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1 Introduction

The field of formal language theory — initiated by Noam Chomsky in the 1950s,
building on earlier work by Axel Thue, Alan Turing, and Emil Post — provides
a measuring stick for linguistic theories that sets a minimal limit of descriptive
adequacy. Chomsky suggested a series of massive simplifications and abstrac-
tions to the empirical domain of natural language. (In particular, this approach
ignores meaning entirely. Also, all issues regarding the usage of expressions, like
their frequency, context dependence, and processing complexity, are left out of
consideration. Finally, it is assumed that patterns that are productive for short
strings apply to strings of arbitrary length in an unrestricted way.) The im-
mense success of this framework — influencing not just linguistics to this day,
but also theoretical computer science and, more recently, molecular biology —
suggests that these abstractions were well chosen, preserving essential aspects
of the structure of natural languages.1

An expression in the sense of formal language theory is simply a finite string
of symbols, and a (formal) language is a set of such strings. The theory explores
the mathematical and computational properties of such sets. As a starting point,
formal languages are organized into a nested hierarchy of increasing complexity.

In its classical formulation [3], this so-called Chomsky Hierarchy has four lev-
els of increasing complexity: regular, context-free, context-sensitive, and com-
putably enumerable languages. Subsequent work in formal linguistics showed
that this four-fold distinction is too coarse-grained to pin down the level of com-
plexity of natural languages along this domain. Therefore several refinements
have been proposed. Of particular importance here are levels that extend the
class of context-free languages — the so-calledmildly context-sensitive languages
— and ones that further delimit the regular languages — the sub-regular hier-
archy.

In this article we will briefly recapitulate the characteristic properties of the
four classical levels of the Chomsky Hierarchy and their (ir)relevance to the
analysis for natural languages. We will do this in a semi-formal style that does
not assume specific knowledge of discrete mathematics beyond elementary set
theory. On this basis, we will explain the motivation and characteristics of the
mildly context-sensitive and the sub-regular hierarchies. In this way we hope
to give researchers working in Artificial Grammar Learning an iron ration of
formal language theory that helps to relate experimental work to formal notions
of complexity.

1Authoratitive textbooks on this field are [11, 30].
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2 The Chomsky Hierarchy

A formal language in the sense of Formal Language Theory (FLT) is a set of
sequences, or strings over some finite vocabulary Σ. When applied to natu-
ral languages, the vocabulary is usually identified with words, morphemes or
sounds.2 FLT is a collection of mathematical and algorithmic tools about how
to define formal languages with finite means, and and how to process them
computationally. It is important to bear in mind that FLT is not concerned
with the meanings of strings, nor with quantitative/statistical aspects like the
frequency or probability of strings. This in no way suggests that these aspects
are not important for the analysis of sets of strings in the real world — this is
just not what FLT traditionally is about (even though it is of course possible
to extend FLT accordingly — see Section 7).

To be more specific, FLT deals with formal languages (= sets of strings)
that can be defined by finite means, even if the language itself is infinite. The
standard way to give such a finite description is with a grammar. Four things
must be specified to define a grammar: a finite vocabulary of symbols (referred
to as terminals) that appear in the strings of the language; a second finite
vocabulary of extra symbols called non-terminals ; a special designated non-
terminal called the start symbol ; and a finite set of rules.

From now on we will assume that when we refer to a grammar G we refer
to a quadruple 〈Σ, NT, S,R〉, where Σ is the set of terminals, NT is the set of
non-terminals, S is the start symbol, and R is the set of rules. Rules have the
form α → β, understood as meaning “α may be replaced by β”, where α and β

are strings of symbols from Σ and/or NT . Application of the rule “α → β” to
a string means finding a substring in it that is identical with α and replacing
that substring by β, keeping the rest the same. Thus applying “α → β” to xαy

produces xβy.
G will be said to generate a string w consisting of symbols from Σ if and

only if it is possible to start with S and produce w through some finite sequence
of rule applications. The sequence of modified strings that proceeds from S to
w is called a derivation of w. The set of all strings that G can generate is called
the language of G, and is notated L(G).

The question whether a given string w is generated by a given grammar G
is called the membership problem. It is decidable if there is a Turing machine
(or an equivalent device, i.e. a computer program running on a machine with
unlimited memory and time resources) that answers this question with “yes” or
“no” in finite time. A grammar G is called decidable if the membership problem
is decidable for every string of terminals of that grammar. In a slight abuse of
terminology, a language is called decidable if it has a decidable grammar. A
class of grammars/languages is called decidable if and only if all its members
are decidable.

2This points to another simplification that is needed when applying FLT to natural lan-
guages: In each language with productive word formation rules, the set of possible words is
unbounded. Likewise, the set of morphemes is in principle unbounded if loans from other
languages, acronym formation and similar processes are taken into considerations. It is com-
monly assumed here that the object of investigation is an idealized language that does not
undergo change. When the vocabulary items are identified with words, it is tacitly taken for
granted that the words of a language form a finite number of grammatical categories, and
that it is thus sufficient to consider only a finite number of instances of each class.
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2.1 Computably enumerable languages

The class of all languages that can be defined by some formal grammar is called
computably enumerable. It can be shown that any kind of formal, algorithmic
procedure that can be precisely defined can also be expressed by some grammar
— be it the rules of chess, the derivations of logic, or the memory manipulations
of a computer program. In fact, any language that can be defined by a Turing
machine (or an equivalent device) is computably enumerable, and vice versa.

All computably enumerable languages are semi-decidable. This means that
there is a Turing machine that takes a string w as input and outputs the answer
“yes” if and only if w is generated by G. If w is not generated by G, the machine
either outputs a different answer or it runs forever.

Examples of languages with this property are the set of computer programs
that halt after a finite number of steps (simply compile the program into a
Turing machine and let it run, and then output “yes” if the program terminates),
or the set of provable statements of first order logic. (A Turing machine can
systematically list all proofs of theorems one after the other; if the last line of
the proof equals the string in question: output “yes”; otherwise move on to the
next proof.)

2.2 Context-sensitive languages

Context-sensitive grammars3 are those grammars where the left hand side of
each rule (α) is never longer than the right hand side (β). Context-sensitive
languages are then the languages that can be defined by some context-sensitive
grammar. The definition of this class of grammars immediately ensures a deci-
sion procedure for the membership problem. Starting from a string in question
w, there are finitely many ways in which rules can be applied backward to it.
None of the resulting strings is longer than w. Repeating this procedure either
leads to shorter strings or to a loop that need not be further considered. In this
way, it can be decided in finite time whether w is derivable from S.

Even though the question whether or not a given string w is generated by
a given context-sensitive grammar G is in principle decidable, computing this
answer may be so complex algorithmically that it is, for practical purposes,
intractable.4

It should be noted that there are decidable languages that are not context-
sensitive (even though they don’t have any practical relevance in connection
with natural languages).

Examples of context-sensitive languages (that are not context-free) are (we
follow the common notation where xi denotes a consecutive string of symbols
that contains exactly i repetitions of the string x):

• the set of all prime numbers (where each number n is represented by a
string of length n),

• the set of all square numbers,

3The term “context-sensitive” has only historical significance. It has noting to do with
context-dependency in a non-technical sense in any way. The same applies to the term
“context-free”.

