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1 Introduction

During the past three decades, many formal methods have been proposed whose pur-
pose is to reduce the cost of constructing computer systems and to improve their quality.
Informally, a formal method is a mathematically-based technique or tool useful in devel-
oping either hardware or software. Recently, formal methods have played a significantly
increased role in hardware design. More and more companies that sell microprocessors
and hardware chips, such as Intel, IBM, and Motorola, are using formally-based tools
such as model checkers [Clarke et al. (1999)] and theorem provers (see, e.g., [Shankar
et al. (2001)]), to detect flaws in their designs.

While formal methods are applied less frequently in software development, there
have been a few recent cases in which they have detected previously unknown defects
in real-world software. One prominent example is the result of research in Microsoft’s
SLAM project in which Ball and Rajamani designed several formal techniques to auto-
matically detect flaws in device drivers [Ball et al. (2006)]. In 2006, Microsoft released
the Static Driver Verifier (SDV) [Beckert et al. (2006)] as part of Windows Vista, the
latest Microsoft operating system — SDV uses the SLAM software-model-checking
engine to detect cases in which device drivers linked to Vista violate one of a set of
interface rules. Thus SDV helps uncover defects in device drivers, a primary source of
software bugs in Microsoft applications.

One critical step in developing high-quality software is understanding and docu-
menting the software requirements. Studies have shown that many software defects can
be traced to ambiguous, incomplete, and inconsistent requirements specifications and
that fixing these defects can be very costly, especially when the defects are detected late
in development. A promising approach to constructing precise, complete, and consis-
tent requirements specifications is to represent the requirements in a formal specifica-
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tion language and to check the specification for properties, such as completeness and
consistency, with formal analysis techniques.

This article describes a requirements method called Software Cost Reduction
[Heninger (1980), Heitmeyer et al. (1996), Heitmeyer et al. (1998a)], originally de-
veloped by Parnas, Heninger, and other researchers at the Naval Research Laboratory
(NRL) starting in the late 1970s. A major NRL research goal was to evaluate the utility
and scalability of software engineering principles by using the principles to reconstruct
software for a practical system. The SCR method was formulated and demonstrated by
constructing a requirements specification [Heninger (1980)] and several design doc-
uments [Parnas and Clements (1986)] for the flight program of the U.S. Navy’s A-7
aircraft.

SCR uses a tabular notation to represent the required behavior of a software sys-
tem to make the requirements understandable to practitioners. Once an SCR require-
ments specification has been formulated, a set of formally based tools called the SCR
Toolset [Heitmeyer et al. (1998b), Heitmeyer et al. (2005)] may be used to check the
consistency, completeness, and correctness of the specification.

Section 2 reviews the semantics that underly SCR, introduces the SCR tabular no-
tation, and provides an example of software requirements represented in the notation.
Section 3 describes how the SCR tools may be used to check the consistency and com-
pleteness of requirements specifications, to validate that the specification captures the
intended behavior, and to verify (i.e., prove), or refute, that the specification satisfies
critical application properties. It also describes two recent tools: the SCR Test Case
Generator and the SCR Code Generator.

2 SCR Formal Model and Tabular Notation

2.1 SCR Formal Model

The objective of an SCR requirements specification is to capture the required externally
visible behavior of a software system precisely and unambiguously. In an SCR spec-
ification [Heitmeyer et al. (2005), Heitmeyer et al. (1996)], monitored and controlled
variables represent, respectively, the quantities in the system environment that the sys-
tem monitors and controls. The required system behavior is specified as relations the
system must maintain between the monitored and controlled variables. To specify these
relations concisely, the SCR language provides two types of auxiliary variables —mode
classes and terms— as well as conditions and events.

