
 Open access Journal Article DOI:10.1017/S0890060403171065

Formal methods for the validation of automotive product configuration data
— Source link

Carsten Sinz, Andreas Kaiser, Wolfgang Küchlin

Institutions: University of Tübingen

Published on: 01 Jan 2003 - Ai Edam Artificial Intelligence for Engineering Design, Analysis and Manufacturing (Cambridge
University Press)

Topics: Formal methods, Product (mathematics), Consistency (database systems), Automotive industry and
Component (UML)

Related papers:

 An Extensible SAT-solver

 A machine program for theorem-proving

 Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints

 Proving Consistency Assertions for Automotive Product Data Management

 Product configuration frameworks-a survey

Share this paper:

View more about this paper here: https://typeset.io/papers/formal-methods-for-the-validation-of-automotive-product-
nw95dyoda0

https://typeset.io/
https://www.doi.org/10.1017/S0890060403171065
https://typeset.io/papers/formal-methods-for-the-validation-of-automotive-product-nw95dyoda0
https://typeset.io/authors/carsten-sinz-3q5od9u53q
https://typeset.io/authors/andreas-kaiser-32k34bt1ff
https://typeset.io/authors/wolfgang-kuchlin-4gdlqq1y3n
https://typeset.io/institutions/university-of-tubingen-1nm1j91u
https://typeset.io/journals/ai-edam-artificial-intelligence-for-engineering-design-e78ulakw
https://typeset.io/topics/formal-methods-7wam6ooj
https://typeset.io/topics/product-mathematics-3o25grio
https://typeset.io/topics/consistency-database-systems-33s2mewn
https://typeset.io/topics/automotive-industry-3bbzjg62
https://typeset.io/topics/component-uml-3bq2ifwa
https://typeset.io/papers/an-extensible-sat-solver-4r6o94uank
https://typeset.io/papers/a-machine-program-for-theorem-proving-29qkrrylol
https://typeset.io/papers/algorithms-for-computing-minimal-unsatisfiable-subsets-of-4n5kjgdfbn
https://typeset.io/papers/proving-consistency-assertions-for-automotive-product-data-1keyq3cz4k
https://typeset.io/papers/product-configuration-frameworks-a-survey-1s5tvpksl2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/formal-methods-for-the-validation-of-automotive-product-nw95dyoda0
https://twitter.com/intent/tweet?text=Formal%20methods%20for%20the%20validation%20of%20automotive%20product%20configuration%20data&url=https://typeset.io/papers/formal-methods-for-the-validation-of-automotive-product-nw95dyoda0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/formal-methods-for-the-validation-of-automotive-product-nw95dyoda0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/formal-methods-for-the-validation-of-automotive-product-nw95dyoda0
https://typeset.io/papers/formal-methods-for-the-validation-of-automotive-product-nw95dyoda0

Formal Methods for the Validation of

Automotive Product Configuration Data
�

Carsten Sinz, Andreas Kaiser and Wolfgang Küchlin

Computer Science, Symbolic Computation Group

and Steinbeis Technology Transfer Center OIT

University of Tübingen, 72076 Tübingen, Germany

http://www-sr.informatik.uni-tuebingen.de

April 5, 2003

Abstract

In the automotive industry, the compilation and maintenance of correct prod-

uct configuration data is a complex task. Our work shows how formal methods

can be applied to the validation of such business critical data. Our consistency

support tool BIS works on an existing data base of Boolean constraints expressing

valid configurations and their transformation into manufacturable products. Using

a specially modified satisfiability checker with explanation component, BIS can

detect inconsistencies in the constraints set and thus help increase the quality of the

product data. BIS also supports manufacturing decisions by calculating the impli-

cations of product or production environment changes on the set of required parts.

In this paper, we give a comprehensive account of BIS: the formalization of the

business processes underlying its construction, the modifications of SAT-checking

technology we found necessary in this context, and the software technology used

to package the product as a client-server information system.

1 Introduction

Product configuration plays a key role in markets for highly complex products such

as, e.g., in the automotive or computer industry [20, 10]. These industries manage to

deliver personalized products with the price advantages of mass production by allowing

customization within standardized high-volume product lines.

Especially in Europe car buyers prefer built-to-order products by customizing each

vehicle from a very large set of configuration options. E.g., the Mercedes C-class of

passenger cars allows more than a thousand options, and on the average more than

30,000 cars will be manufactured before an order is repeated identically. Heavy com-

mercial trucks are even more individualized, and every truck configuration is built only

very few times on average.

Electronic product data management (PDM) systems are therefore employed to

maintain all knowledge about configuration options within a product line. The need✁
This work was supported by T-Systems ITS GmbH and DaimlerChrysler AG. Preliminary results of

this article were presented at the IJCAI-2001 configuration workshop [29], at IJCAR 2001 [15] and at In-

Tech’2001 [16].

1

for configuration (or use of configuration data) may occur at several stages in the pro-

duction chain, like sales, engineering, assembly, or maintenance. The requirements on

the PDM system may differ greatly from one stage to the other [37, 32]. However, the

majority of commercially available configuration tools concentrate on the sales aspect,

as the survey of Sabin and Weigel indicates [25].

In this paper, we focus on the configuration requirements from the engineering and

manufacturing departments which are similar in the sense that the product has to be

considered not merely in functional (sales-)categories, but down to the level of parts

assembly. Especially in the automotive industry, where—as in our case—an individual

vehicle can consist of up to 15,000 parts, this rules out the use of conventional sales-

configurators. Haag [11] introduces the notions of high-level and low-level configura-

tion, where the low-level is characterized by non-interactive, procedural processing. In

this sense we address low-level configuration here.

DaimlerChrysler AG employ the mainframe-based PDM system DIALOG to man-

age all possible configurations of the Mercedes lines of passenger cars and commercial

vehicles. DIALOG maintains a data base of sales options and parts together with a

set of logical constraints expressing valid configurations and their transformation into

manufacturable products. Some of the constraints represent general rules about valid

combinations of sales options, other formulae express the condition under which a part

is included into the order’s parts list. It was found that it is not humanly possible to

keep a data-base of thousands of logical constraints absolutely defect-free, especially

since it is under constant change due to the phasing in and out of models and of parts.

Thus, formal verification methodologies are highly desirable to weed out residual de-

fects which are hard to capture by traditional quality assurance methods.

Therefore our system BIS [18] was developed as an extension to DIALOG to help

the product documentation staff increase the quality of the product data. We first cre-

ated a formal model of the business processes encoded in DIALOG and converted

global consistency assertions about the product data base into formulae of an extended

propositional logic. BIS itself employs SAT-checking techniques to draw logical con-

clusions from sets of Boolean configuration constraints. By plugging into the existing

formal product documentation, BIS can validate consistency assertions on the con-

straints data base, and it can calculate the effects of configuration changes on the set of

required parts [18, 29].

BIS is especially geared towards the industrial context. It is packaged as an object-

oriented client-server information system with application specific GUI. BIS works

on an extended propositional logic that allows a compact formulation of n-out-of-k

constraints which are common in our application area. Its prover component provides

both efficiency on large inputs [15] and explanation of failed proof attempts which

are invaluable for locating defects in the data base [16]. BIS therefore preserves the

formula structure of the data base, avoiding CNF conversion, and for unsatisfiable sets

it calculates a minimal set of those constraints and their constituents which are the root

cause of the failed proof [14, 16]. We have also developed parallel SAT-checkers to

test the speed limits of the system [3].

Configuration at the engineering stage. At the engineering stage, a PDM system

is employed to maintain a data base that describes, independent of any actual orders,

the total set of products that the manufacturer is able and willing to build. Due to the

size of this set, its description must be implicit, by listing all constraints governing

admissible combinations of options [8]. The origin of the constraints may vary from

marketing to physical to legal considerations.

Traditionally, a sales person will bespeak the individual order with the customer.

2

The engineering PDM system is then used to complete the order by implied equipment

options (consider a police car), and to check the validity of the order by running it

against the constraints set. Every flaw in the constraints may lead to a valid order

rejected, resulting in lost revenue, or an invalid (non-constructible) order accepted,

possibly resulting in the assembly line to be stopped.

BIS can help to discover such flaws by formally verifying consistency conditions on

the constraints, without testing any real or imaginary orders. As an example, BIS can

check for each of the thousands of sales options whether it can possibly be contained

in at least one valid (manufacturable) order. BIS can also deal with partially specified

orders, checking, e.g., which engine options are still valid given a preselected body and

interior, or it can check which parts cannot possibly be part of any vehicles that go to a

certain country. This use of BIS concerns the validation of a static set of constraints.

Configuration at the manufacturing stage. The manufacturing PDM system de-

termines the bill of materials needed for assembly at a certain plant on a certain date.

Flaws in the manufacturing constraints may lead to superfluous parts ordered or neces-

sary parts lacking. Product documentation at the manufacturing stage is characterized

by frequent temporal change: Parts may be available or unavailable at certain points in

time or may be exchanged by successor models, subassemblies may shift from in-house

production to external procurement, assembly lines may be reconfigured. Additionally,

changes on the engineering level usually have a direct impact on the manufacturing

documentation. To name just a few, we can think of the phasing in and out of supple-

mentary equipment or whole model lines, or sharpened or relaxed constraints between

parts or subassemblies due to further product development. Here, configuration re-

quirements are similar to the engineering stage, in that the product has to be considered

not merely in functional (sales-)categories, but down to the level of parts assembly.

A specialized version of BIS [29] contains two methods, the
✂☎✄

-method and the 3-

point approach, to compute the changes induced on the parts level by high-level product

changes. These methods generate propositional formulae which are then checked for

satisfiability. Thus, both model year change and production relocation can be handled.

Prover technology. The BIS system is founded on state-of-the-art SAT-checking

techniques. Our initial feasibility study determined that (at the time) no other tech-

nique we tried could come close in speed; in particular, no variation of BDDs we tried

could handle formulas of our sizes. SATO [38] was the first system with which we

could prove an interesting set of assertions on realistic inputs. Subsequently, we de-

veloped our own SAT-checkers in response to the demands of our application: speed,

explanation, and an improved documentation logic.

First, our prover avoids the initial conversion of the input to conjunctive normal

form (CNF). Our formulas are so large that naive CNF conversion by applying the

distributivity law failed for lack of memory and time. Advanced methods [33, 31]

were successful but they still took about as long as the SAT checking proper. Speed is

important in our application, because thousands of theorems must be proved while the

documentation specialist waits.

Second, an explanation component was added to BIS. In industrial applications,

the real value of formal validation is as a sophisticated debugging aid rather than as a

tool for total verification. Even if all validations succeed at the end of a development

cycle, there is no guarantee that the product documentation is totally correct. However,

every time a validation attempt fails, it is desirable to understand the cause and correct

the documentation (or the product itself). In our case, the product documentation is set

up by a group of experienced application experts and is almost defect-free. A failed

assertion usually points to an exotic (but possibly costly) case that is rather difficult

3

to trace for a human expert. Therefore it is absolutely necessary for BIS to explain

quickly and succinctly the causes of a failure to prove an assertion. In our case, a

failed proof corresponds to an unsatisfiable set, and BIS computes a minimal set of

constraints and their constituents which are the root cause of unsatisfiability. The need

for explanation is a further reason to avoid CNF conversion, because this destroys the

original formula structure and may introduce extraneous variables, which renders an

explanation in terms of the CNF form rather useless.

Third, one of the best means to avoid defects in the product documentation is an

adequate documentation logic which allows natural and perspicuous formulations of

the business constraints. Boolean logic is a good choice because it is easy to understand

and admits decision procedures and efficient provers. However, popular constraints

such as “a car must have exactly one motor out of a set of options” translate into

rather complex sets of constraints. Therefore we extended Boolean logic by a general

selection operator and built a prover for the extended logic. This approach also trades

documentation space for verification time.

The remainder of this paper is now organized as follows. In Section 2, we begin

with an exposition of the documentation method used at DaimlerChrysler. In Sec-

tion 3, we give a rigorous formalization of the algorithms used for order processing

and configuration on the engineering and manufacturing stage, followed in Section 4

by a summary of validation properties we identified as important, together with their

translations into formal consistency assertions. In Section 5, we describe the manage-

ment of change at the manufacturing level, and how it can be handled using formal

methods. In Section 6, we then turn to special demands on the proof procedure like

explanation and their integration into BIS, followed by a short exposé of the BIS soft-

ware architecture in Section 7. In Section 8, we summarize our experiences with formal

methods in industry, in Section 9 we compare with related work, and in Section 10 we

give a brief conclusion.

2 Product Documentation for DaimlerChrysler’s Mer-

cedes Lines

We now describe the PDM system DIALOG that is used in its two variants DIALOG/E

and DIALOG/P in the engineering resp. production departments of DaimlerChrysler

AG for configuration of their Mercedes lines. Our description is already in terms of the

abstract logical model which we had to derive for our verification purposes [18].

2.1 Documentation at the Engineering Stage

In the terminology of Sabin and Weigel [25], DIALOG is a rule-based reasoning sys-

tem for batch configuration. It consists of a function-oriented and of a parts-oriented

level. The former is driven by codes and rules. Rules on this level serve two functions:

they (1) describe constraints between codes and (2) are used for completing partially

specified orders. Codes may either be equipment codes (sales options) or control codes

(internal steering codes, e.g. for production). The functional level constitutes a descrip-

tion of the set of manufacturable products from an engineering point of view, which we

will also call the product overview in the following. The parts-oriented level is char-

acterized by a modularized hierarchical parts list, where alternatives are selected based

on rules. These rules contain the function-oriented sales and control codes and there-

fore provide the mapping from the high-level functional to the low-level aggregational

4

view. The structure of the product is reflected in the module hierarchy. More informa-

tion on the documentation method and a synopsis of the requirements from different

departments can be found elsewhere [18, 16].

✆✞✝ ✟✡✠☛✝✌☞ ✍✏✎✒✑✡✝ ✓ ✍✏✔☛✕ ✍✖✓✗✙✘✛✚✖✜ ✢✤✣✦✥☛✧ ★ ✚✦✩✞✧ ✪✡✥☛✧ ✫✭✬☛✮☛✮☛✯ ✰✡✱✦✰☛✲✖✳ ✰✵✴✶✙✷✛✸✖✹ ✺✒✻✦✼☛✽✌✾ ✸❀✿❁✽ ❂☛✼✡✽ ❃✙❄✛❅✵❆✡❇❈❅✵❉✏❊✡❋✵❉✏●■❍✒❏☛❏☛❑ ❅✡▲✦❅☛❋✖▼ ❅✵❉◆✙❖✛P✖◗ ❘✤❙✦❚☛❯ ❱ P✦❲✞❯ ❳✡❚☛❯
❨ ❩❬

Figure 1: Processing a customer’s order.

