proof. Let H be a hybrid system accepting a timed language LH. By Proposition
3.3, we may consider a finite alphabet Σ×P with Σ the event alphabet of H and
P a finite partition of M+ info definable non-empty subsets, and an abstract finite
automaton AH accepting a language L = LA(E) for a hybrid regular expression
E over Σ× P such that LH = L(E).

By Lemma 3.8, the automaton AH can be effectively constructed. Therefore, it
is decidable whether LH is non-empty since it is equivalent to check if there exists
a word (a1, P1)(a2, P2) . . . (an, Pn) over Σ× P that is accepted by AH. !

From Theorems 4.6 and Remark 4.5, we have the next corollary.

Corollary 4.7. The universality problem is decidable for hybrid systems. The
language inclusion problem is decidable for hybrid systems.

Returning to our comparison with timed automata, we note that in [4] the
authors show that the universality problem and the language inclusion problem
are undecidable for timed automata. On the positive side, the emptiness problem
(also called the reachability problem) is decidable for timed automata.

The picture is different for hybrid systems with a decidable underlying structure
since all these problems have been shown to be decidable. We recall that these
systems allow rich dynamics inside their locations and a strong reset condition on
the edges.

On the other hand, it should be noted that if the definition of timed automata
is slightly broadened to allow irrational constraints, the reachability problem be-
comes undecidable [40].

We end this section with some comments. The results of this section have a
strong relationship with the results proved in [26]. We have proved in the previous
section that hybrid systems are equivalent in accepting power to hybrid systems
using only one variable that behaves like a clock (Corollary 3.10). Timed automata
with a single clock which is reset at each transition are studied in [26] with a
view to answering the same questions as in this section. In the latter article, the
conclusions are similar, with two main differences:

• the underlying structure is restricted to the o-minimal decidable structure
〈R, <,+, ·, 0, 1〉,



24 TITLE WILL BE SET BY THE PUBLISHER

• in contrast, epsilon transitions resetting the clock are allowed in the con-
sidered model.

If we allow-epsilon transitions with the strong reset condition in our model of
a hybrid system, power is added to the model as demonstrated by the following
example. Notice that o-minimal hybrid systems with epsilon-transitions without
the strong reset condition have an undecidable emptiness problem [17,18].

Example 4.8. In Figure 14, we consider the hybrid system H with a loop labeled
by the silent event ε. The invariants of the locations l and l′ are Inv(l) = [0, 1]
and Inv(l′) = {0} respectively. The initial condition is (l, {0}) ∪ (l′, ∅) and the
termination condition is (l, ∅)∪(l′, {0}). The underlying structure is 〈R, <,+, 0, 1〉.
The timed language LH accepted by H is equal to

{(a, n) | n ∈ N}.

There is no hybrid system H′ without ε-transitions (definable in 〈R, <,+, 0, 1〉)
such that LH′ = LH. Otherwise by Proposition 3.3, there is a finite partition P
into definable subsets of R+ and a hybrid regular expression E over Σ × P such
that L(E) = LH. By the o-minimality of the structure, the definable pieces of
the finite partition are intervals with rational bounds. Hence it is impossible to
have such an expression E since the structure of LH forces an infinite number of
intervals.

l l′

ε, x = 1
x := 0

a, x = 0

x := 0

Figure 14. An hybrid system where the ε transition can not be eliminated.

Notice that if we shift from the structure 〈R, <,+, 0, 1〉 to the structure 〈R, Z, <
,+, 0, 1〉, the timed language LH is then accepted by the hybrid system H′ with
a single location l such that Inv(l) = R+, Initl = Terml = {0}, and with a single
edge e = (l, a, l) labeled by a ∈ Σ such that G(e) = N and R(e) = {0}. The guard
G(e) is a definable subset of 〈R, Z, <,+, 0, 1〉 (but not of the original structure).