4In the terminology of computational complexity theory, the problem is PSPACE hard.
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• the copy language, i.e. the set of all strings over Σ that consist of two
identical halfs,

• anbmcndm,

• anbncn, and

• anbncnenfn

2.3 Context-free languages

In a context-free grammar, all rules take the form

A → β,

where A is a single non-terminal symbol and β is a string of symbols.5 Context-
free languages are those languages that can be defined by a context-free gram-
mar.

Here the non-terminals can be interpreted as names of syntactic categories,
and the arrow “→” can be interpreted as “consists of”. Therefore the derivation
of a string x in such a grammar implicitly imposes a hierarchical structure of x
into ever larger sub-phrases. For this reason, context-free grammars/languages
are sometimes referred to as phrase structure grammars/languages, and it is
assumed that such languages have an intrinsic hierarchical structure.

As hierarchical structure is inherent in many sequential phenomena in biol-
ogy and culture — from problem solving to musical structure —, context-free
grammars are a very versatile analytical tool.

It is important to keep in mind though that a context-free language (i.e. a set
of strings) does not automatically come equipped with an intrinsic hierarchical
structure. There may be several grammars for the same language that impose
entirely different phrase structures.

This point can be illustrated with the language (ab)n(cd)n. A simple gram-
mar for it has only two rules:

• S → abScd,

• S → abcd.

The derivation for the string abababcdcdcd can succinctly be represented by the
phrase structure tree given in Figure 1. In such a tree diagram, each local tree
(i.e. each node together with the nodes below it that are connected to it by
a direct line) represents one rule application, with the node on top being the
left-hand side and the nodes on the bottom the right-hand side. The sequence
that is derived can be read off the leaves (the nodes from which no line extends
downward) of the tree.

The same language can also be described by a somewhat more complex
grammar, using the rules:

• S → aTd,

5In context-free grammars, the right hand side of a rule may be the empty string, while in
context-sensitive grammars this is not licit. Therefore, strictly speaking, not every context-
free grammar is context-sensitive. This is a minor technical point though that can be ignored
in the present context.
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S

a b S c d

a b S c d

a b c d

Figure 1: Phrase structure tree

S

a T d

b S c

a T d

b S c

a T d

b c

Figure 2: Different phrase structure tree for the same string

• T → bSc,

• T → bc.

According to this grammar, the phrase structure tree for abababcdcdcd comes
out as given in Figure 2.

So both grammars impose a hierarchical structure on the string in question,
but these structures differ considerably. It is thus important to keep in mind
that phrase structures are tied to particular grammars and need not be intrinsic
to the language as such.

Natural languages often provide clues about the hierarchical structure of
their sentences beyond the plain linear structure. (Intonation, semantic co-
herence, morphological agreement and relative syntactic independence are fre-
quently used criteria for a sub-string to be considered a coherent hierarchical
unit.) Therefore most linguists require a grammar not just to generate the cor-
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context-free languages non-context-free languages

mirror language
(i.e. the set of strings xy over a
given Σ such that y is the mirror
image of x)

copy language
(i.e. the set of strings xx over a
given Σ such that x is an arbi-
trary string of symbols from Σ)

palindrome language
(i.e. the set of strings x that are
identical to their mirror image)

anbn anbncn

anbmcmdn anbmcndm

well-formed programs of
Python (or any other high-level
programming language)

Dyck language
(the set of well-nested parentheses)

well-formed arithmetic expression

Table 1: Context-free and non-context-free languages

rect set of strings to be adequate. Rather, it must also assign a plausible phrase
structure.

The membership problem for context-free languages is solvable in cubic time,
i.e. the maximum time that is needed to decide whether a given string x belongs
to L(G) for some context-free grammar G grows with the third power of the
length of x. This means that there are efficient algorithms to solve this problem.

Examples of (non-regular) context-free languages are given in the left column
of Table 1. Where appropriate, a minimally differing example for a non-context-
free language (that are all context-sensitive) are given in the right column for
contrast.

2.4 Regular languages

Regular languages are those languages that are defined by regular grammars.
In such a grammar, all rules take one of the following two forms:

A → a,

A → aB.

Here A and B stand for non-terminal symbols and a for a terminal symbol.6

6Equivalently, we may demand that the rules take the form “A → a” or “A → Ba”,
with the non-terminal, if present, preceding the terminal. It is crucial though that within a
given grammar, all rules start with a terminal on the right-hand side, or all rules end with a
terminal.
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regular languages non-regular languages

anbm anbn

the set of strings x such that the
number of as in x is a multiple
of 4

the set of strings x such that the
number of as and the number of
bs in x are equal

the set of natural numbers that
leave a remainder of 3 when di-
vided by 5

Table 2: Regular and non-regular languages

As regular grammars are also context-free, the non-terminals can be seen as
category symbols and the arrow as “consists of”. According to another natural
interpretation, non-terminals are names of the states of an automaton. The
arrow “→” symbolises possible state transitions, and the terminal on the right
hand side is a symbol that is emitted as a side effect of this transition. The start
symbol S designates the initial state, and rules without a non-terminal on the
right hand side represent transitions into the final state. As there are finitely
many non-terminals, a regular grammar thus describes a finite state automaton.
In fact, it can be shown that each finite state automaton can be transformed
into one that is described by a regular grammar without altering the language
that is being described. Therefore regular grammars/languages are frequently
referred to as finite state grammars/languages.

The membership problem for regular languages can be solved in linear time,
i.e. the recognition time grows at most proportionally to the length of the string
in question. Regular languages can thus be processed computationally in a very
efficient way.

Table 2 gives some examples of regular languages in the left column. They
are contrasted to similar non-regular (context-free) languages in the right col-
umn.

As the examples illustrate, regular grammars are able to count up to a certain
number. This number may be arbitrarily large, but for each regular grammar,
there is an upper limit for counting. No regular grammars is able to count two
sets of symbols and compare their size if this size is potentially unlimited. As a
consequence, anbn is not regular.

The full proof of this fact goes beyond the scope of this overview article,
and the interested reader is referred to the literature cited. The crucial insight
underlying this proof is quite intuitive though, and we will give a brief sketch.

For each regular grammer G, it is possible to construct an algorithm (a
finite state automaton) that reads a string from left to right, and then outputs
“yes” if the string belongs to L(G), and “no” otherwise. At each point in time,
this algorithm is in one of k + 1 different states, where k is the number of
non-terminals in G. Suppose, for a reductio ad absurdum, that L = anbn is
a regular language, and let G∗ be a regular grammar that recognizes L and
that has k∗ non-terminals. Then the corresponding recognition algorithm has
k∗ + 1 different states. Now let i be some number > k∗ + 1. According to the
assumption, aibi belongs to L(G). When the recognition algorithm reads in the
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Figure 3: Chomsky Hierarchy

sequence of as at the beginning of the string, it will visit the same state for the
second time after at most k∗ + 1 steps. So a sequence of i consecutive as will
be indistinguishable for the algorithm from a sequence of i− k′ consecutive as,
for some positive k′ ≤ k∗ +1. Hence, if the algorithm accepts the string aibi, it
will also accept the string ai−k′

bi. As this string does not belong to anbn, the
algorithm does not accept all and only the elements of anbn, contra assumption.
Therefore anbn cannot be a regular language.