A customer’s order within DIALOG/E consists of a model line selection together

with a set of further equipment codes which describe additional features. Each code

(equipment code or control code) is represented as a Boolean variable in the docu-

mentation. It is set to true (1) exactly when the piece of equipment is chosen by the

customer. Thus, an order is a fixed assignment to the propositional variables of the

product documentation. Alternatively, we identify an order with the set of codes that

are assigned to true. For homogeneity, parts may also be viewed as Boolean variables,

although this correspondence is utilized neither in the DIALOG system nor in our for-

malization. Orders are processed in three major steps, as depicted in Figure 1: (1) order

completion, (2) constructibility check, and (3) parts list generation. All of these steps

are controlled by rules. Rules can be of three different types, reflecting the three order

processing steps. All rules ❭ are of the form ❭❫❪❵❴❜❛❞❝✏❡✤❢❤❣ , where ❛✐❝ is a proposi-

tional logic formula and ❢ is the data entity the formula is assigned to, which can be

either a code or a part. A rule’s formula is built from the usual Boolean connectives❥ ❡■❦ , and ❧ , and from the codes serving as propositional variables. No restrictions are

placed upon the structure of the rules’ formulae, so there is, in particular, no restriction

to Horn formulae. The whole order processing is controlled by evaluating the rule’s

formulae under the (complete) variable assignment induced by the customer’s order,

and executing suitable actions based on whether the formula evaluates to true (1) or

false (0).

Let us denote by ♠❞♥ ❢ , resp. ♦☎♥ ❢ , the unique supplementing, resp. constructibility,

rule that is associated with each code ❢ . For a supplementing rule ♠✐♥ ❢ , or a con-

structibility rule ♦☎♥ ❢ , we use the notation ♠q♣❜❢❤r , resp. ♦s♣❜❢❤r , to refer to the rule’s propo-

sitional formula. Similarly, for parts selection, we use the notation t✉♥ ✈ to indicate

the unique part selection rule of part ✈ 1, and ts♣✇✈①r to denote the formula of rule t✉♥ ✈ .

Table 1 shows examples.

We now describe the actions of each rule type in more detail.

Supplementing rules. The order completion or supplementing process adds implied

codes to an order. The supplementing formula ♠q♣❜❢❤r of rule ♠❞♥ ❢ specifies the condition

under which code ❢ is added to order ② . When ♠③♣❜❢❤r evaluates to true under the variable

assignment induced by ② , i.e., when ② is a (logical) model of ♠q♣❜❢❤r , then code ❢ is

added to that order. The order completion process is repeated until no further changes

result. We denote by ②⑤④❀⑥ ❝⑦✭⑦⑨⑧ ②❶⑩ the action of adding code ❢ to order ② resulting in ②❶⑩
when formula ♠q♣❜❢❤r evaluates to true under ② .

1More precisely, we refer to the positions of parts rather than to the parts themselves [18].

5

rule type formula

S.231 supplementing ❷✦❸❹❷ ❥ ♣ M ❺❁❺✙❻ ❦ M ❼❁❽❁❾ r ❥ ♣ ❽ XXL ❦ ❷✦❸❿❷ ❦ ❷❀➀❀❻ L ❦❷❀➀❁❼ L r ❥ ❧ ❻❁❻❀➁
C.231 constructibility ♣ M113 ❦ M628 ❦➂♣✤♣ M112 ❦ M613 r ❥ ♣ R ❦ ❽❿❷❀❸ r ❥♣ 2XXL ❦ ❷❀❸❿❷ ❦ 403L ❦ 406L r ❥ ❧ ❻❁❻❀➁ r
P.81263A part selection ♣ M613 ❦ M628 r ❥ ❧ ❽❁❼✞➀

Table 1: Rule Examples

Constructibility check rules. Constructibility of a customer’s order is checked ac-

cording to the following scheme: For each code ❢ there is a constructibility rule ♦☎♥ ❢ .

Its formula ♦s♣❜❢❤r interrelates ❢ with other codes by encoding, e.g., requirements or

exclusion conditions for using code ❢ . A code is called constructible or valid within a

given order ② if ♦s♣❜❢❤r evaluates to true under ② . All codes of a possibly supplemented

order must be valid in a constructible order, and non-constructible orders are rejected.

Parts selection rules. The parts list is hierarchically structured using modules, po-

sitions, and variants. Parts are grouped into modules depending on functional and

geometrical aspects, positions contain mutually exclusive alternative parts, called vari-

ants, for each installation point. A part ✈ is selected based on its part selection rule t✉♥ ✈ :

part ✈ is included into the bill of materials for ② if and only if the rule’s formula ts♣✇✈①r
evaluates to true under the checked and possibly supplemented order ② . Consider, as

an example, an order ② consisting of the codes M628 and 494, i.e. ②➃❪➅➄ M628 ❡ 494 ➆ .
Assume that this order is left unchanged by the order completion process and that it is

constructible. Then the part selection rules are evaluated under ② ’s associated variable

assignment, i.e., the function ②s♣ M628 r✉❪➇②s♣ 494 r✉❪ ❺ and ②s♣❜❢❤r✉❪ ➀ for all other ❢ .

Evaluating, for example, 81263A’s part selection rule shown in Figure 1, we find that

it evaluates to true, since ②➈♣ M628 r☎❪ ❺ and ②s♣ 260 r☎❪ ➀ . Therefore part 81263A is

included into the bill of materials for order ② .

The exposition laid down in the last section presents a simplified view of the func-

tioning of the DIALOG system. The real system knows, e.g., different kinds of con-

structibility and supplementing rules. It is also possible to have several rules of a kind

for each code, or no rules at all. Moreover, part selection rules use a different formula

encoding. A formalization of this less abstract view of DIALOG can be found elsewhere

[28].

We will now turn to documentation at the manufacturing stage and explain the

extensions relative to the engineering documentation just presented.

2.2 Documentation at the Manufacturing Stage

Engineering product documentation reflects an idealized snapshot of the engineering

capabilities at a fixed point in time. It represents the most up-to-date picture of what

engineers are able to accomplish. This differs from product documentation at the man-

ufacturing level, where other issues have to be taken into account, e.g.: Is a part avail-

able at a certain point in time? At which production line can the product be assembled?

Which version of the product is to be manufactured?

Mainly, the difference between engineering and manufacturing documentation is

the inclusion of time dependencies and production circumstances into the latter. Within

DIALOG/P this is accomplished by adding a validity time interval and timing control

6

codes to each rule of the DIALOG/E system. In DIALOG/P, a rule ❭ is therefore

equipped with a validity time interval2➉ ♣✖❭➊r➋❪➍➌ ➎✒➏➐♣✖❭➑r➒❡✤➎✡➓❞♣✖❭➊r✤r
with ➎✒➏➐♣✖❭➊rq➔→➎✡➓❞♣✖❭➑r , indicating the earliest and latest time at and between which rule❭ is valid. ❭ can be either a supplementing rule ♠❞♥ ❢ , a constructibility rule ♦❶♥ ❢ , or

a part selection rule t✉♥ ✈ . An invalid rule is interpreted as switching off its action of

supplementation, constructibility control, or part selection. To enable more complex

temporal processes such as the phasing in and out of parts, each rule additionally owns

a starting and a stopping control code ➣q➣ ➏ , resp. ➣q➣ ➓ , which allows to override the

time interval limits. Intuitively, the meaning is as follows: ➣q➣ ➏ anticipates the start of

the time interval, i.e., rule ❭ is valid even before the start of the specified time interval,

provided that the starting control code ➣q➣ ➏➐♣✖❭➑r is present in the order. Analogously,➣q➣ ➓ anticipates the end of the interval in the sense that rule ❭ is invalid even before

the end of the time interval, as soon as the stopping control code ➣q➣ ➓✐♣✖❭➑r occurs in the

order. The exact formalized meaning will be given below.

3 Formalization of the Documentation System

Although the rules of DIALOG are propositional logic formulae and therefore have

a clear semantics, this does not necessarily imply a likewise clear semantics of the

documentation system. This is due to the algorithms built into DIALOG to interpret and

execute rules. For example, the order in which rules are checked and codes are added

during the order completion process can be deeply embedded in DIALOG’s algorithms

and depend on facts not visible to the documentation system user. As a consequence,

we either have to include all the algorithmic details in our consideration, or we have to

abstract from them in our examinations. We have decided for the latter.

Ignoring the algorithmic details of order processing, we concentrate on the result of

the overall order processing schema, i.e. we try to find a manageable representation of

the set of all constructible orders (which is the product overview) in one propositional

formula. This semantics of the product overview in turn builds on the semantics of

individual rules, which is now introduced. DaimlerChrysler does not use this seman-

tics at any point within DIALOG to check individual orders, but it is of great help in

analysing the system, and to express consistency assertions about the rule base as a

whole. A justification of our propositional verification semantics and proofs connect-

ing DIALOG/E’s rules with it can be found elsewhere [18]. In a first step, we only

consider the semantics of the DIALOG/E system.

In our context, the verification semantics of a rule is a propositional formula, de-

noted by ➌ ➌↕↔ ➙ ➙ . So, e.g., ➌ ➌ ♦❶♥ ❢➛➙ ➙ denotes the semantics of constructibility rule ♦☎♥ ❢ . For

supplementing and constructibility rules, the verification semantics can also be viewed

as a postcondition that holds after successful execution of the rule by DIALOG. For part

selection rules, the semantics denotes the condition under which the part is included in

a given order.

In Figure 2, formal definitions of the rule semantics are shown, together with some

derived formulae describing further important properties: Formula PO describes the

product overview, i.e., the set of all constructible, fully supplemented orders. This set

is characterized by the property that for each code ❢ out of the set ➜ of all available

2By ➝ ➞✞➟✛➠✛➡ , resp. ➢➤➞✞➟✵➠☛➥ , we denote closed, resp. open, intervals.

7

Supplementing rules: ➌ ➌ ♠❞♥ ❢➛➙ ➙➧➦✇❪➨♠q♣❜❢❤r➋➩❫❢
Constructibility rules: ➌ ➌ ♦❶♥ ❢➛➙ ➙➧➦✇❪➫❢➂➩➭♦s♣❜❢❤r
Product overview: ➯✉➲ ➦✇❪ ➳❝✞➵✞➸ ➺ ➌ ➌ ♠❞♥ ❢➛➙ ➙ ❥ ➌ ➌ ♦☎♥ ❢➛➙ ➙➼➻
Part selection rules: ➌ ➌ t✉♥ ✈➽➙ ➙➧➦✇❪➾ts♣✇✈①r
Order validity for order ② : ②➪➚ ❪ ➯✉➲
Selection of part ✈ for order ② :②➶➚❪➹➌ ➌ tq♥ ✈➽➙ ➙

Figure 2: Verification Semantics of Rules.

codes two properties hold: First, as a result of the supplementing rules’ semantics,

for each order satisfying the supplementing formula ♠q♣❜❢❤r , the code ❢ itself has to be

contained in that order. This reflects the fact that an order which satisfies ♠q♣❜❢❤r , but

does not contain ❢ is not fully supplemented. The other way round, however, ❢ may

be included in the order even if ♠q♣❜❢❤r is not satisfied. And second, as a result of the

constructibility rules’ semantics, if code ❢ is part of the order, then its constructibility

condition ♦s♣❜❢❤r must hold. Thus, a constructible and fully supplemented order ② is a

logical model of PO, i.e., ②➪➚ ❪ ➯✉➲ , and part ✈ is included in the bill of materials for an

order ② if ②➪➚ ❪➍➌ ➌ t✉♥ ✈✏➙ ➙ .
As an example, consider the following set of rules for the product overview:♠❞♥ ❢➘❪➴❴✛❧✐➷③❦➧❧❞➬➮❡✤❢❤❣ ♦❶♥ ❢➂❪➴❴✛❧➱➬➮❡⑨❢❤❣♠❞♥ ➬➴❪➴❴✖➷✃❡✤➬➛❣ ♦☎♥ ➬➴❪➴❴✖➷✃❡✤➬➛❣ (1)♠❞♥↕➷➊❪➴❴✛❐❒❡➒➷❀❣ ♦❶♥✌➷➊❪➴❴❈❢❮❦➘❧❞➬➮❡➒➷✦❣

Then, e.g., code ❢ is added to an order ② if ➬ or ➷ is missing, and ❢ is constructible

only if ➬ is not part of the order, while ➷ is constructible if either ❢ is also contained in② or ➬ is missing. The verification semantics of ♠✐♥ ❢ is ➌ ➌ ♠❞♥ ❢➛➙ ➙❤❪❰❧✐➷Ï❦❮❧❞➬❮➩Ð❢ , and that

of ♦☎♥ ❢ is ➌ ➌ ♦☎♥ ❢➛➙ ➙①❪→❢➘➩❵❧❞➬ . Therefore, we get as formula for the product overview➯✉➲ ❪Ñ♣✵❧➋➷Ò❦➘❧❞➬➴➩❫❢❤r ❥ ♣❜❢➘➩❵❧❞➬➽r ❥♣✛➷❒➩❫➬➽r ❥ ♣❜➬➴➩➭➷❀r ❥♣✵❐❰➩❵➷❀r ❥ ♣✛➷➊➩❫❢❮❦➧❧❞➬➽r➒❡
which simplifies to

➯✉➲ ❪Ó❢ ❥ ❧❞➬ ❥ ❧✐➷ . Thus, the only constructible order that can

possibly appear at the part selection stage is ②Ô❪➅➄✙❢ ➆ .
8

This semantics is suitable for DIALOG/E, but as it does not consider validity time

intervals, it has to be extended by a precise semantics for temporal aspects in order to

be appropriate for DIALOG/P. The extended semantics is shown in Figure 3.