A condition is a predicate defined on a system state. A basic event, represented as
@T(c), indicates that condition c changes from false to true. The event @F(c) is defined
by @T(¬ c). If c’s value in the current state is denoted c and its value in the next state
as c′, then the semantics of @T(c) is defined by ¬c ∧ c′ and of @F(c) by c ∧ ¬c′. A
conditioned event, denoted @T(c) WHEN d, adds a qualifying condition d to an event and
has the semantics ¬c ∧ c′ ∧ d.
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In SCR specifications, the monitored variables are independent variables, and the mode
classes, terms and controlled variables are dependent variables. SCR specifications de-
fine the values of the dependent variables using three types of tables: condition, event
and mode transition tables. Each term and controlled variable is defined by either a con-
dition or an event table. Typically, a condition table defines the variable values in terms
of a mode class and a set of conditions; an event table defines variable values in terms
of a mode class and a set of conditioned events. A mode transition table associates each
source mode and a conditioned event with a destination mode. If the given event occurs
in the source mode, then in the next state the system enters the destination mode

Two relations, NAT and REQ [Parnas and Madey (1995)], define the relationship
between the current and next state values of all monitored and dependent variables.
NAT specifies the natural constraints on monitored and controlled variables, such as
constraints imposed by physical laws and the environment. REQ uses the SCR tables to
specify the required system behavior as constraints on the dependent variables. Given a
set of dependent variables, REQ is defined as the conjunction of the functions defined
by the tables. In SCR, a state is a function mapping a state variable name to a type-
correct value; the required system behavior is defined as a state machine Σ = (S, θ, ρ),
where S is the set of states, θ is a predicate on S which defines the set of initial states,
and ρ ⊆ S × S is the transition relation which defines the allowable state transitions.

2.2 SCR Requirements Specification: Example

To illustrate the SCR notation, this section presents an SCR specification of a simple
control system called the Safety Injection System (SIS) [Courtois and Parnas (1993)],
which controls the water pressure level of a nuclear power plant’s cooling system. The
SIS specification indicates how the SIS responds to changes in its monitored variables
by changing a single controlled variable, which controls whether safety injection is on
or off. The specification uses a mode class (a set of modes) to capture the history of
changes in the monitored variables. Although the SIS specification has only one con-
trolled variable, most SCR specifications have many controlled variables. In SIS, the
system starts safety injection (if it is not overridden) when water pressure drops below
a certain constant value Low. In the SCR specification of SIS, the monitored variables
—mBlock, mReset, and mWaterPres— denote the states of two switches, the block
and reset switches, and the water pressure reading; the mode class mcPressure indi-
cates one of three system modes, TooLow, Permitted, and High; the Boolean term
tOverridden indicates whether safety injection is overridden; and the controlled vari-
able cSafetyInjection indicates whether safety injection is on or off.

Fig. 1 shows the relationship between the SIS monitored variables, the SIS modes,
and the single SIS controlled variable. When, for example, the system is in the mode
TooLow and the water pressure reading changes from Low to greater than or equal
to Low, the SIS mode changes to Permitted; similarly, when SIS is in the mode
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Figure 1: SCR requirements specification of the Safety Injection System.

Permitted and the water pressure reading changes from a value greater than or equal
to Low to less than Low, the SIS mode changes to TooLow.

Tables 1–3 contain the mode transition, event, and condition tables defining the
transition relation for the SIS. Table 1 contains a mode transition table which defines
the mode transitions for the mode class mcPressure. The first row of Table 1 states
that if the system is in mode TooLow when water pressure changes from less than
Low to a value exceeding or equal to Low, the system mode changes to Permitted.
Table 2 contains an event table defining the term variable tOverridden. The entry
‘Never’ in the event table means that if the system is in the mode High, no event can
cause tOverridden to change to true. The middle entry in the second row of Table 2
states that if the system is in either TooLow or Permitted and the user turns the Block
switch on when the Reset switch is off, then the value of tOverridden in the next
state is true. Table 3 is a condition table defining the value of a controlled variable
cSafetyInjection as a state invariant. This invariant specifies the required relation
between the values of cSafetyInjection, tOverridden, and mcPressure.