As mentioned above, each regular language corresponds to some finite state
automaton, i.e. an algorithm that consumes one symbol at a time and changes
its state according to the symbol consumed. As the name suggests, such an
automaton has finitely many states. Conversely, each finite state automaton
can be transformed into a regular grammar G such that the automaton accepts
all and only the strings in L(G).

The other levels of the Chomsky Hierarchy likewise each correspond to a
specific class of automata. Context-free grammars correspond to finite state
automata that are additionally equipped with a pushdown stack. When reading
an input symbol, such a machine can — next to changing its state — add an
item on top of a stack, or remove an item from the top of the stack.

Context-sensitive grammars correspond to linearly bounded automata. These
are essentially Turing machines, i.e. finite state automata with a memory tape
that can perform arbitrary operations (writing and erasing symbols on the tape
and moving the tape in either direction) during state transitions. The length
of the available tape is not infinite though but bounded by a number that is a
linear function of the length of the input string.

Finally, Type-0 grammars correspond to unrestricted Turing machines.
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Neither did John claim that he neither smokes while . . . nor snores, nor
did anybody believe it.

Figure 4: Nested dependencies in English

dass mer d’chind em Hans es Huus lönd hälfe aanstriiche
that we the children-ACC Hans-DAT the house-ACC let help paint

‘that we let the children help Hans paint the house’

Figure 5: Cross-serial dependencies in Swiss German

3 Where are natural languages located?

The issue where natural languages are located within this hierarchy has been
an open problem over decades. Chomksky [4] pointed out already in the 1950s
that English is not a regular language, and this argument probably carries over
to all other natural languages. The crucial insight here is that English has cen-
tre embedding constructions. These are constructions involving two dependent
elements a and b that are not adjacent, and that may contain another instance
of the same construction between the two parts. An example are neither-nor
constructions, as illustrated in Figure 4. The pair-wise dependencies between
neither and nor are nested. As far as the grammar of English goes, there is
no fixed upper bound on the number of levels of embedding.7 Consequently,
English grammar allows for a potentially unlimited number of nested depen-
dencies of unlimited size. Regular grammars are unable to recognize this kind
of unlimited dependencies because this involves counting and comparing. As
mentioned at the end of the previous section, regular languages cannot do this.

The issue whether all natural languages are context-free proved to be more
tricky.8 It was finally settled only in the mid-1980s, independently by the schol-
ars Riny Huybregt ([12]), Stuart Shieber ([29]), and Christopher Culy ([7]).
Huybregts and Shieber use essentially the same argument. They notice that the
dependencies between verbs and their objects in Swiss German are unbounded
in length. However, they are not nested, but rather interleaved so that they
cross each other. An example (taken from [29]) is given in Figure 5.

Here the first in a series of three article-noun phrases (d’chind ’the child’)
is the object of the first verb, lönd ’let’ (lönd requires its object to be in ac-
cusative case and d’chind is in accusative); the second article-noun phrase (em

7Note that here one of the idealizations mentioned above come into play here: It is taken
for granted that a productive pattern — forming a neither-nor construction out of two gram-
matical sentences — can be applied to arbitrarily large sentences to form an even larger
sentence.

8Here we strictly refer to the problem whether the set of strings of grammatical English
sentences is a context-free language, disregarding all further criteria for the linguistic adequacy
of a grammatical description.
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Hans, ’Hans’, carrying dative case) is the object of the second verb (hälfe ’help’,
which requires its object to be in dative case) and the third article-noun phrase
(es Huus ’the house’, accusative case) is the object of the third verb (aanstri-
iche ’paint’, which requires an accusative object). In English, as shown in the
glosses, each verb is directly adjacent to its object, which could be captured
even by a regular grammar. Swiss German, however, has crossing dependencies
between objects and verbs, and the number of these interlocked dependencies is
potentially unbounded. Context-free grammars can only handle an unbounded
number of interlocked dependencies if they are nested. Therefore Swiss-German
cannot be context-free. Culy makes a case that the rules of word formation
in the West-African language Bambara conspire to create unbounded crossing
dependencies as well, thus establishing the non-context-freeness of this language
of well-formed words.

Simple toy languages displaying the same structural properties are the copy
language — where each grammatical string has the form ww for some arbitrary
string w, and this creates dependencies the corresponding symbols in the first
and the second half of the string — and anbmcndm, where the dependencies
between the as and the cs include an unlimited number of open dependencies
reaching from the bs to the ds. Therefore both languages are not context-free.

4 Mildly context-sensitive languages

After this brief recapitulation of the “classical” Chomsky Hierarchy, the rest of
the paper will review two extensions that have proven useful in linguistics and
cognitive science. The first one — dealt with in this section — considers levels
between context-free and context-sensitive languages; so-called mildly context-
sensitive languages. The following section is devoted to the subregular hierarchy,
a collection of language classes that are strictly included in the regular languages.

Since the 1980s, several attempts have been made to design grammar for-
malisms that are more suitable for doing linguistics than the rewrite grammars
from the Chomsky Hierarchy, while at the same time approximating the compu-
tational tractability of context-free grammars. The most prominent examples
are Aravind Joshi’s Tree Adjoining Grammar (see [13]) and Mark Steedman’s
Combinatory Categorial Grammar ([1, 33]). In 1991, [14] proved that four of
these formalisms (the two already mentioned ones, plus Gerald Gazdar’s [8] Lin-
ear Indexed Grammars and Carl Pollard’s [20] Head Grammars) are equivalent,
i.e. they describe the same class of languages. A series of related attempts to
further extend the empirical coverage of such formalisms and to gain a deeper
understanding of their mathematical properties converged to another class of
mutually equivalent formalisms (including David Weir’s [35] Linear Context-
Free Rewrite Systems and Set-Local Multi-Component TAGs, and Ed Stabler’s
[31] formalisation of Noam Chomsky’s [5] Minimalist Grammars) that describe
an even larger class of formal languages. As there are no common terms for these
classes, we will refer to the smaller one as TAG-languages (TAG abbreviating
Tree Adjoining Grammar) and the larger one MG-languages (MG abbreviating
Minimalist Grammar).

The membership problem for TAG languages is O(n6), i.e. the time that the
algorithm takes grows with the 6th power of the length of the string in question.
Non-context free languages that belong to the TAG languages are for instance
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• anbmcndm,

• the copy language,

• anbncn, and

• anbncndn.

The descriptive power of TAG languages is sufficient to capture the kind of
crossing dependencies that are observed in Swiss German and Bambara.9

Minimalist Grammars (and equivalent formalisms) are still more powerful
than that. While TAG languages may only contain up to four different types of
interlocked unlimited (crossing or nesting) dependencies, there is no such upper
bound for MG languages. To be more precise, each MG language has a finite
upper bound for the number of different types of dependencies, but within the
class of MG languages, this bound may be arbitrarily large. This leads to a
higher computational complexity of the membership problem. It is still always
polynomial, but the highest exponent of the term may be arbitrarily large.

Becker et al. [2] argue that this added complexity is actually needed to
capture all aspects of word order variation in German.

Non-TAG languages that are included in the MG languages are for instance

• an1 . . . a
n
k for arbitrary k, and

• wk for arbitrary k, i.e. the k-copy language for any k.

Aravind Joshi [13] described a list of properties that an extension of the
context-free languages should have if it is to be of practical use for linguistics:

• It contains all context-free languages.