Timed formula semantics:

➌ ➌ ❛✉❡✤➎✵➙ ➙❈Õ❫➦✇❪ Ö×Ø ×Ù ❛ ❥ ➣q➣ ➏➐♣✖❭➑r ❥ ❧ ➣q➣ ➓✐♣✖❭➑r if ➎ÛÚÜ➎✒➏➐♣✖❭➑r ,❛ ❥ ❧ ➣q➣ ➓✐♣✖❭➑r if ➎✒➏➐♣✖❭➑rÝ➔Ü➎ÛÚÜ➎✡➓✐♣✖❭➑r ,❐ if ➎ÛÞÜ➎✡➓❞♣✖❭➊r .
Supplementing rules:➌ ➌ ♠❞♥ ❢➐❡✤➎✵➙ ➙➧➦✇❪ß➌ ➌ ♠③♣❜❢❤r➒❡✤➎✛➙ ➙ ④❀⑥ ❝à➩❫❢
Constructibility rules:➌ ➌ ♦☎♥ ❢➐❡⑨➎✛➙ ➙➧➦✇❪➫❢➘➩➨➌ ➌ ♦s♣❜❢❤r➒❡✤➎✵➙ ➙âá ⑥ ❝
Product overview:➯✉➲ ♣❜➎✤rã➦✇❪ ➳❝✞➵❿➸ ➺ ➌ ➌ ♠❞♥ ❢➐❡⑨➎✵➙ ➙ ❥ ➌ ➌ ♦☎♥ ❢➐❡✤➎✵➙ ➙ ➻
Part selection rules: ➌ ➌ t✉♥ ✈ä❡⑨➎✛➙ ➙➧➦✇❪ß➌ ➌ ts♣✇✈①r➒❡⑨➎✛➙ ➙❈å ⑥ æ
Order validity for order ② at time ➎ :②➶➚❪ ➯✉➲ ♣❜➎✤r
Selection of part ✈ for order ② at time ➎ :②➪➚ ❪➹➌ ➌ t✉♥ ✈ä❡⑨➎✛➙ ➙

Figure 3: Verification Semantics of Timed Rules.

The general time-dependent semantics ➌ ➌ ❛✉❡⑨➎✵➙ ➙âÕ of formula ❛ belonging to rule ❭
generates a formula ❛ ⑩ representing the interpretation of formula ❛ at time ➎ , consid-

ering the control codes and timing intervals of rule ❭ . Before starting time ➎✒➏ of rule❭ , the timed formula ❛❶⑩ is only valid if starting control code ➣q➣ ➏ is set and stopping

control code ➣q➣ ➓ is not set. Between ➎✒➏ and ➎✡➓ the rule is valid as long as the stopping

control code is not set, and after ➎✡➓ the rule is never valid. Note that, although an in-

valid rule’s formula is always equivalent to ❐ , the interpretation of the whole rule can

differ. So an invalid formula in supplementing rule ♠❞♥ ❢ generates the rule semantics❐ç➩Ñ❢ which is equivalent to è , and thus switches off the supplementation of code❢ . On the other hand, an invalid formula in a constructibility rule ♦❶♥ ❢ generates the

rule semantics ❢é➩ê❐ or, equivalently, ❧❞❢ , which excludes code ❢ from any order,

thus switching off constructibility of code ❢ . Product overview, order validity, and part

selection, are straightforward extensions of their untimed counterparts.

There are two final remarks: First, the range of the starting and stopping times

9

➎✒➏ and ➎✵ë can be extended by the pseudo-values ì➑í and ⑦ í in order to model un-

bounded time intervals. Second, if the control codes are not set, they are initialized to

their default value ❐ . So in case of unspecified control codes, we get a simplified timed

rule semantics: ➌ ➌ ❛✉❡⑨➎✛➙ ➙âÕî❪⑤ï ❛ if ➎✒➏➐♣✖❭➑rÝ➔ð➎ÝÚÜ➎✡➓✐♣✖❭➑r ,❐ otherwise.

4 Maintenance and Validation Issues

Due to the complexity of automotive product documentation, some flawed rules in

the data base are almost unavoidable and sometimes very hard to find. Moreover, the

rule base changes constantly, even between model year changes, and rules sometimes

introduce dependencies between codes which at a first sight seem not to be related at

all. As the rule base not only reflects the knowledge of engineers, but also world wide

legal and marketing restrictions, the complexity seems to be inherent in automotive

product configuration, and is therefore hard to circumvent.

We subdivide the validation issues into two categories: static consistency criteria

and dynamic consistency criteria. Whereas the former consider only a fixed snapshot

of the product, and analyze properties of its documentation at this point in time, the

latter also take the evolution of the product and the production process over a whole

period of time into account, and investigate differences between two or more situations.

Of course, documentation has its own development and history by itself. We de-

note this evolution consisting of updates to the rules in the documentation system by

documentation evolution and distinguish two reasons for documentation evolution, dis-

regarding purely administrative updates not caused by external events: Either caused

by modifications of the product itself or by changes to the production environment. We

call the associated developments product evolution and production evolution, respec-

tively.

Typically, these two aspects of evolution are also separated in the documentation.

Product evolution is mainly considered in documentation at the engineering stage,

whereas production evolution is part of documentation at the manufacturing stage. This

differentiation also carries over to the separation into static and dynamic consistency

criteria.

4.1 Static Consistency Criteria

Independent of the real product’s properties there are conditions that a consistent doc-

umentation is supposed to possess. E.g., all parts should occur in at least one con-

structible product instance, and any equipment code should be compatible with at least

one order. We call these a priori conditions, because no explicit knowledge of the prod-

uct and the constraints governing its constructibility is needed in order to set up these

criteria. We identified the following data base consistency criteria to be of relevance:

Inadmissible codes: Are there any codes which cannot possibly appear in any con-

structible order?

Consistency of order completion: Are there any constructible orders which are inval-

idated by the supplementing process? Does the outcome of the supplementing

process depend on the (probably accidental) ordering in which codes are added?

10

Superfluous parts: Are there any parts which cannot occur in any constructible order?

Ambiguities in the parts list: Are there any orders for which mutually exclusive parts

are simultaneously selected?

Consistency of order completion is based upon the assumption that a customer’s

order that initially fulfills all constructibility rules is not invalidated, i.e. changed

to an order that is not constructible any more. Moreover, as the evaluation order of

supplementing rules is not explicitly settled, the order of actual rule application may

influence the final result. Consider as an example the supplementing rules ♠✐♥ ❢ with♠q♣❜❢❤r➘❪ñ❧➋➷➴❦ò❧❞➬ and ♠✐♥ ➬ with ♠③♣❜➬➽r➧❪➭➷ , and an initial customer’s order ② con-

sisting only of the code ➷ , i.e. ②ó❪ô➄❹➷ ➆ . First applying ♠✐♥ ❢ and then ♠❞♥ ➬ results in

the extended order ② ⑩ ❪➶➄✙❢➐❡✤➬➮❡■➷ ➆ , whereas first applying ♠❞♥ ➬ and then ♠❞♥ ❢ results in② ⑩ ⑩ ❪Ô➄✙➬➮❡➒➷ ➆ .
Besides these conditions indicating possible documentation faults, there are other

tests that are of a more informative and synoptic nature:

Necessary codes: Codes that must invariably appear in each constructible order.

Groups of mutually exclusive codes: Sets of codes from which at most one can be

present in each constructible order.

Valid additional equipment options: Codes by which a set of orders can possibly be

extended without loosing constructibility.

Our system BIS does not check these criteria on the basis of existing (or virtual)

orders, but by calculating logical conclusions from the product documentation itself.

By incorporating additional knowledge on which car models can be manufactured

and which cannot, further checks may be performed. Besides requiring additional

knowledge, these tests often do not possess the structural regularity of the above criteria

and thus cannot be handled as systematically as the other tests.

4.2 Dynamic Validation Criteria

Typical questions regarding the evolution of the product include:

Induced change on the parts level: What are the effects on the parts level when a

change in the product overview takes place?

Summary of product changes: Which orders become constructible over a period of

time, and which become invalid?

Time intervals with no constructible orders: Is there any point of time where—ac-

cording to the documentation—no products, or no products with a certain prop-

erty, can be built?

Especially the first of these questions is of utmost importance for the production

department as we will explain in detail later on.

11

4.3 Formalization of Consistency Criteria

Using the formalization of Section 3, checking consistency of the documentation sys-

tem can be grounded on a firm basis. In the following, we will give encodings of all

our static and dynamic consistency criteria as propositional satisfiability (SAT) prob-

lems. Most of the criteria are formulated as propositional validity problems, but as the

unsatisfiability of a formula ❛ is equivalent to the validity of ❧✐❛ , being able to check

the satisfiability of a formula is completely sufficient.

4.3.1 Encoding of Static Consistency Criteria

Considering the informal static consistency criteria of Section 4.1, we can now give the

following precise validation conditions:

Inadmissible codes: Code ❢ is inadmissible iff
➯✉➲ ➩❵❧➱❢ is valid.

Superfluous parts: Part ✈ can be removed from a position in the system documenta-

tion provided that
➯✉➲ ➩❵❧✐ts♣✇✈①r .

Ambiguities in the parts list: Parts ✈äõ and ✈①ö , which are assumed to be mutually

exclusive, are never selected simultaneously provided that
➯✉➲ ➩÷❧✉♣✖ts♣✇✈äõ■r ❥ts♣✇✈øöùr✤r holds.

Necessary codes: Code ❢ is necessarily contained in any constructible order if
➯✉➲ ➩❢ holds.

Groups of mutually exclusive codes: The group of codes ú ❪➪➄✙❢➐õù❡û♥û♥ù♥û❡⑨❢➮ü ➆ is mu-

tually exclusive provided that➯✉➲ ➩ ➳õ⑨ý➮þ✖ÿ �ûý➮üþ✂✁✄ � ❧✉♣❜❢➮þ ❥ ❢☎�❹r ♥
Valid additional equipment options: A valid order fulfilling the additional restric-

tion ❛ can be extended by equipment option ❢ iff
➯✉➲ ❥ ❛ ❥ ❢ is satisfiable.

Whereas all these criteria can be formulated without referring to multiple compu-

tation states (regarding the order processing algorithm), this is not the case any more

when we consider the question of consistency of the order completion process. Here,

the situation is more complicated, as references to at least two computation states must

be made: In case of orders invalidated by the order completion process, we need to

compare states describing the order before and after adding the supplemented code;

in case of ordering of rule applications we have to compare two states arising from

applying different supplementing steps.

Reference to two different states, i.e. two different variable assignments, is not (di-

rectly) possible in propositional logic. Fortunately, however, the variable assignments

corresponding to two different states simultaneously under consideration are almost

identical, and differ only on very few variables. This enables us to use formula re-

strictions ❛ ➚ ❝ ✄✝✆ , which are defined for a formula ❛ , a propositional variable ❢ , and a

Boolean value ✞✠✟ ➄ ➀ ❡ ❺❹➆ as the (unique) homomorphic extension of the function

❢➋➚ ✡ ✄✝✆ ❪ Ö×Ø ×Ù è if ❢➘❪→➬➮❡ ✞ ❪ ❺ ❡❐ if ❢➘❪→➬➮❡ ✞ ❪ ➀ ❡❢ if ❢☞☛❪→➬ø♥
12

to the set of all propositional formulae. Informally, the formula restriction ❛ ➚ ❝ ✄✝✆ can

be understood as partially evaluating ❛ for the assignment ❢➘❪ ✞ .
Formally defining the supplementing action relation ④❀⑥ ❝⑦✭⑦⑨⑧ of Section 2.1 we get:④❀⑥ ❝⑦✭⑦⑨⑧ is the smallest relation with ② ④❁⑥ ❝⑦✭⑦✤⑧ ② ⑩ provided that these three conditions hold:② ⑩ ❪➅②✍✌✎ ➄✙❢ ➆ , ❢✍✏✟ ② , and ② ➚ ❪Ô♠q♣❜❢❤r . Thus, the supplementing action relation can be

understood as a shorthand for simultaneous satisfaction of all three conditions. Here,

we identify the order as a set of codes ② with the order as a characteristic function on

the set of all known codes ➜ .

We can now state a lemma allowing assertions involving several computation states.

Lemma 4.1 [See [18]] Let ②⑤④❀⑥ ❝⑦✭⑦⑨⑧ ②❶⑩ . Then ②❶⑩❞➚ ❪ ❛ iff ②➪➚ ❪ ❛ ➚ ❝ ✄ õ .
Proof. First, note that ② ⑩ ❪é② ✌✎ ➄✙❢ ➆ . We prove the lemma by induction on the structure

of ❛ . The lemma is obvious for ❛ ❪ è and ❛ ❪ç❐ . Assume that ❛ is atomic, i.e.❛ç❪➍➬ for some propositional variable ➬ . We destinguish two cases. First, if ❢✑☛❪➹➬ ,

then ➬ä➚ ❝ ✄ õ❮❪➶➬ and, as ② ⑩ ♣❜➬➽r❶❪ ②s♣❜➬➛r , the claim holds. Second, if ❢Ü❪➪➬ , then, by❛ ➚ ❝ ✄ õq❪ ❢➋➚ ❝ ✄ õ③❪ è , ② ➚ ❪é❛ ➚ ❝ ✄ õ holds, and ② ⑩ ➚ ❪❰❛ , because ❢ ✟ ② ⑩ . Now, assume❛ ❪ ❧ ú . Since ♣✵❧ ú rù➚ ❝ ✄ õ❶❪ ❧✉♣ ú ➚ ❝ ✄ õ■r , the induction hypothesis already proves the

lemma. The cases ❛Ô❪ ú ❦✓✒ and ❛Ô❪ ú ❥ ✒ are handled accordingly using the fact

that the restriction is a homomorphism.

Note, that the consequence of this lemma also holds for states ② with ②✔☛➚ ❪➍♠q♣❜❢❤r ,
but then the supplementing rule would not be applicable. We are now placed in a

position to formally express the remaining static consistency properties about the sup-

plementing process.