Table 1: Mode Transition Table for mcPressure.

Old Mode Event New Mode

TooLow @T(mWaterPres ≥ Low) Permitted

Permitted @T(mWaterPres ≥ Permit) High

Permitted @T(mWaterPres < Low) TooLow

High @T(mWaterPres < Permit) Permitted

610 Heitmeyer C.L.: Formal Methods for Specifying, Validating, and Verifying Requirements



Table 2: Event Table for Overridden.

Mode Class
mcPressure Events

High Never @F(mcPressure=High)

TooLow, @T(mBlock=On) @T(mcPressure=High)
Permitted WHEN mReset=Off OR @T(mReset=On)

tOverridden′ True False

Table 3: Condition Table for cSafetyInjection

Mode mcPressure Condition
High, Permitted True False

TooLow tOverridden NOT tOverridden

cSafetyInjection Off On

3 Tools

The SCR Toolset is an integrated suite of tools supporting the SCR requirements method
[Heitmeyer et al. (1998b),Heitmeyer et al. (2005)]. Fig. 2 illustrates the tools, which in-
clude a specification editor for creating and modifying a requirements specification, a
consistency checker for checking the specification for well-formedness (e.g., type cor-
rectness), a simulator for symbolically executing the system based on the specification,
a model checker for analyzing the specification for application properties, and a de-
pendency graph browser for displaying variable dependencies. In addition, the toolset
includes the TAME front-end to PVS, an invariant generator, a property checker Salsa,
a test case generator, and a source code generator.

The SCR toolset has also been evaluated in numerous pilot projects. In one project,
researchers at NASA’s IV&V Facility used the tools to detect ambiguity and missing
assumptions in a software requirements specification for the NASA International Space
Station [Easterbrook et al. (1998)]. In a second project, engineers at Rockwell Aviation
used the SCR tools to detect 24 errors, many of them serious, in the requirements spec-
ification of a flight guidance system [Miller (1998)]. A third of the detected errors were
uncovered in constructing the specification, a third in running the consistency checker,
and the remaining third in executing the the simulator. In a third project, NRL applied
the SCR tools, to the specification of the Weapons Control Panel (WCP) of a military
system. The tools uncovered a number of errors, including the violation of a critical
safety property. Developing an SCR specification of WCP from the contractor specifi-
cation, using the tools to detect specification errors, and building a working prototype

611Heitmeyer C.L.: Formal Methods for Specifying, Validating, and Verifying Requirements



Figure 2: SCR Toolset.

of WCP from the specification required only one person-month, thus demonstrating the
utility and cost-effectiveness of the SCR tools.

More than 200 organizations from academia, industry, and government have down-
loaded the SCR tools. The tools have been used in practice by companies such as Lock-
heed Martin for many years. Most recently, the tools were used to provide evidence
to a certifying authority that a security-critical module of an embedded software de-
vice enforces data separation [Heitmeyer et al. (2006)] and to specify the requirements
of three safety-critical software modules of NASA systems [Heitmeyer and Jeffords
(2007)].

Briefly described below are the ten tools that comprise the SCR Toolset. Four of the
five tools shown in the box at the top of Fig. 2 have been distributed to external orga-
nizations. The fifth tool, the model checker Spin [Holzmann (1991)], can be obtained
from Gerard Holzmann of NASA’s Jet Propulsion Laboratory. For more details about
the SCR Toolset, see [Heitmeyer et al. (2005)].