• It can describe a limited number of types of cross-serial dependencies.

• Its membership problem has polynomial complexity.

• All languages in it have constant growth property.

With regard to the last property, let L be some formal language, and let
l1, l2, l3, . . . be the strings in L, ordered according to length. L has the con-
stant growth property if there is an upper limit for the difference in length
between two consecutive elements of this list. The motivation for this postu-
late is that in each natural language, each sentence can be extended to another
grammatical sentence by adding a single word (like an adjective or an adverb)
or another short conjunct. Hence there cannot be arbitrarily large gaps in the
list of possible lengths the sentences of a language can have.

This postulate excludes many context-sensitive languages, like the set of
square numbers, the set of prime numbers, or the set of powers of 2 etc.

Joshi calls classes of languages with these properties mildly context-sensitive
because they extend the context-free languages, but only slightly, preserving
many of the “nice” features of the context-free languages. Both TAG languages
and MG languages are mildly context-sensitive classes in this sense.

The refinement of the Chomsky Hierarchy that emerges from this line of
research is displayed in Figure 6.

9A thorough discussion of types of dependencies in natural languages and mild context-
sensitivity can be found in [32].
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Figure 6: The mildly context-sensitive sub-hierarchy

It should be noted that Michaelis and Kracht [18] present an argument that
Old Georgian is not an MG language. This conclusion only follows though if
a certain pattern of complex case marking of this language is applicable recur-
sively without limit. Of course this issue cannot be settled for a dead language,
and so far the investigation of living languages with similar properties remained
inconclusive. Most experts therefore assume at this time that all natural lan-
guages are MG languages.

5 Cognitive Complexity

Classes of the Chomsky Hierarchy provide a measure of the complexity of pat-
terns based on the structure of the mechanisms (grammars, automata) that can
distinguish them. But, as we observed in Section 2.3 these mechanisms make
judgements about strings in terms of specific analyses of their components.
When dealing with an unknown mechanism, such as a cognitive mechanism of
an experimental subject, we know nothing about the analyses they employ in
making their judgements, we know only that they can or cannot make these
judgements about strings correctly.

The question for Artificial Grammar Learning, then, is what characteristics
of the formal mechanisms are shared by the physical mechanisms employed by
an organism when it is learning a pattern. What valid inferences may one make
about the nature of an unknown mechanism that can distinguish the same sorts
of patterns?

Here the grammar- and automata-theoretic characterisations of the Chom-
sky Hierarchy are much less useful. As we saw in Sections 2.4 and 4, mechanisms
with widely differing natures often turn out to be equivalent in the sense that

12



they are capable of describing exactly the same class of languages10

Mechanisms that can recognise arbitrary context-free languages are not lim-
ited to mechanisms that analyse the string in a way analogous to a context-free
grammar. Dependency Grammars [34], for example, analyse a string in terms of
a binary relation over its elements, and there is well-defined class of these gram-
mars that can distinguish all and only the context-free languages. In learning
a context-free language, it is not necessary to analyse it in terms of immediate
constituency as it is formalised by context-free grammars.

Similarly, within each of the levels of the Chomsky Hierarchy there are classes
of languages that do not require the full power of the grammars associated with
that level. The language anbn, for example, while properly context-free, can be
recognised by a finite state automaton that is augmented with a simple counter.
The languages anbmcmdn and anbn with explicit nested dependencies cannot.
On the other hand, these can still be recognised by mechanisms that are simpler
than those that are required to recognise context-free languages in general.

So what can one say about a mechanism that can learn a properly context-
free pattern? For one thing, it is not finite-state. That is, there is no bound,
independent of the length of the string, on the quantity of information that it
must infer in making a judgement about whether the string fits the pattern.
Beyond that, there is very little if anything that we can determine about the
nature of that information and how it is used simply from the evidence that an
organism can learn the pattern.11

The situation is not hopeless, however. No matter how complicated the
information inferred by a mechanism in analysing a string, it must be based on
recognising simple patterns that occur in the string itself. One can, for example,
identify the class of patterns that can be recognised simply on the basis of the
adjacent pairs of symbols that occur in the string. Any mechanism that is based,
in part, on that sort of information about the string will need to at least be able
to distinguish patterns of this sort.

In the next section we introduce a hierarchy of language-theoretic complexity
classes that are based on this sort of distinction: what relationships between
the symbols in the string must a mechanism be sensitive to (to attend to)
in order to distinguish patterns in that class. Since they are based solely on
the relationships that are explicit in the strings themselves, these classes are
fundamental: every mechanism that can recognise a pattern that is properly in
one of these classes must necessarily be sensitive the kinds of relationships that
characterise the class.

On the other hand, the fact that they are defined in terms of explicit re-
lationships in the string itself also implies that they are all finite-state. But
they stratify the finite-state languages in a way that provides a measure of com-
plexity that is independent of the details that may vary between mechanisms
that can recognise a given pattern, one that does not depend on a priori as-
sumptions about the nature of the mechanism under study. Because this is a

10Even more strongly, it is generally possible to convert descriptions from one class of models
to descriptions in an equivalent class fully automatically.

11This does not imply that mechanisms that are physically finitely bounded—the brain
of an organism, for example—are restricted to recognising only finite-state languages. The
organism may well employ a mechanism that, in general, requires unbounded memory which
would simply fail when it encounters a string that is too complex, if it ever did encounter such
a string.
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notion of complexity that is necessarily relevant to cognitive mechanisms, and
because the relative complexity of patterns is invariant over the range of equiva-
lent mechanisms (a property not shared by measures like, for example, minimum
description length) it provides a useful notion of Cognitive Complexity.

This is a notion of complexity that is particularly useful for AGL: the pat-
terns are relatively simple, and therefore relatively practical to test, and they
provide information about the capabilities of the organisms that is relevant, re-
gardless of what additional capabilities it may have that enable it to learn more
complicated patterns.

There are analogous hierarchies of classes that are based on relationships that
are explicit in trees and in more complicated tree-like structures that stratify
the context-free languages and a range of mildly context-sensitive languages.[24]
These, do, however, apply only to mechanisms that analyse strings in terms of
tree-like partial orders.

In the following section we survey a hierarchy of complexity classes that is
based on adjacency within a string, the so-called Local Hierarchy. [17] There is
a parallel hierarchy that is based on precedence (over arbitrary distances) that
distinguishes long distance relationships within the string, including many that
are relevant to a broad range of aspects of human languages—including some,
but clearly not all, long distance relationships in syntax. More details of this
hierarchy can be found in [25].

6 Subregular Languages

A subregular language is a set of strings that can be described without employing
the full power of Finite-State Automata (FSA). Perhaps a better way of thinking
about this is that the patterns that distinguish the strings that are included in
the language from those that are not can be identified by mechanisms that are
simpler than FSAs, often much simpler.

Many aspects of human language are manifestly subregular, including most
“local” dependencies and many “non-local” dependencies as well. While these
phenomena have usually been studied as regular languages, there are good rea-
sons to ask just how much processing power is actually needed to recognise
them. In comparative neurobiology, for example, there is no reason to expect
non-human animals to share the full range of capabilities of the human language
faculty. Even within human cognition, if one expects to find modularity in lan-
guage processing then one may well expect to find differences in the capabilities
of the cognitive mechanisms responsible for processing the various modules.
Similarly, in cognitive evolution one would not generally expect the antecedents
of the human language faculty to share its full range of cognitive capabilities; we
expect complicated structures to emerge, in one way or another, from simpler
ones.