The same kind of example is given in [26] to show that the studied model is
more powerful when ε-transitions are allowed. In this general setting, the author is
able to prove the closure under complementation. Indeed he shows that any timed
automaton with ε-transitions and a single clock that is reset at each transition
is equivalent in accepting power to such an automaton without ε-transition but
with more general constraints: instead of forcing the clock to belong to an interval
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with rational bounds, it is forced to belong to the sub-Kleene algebra generated
by these intervals. In terms of our hybrid systems, this means that the underlying
structure 〈R, <,+, 0, 1〉 is extended with the predicate Z. This fact has already
been demonstrated in the previous example. Notice that the theory of the extended
structure 〈R, Z, <,+, 0, 1〉 has been proved decidable in [46]. This approach could
provide an alternative proof to [26, Theorem 4.5] (decidability of the universality).

5. synchronized products of o-minimal hybrid systems

In this section we define the notion of a synchronized product of hybrid systems.
Synchronized product is an operation allowing two (or more) hybrid systems to
synchronize on some discrete transitions. This operation is very useful in the
verification framework because it allows the description of a large system as the
composition of several communicating smaller systems that can be described more
easily.

Informally, given two hybrid systems H1 and H2, the synchronized product
means that the systems interact on joint events. So if an event a is an event of
both H1 and H2, then the two systems synchronize on discrete transitions labeled
by a. If a is an event of H1 only, then a discrete transition of H1 labeled by a
synchronizes with a continuous transition of duration 0 in H2, and vice versa.

Definition 5.1. Let H1 and H2 be two hybrid systems with event alphabets Σ1

and Σ2 respectively. The synchronized product of H1 and H2 is the transition
system T can

H1×H2
= (Q,→) defined as follows from the canonical transition systems

T can
H1

= (Q1,→1) and T can
H2

= (Q2,→1).

• The set of states Q is Q1 ×Q2,
• The event alphabet Σ is Σ1 ∪ Σ2,
• A discrete transition (q1, q2)

a−→ (q′1, q
′
2) labeled by the event a ∈ Σ satisfies

one among the following conditions.
– a ∈ Σ1 ∩ Σ2. Then q1

a−→ q′1 and q2
a−→ q′2 are discrete transitions in

T can
H1

and T can
H2

respectively.

– a ∈ Σ1 \ Σ2. Then q1
a−→ q′1 and q2 = q′2.

– a ∈ Σ2 \ Σ1. Then q1 = q′1 and q2
a−→ q′2.

• For a continuous transition (q1, q2)
t−→ (q′1, q

′
2) with duration t ∈ M+ to

appear, q1
t−→ q′1 and q2

t−→ q′2 are continuous transitions of T can
H1

and T can
H2

respectively.
• A transition (q1, q2) → (q′1, q

′
2) appears in T can

H1×H2
if there exists q̄1 ∈ Q1,

q̄2 ∈ Q2 such that

(q1, q2)
t−→ (q̄1, q̄2)

a−→ (q′1, q
′
2),

that is, there exists a continuous transition followed by a discrete transition
(as specified above).
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The synchronization alphabet of H1 and H2 is equal to Σ1∩Σ2, that is, the letters
on which they synchronize.

We extend the definition to a product of n hybrid systems in the obvious way.

We prove that the reachability problem is in general undecidable for synchro-
nized products of hybrid systems. In the proof we construct a simulation of a two
counter machine using a synchronized product of seven hybrid systems that are
o-minimal. The construction is inspired by the proof given in [40] of the undecid-
ability of reachability in the case of timed automata with irrational constants.

Theorem 5.2. The reachability problem is undecidable for synchronized products
of hybrid systems.

Proof.
A two counter machine. Consider a two counter machine consisting of counters
C1 and C2 and a finite list of labeled instructions given in Table 1. Without loss
of generality, we assume that the initial instruction is labeled with 1.

zero test k : if Ci = 0 then go to k′ else go to k′′

increment k : Ci := Ci + 1
decrement k : Ci := Ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

Our goal is to simulate the behavior of a two counter machine by using a
synchronized product of hybrid systems. The underlying o-minimal decidable
structure M is the ordered field of reals 〈R, <,+, ·, 0, 1〉. We require seven separate
systems to achieve this aim; one system will be used to encode the instruction
list for the machine, while the others will encode the evolution of the counters
themselves.