Consistency of the order completion process: Let ➣ ➲ ➦✇❪✖✕ ❝✞➵✞➸ ➌ ➌ ♦❶♥ ❢➛➙ ➙ be the verifi-

cation semantics of all constructibility rules, i.e. ➣ ➲ describes the constructible,

but not necessarily fully supplemented, orders. Then no orders are invalidated

by the supplementing process exactly when➣ ➲ ❥ ♠q♣❜❢❤r➋➩ ➣ ➲ ➚ ❝ ✄ õ
holds for all ❢ ✟ ➜ . The order of supplementing rule application for rules ♠q♣❜❢❤r
and ♠q♣❜➬➽r is irrelevant provided the following holds:➣ ➲ ❥ ♠q♣❜❢❤r ❥ ♠q♣❜➬➽r➋➩➭♠q♣❜❢❤rù➚ ✡ ✄ õ ❥ ♠q♣❜➬➽rù➚ ❝ ✄ õ ♥

The last property is a sufficient, but not necessary, condition for order invariance, as it

even requires permutability of the two supplementing rules for ❢ and ➬ . The general

case demands for a propositional logic specification of the (local) Church-Rosser prop-

erty for relation ④❀⑥ ❝⑦✭⑦⑨⑧ , and therefore requires encoding arbitrarily long supplementing

chains that may lead to a reunification of the initially different orders. A more in-depth

discussion of the limitations of our approach can be found in [18].

4.3.2 Dynamic Consistency Criteria

Formalizing the requirements of Section 4.2 we arrive at the following criteria.

Induced change on the parts level: The implications of changes on the product over-

view consist of additional and superfluous parts. We will handle this and various

specializations in detail below.

13

Summary of product changes: Assuming fixed times ➎✘✗ and ➎➒õ with ➎✘✗ before ➎➒õ , the

models of formulae
➯Û➲ ♣❜➎➒õ■r ❥ ❧ ➯✉➲ ♣❜➎✘✗✙r and

➯✉➲ ♣❜➎✘✗✙r ❥ ❧ ➯✉➲ ♣❜➎➒õ■r describe the

newly constructible, respectively no longer constructible, orders.

Time intervals with no constructible orders: Assuming an additional restriction ❛
on orders, the times ✙✝✚ during which no orders fulfilling property ❛ are con-

structible, is determined by

✙✝✚ ❪ ➄✙➎③➚✃♣ ➯✉➲ ♣❜➎✤r ❥ ❛❒r is not satisfiable ➆ ♥
Computation of this set of times is accomplished by first extracting all relevant

starting and stopping times

✙ Õ ❪✜✛ø➎✒➏➐♣✖❭➑r➒❡⑨➎✡➓❞♣✖❭➑r✣✢✢✢ ❭ ✟✥✤❝✞➵❿➸ ➄❿♠❞♥ ❢➐❡■♦☎♥ ❢ ➆✧✦
from the documentation, ordering this set such that ✙ Õ ❪➃➄✙➎✘✗✞❡û♥ù♥û♥û❡✤➎✂★ ➆ for some✩

and ➎✡þÏÚÜ➎✡þ✫✪❞õ , and then performing the check whether
➯✉➲ ♣❜➎✤r ❥ ❛ is satisfiable

for each sample point ➎Ò❪ õö ♣❜➎✡þ ì ➎✡þ✫✪✐õ✭r and ➀ ➔✑✬ Ú ✩ . The result for such a ➎
then holds for the whole interval ➌ ➎✡þ✒❡⑨➎✡þ✫✪❞õ■r .

5 Management of Change

Many years can pass between the first prototype of a new product and the last time an

instance of it is manufactured. It is not surprising that during this period of time the

product itself as well as the production environment may undergo considerable change.

All this has to be reflected in the product documentation. Amongst the many possible

changes a product and its production process can undergo, we exemplarily pick out

three situations that make up a huge part of the changes in the automotive industry.

These are parts exchange, equipment code start-up and expiry, and assembly line re-

configuration. These scenarios cover changes of both the product and the production

environment, and include modifications of both the product overview and the parts list.

5.1 Typical Scenarios of Change

5.1.1 Parts Exchange

The reasons that make the exchange of parts necessary can be manifold, e.g. technical

progress, change between in-house production and external procurement, or change of

the supplier. The way in which the exchange is performed may also vary. There might

be a cut-off date at which part ✈äõ is replaced immediately by part ✈øö as is depicted in

Figure 4a). Or the exchange has to take place over a period of time during which both

variants with either part ✈äõ or part ✈①ö have to be manufactured, and for each product

instance it is exactly determined by control codes which of the two parts has to be used,

as is shown in Figure 4b). A third possibility is that the new part ✈①ö has to be used as

soon as part ✈➐õ runs out of stock. This is similar to the first case, but now the cut-off

date is not fixed, but variable. As none of our dynamic consistency criteria directly

deals with part exchange, we do not consider this special case any further.

Fixed-time as well as overlapping parts exchange can be modeled easily with the

control code and time interval additions of DIALOG/P.

14

✭

✮✰✯✲✱

✳✵✴✷✶✹✸✻✺✽✼ ✺ ✾

✿

❀✰❁✲❂

❃✽❄ ❅❇❆❈ ❉ ❊ ❋ ● ❍

■✫❏▲❑✰▼✧❏✵◆❖✹P☎◗✽❘❚❙❱❯

❲❨❳❬❩☎❭✽❳❫❪❵❴▲❛❜✹❝☎❞✽❡❚❢✧❣

❤✧✐ ❥❧❦
Figure 4: Part Exchange: a) Fixed Time b) Overlapping.

In the fixed-time case we get the following conditions for the selection rules t õq❪t✉♥ ✈äõ and t✐ö③❪ét✉♥ ✈①ö of parts ✈➐õ and ✈①ö to model a parts exchange at time ➎➒õ :➎✡➓✐♣✖t õ■rÏ❪→➎➒õ ➎✒➏➐♣✖t✐öùr➋❪ ➎➒õ ♥
The other time values ➎✒➏ä♣✖t õ✭r and ➎✡➓❞♣✖t✐öùr may be set to sensible values arbitrarily, the

control codes are left unspecified.

To model an overlapping parts exchange we need support from the control codes.

Leaving the start time of the overlap interval open, and assuming the end of the overlap

at time ➎✒ö , we get: ➎✡➓❞♣✖t õ■rÏ❪→➎✒ö ➎✒➏ä♣✖t✐ö✙r➋❪→➎✒ö➣q➣ ➓❞♣✖t õ■rÏ❪→❢❱♠ ➣q➣ ➏ä♣✖t✐ö✙r➋❪→❢❱♠û❡
where ❢❱♠ is the control code of the overlap, i.e. all orders containing ❢❱♠ use part ✈①ö ,
orders not containing ❢❱♠ use part ✈äõ . Again, the remaining time values may be set to

any suitable value, the control codes not mentioned are left unspecified. If the interval

start time is to be fixed, this has to be controlled using the constructibility rule of control

code ❢❱♠ . Adding ➎✒➏➐♣✛♦☎♥ ❢❱♠⑨rÏ❪→➎➒õ we get the behavior depicted in Figure 4b).

5.1.2 Equipment Code Start-up and Expiry

New equipment codes may show up as part of the continuous development of products.

Other equipment codes may run out because they are not requested by customers any

more or they have been integrated into standard packages. Most of these changes are

triggered by the engineering or even the sales department. This is in contrast to the

case of timing control codes, which are set by the production department, mainly to

handle model year change. Model year change is an important issue and requires a lot

of re-documentation, as usually quite substantial parts of the product change from one

year to another. Most of the overlapping parts exchanges mentioned above stem from

this modification.

What makes code start-up and expiry a non-trivial documentation task is that the

high-level changes of the product overview influence the low-level parts structure via

15

the parts selection rules t✉♥ ✈ . In case of starting and stopping control codes the direct

influence is clearly visible, but this may not be the case for other codes, or if a timing

control code is used inside a rule.

Such induced, dependent changes are often very hard to detect, as can be seen from

the following example: Assume a part ✈ with an unrestricted validity time interval➉ ♣✖t✉♥ ✈❤r ❪ ♣ ⑦ í ❡ ì❶í r and no timing control codes, and a selection rule’s formulats♣✇✈①r➋❪→❢ ❥ ➬ . Furthermore, let the constructibility formula of code ❢ be ♦s♣❜❢❤r✐❪❰➷ and

assume an intended code expiry for code ➷ at time ➎➒õ , i.e. ➎✡➓✐♣✛♦☎♥↕➷❀r❶❪➪➎➒õ . Then after➎➒õ , ✈ cannot be part of a valid order, since the expiration of ➷ induces the invalidity of

code ❢ , which forces the selection rule of ✈ to false.

What makes these induced expiry parts hard to detect for the documentation per-

sonnel is that the codes planned for expiry need not occur in the part selection rule as in

the example above. Besides, for complex products, different persons may be involved

in the documentation of change. Automatic support by an PDM system to find such in-

duced expiry parts is therefore highly desirable. We will present our approach to solve

this problem below.

5.1.3 Assembly Line Reconfiguration

Our last scenario of change is largely caused by modifications of the production en-

vironment. For instance, assembly lines are reconfigured from time to time to adapt

them to the actual production load. Less frequently, but entailing considerable changes

of the documentation, entire or partial model lines are shifted from one assembly line

to another, or even between plants.

The challenges for the documentation personnel are similar to the case of equip-

ment code change, but they often go even beyond that. The main problem is to deter-

mine the influence of the change on the parts level, with the same problems as men-

tioned above.

Moreover, at least in our case, some changes are not—or not early enough—

documented or even cannot be documented at all within the PDM system. This poses

the problem of handling undocumented change. For the purpose of verification, we

thus need an external formalism to specify certain documentation changes that cannot

be handled by the PDM system itself.

5.2 Two Methods to Detect Induced Change

For the computation of the induced change we developed two approaches. The first

one, called the
✂ ✄

-method, is suitable for handling short time intervals at a fixed point

in the future, during which considerable already documented changes are intended to

take place, whereas the second one, called the 3-point method, can also handle undoc-

umented modifications of the product overview and cope with larger time intervals.

5.2.1 The
✂ ✄

-Method

With the
✂☎✄

-method we can determine which parts become superfluous, resp. are ad-

ditionally needed, after a critical change that is already known to occur at a fixed time➎✂♠ in the future, and where the change is already documented. The procedure works in

three steps:

16

Step 1: Determine the set tÝõ of needed parts just before ➎✂♠ :tÝõÛ❪➅➄⑨✈ ✟♦♥ ➚✃♣ ➯✉➲ ♣❜➎✂♠ ⑦ ✄ r ❥ ➌ ➌ tq♥ ✈➐❡✤➎✂♠ ⑦ ✄ ➙ ➙❈r is satisfiable ➆
Step 2: Determine the set t➋ö of needed parts just after ➎✂♠ :t➋ö③❪➅➄⑨✈ ✟♦♥ ➚✃♣ ➯✉➲ ♣❜➎✂♠ ì ✄ r ❥ ➌ ➌ tq♥ ✈➐❡✤➎✂♠ ì ✄ ➙ ➙❈r is satisfiable ➆
Step 3: Compute the set differences ♠ã❪ t õq♣Ût✐ö and r ❪ét✐ös♣Ût õ .

The resulting sets ♠ , resp. r , give the sets of parts that are superfluous, resp. are

additionally needed, after the change. The parameter
✄

has to be chosen such that only

the critical change falls into the time interval ♣❜➎✂♠ ⑦ ✄ ❡✤➎✂♠ ì ✄ r . Note that this is—at least

theoretically—a limiting factor of the
✂ ✄

-method, as it may be impossible to separate

the critical change from other changes. In practice, this effect occurs rarely, as the

primary interest is in the situation after accumulating all changes at the critical time ➎✂♠ .
5.2.2 The 3-Point Method

Substantial changes, as required, e.g., for model year change or production reloca-

tion, cannot be performed in the short time interval presupposed by the
✂ ✄

-verification

method. Moreover, some changes cannot easily be modelled within the documentation

system DIALOG, but fit quite naturally in the logical formulation used in BIS. We there-

fore developed another methodology to determine induced change on the parts level.

This method also allows simulation and comparison of different future scenarios.

In contrast to the
✂☎✄

-method, the 3-point method is capable of handling docu-

mented as well as (yet) undocumented change. This is accomplished by providing

an external (with respect to the PDM system) formalism for specifying change. The

modifications that can be expressed within this formalism include:t
Equipment or control codes becoming valid or invalid.t Arbitrary code combinations becoming invalid.

In our formalism, changes are specified as modifications of the product overview’s

semantics. We denote the changed semantics by
➯✉➲✈✉➸✵✇äÿ ① ♣❜➎✤r , where ➜③② is the set of

codes for which the constructibility and supplementing rules are ignored, and r is an

additional side condition formula. The changed semantics is defined by➯✉➲④✉➸✹✇äÿ ① ♣❜➎✤rò➦↕❪ r ❥ ➳❝✞➵✞➸✰⑤✒➸ ✇ ➺ ➌ ➌ ♠❞♥ ❢➐❡⑨➎✵➙ ➙ ❥ ➌ ➌ ♦☎♥ ❢➐❡✤➎✵➙ ➙ ➻ ♥
Validation of an invalid code ❢ , i.e., a code with constructibility formula ♦s♣❜❢❤r➋❪❰❐ ,

can be achieved by including code ❢ into the set of newly valid codes ➜⑥② , thereby inac-

tivating the unsatisfiable constructibility formula for code ❢ . If it should be necessary,

a new constructibility or supplementing rule can be specified as a conjunctive part of

formula r . Invalidation of codes, as well as additional side conditions, are specified by

conjunctively adding formulae to r ; e.g., ❧❞❢ indicates that code ❢ becomes invalid.