The hierarchy of language classes we are exploring here are characterised
both by computational mechanisms (classes of automata and grammars) and
by model-theoretic characterisations: characterisations in terms of logical de-
finability by classes of logical expressions. The computational characterisations
provide us with the means of designing experiments: developing practical sets
of stimuli that allow us to probe the ability of subjects to distinguish strings in
a language in a given class from strings that are not in that language and which
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Figure 7: Scanners have a sliding widow of width k, a parameter, which moves
across the string stepping one symbol at a time, picking out the k-factors of the
string. For Strictly Local languages the string is accepted if and only if each of
these k-factors is included in a look-up table.

suffice to resolve the boundaries of that class. The model-theoretic characteri-
sations, because of their abstract nature, allow us to draw conclusions that are
valid for all mechanisms which are capable of making those distinctions. It is
the interplay between these two ways of characterising a class of languages that
provides a sound foundation for designing AGL experiments and interpreting
their results. Both types of characterisations are essential to this enterprise.

6.1 Strictly Local languages

We begin our tour of these language classes at the lowest level of complexity
that is not limited to languages of finitely bounded size, patterns which depend
solely on the blocks of symbols which occur consecutively in the string, with
each block being considered independently of the others. Such patterns are
called Strictly Local (SL).12

An SLk definition is just a set of blocks of k adjacent symbols (called k-
factors) drawn from the vocabulary augmented with two symbols, ‘⋊’ and ‘⋉’,
denoting the beginning and end of the string, respectively. A string satisfies such
a description if and only if every k-factor that occurs in the string is licensed by
the definition. The SL2 description G(AB)n = {⋊A,AB,BA,B⋉}, for example,
licenses the set of strings of the form (AB)n.13

Abstract processing models for Local languages are called scanners. (See
Figure 7.) For strictly k-local languages, the scanner includes a look-up table
of k-factors. A string is accepted if and only if every k-factor which occurs
in the string is included in the look-up table. The look-up table is formally

12More details on this and the other Local classes of languages can be found in [26].
13We use capital letters here to represent arbitrary symbols drawn from mutually distinct

categories of the symbols of the vocabulary. Although none of our mechanisms involve the sort
of string rewriting employed by the grammars of the first part of this paper and we distinguish
no formal set of non-terminals, there is a rough parallel between this use of capital letters
to represent categories of terminals and the interpretation of non-terminals as representing
grammatical categories in phrase-structure grammars.
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identical to an SLk description. These automata have no internal state. Their
behaviour, at each point in the computation, depends only on the symbols which
fall within the widow at that point. This implies that every SLk language will
be closed under substitution of suffixes in the sense that, if the same k-factor
occurs somewhere in two strings that are in the language, then the result of
substituting the suffix, starting at that shared k-factor, of one for the suffix of
the other must still be in the language.

Both the SLk descriptions and the strictly k-local scanners are defined solely
in terms of the length k blocks of consecutive symbols that occur in the string,
taken in isolation. This has a number of implications for cognitive mechanisms
that can recognise Strictly Local languages:

• Any cognitive mechanism that can distinguish member strings from non-
members of an SLk language must be sensitive, at least, to the length k

blocks of consecutive symbols that occur in the presentation of the string.

• If the strings are presented as sequences of symbols in time, then this cor-
responds to being sensitive, at each point in the string, to the immediately
prior sequence of k − 1 symbols.

• Any cognitive mechanism that is sensitive only to the length k blocks of
consecutive symbols in the presentation of a string will be able to recognise
only SLk languages.

Note that these mechanisms are not sensitive to the k-factors which don’t occur
in the string.

6.2 Probing the SL boundary

In order to design experiments testing an organism’s ability to recognise Strictly-
Local languages, one needs a way of generating sets of stimuli that sample
languages that are SL and sets that sample languages that are minimally non-
SL. (We return to these issues in Section 9.) This is another place in which
computational characterisations of language classes are particularly useful. The
language of strings of alternating symbols (e.g., ‘A’s and ‘B’s: (AB)n), for
example, is SL2. Mechanisms that are sensitive to the occurrence of length 2
blocks of consecutive symbols are capable, in principle, of distinguishing strings
that fit such a constraint (e.g., (AB)i+j+1, for some i and j) from those that
do not (e.g., (AB)iAA(AB)j). The ability to do so can be tested using sets of
strings that match these patterns.14

Conversely, the language of strings in which some symbol (e.g., ‘B’) is re-
quired to occur at least once is not SLk for any k. (We refer to this language
as Some-B.) Mechanisms that are sensitive only to the occurrence of fixed size
blocks of consecutive symbols are incapable of distinguishing strings that meet
such a constraint from those that do not. Thus these organisms would not, all
other things being equal, recognise that stimuli of the form Ai+j+1 do not belong
to a language correctly generalised from sets of stimuli of the form AiBAj .

14The patterns are both defined in terms of the parameters i and j so that the length of
the strings do not vary between them.
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Figure 8: LT Automata keep a record of which k-factors occur in a string and
feed this information into a Boolean network. The automaton accepts if, once
the entire string has been scanned, the output of the network is “Yes”, and
rejects otherwise.

6.3 Locally k-Testable Languages

Notice that if the B were forbidden rather than required, the second pattern
would be a Strictly Local (even SL1) property. So we could define a property
requiring some B as the complement—the language that contains all and only
the strings that do not occur in that language—of an SL1 language. In this case
we take the complement of the set of strings in which B does not occur. If we
add complement to our descriptions, it turns out that our descriptions will be
able to express all Boolean operators: conjunction (and), disjunction (or), and
negation (not) in any combination.

In order to do this, we will interpret k-factors as atomic (unanalysed) prop-
erties of strings; a string satisfies a k-factor if and only if that factor occurs
somewhere in the string. We can then build descriptions as expressions in a
propositional logic over these atoms. We refer to formulae in this logic as k-
expressions. A k-expression defines the set of all (and only) strings that satisfy
it. A language that is definable in this way is a Locally k-Testable (LTk) lan-
guage. The class of languages that are definable by k-expressions for any finite
k is denoted LT.

By way of example, we can define the set of strings of which do not start
with A and contain at least one B with the 2-expression: (¬⋊A) ∧B.

Note that any SLk definition G can be translated into a k-expression which
is the conjunction ¬f1∧¬f2∧· · · in which the fi are the k-factors which are not
included G. SLk definable constraints are, in essence, conjunctions of negative
atomic constraints and every such constraint is LTk definable: SL is a proper
subclass of LT.

A scanner for an LTk language contains, instead of just a look-up table
of k-factors, a table in which it records, for every k-factor over the vocabulary,
whether or not that k-factor has occurred somewhere in the string. It then feeds
this information into a combinatorial (Boolean) network which implements some
k-expression. When the end of the string is reached, the automaton accepts or
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rejects the string depending on the output of the network. (See Figure 8.)
Since an LTk scanner records only which k-factors occur in the string, it

has no way of distinguishing strings which are built from the same set of k-
factors. Hence, a language is LTk if and only if there is no pair of strings, each
comprising the same set of k-factors, one of which is included in the language
and the other excluded.