3.1 Specification Editor

To create, modify, or display a requirements specification, the user invokes the SCR
specification editor [Heitmeyer et al. (2005)]. In the SCR method, each specification is
organized into dictionaries and tables. The dictionaries define the static information in
the specification, such as the names, values, and types of variables and constants; the
user-defined types; etc. The tables define how the variables in the specification change
in response to changes in monitored variables.
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3.2 Consistency Checker

The SCR consistency checker [Heitmeyer et al. (1996),Heitmeyer et al. (2005)] checks
for properties derived from the SCR requirements model. This tool detects syntax and
type errors, incompleteness of variable definitions, missing cases, unwanted nondeter-
minism, and circular definitions. When an error is detected, the consistency checker
provides detailed feedback to help the user correct the error. Consistency checking is a
form of static analysis. Since it is accomplished without executing the specification or
performing a reachability analysis, it is more efficient than model checking. When de-
veloping an SCR specification, the user normally invokes the consistency checker first
and postpones more heavy-duty analysis such as model checking until later in devel-
opment. By exploiting the special properties guaranteed by consistency checking, such
as determinism, the later analyses can be more efficient [Bharadwaj and Heitmeyer
(1999)].

3.3 Simulator

To validate a specification, the user can run the SCR simulator [Heitmeyer et al. (2005)]
and analyze the results to ensure that the specification captures the intended behav-
ior. Additionally, the user can define invariant assertions believed to be true of the re-
quired system behavior and, using simulation, execute a series of scenarios to determine
whether any violate the invariants. To provide input to the simulator, the user either en-
ters a sequence of input events (changes in monitored variables) or loads a previously
stored scenario.

The simulator supports alternative front-ends, tailored to particular application do-
mains. For example, we have developed a customized front-end for pilots to use in
evaluating an attack aircraft specification (see Fig. 3). Rather than clicking on mon-
itored variable names, entering values for them, and seeing the results of simulation
presented as variable values, a pilot clicks on visual representations of cockpit controls
and sees results presented on a simulated cockpit display. This front-end allows the pilot
to move out of the world of software requirements specification and into the world of
attack aircraft, where he is the expert. Such an interface facilitates customer validation
of the specification. A customized front-end, part of the working prototype mentioned
above, has also been developed for the WCP.

3.4 Model Checker

The Spin model checker [Holzmann (1991)] has been integrated into the SCR toolset
[Bharadwaj and Heitmeyer (1999)]. After using the tools described above to develop
a formal requirements specification, a specifier can invoke Spin within the toolset to
verify properties of the specification. Currently, we use Spin to analyze invariant prop-
erties. The SCR toolset automatically translates an SCR specification into Promela, the
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Figure 3: Customized simulator front-end for an avionics system.

language of Spin. The user can demonstrate and validate a property violation detected
by Spin with the SCR simulator.

The number of reachable states in a state machine model of a practical system is
usually very large, sometimes infinite. To make model checking practical, we have de-
veloped sound methods for deriving abstractions from SCR specifications, based on the
property to be analyzed [Heitmeyer et al. (1998a), Bharadwaj and Heitmeyer (1999)].
The methods are practical: none requires ingenuity on the user’s part, and each derives
a smaller, more abstract model. The SCR abstraction methods systematize techniques
that users of model checkers routinely apply but often in ad hoc ways. These meth-
ods eliminate irrelevant variables as well as unneeded detail from the specification. For
example, in analyzing a safety property for WCP, we used our abstraction methods to
reduce the number of variables in the specification from 258 to 55, and to replace sev-
eral real-valued variables with discrete variables, thus making model checking feasible
(by making the state space finite).

3.5 Dependency Graph Browser

One attribute of SCR requirements specifications is that, while they give detailed infor-
mation about specific aspects of the required system behavior, understanding the rela-
tionship between different parts of a specification can be difficult, especially for large
specifications. To address this problem, a Dependency Graph Browser (DGB) has been
developed, which represents the variable dependencies in a specification as a directed
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graph. By examining this graph, a user can detect errors such as undefined variables and
circular definitions. The user can also invoke the DGB to display and extract subsets of
the dependency graph, e.g., the subgraph containing all variables on which a selected
controlled variable depends.