For the 3-point method, two points in time, ➎✘✗ and ➎➒õ , have to be fixed between

which the undocumented changes should occur. Moreover, the modified product over-

view semantics
➯✉➲ ✉➸ ✇ ÿ ① ♣❜➎✤r with a fixed set ➜⑥② and a side-condition formula r is em-

ployed to reflect undocumented changes. The 3-point method is composed of four

steps:

17

Step 1: Determine the set t⑧⑦⑩⑨ of needed parts at time ➎✘✗ , i.e. before the change:t❇⑦⑩⑨③❪➅➄⑨✈ ✟❶♥ ➚✃♣ ➯✉➲ ♣❜➎✘✗✙r ❥ ➌ ➌ t✉♥ ✈ä❡✤➎✘✗✭➙ ➙❈r is satisfiable ➆
Step 2: Determine the set t⑧⑦❸❷ of needed parts at time ➎➒õ without undocumented changes:t❇⑦❸❷Û❪➅➄⑨✈ ✟❶♥ ➚✃♣ ➯✉➲ ♣❜➎➒õ■r ❥ ➌ ➌ t✉♥ ✈ä❡✤➎➒õ✤➙ ➙❈r is satisfiable ➆
Step 3: Determine the set t ✉⑦❸❷ of needed parts at time ➎➒õ including undocumented

changes: t ✉⑦❸❷ ❪➅➄⑨✈ ✟❶♥ ➚✃♣ ➯✉➲ ✉➸✹✇äÿ ① ♣❜➎➒õ■r ❥ ➌ ➌ t✉♥ ✈ä❡✤➎➒õ✤➙ ➙❈r is satisfiable ➆
Step 4: Compute the set differences

r õ❹✗Ò❪ét❇⑦❸❷⑧♣Ût❇⑦⑩⑨ ♠❞õ❵✗ ❪ t❇⑦⑩⑨s♣Ût❇⑦❸❷r ✉ ✗Ò❪ét ✉⑦❸❷ ♣Ût❇⑦⑩⑨ ♠ ✉ ✗ ❪ t❇⑦⑩⑨s♣Ût ✉⑦❸❷r ✉ õÛ❪ét ✉⑦❸❷ ♣Ût❇⑦❸❷ ♠ ✉ õ✉❪ t❇⑦❸❷q♣Ût ✉⑦❸❷
Here, e.g., r õ❹✗ indicates the additional parts needed at time ➎➒õ , ignoring undocu-

mented changes, relative to the parts needed at time ➎✘✗ . The relationship between the

three sets of parts and the difference sets are graphically illustrated in Figure 5.

❺❻❼❽❾
❿

➀
➁➂➃

➄➆➅❧➇✵➈❚➉➋➊✧➌➎➍❫➊➆➄➏✵➐✵➑✧➒✹➓❚➔➆→✣➣ ↔➙↕✫➛➝➜➟➞➡➠✫➢✘➤

➥❧➦❧➧✵➨❚➩➋➫✧➭➎➯❬➫❧➥✈➲✧➳✵➵➸❚➺✵➻❧➼❧➽✵➸❚➾➋➚✧➺➎➪❬➚❧➻➶✰➹✵➘✧➴✹➷❚➬✰➮✣➱➟✃⑧❐➟❒➝❮Ï❰⑥Ð➟Ñ✘Ò
Ó❚Ô✹Õ❧Ö❧×✵Ó❚Ø➋Ù✧Ô➎Ú❬Ù❧ÕÛ✧Ü Ý➟Ý❫Þ▲ßàÞ▲á✵â➎Þ➆ãä å⑧æàç❵è➟é⑥êàëíì

î✫ï ð✠ñ
Figure 5: The 3-Point Approach.

To determine the impact of an intended product overview change on the part us-

age, we have to take a look at the difference sets. The sets r ✉ ✗➎✏✞♠ ✉ ✗ indicate the

overall change between ➎✘✗ and ➎➒õ if the intended (undocumented) change really is per-

formed, including all changes induced by already documented events. The difference

sets r ✉ õ✷✏✞♠ ✉ õ reflect the changes induced at time ➎➒õ by the undocumented modifica-

tions alone. Moreover, and similar to the
✂ ✄

-method, the sets r õ❹✗➎✏✞♠❞õ❹✗ only show the

impact of already documented changes during the time interval ♣❜➎✘✗✞❡✤➎➒õ✭r .
18

5.2.3 Discussion of Both Methods

Comparing the two methods, the
✂☎✄

-approach offers the advantage of simplicity. To

find out the impact of a change on the parts’ world only the point in time of this change

has to be specified. On the other hand, the intended modification already has to be

documented, and the time of the change has to be fixed. Whereas this is usually the

case for planned, regularly occurring events like code start-up and expiry due to model

year change, this may not be the case for other product modifications, e.g. by further

product development. Here the 3-point method can play out its strength of handling

even undocumented modification events, however, at the cost of increased complexity

in usage. This shows up in the need to specify the modified product overview semantics➯✉➲✈✉➸✹✇äÿ ① ♣❜➎✤r . In most cases, though, the undocumented changes follow certain patterns,

so that special cases of the modified semantics may be pre-encoded and offered as

specialized tests.

Note that the 3-point method properly includes the
✂ ✄

-method. By setting ➎ ✗✻ò✭õ ❪➎✂♠ ✂→✄
in the 3-point method, we get a specialization equivalent to the

✂☎✄
-approach,

as
➯✉➲④✉ó ÿ ô ♣❜➎✤r☎❪ ➯✉➲ ♣❜➎✤r . In this case we have t ✉⑦❸❷ ❪➪t❇⑦ ❷ , and only the difference setsr õ❹✗ and ♠❞õ❵✗ are of interest. Another weakness of the

✂ ✄
-method already mentioned

in Section 5.2.1 is that the separation of two events may be impossible. The 3-point

method allows us to handle such a case by re-modeling the relevant events externally.

5.2.4 Mapping of Typical Cases

We will now show how to map two important scenarios of change to our verification

formalisms.

Our first case handles equipment code start-up and expiry caused by model year

change, for which we use the
✂☎✄

-method. Model year change usually is accompanied

by lots of changes, mainly on the parts level, but also to a smaller fraction on the prod-

uct overview level. During an overlapping interval, both models from the old and the

new model year have to be manufactured. Assume codes õ÷ö and õ ü are responsible

for controlling model year change, i.e., orders for cars of the old model year are tagged

with code õøö , for the new model year with code õ ü . Assume further that the model

year change is fixed to take place during the time interval ♣❜➎✘✗❿❡✤➎➒õ✭r . The interesting ques-

tion is which parts are not needed any more after ➎➒õ . In the documentation, the expiry

of the old model year is reflected by code õøö becoming invalid, as well as code õ ü
becoming mandatory at ➎➒õ . Moreover, some parts may happen to have ➎➒õ as a starting

or stopping time. In summary, the rules changing at time ➎➒õ are:➎✡➓✐♣✛♦☎♥ õøö r➋❪→➎➒õù❡➎✒➏➐♣✛♠✐♥ õ ü➮r➋❪→➎➒õ with ♠q♣ õ ü➮r➋❪ è ❡
as well as selection rules of parts ✈ with either ➎✒➏➐♣✖tq♥ ✈❤rà❪ ➎➒õ or ➎✡➓✐♣✖t✉♥ ✈①r❮❪ ➎➒õ . We

thus set up the
✂ ✄

-method with ➎✂♠❶❪➍➎➒õ and get resulting difference sets of r and ♠ ,

indicating additionally needed and superfluous parts after the end ➎➒õ of the model year

change overlap interval. Obvious starting or expiring parts (i.e., parts with ➎✒➏ä♣✖t✉♥ ✈①rÛ❪➎➒õ or ➎✡➓❞♣✖t✉♥ ✈①r➋❪→➎➒õ) may additionally be filtered out to get a more concise result.

Let’s now turn to production relocation, where we consider moving parts of the

production from one assembly line (or plant) to another. Of this two-sided problem

of moving in and off, we concentrate on the move-off part. Such a kind of change

cannot (easily) be handled within the DIALOG/E system, as not only individual codes,

but arbitrary code combinations, representing the fraction of the production that is

19

to be relocated, become invalid after the change. One important problem related to

production move-off is to determine the induced parts shift.

To handle this case, we use the 3-point method to find out precisely the induced

parts shift. We set up ➎➒õ as the approximated time of the relocation event, and ➎✘✗ as the

current time. The modified product overview semantics is set to
➯✉➲ ✉ó ÿ ù ✚ ♣❜➎✤r where ❛

is a formula describing the fraction of the production to be moved off.

As an example, let us consider the situation where the production of cars containing

the motor variants M1, M2, and M5, in cunjunction with automatic gears (A) is planned

to be moved off, but not for the destination countries C1, C3, and C4. The formula❛ ❪Ñ♣ M1 ❦ M2 ❦ M5 r ❥ r ❥ ❧Û♣ C1 ❦ C3 ❦ C4 r
describes this production shift.

The results delivered by the 3-point method are manifold. Perhaps the most im-

portant parts shift sets are r ✉ õú✏✞♠ ✉ õ . They indicate the additional and superfluous parts

after the relocation at ➎➒õ relative to the situation at the same time without the reloca-

tion. If the overall change on the parts level between the current situation (at ➎✘✗) and the

projected situation after the relocation at ➎➒õ , also including already documented prod-

uct changes, is of interest, then the difference sets r ✉ ✗✹✏✞♠ ✉ ✗ provide the appropriate

information.

6 A SAT Checker for Product Configuration

From our experiments with different methods for solving decision problems arising

from the encoding of consistency criteria [18], we observed some shortcomings of

current provers in handling problems stemming from the validation of configuration

data. We therefore developed our own prover [14] which is specialized for handling

product configuration data.

6.1 Language Extension

Groups of mutually exclusive codes are a characteristic property of automotive product

data. Such groups enforce that constructible orders contain at most one, or exactly one,

code of each group. In case of the DIALOG system, groups of mutually exclusive codes

occur, for example, for different engine types, interior materials, or radios; besides,

each valid order contains exactly one code that determines the country for which the

car is to be made.

Although such groups appear frequently, they are not given special attention in the

DIALOG documentation language. This may be due to the fact that such groups cannot

efficiently be encoded in standard propositional logic. To express the mutual exclusion

of û codes, a formula of size at least ②s♣ û ö r is needed. In order to overcome this

restriction, we extend propositional logic by a special selection operator ♠ üü .

Definition 6.1 For each û Þ ➀ and ýÿþ ➄ ➀ ❡û♥û♥ù♥û❡ û❞➆ , ♠ üü is an û -ary operator, and♠ üü ♣✖❛Ýõû❡û♥ù♥û♥û❡⑨❛❞ü➮r is true iff exactly
✩

of the formulae ❛ õù❡û♥ù♥û♥û❡⑨❛➱ü are true for some✩ ✟øý .

So, for example, ♠ ü� ✗ûÿ õ✂✁ ♣✖❛ õû❡ù♥û♥ù♥✭❡➒❛➱ü➮r denotes the fact that at most one of the formulae❛ õù❡û♥û♥ù♥û❡⑨❛➱ü is true.

20

Amongst the advantages of adding the selection operator to the language are the

compact formula size for symmetrically related subformulae (such as mutually ex-

clusive groups) and the conservation of structural properties that are lost by other

encodings—including the opportunity to make use of the preserved structural infor-

mation in automatic SAT checking.

6.2 The Problem of CNF Conversion

Even if no restrictions are placed upon propositional formulae for the specification of

constraints, this is often not the case for the prover language. In the domain of auto-

matic theorem proving, formulae are frequently required in conjunctive normal form

(CNF) in order to simplify and speed up the prover. However, this requires an ad-

ditional conversion step of generating clauses (disjunctions of literals) from the input

constraints. This can either be done naively, by distributing conjunctions over dis-

junctions and removing subsumed clauses, or by the satisfiability-conserving transfor-

mation due to Tseitin [33] that introduces new variables as abbreviations for complex

subformulae.

However, the naive conversion method may result in an exponential blow-up of the

formula, and Tseitin’s method suffers from the fact that the SAT checker has to deal

with a larger set of variables. Moreover, CNF conversion destroys the original formula

structure which is detrimental to any explanation component.

In contrast to small academic inputs, where CNF conversion poses no problem,

our industrial inputs are so large that naive conversion is impossible, and we need an

explanation of failed proofs in terms of the original constraints. Moreover, we found

that CNF transformation took as long as SAT checking by itself so that we wanted to

eliminate this additional intermediate step for the interactive use within the BIS system,

where turn-around times are to be kept small.

6.3 A SAT-Algorithm for Formulae in SNF

We developed a prover for arbitrary propositional formulae including our selection

operators ♠ üü . The prover implements an extension of the well-known Davis-Putnam

algorithm [6] for formulae in CNF.

Input formulae to our prover have to be in selection normal form (SNF) which

is defined as follows. SNF denotes the set of all propositional formulae ❛ including

selection operators ♠ üü fulfilling three additional properties:

1. ❛ is in negation normal form (NNF), i.e. negations appear only directly in front

of propositional variables,

2. false and true (❐ and è) do no appear as proper subformulae of ❛ , and

3. disjunctions and conjunctions are of variable arity (denoted by ✄ ♣✖❛ õù❡û♥ù♥û♥û❡⑨❛➱ü➮r
resp. ✕➂♣✖❛ õû❡ù♥û♥ù♥✭❡➒❛➱ü➮r), flattened (i.e. no direct subformula of a disjunction resp.

conjunction is again a disjunction resp. conjunction), and trivial cases (û ➔ ❺)
are simplified to their obvious equivalent, i.e. ✄ ♣✖❛ õ✭r ❪ ✕ ♣✖❛Ýõ■r ❪❰❛ õ , ✄ ♣✵rÝ❪➅❐
and ✕➂♣✵r➋❪ è .

Conversion to negation normal form is possible due to an extension of DeMorgan’s law.

As shown in [14], the equivalence ❧✐♠ üü ♣✖❛ õù❡û♥ù♥û♥ä❡⑨❛➱ü➮r✆☎ ♠ ü� ✗✭ÿ ⑥ ⑥✌⑥ ÿ ü✝✁✻⑤ ü ♣✖❛Ýõû❡û♥ù♥û♥ä❡⑨❛➱ü➮r
holds for selection operators.