From a cognitive perspective, then:

• Any cognitive mechanism that can distinguish member strings from non-
members of an LTk language must be sensitive, at least, to the set of
length k contiguous blocks of symbols that occur in the presentation of
the string—both those that do occur and those that do not.

• If the strings are presented as sequences of symbols in time, then this
corresponds to being sensitive, at each point in the string, to the set of
length k blocks of symbols that occurred at any prior point.

• Any cognitive mechanism that is sensitive only to the occurrence or non-
occurrence of length k contiguous blocks of symbols in the presentation of
a string will be able to recognise only LTk languages.

One of the consequences of the inability of k-expressions to distinguish
strings which comprise the same set of k-factors is that LT languages can-
not, in general, distinguish strings in which there is a single occurrence of
some symbol from those in which there are multiple occurrences: the strings
⋊A · · ·A
︸ ︷︷ ︸

k−1

BA · · ·A
︸ ︷︷ ︸

k−1

⋉ and ⋊A · · ·A
︸ ︷︷ ︸

k−1

BA · · ·A
︸ ︷︷ ︸

k−1

BA · · ·A
︸ ︷︷ ︸

k−1

⋉ comprise exactly the

same set of k-factors. Consequently, no mechanism that is sensitive only to the
set of fixed size blocks symbols that occur in a string will be able, in general,
to distinguish strings with a single instance of a symbol from those with more
than one.

6.4 Probing the LT boundary

The language of strings in which some block of k contiguous symbols is required
to occur at least once (e.g., Some-B of Section 6.2, for which any k ≥ 1 will do)
is LTk. Mechanisms which are sensitive to the set of fixed length blocks of con-
secutive symbols which have occurred are capable, in principle, of distinguishing
strings that meet such a constraint (e.g., AiBAj) from those that do not (e.g.,
Ai+j+1). Again, these patterns form a basis for developing sets of stimuli that
provide evidence of an organism’s ability to make these distinctions.

Conversely, the language of strings in which some block of k contiguous
symbols is required to occur exactly once (e.g., One-B, in which exactly one ‘B’
occurs in every string) is not LTk for any k. Mechanisms that are sensitive only
to the set of fixed length blocks of consecutive symbols which have occurred
are incapable of distinguishing strings that meet such a constraint from those
that do not. Thus sets of stimuli generated by the patterns AiBAj+k+1 (in the
set One-B) and AiBAjBAk (not in that set) can be used to probe whether an
organism is limited to distinguishing sets of strings on this basis.
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Figure 9: LTT Automata count the number of k-factors that occur in a string
up to some bound and feed this information into a Boolean network. The
automaton accepts if, once the entire string has been scanned, the output of the
network is “Yes”, and rejects otherwise.

6.5 FO(+1) definability: LTT

This weakness of LT is, simply put, an insensitivity to quantity as opposed
to simple occurrence. We can overcome this by adding quantification to our
logical descriptions, that is, by moving from Propositional logic to a First-
Order logic which we call FO(+1). Logical formulae of this sort make (Boolean
combinations of) assertions about which symbols occur at which positions (σ(x),
where σ is a symbol in the vocabulary and x is a variable ranging over positions
in a string), about the adjacency of positions (x ⊳ y, which asserts that the
position represented by y is the successor of that represented by x) and about
the identity of positions (x ≈ y), with the positions being quantified existentially
(∃) or universally (∀). This allows us to distinguish, for example, one occurrence
of a B from another:

ϕOne-B = (∃x)[B(x) ∧ (¬∃y)[B(y) ∧ ¬x ≈ y] ]

This FO(+1) formula requires that there is some position in the string (call it
x) at which a B occurs and there is no position (y) at which a B occurs that is
distinct from that (¬x ≈ y).

In this example, we have defined a property expressed in terms of the occur-
rence of a single symbol B, but, using the successor relation, we could just as
well be restricting the number of occurrences of any k-factor, for some fixed k.
Moreover, using multiple levels of quantification, we can distinguish arbitrarily
many distinct positions, but, since a single formula can only contain a fixed
number of quantifiers, there is a fixed finite bound on the number of positions a
given formula can distinguish. Hence FO(+1) formulae can, in essence, count,
but only up to some fixed threshold. Note that the fixed threshold is compatible
with subitization as well as actual counting.

The class of FO(+1) definable languages is is characterised by what is known
as Local Threshold Testability (LTT). LTT automata extend LT automata by
counting the number of occurrences of each k-factor, with the counters counting
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up to a fixed maximum and then simply staying at that value if there are
additional occurrences. (See Figure 9.)

This gives us a cognitive interpretation of LTT:

• Any cognitive mechanism that can distinguish member strings from non-
members of an LTT language must be sensitive, at least, to the multiplicity
of the length k blocks of symbols, for some fixed k, that occur in the
presentation of the string, distinguishing multiplicities only up to some
fixed threshold t.

• If the strings are presented as sequences of symbols in time, then this
corresponds to being able count up to some fixed threshold.

• Any cognitive mechanism that is sensitive only to the multiplicity, up to
some fixed threshold, (and, in particular, not to the order) of the length k

blocks of symbols in the presentation of a string will be able to recognise
only LTT languages.

6.6 Probing the LTT boundary

The language of strings in which some block of k contiguous symbols is required
to occur exactly once (e.g., One-B, for which any k and t ≥ 1 will do) is
LTTk,t. Mechanisms which are sensitive to the multiplicity, up to some fixed
threshold, of fixed length blocks of consecutive symbols which have occurred are
capable, in principle, of distinguishing strings that meet such a constraint (e.g.,
AiBAj+k+1) from those that do not (e.g., AiBAjBAk).

Conversely, the language of strings in which some block of k contiguous
symbols is required to occur prior to the occurrence of another (e.g., No-B-after-
C, in which no string has an occurrence of ‘C’ that precedes an occurrence of ‘B’,
with ‘A’s freely distributed) is not LTTk,t for any k or t. Mechanisms that are
sensitive only to the multiplicity, up to some fixed boundary, of the occurrences
of fixed length blocks of consecutive symbols are incapable of distinguishing
strings that meet such a constraint from those that do not. Sets of stimuli
that test this ability can be based on the patterns AiBAjCAk, AiBAjBAk and
AiCAjCAk, all of which satisfy the No-B-after-C constraint, and AiCAjBAk,
which violates it.

6.7 FO(<) definability: SF

If we extend the logic of FO(+1) to express relationships in terms of precedence
(<) as well as successor, we can define constraints in terms of both the multi-
plicity of factors and their order.15 The class of FO(<) definable languages is
properly known as LTO (Locally Testable with Order), but this turns out to be
equivalent to the better known class of Star-Free (SF) languages. These are the
class of languages that are definable by Regular Expressions without Kleene-
closure—in which the ‘∗’ operator does not occur—but with complement—in
which the ‘( · )’ operator may occur [17].

15The successor relationship is definable using only < and quantification, so one no longer
explicitly needs the successor relation. Similarly, multiplicity of factors can be defined in terms
of their order, so one does not actually need to count to a threshold greater than 1.
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This is, in terms of model-theoretic definability, the strongest class that is
a proper subclass of the Regular languages. The Regular languages are the
sets of strings that are definable using +1 (and/or <) and Monadic Second-
Order quantification—quantifications over subsets of positions as well as over
individual positions. It is not clear that this increase in definitional power is
actually useful from a linguistic point of view. There seem to be very few, if
any, natural linguistic constraints that are Regular but not Star-Free.