3.6 TAME Theorem Prover

TAME (Timed Automata Modeling Environment) [Archer (2001)], a specialized inter-
face to PVS [Shankar et al. (2001)], offers templates for specifying automata models
and customized strategies which implement high-level proof steps for proving automa-
ton properties [Archer et al. (2002)]. Initially developed for Timed Input/Output Au-
tomata, TAME has been adapted to SCR by an automatic SCR-to-TAME translator and
by adding SCR-specific strategies that prove many properties automatically and exhibit
‘problem transitions’ for undischarged proof goals.

3.7 Invariant Generator

Algorithms for generating state invariants from SCR specifications are described in [Jef-
fords and Heitmeyer (1998)]. Such invariants are useful as auxiliary lemmas in proving
properties of SCR specifications with TAME and Salsa. The SCR invariant generator
generates invariants automatically. The user may choose which algorithms to apply and
may also choose which tables (condition, event, or mode transition tables) to analyze.

3.8 Salsa Property Checker

The SCR property checker Salsa [Bharadwaj and Sims (2000)] may be used to check
SCR specifications for Disjointness and Coverage and for satisfaction of state and tran-
sition invariants. Salsa can check the validity of formulas on Boolean, enumerated and
integer variables restricted to Presburger arithmetic. It uses BDDs for analyzing formu-
las on Boolean and enumerated variables and an automata representation for analyzing
Presburger arithmetic formulas.

3.9 Source Code Generator

While producing a high-quality requirements specification is crucial, ultimately soft-
ware must be implemented to satisfy the requirements. A specification verified and
validated using the SCR tools provides a solid basis for generating executable code. Al-
though automatically generating code may be infeasible for some purposes (e.g. code
that provides an interface to a physical device), such an approach is feasible for code
that implements a program’s control logic and simple data types. In such cases, the code
can be automatically generated from an SCR requirements specification. Recently, we
developed a grammar and a set of semantic rules for the SCR notation and used the
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APTS transformational system [Paige (1993)] to automatically generate C source code
from an SCR requirements specification [Leonard and Heitmeyer (2003)]. We have
also developed a number of techniques for improving the efficiency of automatically
generated code [Rothamelet al. (2006)].

3.10 Test Case Generator

To convince customers that the implementation is acceptable and to detect errors, the
software implementation must be tested. An enormous problem, however, is that soft-
ware testing is extremely costly and time-consuming. Current estimates are that testing
consumes between 40% and 70% of the software development effort [Beckert et al.
(2006)]. We have developed a prototype Test Case Generator [Gargantini and Heit-
meyer (1999)] which automatically constructs a suite of test cases from an SCR re-
quirements specification. (A test case is a sequence of monitored variable changes,
each coupled with a set of controlled variable changes.) To ensure that the test cases
‘cover’ all possible system behaviors, our technique organizes the set of possible sys-
tem executions into equivalence classes and builds one or more test cases for each class.
By reducing the human effort needed to build and run the test cases, this tool should
reduce both the enormous cost and significant time and human effort characteristic of
current software testing methods.

4 Conclusions

Using a language such as SCR to specify software requirements has several advantages.
First, due to its tabular notation, developers find an SCR requirements specification rel-
atively easy to understand and the SCR notation relatively easy to apply in formulating
requirements. Second, due to SCR’s formal semantics, the specification of the required
behavior is both unambiguous and precise. Finally, due to its formal state machine se-
mantics, an SCR specification provides a sound basis for using formal techniques and
tools to check the specifications for properties of interest. Like the SCR notation, the
SCR tools are designed for software developers who lack advanced mathematical train-
ing and theorem proving skills. Hence, developers can use the tools to perform relatively
complex formal analyses of requirements specifications. Given SCR’s formal semantics
coupled with its user-friendly design, the SCR language and tools provide a practical
formal method for constructing a high quality requirement specification and for using
that specification to automatically generate both source code and test cases.
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