Encoding the instruction list. We encode such a finite list as a hybrid system
H0 with no variable. Note that no information about the state of the counters will
be included in this system, it will simply serve as a reference for which action should
be performed when. The locations are the labels k, plus some additional locations
as described below. The initial condition Init is such that Initl = ∅ for each location
l except for the one with label k = 1 where Initl = {0}. The set Σ of events consists
of the actions of the counter machine, that is inci,deci, zeroi,non-zeroi, copyi, stop.
The edges of H0 are depicted in Figure 15.

An extra step is added to the negative zero test for technical reasons which we
shall explain later. We add a new location k̄ for this purpose. Similarly we add a
new location K which indicates the halting of the counter machine.
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k k + 1
inci

k k + 1
deci

k K
stop

k

k′

k̄ k′′

zeroi

non-zeroi
copyi

Figure 15. The edges of the hybrid system H0

Encoding the counters. Let δ ∈ [1, 2] \ Q be definable; we fix δ =
√

2. Then
we encode the integer value mi of the counter Ci by miδ (mod 1), which we will
denote by 〈miδ〉. Since δ 2∈ Q, 〈miδ〉 unambiguously encodes the value mi (that
is, if 〈miδ〉 = 〈niδ〉 then mi = ni).

For each counter Ci we have three variables xi, yi and zi, with 0 ≤ xi ≤ δ,
and 0 ≤ yi, zi ≤ 1. We encode the value of the counter Ci as the value yi − xi in
the system, plus zi a copy of yi, which we require for technical reasons which we
discuss later. See Figure 16.

0 1

xi yi

〈miδ〉

Figure 16. yi − xi represents the counter value mod 1.

The encoding of the counter value as the difference of the two variables xi and
yi must be understood to be circular, as seen in Figure 17. An alternative but
equivalent understanding of the encoding of the counter value may be gained by
considering the counter to be the value of yi when the variable xi is equal to one
and we are in the distinguished location defined in the next section.

0 1

xiyi

α β

Figure 17. α + β = 〈miδ〉
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The structure of the hybrid systems. In the previous paragraph we described
the system H0. The other six systems are related to the six variables xi, yi, zi

for i = 1, 2. We denote them by Hx
i ,Hy

i ,Hz
i for i = 1, 2 respectively. These six

hybrid systems each have only the one variable implied by their names (namely
xi, yi and zi respectively). We distinguish one particular location in the system
Hx

i and denote this location lxi . For each of these systems, its alphabet of events
is composed of some events of the system H0 and an additional event only used
by the system. See for instance Figure 18, the additional event letter has not
been indicated on the figure but is implicitly present on the transition linking the
location DEC to the location lxi . Note that except for two edges in the system Hx

i

the variables xi, yi, zi are reset to zero each time their value reaches one.

DEC
xi ≤ 2− δ

lxi
xi ≤ 1

INC
xi ≤ δ

inci

xi = 1

xi := 0

xi = δ
xi := 0

deci

xi = 1

xi := 0

xi = 2− δ
xi := 0

xi = 1
xi := 0

zeroi

xi = 1
xi := 0

non-zeroi

xi = 1
xi := 0

Figure 18. The system Hx
i with δ =

√
2.

• Incrementing counter Ci.
The increment step is performed using the systems H0 and Hx

i . Suppose
that counter Ci is encoded by 〈miδ〉, that is, 〈miδ〉 = yi − xi with xi = 1
and we are in the distinguished location lxi of Hx

i . On reaching an edge
labeled inci in the system H0 we are compelled to follow the edge from
lxi in Hx

i to the location labeled INC (note xi has been reset to 0). On
returning to lxi we again have xi = 0. We claim that the counter Ci has
been incremented by 1, that is yi − xi = 〈(mi + 1)δ〉. See Figure 21 (we
begin with xi being reset to zero).