6.7.1 Cognitive interpretation of SF

• Any cognitive mechanism that can distinguish member strings from non-
members of an SF language must be sensitive, at least, to the order of
the length k blocks of symbols, for some fixed k and some fixed maximum
length of the sequences of blocks, that occur in the presentation of the
string.

• If the strings are presented as sequences of symbols in time, then this
corresponds to being sensitive to the set of sequences, up to that maximum
length, of the length k blocks that have occurred at any prior point.

• Any cognitive mechanism that is sensitive only to the set of fixed length
sequences of length k blocks of symbols in the presentation of a string will
be able to recognise only SF languages.

7 Statistical Models of Language

Many studies of Artificial Grammar Learning have focused on statistical learn-
ing [6, 28, 27]. Language models which are based on the probability of a given
symbol following another are Markov processes [15]. These can be interpreted
as FSAs with transition probabilities where the underlying FSA recognises an
SL2 language. “n-gram” and “n-factor” are equivalent concepts; in general an
n-gram model is a weighted version of a FSA that recognises an SLn language;
an n-gram model of a language (an (n− 1)st-order Markov model) is a strictly
n-local distribution.

Statistical models of language are not directly comparable to the sets of
strings of traditional formal language theory, but there is a clear distinction
between strictly local languages and n-gram models in that probabilities are
not preserved under substitution of suffixes. Nevertheless, a language learner
that infers probabilities of n-grams must be able to distinguish n-grams. In
other words, it must attend to the n-factors of the input. Thus, the notion of
cognitive complexity that we have developed here is still relevant.

Each of the levels of the hierarchy corresponds to a class of statistical distri-
butions. The number of parameters, though, rises rapidly—the number of pa-
rameters of an LTk distribution is exponential in k. In application, the higher
complexity models are likely to be infeasible. On the other hand, there is a
complexity hierarchy that parallels the local hierarchy but which is based on
precedence—order of symbols independent of intervening material [25]—which
also provides a basis for statistical models. The strictly piecewise distributions,
those analogous to n-gram models, are both feasible and are capable of discrimi-
nating many long-distance dependencies [10]. The question of whether a learner
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Figure 10: Reber’s (1967) grammar.

can attend to subsequences (with arbitrary intervening material) in addition to
or rather than substrings (factors) is significant.

8 Some Classic Artificial Grammars

Some of the earliest AGL experiments were conducted by Reber [23]. These were
based on the grammar represented by the finite-state automaton in Figure 10.
This automaton recognises an SL3 language, licensed by the set of 3-factors
also given in the figure—to learn a language of this form, the subject need
only attend to the blocks of three consecutive symbols occurring in the strings,
recognising an exception when one of the forbidden blocks occurs.

Saffran, Aslin and Newport [28] presented their test subjects with continuous
streams of words in which word boundaries were indicated only by the transi-
tional probabilities between syllables. In general, this would give an arbitrary
SL2 distribution, but the in this case the probabilities of the transitions internal
to the words is 1.0 and all transitions between words are equiprobable.16 Under
these circumstances, the language is the same as that of the SL2 automaton on
which the distribution is based—i.e., this language is simply a strictly 2-local
language. It should be noted, though, that from the perspective of cognitive
complexity we have presented here this is a distinction without a difference.
Whether the language is a non-trivial statistical model or not, to learn it the
subjects need only to attend to the pairs of adjacent syllables occurring in the
stimulus.

Marcus, Vijaya, Bundi Rao and Vishton [16] specifically avoided prediction
by transitional probabilities by testing their subjects with strings generated
according to the training pattern, but over a novel vocabulary. Gomez and
Gerken [9] used a similar design. In the latter case, the grammars they used are
similar to that of Reber and also license SL3 languages. Marcus, et al., limited
their stimuli to exactly three syllables in order to eliminate word length as a
possible cue. In general, every language of three syllable words is trivially SL4.
The focus of the experiments, though, were strings distinguished by where and
if syllables were repeated (i.e. ABA vs. AAB vs. ABB). Languages in which
no syllable is repeated are simply SL2; those in which either the first pair of
syllables, the last pair of syllables and/or the first and last syllable are repeated

16Technically, the final probabilities of this distribution were all 0, i.e., the distribution
included no finite strings.
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are SL3. In all of these cases, the language can be distinguished by simply
attending to blocks of consecutive syllables in isolation.

Finally, Saffran [27], used a language generated by a simple context-free
grammar in which there is no self-embedding—no category includes a con-
stituent which is of the same category. Hence, this language is also finite and
trivially SL. Again, though, the experiments focused on the ability of the sub-
jects to learn patterns within these finite bounds. In this case there were two
types of patterns. In the first type, a word in some category occurs only in the
presence of a word in another specific category. In the second type a word in
some category occurs only when a word of a specific category occurs somewhere
prior to it in the word. These are both non-strictly local patterns. The first is
LT1—learning this patterns requires attention to the set of syllables that occur
in the word. The second is strictly 2-piecewise testable, at the lowest level of the
precedence-based hierarchy. Learning it requires attention to the set of pairs
of syllables in which one occurs prior to the other in the word, with arbitrary
intervening material.

Many recent AGL experiments have employed patterns of the types (AB)n

(repeated ‘AB’ pairs) and AnBn (repeated ‘A’s followed by exactly the same
number of ‘B’s, sometimes with explicit pairing of ‘A’s and ‘B’s either in nested
order or in “cross-serial” order: first ‘A’ with first ‘B’, etc.) As noted in Sec-
tion 6.1, (AB)n is strictly 2-local, the simplest of the complexity classes we
have discussed here. AnBn is properly context-free, with or without explicit
dependencies. All automata that can recognise non-finite-state languages can
be modelled as finite-state automata with some sort of additional unbounded
memory (one or more counters, a stack, a tape, etc.) The question of what
capabilities are required to recognise properly context-free languages, then, is a
question of how that storage is organised.

As noted in Section 5, AnBn without explicit dependencies can be recog-
nised by counting ‘A’s and ‘B’s (with a single counter), a simpler mechanism
than that required to recognise context-free languages in general. AnBn with
explicit nested dependencies cannot be recognised using a single counter, but it
is a linear context-free language,17 also simpler than the class of context-free
languages in general. The question of whether there are dependencies between
the ‘A’s and ‘B’s is another issue that generally depends on knowing the way
that the strings are being analysed. But it is possible to make the distinction
between languages that can be recognised with a single counter and those that
are properly linear CFLs without appealing to explicit dependencies by using
the language AnBmCmDn.18 If the dependencies between the ‘A’s and ‘B’s are
cross-serial then in AnBn is properly non-context-free. A language that makes
the same distinction without explicit dependencies is AnBmCnDm.