21

ALGORITHM SATSNF

INPUT: ❛ ✟ SNF

OUTPUT: 1 if ❛ satisfiable, 0 otherwise

BEGIN

IF ❛Ô❪ è OR ❛➃❪→❢ OR ❛Ô❪❰❧❞❢ THEN

return 1

ELSE IF ❛➃❪❰❐ THEN

return 0

ELSE IF ❛➃❪ ✄ ♣✖❛ õû❡ù♥û♥ù♥❤❡➒❛➱ü➮r THEN

FOR ✬✐❪ ❺ TO n DO

IF SATSNF ♣✖❛➱þ✡r THEN

return 1

FI

OD

return 0

ELSE IF ❛➃❪é♠ üü ♣✖❛Ýõû❡û♥ù♥û♥ä❡⑨❛➱ü➮r THEN

FOR EACH ý❰⑩ þ ➄ ❺ ❡ù♥û♥ù♥❤❡ û❞➆ , ➚ ý❰⑩ ➚❁❪ ✩ , ✩ ✟øý DO

IF SATSNF ♣ ✕ þ✖➵ ü✆✞ ❛➱þ ❥ ✕ þ✖➵ � õ⑨ÿ ⑥✌⑥ ⑥ ÿ ü✝✁✻⑤ ü✟✞ ❧❞❛➱þ✡r THEN

return 1

FI

OD

return 0

ELSE IF ❛➃❪✑✕➂♣✖❛ õû❡ù♥û♥ù♥❤❡➒❛➱ü➮r THEN

FOR ✬✐❪ ❺ TO n DO

IF ❛➱þ❞❪→❢ THEN

return SATSNF ♣✖❛ ➚ ❝ ✄ õ✭r
ELSE IF ❛➱þ❞❪❰❧➱❢ THEN

return SATSNF ♣✖❛ ➚ ❝ ✄ ✗❹r
FI

OD

choose some variable ❢ occurring in ❛
return SATSNF ♣✖❛ ➚ ❝ ✄ õ■r OR SATSNF ♣✖❛ ➚ ❝ ✄ ✗❹r

FI

END

Figure 6: A Davis-Putnam-style Algorithm for SNF formulae.

22

Pseudo-code for our SAT algorithm is shown in Figure 6. Technical details about

the implementation as well as experimental results and a comparison with the SATO

SAT-checker [38] can be found in [14], where our algorithm performed compara-

bly or better than SATO on automotive product configuration data. An executable

file running under Windows NT/2000 is available from http://www-sr.uni-
tuebingen.de/pdm/icnf.exe.

6.4 Iterated SAT-Tests

Most of the consistency tests from Section 4.3 decompose into large series of re-

lated SAT tests, which are typically of the form PO ➩ ❛➱þ for all ❛➱þ from a large

set ❛î❪î➄✙❛q✗❿❡û♥ù♥û♥ù❡⑨❛q★ ➆ . Usually, all ❛➱þ are small formulae compared to the product

overview PO. This characteristic allows for heuristics to considerably speed up consis-

tency testing, which is illustrated in this section for the detection of inadmissible, nec-

essary, and optional codes (called the INO problem in the following). For a satisfiable

formula ❛ , a propositional variable ❢ is called inadmissible if ❛ ➚ ❝ ✄ õ is unsatisfiable; it

is called necessary if ❛ ➚ ❝ ✄ ✗ is unsatisfiable; if neither of these two conditions hold, ❢
is called optional. This definition captures the corresponding static consistency criteria

of Section 4.1.

We now briefly present three algorithms for INO computation. We assume that the

underlying satisfiability checking algorithm ✠✝✡☞☛ also generates a set r of models in

case the input formula is satisfiable, and returns the empty set otherwise. We further

assume that ✠✝✡☞☛ returns only a small non-empty subset of all models in case of a

satisfiable input formula.

Details on the algorithms, proofs, and an empirical evaluation can be found in [15].

Algorithm Basic. This algorithm (see Figure 7) determines the sets of inadmissible,

necessary, and optional variables by testing for each variable ❢ occurring in ❛ whether

the formulae ❛ ➚ ❝ ✄ õ and ❛ ➚ ❝ ✄ ✗ are satisfiable. The number of satisfiability tests is✬ ì➂❽ ♣✍✌ ì û r for a formula that has ✬ inadmissible, û necessary, and ✌ optional variables.

Investigating at first whether a variable is necessary would result in û ìÜ❽ ♣✲✬ ì ✌✞r calls

to SAT.

Algorithm Filter. Algorithm Basic can be improved in two ways. If some variable

is not inadmissible and not necessary, ✠✎✡✏☛ returns a set of models r . For each vari-

able ❢ occurring positively in some model this allows the immediate conclusion that ❢
cannot be inadmissible. Conversely, each variable occurring negatively in any model

cannot be necessary. In the following we will denote by
➉ ⑩ the set of variables that are

not inadmissible, and by ✑ ⑩ the set of variables that are not necessary. We thus get② ❪ ➉ ⑩✓✒✔✑ ⑩ . If the number of optional variables is dominant—as in our application

area—this filtering criterion can reduce the number of required SAT tests dramatically.

Moreover, by setting inadmissible and necessary variables as soon as possible to the

only value they can take, we can gradually reduce formula size and hence accelerate the

underlying ✠✝✡☞☛ algorithm. Algorithm Filter in Figure 7 is an extension of Algorithm

Basic and implements these ideas.

Algorithm Directed-Filter. The effect of filtering depends on the set r of models

returned by the SAT algorithm. The filtering works best if the models contain vari-

ables positively that have not yet been detected as admissible, and contain variables

23

ALGORITHM Basic

INPUT: Satisfiable formula ✚
OUTPUT: ✕ , ✖ , ✗
BEGIN✕✙✘ ✄ ó , ✖✚✘ ✄ ó , ✗✛✘ ✄ ó

FOR ALL ❝✉➵✢✜✎✣✥✤✧✦✩★✝✪✫✣✥✬✮✭ ✚✰✯ DO① ✘ ✄✆✱✳✲✎✴ ✭ ✚✙✵ ✶✧✷▲❷✂✯
IF ① ✄ ó THEN✕✏✘ ✄ ✕✹✸ � ❝✺✁
ELSE① ✘ ✄✟✱✳✲✎✴ ✭ ✚✙✵ ✶✧✷➆⑨ ✯

IF ① ✄ ó THEN✖✚✘ ✄ ✖✔✸ � ❝✺✁
ELSE✗✛✘ ✄ ✗✻✸ � ❝✺✁
FI

FI

OD

RETURN ✕ , ✖ , ✗
END

ALGORITHM SAT-Heuristics-Directed

INPUT: Formula ✚ , ✖ ✞
, ✕ ✞

OUTPUT: ❝q➵ PropVars ✭ ✚✰✯ ÿ✽✼➧➵ � ✗✭ÿ✒õ✂✁
BEGIN② ✘ ✄ PropVars ✭ ✚✾✯✼ ✘ ✄ õ

IF ② ⑤✰✭ ✖ ✞ ✸✿✕ ✞ ✯ ✁✄ ó THEN

choose ❝ in ② ⑤✹✭ ✖ ✞ ✸✿✕ ✞ ✯
ELSE IF ②✟❀ ✖ ✞ ✁✄ ó THEN

choose ❝ in ②✟❀ ✖ ✞
ELSE

choose ❝ in ✕ ✞✼ ✘ ✄ ✗
FI

RETURN ❝ , ✼
END

ALGORITHM Filter

INPUT: Satisfiable formula ✚
OUTPUT: ✕ ÿ ✖ ÿ ✗
BEGIN✕✙✘ ✄ ó , ✖✚✘ ✄ ó , ✕ ✞ ✘ ✄ ó , ✖ ✞ ✘ ✄ ó

FOR ALL ❝✉➵✢✜✎✣✥✤✧✦✩★✝✪✫✣✥✬✮✭ ✚✰✯ DO

IF ❝ ✁➵ ✕ ✞ THEN① ✘ ✄✟✱✳✲✎✴ ✭ ✚✙✵ ✶✧✷▲❷✮✯
IF ① ✄ ó THEN✕✙✘ ✄ ✕✹✸ � ❝✺✁✚ ✘ ✄ ✚✏✵ ✶✫✷➆⑨
ELSE✕ ✞ ✘ ✄ ✕ ✞ ✸ � ❝✺✁ ✸ � ✡ ✵✳❁ ü ➵❱① ✘ ü ✵ ✄ ✡❂✁✖ ✞ ✘ ✄ ✖ ✞ ✸ � ✡ ✵❃❁ ü ➵❱① ✘ ü ✵ ✄ ù❧✡❄✁
FI

FI

IF ❝ ✁➵ ✖ ✞❂❅ ❝✣✁➵ ✕ THEN① ✘ ✄✟✱✳✲✎✴ ✭ ✚✙✵ ✶✧✷➆⑨ ✯
IF ① ✄ ó THEN✖✚✘ ✄ ✖✔✸ � ❝✺✁✚ ✘ ✄ ✚✏✵ ✶✫✷▲❷
ELSE✖ ✞ ✘ ✄ ✖ ✞ ✸ � ❝✺✁ ✸ � ✡ ✵✳❁ ü ➵✝① ✘ ü ✵ ✄ ù➆✡❂✁✕ ✞ ✘ ✄ ✕ ✞ ✸ � ✡ ✵✳❁ ü ➵❱① ✘ ü ✵ ✄ ✡❂✁
FI

FI

OD

RETURN ✕ , ✖ , ✕ ✞ ❀ ✖ ✞
END

Figure 7: The INO algorithms Basic, Filter and the variable selection algorithm SAT-

Heuristics-Directed

24

negatively that have not yet been classified as not necessary. In order to maximize

in algorithm Filter the number of variables for which this condition holds, we use

a corresponding variable selection strategy in the underlying Davis-Putnam-style SAT

checker, as implemented by algorithm SAT-Heuristics-Directed shown in Figure 7. The

second value ❆ returned by the algorithm indicates whether the variable should be set

first to true (1) or false (0) during model search. Thus we obtain algorithm Directed-

Filter.

In order to check the effectiveness of our INO algorithms, we conducted experi-

ments with a set of Mercedes model classes [15]. The results demonstrate the effec-

tiveness of Filter and Directed-Filter compared to Basic. Comparing Basic to Filter,

improvements between 47 and 91 percent, in terms of time, and 34 and 91 percent, in

terms of SAT calls, could be measured. Additionally using the modified variable se-

lection heuristics SAT-Heuristics-Directed further accelerated INO search by up to 90

percent and reduced the number of SAT calls by up to 89 percent. Only for one formula

that contained relatively few optional variables Directed-Filter performed worse.

6.5 Explanation

In many cases failures of consistency assertions indicate errors in the product docu-

mentation, and usually such defects are corrected by adapting the documentation. Here

the problem arises that the mere size of the rule base makes finding the cause of an

inconsistency a daunting task. Therefore tool-support can be of great help, and we in-

tegrated an automatic explanation facility into the BIS system. Explanation of failed

assertions is done in three steps in BIS [16]:

1. Localization: The system generates a minimal set of rules that becomes contra-

dictory in combination with the controversial assertion, thereby localizing one

cause of the inconsistency. Note that this set need not be unique.

2. Presentation: The conflicting minimal rule set is prepared for presentation to

the user, trying to maximize comprehension.

3. Reasoning: A detailed step-by-step derivation is generated that explains this

cause of the inconsistency.

6.5.1 Localization

Using the formalization
➯✉➲

of the product overview as presented in Section 3, we can

reduce the localization problem for most controversial assertions ❇ to the computation

of a minimal unsatisfiable subformula (MUS) of
➯✉➲ ❥ ❇ . Traditionally, a MUS is

defined for a set of clauses. Slightly generalized, for a conjunction ♦Ô❪ ❛ õ ❥ ↔û↔ù↔ ❥ ❛➱ü
of a set of formulae ♠➅❪ ➄❹❛ õù❡û♥ù♥û♥û❡⑨❛➱ü ➆ with ♦ being unsatisfiable, a MUS of ♦ is a

subset ♠ ⑩ of ♠ such that ♦ ⑩ ❪ ✕ ✚ ➵ ④ ✞ ❛ is still unsatisfiable, but ♦ ⑩ ⑩ ❪ ✕ ✚ ➵ ④ ✞ ✞ ❛ is

satisfiable for all ♠➋⑩ ⑩✾❈→♠✐⑩ . See [7, 17, 19] for further elaborations and special purpose

algorithms for MUS computation.

So, for a contradictory formula, a MUS is a smallest subset that is still contradic-

tory. In our configuration setting, the cause of an inconsistency can thus be reduced to

a (small) fraction of the rule base. Localization by MUS computation is possible for

all assertions of the form
➯✉➲ ❥ ❇ when formulated as a SAT problem, which indeed

25

holds for all static and dynamic consistency properties with the exception of consis-

tency of the supplementing process. However, using CO instead of PO allows a similar

reduction in these cases, too.

It turned out to be practical to extend the notion of a MUS to arbitrary formulae in

negation resp. selection normal form. Thus, MUS computation can be performed on a

formula representation that is much closer to the original DIALOG rules.

Definition 6.2 For an unsatisfiable propositional formula ❉ in negation normal form

we call ❊ a minimal unsatisfiable subformula (MUS) of ❉ , iff the following conditions

hold:

1. ❊ is obtained from ❉ by deleting arbitrary direct subformulae of conjunctions,

i.e. by replacing subformulae of the form ❋ õ ❥ ↔û↔ù↔ ❥ ❋ ü by ❋ þ ❷ ❥ ↔û↔ù↔ ❥ ❋ þ✥● for➄➎✬✤õù❡û♥ù♥û♥û❡➝✬✘★ ➆ þ ➄ ❺ ❡û♥ù♥û♥û❡ û❞➆ .
2. The formula ❊ is unsatisfiable.

3. Removing an arbitrary direct subformula from a conjunction of ❊ makes the re-

sulting formula satisfiable.

For an extension of this definition to formulae in SNF, we consider selection op-

erators as atomic formulae, thereby forbidding subformula deletions under selection

operators.

Consider, as an example, the formula❛Ô❪ ❇ ❥ ❧ ✞ ❥ ♣✤♣ ✞ ❥■❍ rä❦➧❧ ❇ ❦■❏ùr✤r ❥■❍☎❥ ♣ ✞ ❦➧❧❑❏ûr ♥ (2)

Deleting
❍

from the main conjunction and replacing ✞ ❥✢❍
by ✞ in the nested conjunction

results in ú ❪ ❇ ❥ ❧ ✞ ❥ ♣ ✞ ❦➧❧ ❇ ❦✛❏ûr ❥ ♣ ✞ ❦➘❧✙❏ûr ❡
which is still unsatisfiable. Removing any further direct subformulae of any conjunc-

tion in ú makes it satisfiable, however. In this example, the only MUS of ❛ is ú . In

many cases a formula’s MUS is considerably smaller than the formula itself.