• Decrementing counter Ci.
The decrement step is performed using the systems H0 and Hx

i . On
reaching an edge labeled deci in the system H0 we are compelled to follow
the edge from lxi to the location labeled DEC. On returning to lxi we again
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yi ≤ 1

copyi

yi := 0

zeroi

yi = 1
yi := 0

non-zeroi

0 < yi < 1
yi := 0

yi = 1
yi := 0

Figure 19. The system Hy
i

zi ≤ 1

copyi

zi = 1
zi := 0

zi = 1
zi := 0

Figure 20. The system Hz
i

have xi = 0. We claim that the counter Ci has been decremented by 1,
that is yi = xi = 〈(mi − 1)δ〉. See Figure 22.
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0 1 δ

xi yi

〈miδ〉

xi yi

〈miδ〉

xiyi

1 − 〈miδ〉

xiyi

1 − 〈miδ〉

xi yi

δ − (1 − 〈miδ〉)

Figure 21. The increment step. Note that δ − (1 − 〈miδ〉) =
〈(mi + 1)δ〉.

0 1 δ2− δ

xi yi

〈miδ〉

xi yi

〈miδ〉

xiyi

1 − 〈miδ〉

xiyi

1 − 〈miδ〉

xi yi

α

Figure 22. The decrement step. Note that α = 2− δ − (1− 〈miδ〉).

• Positive zero test on Ci.
For this operation on the counter Ci we require the hybrid systems

H0,Hx
i and Hy

i . From our encoding of the value of Ci, it is clear that the
value of Ci is zero if and only if 〈miδ〉 = 0 which is true if and only if
yi = xi. In the distinguished location lxi of Hx

i with xi = 1, this means
that yi = 1 and we are compelled to follow the edge labeled zeroi in both
Hx

i and Hy
i as required.

• Negative zero test on Ci.
We require the hybrid systems H0,Hx

i ,Hy
i and Hz

i . Note that in H0,
each edge labeled with non-zeroi is followed immediately by an edge la-
beled with copyi. Therefore there is a synchronization between H0,Hx

i and
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Hy
i (due to the event non-zeroi) then a synchronization between H0,Hy

i

and Hz
i (due to the event copyi). If the value of Ci is non-zero, our en-

coding implies that xi 2= yi. Equivalently, xi = 1 and 0 < yi < 1. If the
value of Ci is non zero then we synchronize the systems Hx

i and Hy
i on

the event non-zeroi (see Figures 18 and 19). The strong reset condition
means that the variables xi and yi are reset to zero, and the encoded value
of the counter is lost. However, recall that the variable zi is a copy of the
variable yi, and the former will not have been reset since there is no edge
labeled non-zeroi in the system Hz

i . So, on encountering next an edge
labeled copyi in the system H0, we resynchronize the value of yi to the
stored value zi, ensuring that no information is lost. See Figure 23.

0 1

xi yi = zi

〈miδ〉

xi = yi zi

〈miδ〉

xi = yi zi

〈miδ〉

xiyi = zi

〈miδ〉

sync
non-zeroi

sync
copyi

Figure 23. Negative zero test.

From the above discussion, one can conclude that the two counter machine halts
if and only if the synchronized product of the seven hybrid systems reaches the
stop location.

!

Consider hybrid systems such that their underlying structure is o-minimal and
decidable. We can now detail the picture about the decidability of the reachability
problem for the synchronized product of such systems.

In [22], the authors show that the reachability problem is decidable under the
hypothesis that the synchronization alphabet is empty. In our proof, we use hybrid
systems such that the synchronization alphabet is non-empty and the reachability
problem becomes undecidable.

Note that when two hybrid systems H1 and H2 have the same alphabet of events
which is their synchronization alphabet, their synchronized product is nothing
else than a hybrid system accepting the intersection of the timed languages LH1

and LH2
. In the proof of Theorem 5.2, the synchronization alphabet is strictly

included in the event alphabet of the systems, and the resulting synchronized
product is no longer a hybrid system with the strong reset condition. This ensures
no contradiction with Theorem 4.4.
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Therefore the borderline between decidability and undecidability of the reach-
ability problem strongly depends on the synchronization alphabet. It is in general
undecidable (by Theorem 4.4) and becomes decidable if the synchronization al-
phabet is empty or if it is equal to the event alphabet of each system.
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