The difficulty of identifying which type of structure is being used by a subject
to recognise a given non-regular pattern in natural languages delayed confirma-
tion that there were human languages that employed cross-serial dependencies
for decades [22, 21, 29, 12, 7]. In AGL experiments, one has the advantage of
choosing the pattern, but the disadvantage of not having a priori knowledge of
which attributes of the symbols are being distinguished by the subjects. The fact
that a particular ‘A’ is paired with a particular ‘B’ means that those instances

17In which only a single non-terminal occurs at any point in the derivation
18Note that two counters would suffice to recognise AnBmCmDn but, as Minsky

showed [19], two counters suffice to recognise any computable language.
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Figure 11: Language inference experiments

must have a different character than other instances of the same category. In-
deed, these patterns can be represented as AnAn with explicit dependencies of
some sort between the ‘A’s in the first half of the string and those in the second
half. Hence, most artificial grammars of this sort are actually more complicated
versions of AnBmCmDn or AnBmCnDm. There seems to be little advantage
to using patterns in which the dependencies are less explicit than these.

9 Designing and Interpreting Artificial Gram-
mar Learning Experiments

All of this gives us a foundation for exploring AGL experiments from a formal
perspective. We will consider familiarisation/discrimination experiments. We
will use the term generalise rather than “learn” or “become familiarised with”
and will refer to a response that indicates that a string is recognised as an
exception as surprise.

Let us call the set generated by the artificial grammar we are interested in I,
the Intended set. The subject is exposed to some finite subset of this, which we
will call F, the Familiarisation set. It then generalises F to some set (possibly
the same set—the generalisation may be trivial). Which set they generalise
to gives evidence of the features of F the subject attended to. An error-free
learner would not necessarily generalise to I, any superset of F is consistent
with their experience. We will assume that the set the subject generalises to is
not arbitrary—it is not restricted in ways that are not exhibited by F—and that
the inference mechanism exhibits some sort of minimality—it infers judgements
about the stimuli that are not in F as well as those that are.19

We then present the subject with a set which we will call D, the Discrimi-
nation set, which includes some stimuli that are in I and some which are not,

19The assumption that the generalisation is not arbitrary implies, inter alia, that if it
includes strings that are longer than those in F it will include strings of arbitrary length.
This allows one to verify that a subject has not simply made some finite generalisation of the
(necessarily finite) set F.
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and observe which of these are treated by the subject as familiar and which
are surprising. One can draw conclusions from these observations only to the
extent that D distinguishes I from other potential generalisations. That is, D
needs to distinguish all supersets and subsets of I that are consistent with (i.e.,
supersets of) F.

Figure 11 represents a situation in which we are testing the subject’s ability
to recognise a set that is generated by the pattern I = AnBn, in which a block
of ‘A’s is followed by block of ‘B’s of the same length, and we have exposed
the subject to stimuli of the form F = AABB. The feature that is of primary
interest is the fact that the number of ‘A’s and ‘B’s is exactly the same, a
constraint that is properly Context-Free.

The innermost circle encompasses F. The bold circle delimits the intended
set I. The other circles represent sets that are consistent with F but which
generalise on other features. For example, a subject that identifies only the fact
that all of the ‘A’s precede all of the ‘B’s would generalise to the set we have
called AnBm. This set is represented by the middle circle on the right hand
side of the figure and encompasses I. A subject that identifies, in addition, the
fact that all stimuli in F are of even length might generalise to the set we label
AnBm

even. This is represented by the inner circle on the right hand side.
It is also possible that the subject has learned that there are at least as many

‘A’s as there are ‘B’s (AnBn+m) or v.v. These sets include I and that portion
of AnBm above (resp., below) the dotted line. Alternatively, if the subject has
generalised from the fact that the number of ‘A’s is equal to the number of ‘B’s
but not the fact that all of the ‘A’s precede all of the ‘B’s, they might generalise
to the set we label ABequal. Included in this set, as a proper subset, is the
language (AB)n, which is not consistent with F but does share the feature of
the ‘A’s and ‘B’s being equinumerous.

It is also possible that the subject makes the minimal generalisation that the
number of ‘A’s is finitely bounded. The smallest of these sets consistent with F

is the set we have labelled AnBn, n ≤ 2.
These, clearly, are not all of the sets the subject might consistently infer from

F but they are a reasonable sample of principled generalisations that we need to
distinguish from I. Note that, in this case, the potential generalisations span the
entire range of classes from SL2 (AnBm), through CF (AnBn+m and ABequal).
If we are to distinguish, say, the boundary between Finite State and Context
Free our probes will need to distinguish these. To do that, D must include
stimuli in the symmetric differences of the potential generalisations (including
I), that is to say stimuli that are in one or the other but not both.

For example, suppose we test the subject with strings of the form AAB.
These are not in AnBn (properly CF) but are in the set AnBm (SL), so subjects
that have generalised to the former will generally find them surprising while
those that have generalised to the latter will not. On the other hand, they
are also not in the set AnBm

even, which is finite state, but are in An+mBm

which is properly context free. Thus these stimuli do not resolve the finite state
boundary.

Suppose, then, that we test with strings of the form AAAB. These, again,
are not in AnBn (CF) but are in AnBm (SL). But they are also not in both
of AnBm

even (finite state) and An+mBm (properly context free). Again, they do
not resolve the finite state boundary.

One can distinguish the finite state from the non-finite state languages in
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this particular set of potential generalisations if one includes strings of both of
these forms in D, but that still will not distinguish AnBn from AnBn+m which
is presumably not significant here but may well be in testing other hypotheses.
These can be distinguished by including strings of the forms that correspond to
these but include more ‘B’s than ‘A’s.

None of these, though, distinguish a learner that has generalised to a finite
set (AnBn, n ≤ 2). To get evidence that the learner has done this, one needs
to include strings of length greater than four.

One ends up with a discrimination set that includes at least five variants of
the pattern AnBm for different values of n and m between two and six. This
seems to be very near the boundary of practicality for most experiments involv-
ing living organisms. There are two ways that one might resolve this limitation:
one can find experiments which can distinguish performance on stimuli of this
size, perhaps not being able to draw any conclusions for some types of subject,
or one can refine one’s hypothesis so that it is practically testable. In any case,
the issue is one that requires a good deal of careful analysis and it is an issue
that cannot be ignored.

10 Conclusion

The notion of language theoretic complexity, both with respect to the Chomsky
hierarchy and with respect to the sub-regular hierarchies is an essential tool in
AGL experiments. In the design of experiments they provide a way of formulat-
ing meaningful, testable hypotheses, of identifying relevant classes of patterns,
of finding minimal pairs of languages that distinguish those classes and of con-
structing sets of stimuli that resolve the boundaries of those languages. In the
interpretation of the results of the experiments the properties of the complexity
classes provide a means of identifying the pattern a subject has generalised to,
the class of patterns the subject population is capable of generalising to, and ul-
timately, a means of identifying those features of the stimulus that the cognitive
mechanisms being used are sensitive to.

In this paper we have presented a scale for informing these issues that is both
finer than and broader than the finite state/context free contrast that has been
the focus of much of the Artificial Grammar Learning work to date. While some
of the distinctions between classes are subtle, and some of the analyses delicate,
there are effective methods for distinguishing them that are generally not hard
to apply and the range of characterisations of the classes provides a variety
of tools that can be employed in doing so. More importantly, the capabilities
distinguished by these classes are very likely to be significant in resolving the
issues that much of this research is intended to explore.

Finally, fully abstract characterisations of language classes, like many of
those we have presented here, provide information about characteristics of the
processing mechanism that are necessarily shared by all mechanisms that are
capable or recognising languages in these classes. This provides a foundation
for unambiguous and strongly supported results about cognitive mechanisms for
pattern recognition.
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