For an unsatisfiable ❉ in selection normal form, the strategy to find a MUS is

straightforward. Initially, we take ❉ as an approximation of our MUS ❛ ü , and for

each conjunction ♦ in formula ❛ we remove direct subformulae from ❛ ü , as long as

the resulting formula is still unsatisfiable. This leads to an algorithm with a number

of SAT-calls linear in the number of direct subformulae of conjunctions. More details

on the algorithm can be found in [16]. An example of a MUS calculated by BIS is

shown in Figure 8. In the upper part of the figure, each item shows a complete rule

with highlighted literals corresponding to the MUS. In our formalization PO all rules

are conjunctively connected, so that each item is a direct subformula of PO’s main con-

junction. The lower part shows a compressed view where nested subformulae that are

not part of the MUS are not displayed. We will discuss the presentation of a MUS in

BIS in more detail below.

We conducted experiments with this algorithm and could demonstrate the practical

effectiveness and applicability of our MUS computation approach. For the localization

of inconsistencies, the problem of finding a MUS, which in theory belongs to the sec-

ond level of the Boolean hierarchy [23], turned out to be tractable in our application.

With only simple heuristics, it never took the system more than one minute on a Sun

26

Figure 8: A MUS in BIS

❛ ➚ ♠ ✚ ➚ ➚ ♠ ✚✝▲ ➚ ➚ ❭ ✚ ➚ ➚ ❭ ✚▼▲ ➚
ALERT-05 11429 3 1139 2

ALERT-22 4311 31 1017 12

ALERT-25 4226 18 1011 3

ALERT-36 10480 27 1142 8

ALERT-37 10480 7 1142 4

ALERT-45 10408 10 1142 4

Table 2: The typical size of a MUS in BIS

27

Ultra E450 to find a MUS for formulae with several thousands of conjunctive subfor-

mulae (➚ ♠ ✚ ➚), approximately one thousand rules (➚ ❭ ✚ ➚), and more than one thousand

variables (cf. Table 2). In many cases, the run time was even below one second.

To investigate the effectiveness of MUS computation for explaining inconsisten-

cies we collected a set of 50 formulae originating from alerts due to inadmissible and

necessary codes [15] and measured some characteristics of MUS computation. Table 2

displays a short excerpt of the test results. In all cases, the number of conjunctive

subformulae (➚ ♠ ✚✝▲ ➚) as well as the number of rules (➚ ❭ ✚✝▲ ➚) could be reduced by 99

percent. Thus, with only a couple of constraints and smaller subformulae within these

constraints left, MUS computation enables our system to narrow the cause of an incon-

sistency to a manageable subset of the product data base.

6.5.2 Presentation of results

In addition to the size of a conflicting rule set, the form in which the result is presented

to the user is important for the usefulness of the explanation feature. Clearly, the MUS

becomes tedious to read even for small formulae, and the relation to the original for-

mula is not obvious. On the other hand, printing the whole formula of the consistency

condition (possibly highlighting the contained MUS) yields a large complex formula,

even if only relevant constraints are displayed.

Our answer is to list all relevant rules of the original formula, and to replace within

these rules any maximal irrelevant subformula by a wild card like ’ ♥û♥ù♥ ’, as shown in

Figure 8. In the 71 KB formalization of a C-Class limousine (consisting of 694 con-

structibility and 127 supplementing rules) the system finds a total of three constraints

to become contradictory in combination with the (inadmissible) code 030. While the

complete constraints displayed in the upper part of Figure 8 are still hard to analyze, it

is feasible to understand the inadmissibility of code 030 from the maximally reduced

yet structure preserving representation in the lower part of the example. Here the re-

lation to the original constraints is obvious. However, it may still not be immediately

obvious why the MUS is unsatisfiable. Hence we need more of an explanation.

6.5.3 Reasoning

Approaches to explain the unsatisfiability of a propositional formula are as numerous as

SAT algorithms. For example, any execution trace of a complete SAT algorithm, such

as a resolution refutation tree [24] or the search tree of the Davis-Putnam algorithm

[6], yields an exhaustive explanation. The specific form of the resulting explanation

depends considerably on heuristics, like variable selection for SAT [13], which fill

some indeterminism within the general algorithm. These heuristics critically influence

the efficiency of the search, and consequently the size of an explanation, which is the

main determinant of its quality. Besides size, intuition and intelligibility are important

factors for the quality of an explanation. Even though there is no objective measure

of these two factors, we cannot leave them out because they are directly related to the

explanation size. For example, the listing of a set of constraints together with the notice

that they are unsatisfiable may be sufficient for someone who knows the formalization

and is trained in logical reasoning, whereas for the documentation personnel at least a

step by step refutation in terms of codes is desirable.

In BIS, we use a linear execution trace of the back-tracking SAT algorithm pro-

posed by Davis, Logemann, and Loveland [5]. Explanations therefore indeed are refu-

tation proofs: We start with the converse of the assumption and show that this leads

28

to a contradiction. The applied reasoning process contains immediate consequences

and case distinctions. Immediate consequences are due to constraints containing only

a single propositional variable, and therefore rule out all orders either including or ex-

cluding this code. Such constraints are considered first (unit propagation). If there are

no such constraints, we choose a code for case distinction, and explain in two steps

why we neither find a valid order with nor without this code.

Figure 9: Example of an explanation in BIS

Figure 9 illustrates how the system justifies its conclusion that code 680 is in-

admissible in a C-class limousine. It lists five vehicle variants (955+R, 955+-R,
-955+M112, -955+-M112+R, -955+-M112+-R) which all lead to inconsis-

tencies in conjunction with code 680. For example, an order with codes 680, M112,

and without 955 (case 1.2.1 in Figure 9), makes codes M55, 954, M113, and R in-

admissible, and codes 498 and L necessary. This leads to a contradiction because L
becomes inadmissible (due to the first part of the conjunction of the seventh rule) and

necessary at the same time. Listing with each reduction step the formula causing the

implication would make the justification more intelligible but considerably longer. It

should also be noted that we do not use any kind of SAT learning techniques [2, 27] to

shorten explanations, as there is no obvious way to integrate this kind of argument into

a causal explanation without confusing the user.

To measure the practicability of this explanation technique in our application do-

main, we tested this functionality on the minimal unsatisfiable formulae (❛ ü) com-

puted during the experiments of Section 6.5.1. We collected the total number of vari-

ables (➚ ◆ ✚✝▲ ➚) occurring in ❛ ü , as well as the total number of leaves in the search tree

of an unsuccessful complete model search (➚ SAT ♣✖❛ ü rù➚). Table 3 lists the results for

some of those formulae.

No MUS contained more than 13 different variables which limits the size of a justi-

fication to a worst-case value of ❽ õ✽❖ ❪ ❾✏❺✙❸✞❽ distinguishable cases. The actual number

of cases displayed in the third column of Table 3 clearly shows that the automatically

generated justifications are even tractable for humans. Due to unit propagation, never

29

❛ ü ➚ ◆ ✚▼▲ ➚ ➚ SAT ♣✖❛ ü rù➚
ALERT-05 2 1

ALERT-22 13 1

ALERT-25 7 1

ALERT-36 6 2

ALERT-37 4 1

ALERT-43 10 5

Table 3: The typical size of an explanation in BIS

more than five cases needed to be analyzed, and indeed, for most formulae the contra-

diction is immediate without any case distinction.

7 BIS Software Architecture

The BIS system has been constructed employing object-oriented client-server technol-

ogy. It consists of a general prover module programmed in C++ with our dedicated

SAT-checker as its core component; a C++ server which maintains product data in raw

and pre-processed form and handles requests by building the appropriate formulae for

the prover; and a graphical user interface programmed in Java, through which tests

can be started and results can be displayed. The three components communicate via

CORBA interfaces [22], thereby achieving great flexibility, allowing e.g. to place each

component on a different, suitable computer or to use multiple instances of a compo-

nent (e.g. prover) if the workload demands this. Figure 10 shows a schematic view of

the BIS system architecture.

P❘◗✂❙ ◗❚✫❯❲❱❨❳❨❩

❬❪❭❴❫❛❵✾❜❞❝❢❡
❣✥❤✹✐❦❥✰✐♠❧ ♥♣♦✾q✍r✾♦✰q☞s✉t✙✈①✇✰t✏②✹♦③②❞④❢⑤⑥✍⑦✉⑧✾⑧✹⑨

⑩❷❶❹❸❷❺❄❻

❼❂❽❛❾❨❿❨➀✫❽➁ ➂✧➃✧➄ ➅❨➂❨➆✧➀✰➇

➈❂➉❛➊❨➋❨➌✫➉➍ ➎✧➏✧➐ ➑❨➎❨➒✧➌❹➓

➔❂→❛➣❨↔❨↕✫→➙ ➛✧➜✧➝ ➞❨➛❨➟✧↕❞➠

➡❂➢✫➤❨➥✺➦

➧❂➨✫➩❨➫❃➭

➯❂➲✫➳❨➵✩➸ ➺❂➻❛➼✳➽❄➾❨➚✮➪➶✺➹✂➘ ➹➴✺➷✂➬✫➮

➱▼✃✓❐▼❒✩❮

❰❂Ï✫Ð❨ÑÒ✫Ó❲Ô❨Õ❨Ö ×✂Ø✂Ù✧ÚÛ✫Ü✮Ý❨Þ❨ß

Figure 10: BIS system architecture.

Within the server, the UserLayer is responsible for authentication and handles user

requests by starting the appropriate consistency tests. Therefore it employs the Test-
Layer which in turn is responsible for managing (i.e. scheduling, starting) all consis-

30

tency checks. The data layer is used as a mediator between the TestLayer and the

EPDM system, and supports the caching of pre-computed data.

8 Industrial Experience

BIS was created upon an industrial order. Since the first feasibility study [28], we have

received pertinent feedback from documentation experts using DIALOG and BIS which

has influenced all aspects of the system. Here we summarize some key features of BIS

which were necessary for its acceptance in our industrial context. Some of these are

special cases of general remarks about Formal Methods in industry.

Graphical user interface. BIS offers an application oriented graphical user inter-

face so that all interaction is done in terms familiar to the operating personnel. Users

do not like to type logic on command lines. Therefore all key tests are available upon

mouse-clicks, and all results are presented graphically.

Customized special tests. BIS implements a set of customized special tests, formu-

lated in terms of the application. We also offer a general-purpose interface to the prover

which allows queries about the existence of valid orders with any property that can be

described by a propositional formula. This permits theoretically powerful and academ-

ically attractive non-standard consistency checks on the product documentation, but

the acceptance of this tool was rather poor.

Push-button technology. The logical prover component runs a decision procedure

and needs no assistance in finding a proof. Entire test sets reflecting thousands of

proofs run at the click of a mouse.

Efficiency. Efficiency is important. Significant delays in the work-flow cannot be

tolerated because they slow down productivity. We developed our own SAT-checker

for added efficiency. We also developed several parallel SAT-checkers but did not yet

apply them in industry.

Software technology. End users do not like to maintain business critical code writ-

ten in non-standard languages. BIS is constructed using standard object-oriented soft-

ware technology for industrial client-server systems: Java clients, C++ server, CORBA

based component model. We used CORBA to speed our development, but now a

CORBA license is required which makes it difficult for departments to evaluate BIS

without an up-front financial commitment.

Integration. BIS obtains data from DIALOG by reading intermediate files. This is

an impediment to daily use because users would prefer to stay entirely within DIALOG

and have the BIS tests available as options on their DIALOG screens.

It is also interesting to relate our industrial experience with BIS to the debate about

the industrial use of Formal Methods in Computer Science in general (cf. [4]). Formal

Methods have been associated first with the specification, verification, and validation,

of software [9], but today they are also applied to System Design and Hardware De-

sign together with Software Engineering [26, 36]. According to Wing [35], “Formal

methods are used to reveal ambiguity, incompleteness, and inconsistency in a system,”

which is exactly how we used them.

On the face of it, BIS deals with (input) data validation rather than program or

specification validation. There is no formal specification of DIALOG, and we did not

apply classical program verification techniques to DIALOG’s code base. However, we

have already seen that our logical rules can be viewed as postconditions associated with

action rules that DIALOG executes when it interprets the associated formulae. Hence

31

DIALOG can be regarded as a special kind of rule engine, and our action rules can

be regarded as an expert system with situation-action rules based on Boolean logic.

This insight allows us to relate our experience with BIS to reported experience with the

validation of expert systems [34], which are a special kind of software.

Thus there is a view of BIS as a program verification system. Under this view,

BIS proves assertions about the expert system executed by DIALOG: e.g., a code is

necessary iff DIALOG’s order processing algorithm will terminate with true only if the

code is present in the input; likewise, a code is inadmissible iff DIALOG will terminate

with false whenever the code is present in the input. Because of the close association of

action rules and postconditions, there is also a view of BIS as a system for specification

validation. Under this view, the postconditions are part of the input/output specification

for the associated expert system. BIS proves assertions about the postconditions which

necessarily hold after DIALOG has executed the associated action rules. If an assertion

fails or an otherwise surprising consequence of the specification is inferred by BIS, the

user may want to change the specification. Fortunately, a change of the postcondition

implicitly changes the associated action rule, so that the user immediately gets a new

expert system satisfying the new postcondition.

Note that all our proofs concern the logical model of DIALOG; the real COBOL

system may differ from the model in details. The logical model of a system is called

a system theory by Waldinger and Stickel [34]. Thus, as observed by Hall [12], it is a

myth that formal methods can guarantee that software is perfect. Formal verification

of a system ♠ is only possible where a complete set of specifications ➜ ④ can be shown

to be valid in the system theory, which must be a comprehensive formal model à ④ of

the system. This also implies that we must have formal semantics of the programming

language in which ♠ is built, and that the logic of our system theory is compatible with

our specification language and the verification method.

However, complete formal specifications and formal semantics just do not exist in

practice. Without formal semantics, we can only verify the system theory and not the

system itself. In rule-based systems, at least the semantics part is manageable, due to

their proximity to logic formalisms. Without a complete set of specifications, all we

can do is capture a few of the requirements formally, as a set á ④ of validation theorems,

which, if they hold, will greatly increase our confidence in ♠ .

It has been observed by our industrial partners that DIALOG itself contains a model

of the world of design drawings (which is again a model of parts and assemblies), and

that therefore DIALOG’s model of the real world may be as defective as the BIS model

of DIALOG. So ultimately we need an automated verifiably correct translation from

the design drawings to our formal models, which does not exist today. (The correspon-

dence between design drawings and actual parts is verified elsewhere in manufactur-

ing.)

The hardest part in the feasibility study of BIS was indeed to build the system

theory of DIALOG which models its inner workings as a set of action rules associated

with the sets of supplementation, constructibility, and parts selection formulae. Do not

be misled by our sanitized, simplified and abstract description in Section 2: we did not

find a scholarly document describing DIALOG or even the semantics of its language of

formulae. The actions that DIALOG takes are encoded in COBOL and were explained

to us in long hours by word of mouth, in the terms of the application specialists (none of

them computer scientists). We were extremely lucky because much of the semantics of

DIALOG lies in the propositional formulae, much of the rest can be modelled by simple

action rules associated with these formulae, postconditions can be readily associated

with the rules, and highly efficient SAT-checking methods are now available which can

32

efficiently handle the proof obligations.

So we are left with a situation where the system theory is not rigorously derived

from the system. Hence a formal verification of a product documentation executed

by DIALOG is impossible. In practice, however, even the complete verification of

a complex system is less important than the discovery of program bugs, or errors.

This is because the successful verification will only happen once, at the end of system

development, whereas errors must be found during the entire development process. In

our case, the development of a product documentation is really finished only when

a model line is discontinued. Moreover, for debugging purposes even a rather loose

relation of the system theory to the system is no problem, as long as bug alerts can be

substantiated by running the real system on the critical input. So in practice the real

issue is debugging rather than verification in the pure sense, and BIS is still very useful

as a highly sophisticated formal debugging aid.

Indeed, BIS found real bugs, both in DIALOG’s model of the real world, and in

the real world itself (e.g., in one case of an inadmissible code, it was found that the

configuration was indeed physically impossible, owing to an oversight in the design).

It can be argued that the bugs were somewhat esoteric, but this is to be expected from

residual bugs that have survived existing quality assurance methods, and some of them

would still have been costly in practice.

Since debugging is the real issue rather than verification, failed validations can be

extremely useful, provided that they reveal costly errors in the system that established

processes fail to expose. Two conditions are critical here: first, failed proofs need to

be explained, and second, the explanation (which necessarily is in terms of the system

theory) must be tied to a real flaw in the documentation system.

First, a failed proof is useful only if its root cause can be explained in a succinct

and intelligible way. It has been observed in this context that explanation is a sadly

neglected area of automated deduction [4].

Due to incomplete system theories, there may be failed proofs that do not corre-

spond to real (application) errors (false positives). Nobody has time and patience to

sift through reams of false positives. Several times we had to go back and add extra

axioms to our system theory to exclude false positives. False negatives (a failure to

capture problems) can seriously undermine the credibility of formal methods, so only

well debugged verification systems should be deployed; there is no time for experimen-

tation and only a finite amount of good will by the application specialists. No logically

unsound results were ever reported for BIS. However, false positives are still a problem

because the tests it performs are not even all necessary for the correctness of DIALOG:

some failed tests reflect situations which are handled elsewhere in DIALOG (outside

the domain of our system theory) or even downstream in the process chain. After all,

what really matters to the user is the correctness of the overall business process.

While BIS has received positive evaluations by several documentation departments,

it has not been immediately integrated in the business process. Established successful

business processes are extremely valuable and extremely expensive to change because

of many interdependent issues. New methods, such as formal methods, must be seam-

lessly integrated into the process and function with the established work force; here,

BIS still has some deficiencies. However, we have recently seen signs of new commit-

ments to BIS in the context of larger reorganizations.

33

9 Related Work

A lot of different schemes for product configuration have been suggested in the liter-

ature [25, 10], starting with McDermott’s work on R1 [20] and Digital’s XCON [1],

both systems for computer system configuration. The scheme that is most closely re-

lated to DIALOG’s documentation method is the constraint rule formalism of Soininen

et al. [30], which attaches stable model semantics to a rule-based configuration frame-

work. Our example from Section 3 written in Soininen’s formulation with so-called

(weighted) constraint rules reads as follows:❢■â û ✌✙➎➋➷ ❉❞❇✎ã❢ä❂å â❫❢➐❡⑨➬❢■â û ✌✙➎❞➬ ❉❞❇✎ã❢ä❂å â➭➷✏❡ û ✌✙➎❞➬➷❪â❫➬ ❉❞❇✎ã❢ä❂å â❫➬➮❡■➷✃❡ û ✌✙➎❞❢
It is easily verified that ➄✙❢ ➆ is the only stable model of these rules, which is in accor-

dance with the results obtained with our verification semantics. We do not have a proof

for the general equivalence of both formalisms, but hope that the concordance has be-

come apparent. Compared to Soininen’s work, our propositional verification semantics

aims in a different direction: in their work, configuration of individual orders is the

objective, rather than verification of the rule-base as a hole. Our semantics allows, e.g.,

an in-depth examination of the completion relation. Moreover, consistency checks can

be computed using standard SAT-checkers.

Over the last years, SAT checking has gained renewed attention by the advent of

both new theoretical results and improved implementations [38, 27, 21]. A comparison

of these implementations with the prover that is part of BIS can be found in [14].

Whereas all other SAT-checkers require the input to be in CNF, our prover accepts

propositional logic formulae without restrictions and offers a special selection operator.

10 Conclusions

We believe that the main findings of the BIS project are the following.

Configuration. Formal Methods can treat real world issues in the configuration of

complex products at the engineering and manufacturing stages. It is easy to see how

our methods could be applied to sales and after sales (spare parts supply), but we have

not treated these business cases here.

Prover technology. Our main contributions have been to extend propositional logic

by a special selection operator, to develop an efficient SAT-checker without CNF-

conversion, to provide a sophisticated explanation component, and to produce dedi-

cated and parallel versions for increased speed.

Formal Methods. Specification and validation methods based on lowly proposi-

tional logic have important industrial applications and can be supported by efficient

tools. The validation of large industrial software systems is feasible with reasonable

effort if the software is an expert system based on rules in propositional logic or can be

faithfully modelled as such. The key issue is that there must be a tight but easily es-

tablished link between the software and a formal system theory with a logic admitting

efficient decision procedures.

Business issues. Key factors for the success of BIS were that the underlying indus-

trial process was already founded on a clear and simple logic so that we could build a

system theory, and that SAT checking is now mature enough so that provers can handle

34

large real-world problems efficiently and that it is possible to make the numerous the-

oretical and practical modifications which are always necessary in important industrial

applications.

Acknowledgements

BIS would not have been possible without Dirk Bendrich from debis Systemhaus In-

dustry GmbH3 (now with DaimlerChrysler AG), who had the vision to initiate the

project before we had results. Alexander Krewitz and Gerd Müller of debis Systemhaus

Industry GmbH have been extremely patient and supportive industrial project leaders.

Alfons Geser helped with fruitful discussions and suggestions during the early phase of

the project. Carsten Sinz was partially funded by the German National Science Foun-

dation DFG under grant Ku 966/4-1 within the special purpose program “Deduktion.”

Our ES450 Enterprise Server is a gift from SUN Microsystems under their Academic

Equipment Grant program.

References

[1] V.E. Barker and D.E. O’Connor. Expert systems for configuration at Digital:

XCON and beyond. Communications of the ACM, 32(3):298–318, 1989.

[2] R. J. Bayardo and R. C. Schrag. Using CSP look-back techniques to solve real-

world SAT instances. In W. McCune, editor, AAAI’97: Proc. of the Fourteenth

National Conf. on Artificial Intelligence. AAAI Press, 1997.

[3] Wolfgang Blochinger, Carsten Sinz, and Wolfgang Küchlin. Parallel consistency

checking of automotive product data. In Proc. Intl. Conference Parallel Comput-

ing ParCo 2001, Naples, Italy, September 2001.

[4] Dan Craigen, Susan Gerhart, and Ted Ralston. Formal methods reality check:

Industrial usage. IEEE Trans. on Software Eng., 21(2):90–98, February 1995.

[5] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-

proving. In Communications of the ACM, volume 5, pages 394–397, 1962.

[6] M. Davis and H. Putnam. A computing procedure for quantification theory. In

Journal of the ACM, volume 7, pages 201–215, 1960.

[7] D. Davydov, I. Davydova, and H. Kleine Büning. An efficient algorithm for the

minimal unsatisfiability problem for a subclass of CNF. Annals of Mathematics

and Artificial Intelligence, 23:229–245, 1998.

[8] E. Freuder. The role of configuration knowledge in the business process. IEEE

Intelligent Systems, 13(4):29–31, July/August 1998.

[9] Susan Gerhart. Applications of formal methods: Developing virtuoso software.

IEEE Software, 7(5):7–10, September 1990. (Guest Editor’s introduction to For-

mal Methods theme articles).

3debis Systemhaus Industry GmbH is now T-Systems ITS GmbH.

35

[10] A. Günter and C. Kühn. Knowledge-based configuration: Survey and future di-

rections. In XPS 1999, number 1570 in LNCS, pages 47–66. Springer-Verlag,

1999.

[11] A. Haag. Sales configuration in business processes. IEEE Intelligent Systems,

13(4):78–85, July/August 1998.

[12] Anthony Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19,

September 1990.

[13] J. Hooker and V. Vinay. Branching rules for satisfiability. J. of Automated Rea-

soning, 15(3):359–383, 1995.

[14] A. Kaiser. A SAT-based propositional prover for consistency checking of au-

tomotive product data. Technical report, Wilhelm-Schickard-Institut für Infor-

matik, Eberhard-Karls-Universität Tübingen, Sand 13, 72076 Tübingen, Ger-

many, 2001. Technical Report WSI-2001-16.

[15] Andreas Kaiser and Wolfgang Küchlin. Detecting inadmissible and necessary

variables in large propositional formulae. In Proc. Intl. Joint Conf. on Automated

Reasoning: IJCAR 2001—Short Papers, number 11/01 in Technical Report DII,

pages 96–102, Siena, Italy, June 2001. University of Siena.

[16] Andreas Kaiser and Wolfgang Küchlin. Explaining inconsistencies in combinato-

rial automotive product data. In Proc. 2nd Intl. Conf. on Intelligent Technologies

(InTech 2001), pages 198–204, Bangkok, Thailand, November 2001. Assumption

University.

[17] H. Kleine Büning and Z. Xishun. On the structure of some classes of minimal

unsatisfiable formulas. In Proc. of the 5th Intl. Symp. on Artificial Intelligence

and Mathematics, Fort Lauderdale, Florida, USA, January 1998.

[18] Wolfgang Küchlin and Carsten Sinz. Proving consistency assertions for auto-

motive product data management. J. Automated Reasoning, 24(1–2):145–163,

February 2000. (Special issue: Satisfiability in the Year 2000).

[19] O. Kullmann. An application of matroid theory to the SAT problem. In Proc. of

the 15th IEEE Conf. on Computational Complexity - CCC 2000, pages 116–124,

Florence, Italy, July 2000.

[20] J. McDermott. R1: A rule-based configurer of computer systems. Artificial Intel-

ligence, 19(1):39–88, 1982.

[21] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-

gineering an efficient SAT solver. In Proceedings of the 38th Design Automation

Conference (DAC 2001), pages 530–535. ACM, 2001.

[22] Object Management Group. The Common Object Request Broker: Architecture

and Specification, 1995.

[23] C. H. Papadimitriou and D. Wolfe. The complexity of facets resolved. Journal of

Computer and System Sciences, 37:2–13, 1988.

[24] J. A. Robinson. A machine-oriented logic based on the resolution principle. Jour-

nal of the ACM, 12:23–41, 1965.

36

[25] D. Sabin and R. Weigel. Product configuration frameworks – a survey. IEEE

Intelligent Systems, 13(4):42–49, July/August 1998.

[26] Hossein Saiedian. An invitation to formal methods. IEEE Computer, 29(4):16–

17, April 1996.

[27] J. P. M. Silva and K. A. Sakallah. GRASP - a new search algorithm for satisfia-

bility. IEEE Transactions on Computers, 48(5):506–521, 1999.

[28] Carsten Sinz. Baubarkeitsprüfung von Kraftfahrzeugen durch automatisches Be-

weisen. Diplomarbeit, Universität Tübingen, December 1997.

[29] Carsten Sinz and Wolfgang Küchlin. Dealing with temporal change in product

documentation for manufacturing. In Configuration Workshop Proceedings, 17th

International Joint Conference on Artificial Intelligence (IJCAI-2001), pages 71–

77, Seattle, WA, August 2001.

[30] T. Soininen, I. Niemelä, J. Tiihonen, and R. Sulonen. Representing configuration

knowledge with weight constraint rules. In Answer Set Programming: Towards

Efficient and Scalable Knowledge Representation and Reasoning (Papers from

2001 AAAI Spring Symposium), pages 195–201. AAAI Press, 2001.

[31] F. Somenzi. CUDD: CU Decision Diagram Package, Release 2.3.0. University

of Colorado, Boulder, 1998. Available at http://vlsi.colorado.edu/˜fabio.

[32] P. Timmermans. The business challenge of configuration. In B. Faltings,

E. Freuder, G. Friedrich, and A. Felfernig, editors, Configuration, number WS-

99-05 in Workshop Technical Reports, pages 119–122. AAAI Press, 1999.

[33] G. S. Tseitin. On the complexity of derivation in propositional calculus. In A. O.

Silenko, editor, Studies in Constructive Mathematics and Mathematical Logic,

pages 115–125, 1970.

[34] R. J. Waldinger and M. E. Stickel. Proving properties of rule based systems. Intl.

J. Software Engineering and Knowledge Engineering, 2(1):121–144, 1992.

[35] Jeanette Wing. A specifier’s introduction to formal methods. IEEE Computer,

23(9):8–24, September 1990.

[36] Jeanette Wing and Jim Woodcock. Special issues for FM’99: The First World

Congress on Formal Methods in the Development of Computing Systems. IEEE

Trans. Software Engineering, 26(8):673–674, August 2000.

[37] J. R. Wright, E. Weixelbaum, G. T. Vesonder, K. E. Brown, S. R. Palmer,

J. I. Berman, and H. H. Moore. A knowledge-based configurator that supports

sales, engineering, and manufacturing at AT&T Network Systems. AI Magazin,

14(3):69–80, 1993.

[38] H. Zhang. SATO: An efficient propositional prover. In Proc. 14th Intl. Conf. on

Automated Deduction (CADE-97), volume 1249 of Lecture Notes in Computer

Science, pages 272–275. Springer-Verlag, 1997.

37

