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Abstract

This paper presents a general discussion of the role of formal methods in Knowl-
edge Engineering. We give an historical account of the development of the �eld of
Knowledge Engineering towards the use of formal methods. Subsequently, we discuss
the pro's and cons of formal methods. We do this by summarising the proclaimed
advantages, and by arguing against some of the commonly heard objections against
formal methods. We briey summarise the current state of the art and discuss the
most important directions that future research in this �eld should take. This paper
presents a general setting for the other contributions in this issue of the Journal, which
each deal with a speci�c issue in more detail.

1 Historical growth of Knowledge Engineering towards

Formal Methods

Although the history of KBS technology and Knowledge Engineering (KE) is well docu-

mented in a number of places in the literature ( e.g. [42, ch.2]), in this section we will

give an account of the development of KE1 which will show the natural growth of this

�eld to the use of formal methods. In the development of KE methods and technology, we

distinguish three main periods: the programming period, the modelling period, and the

current move towards the introduction of formal methods.

The �rst era of KE technology stretched from the late '70s to the mid '80s. This period

was characterised by the development of new programming techniques. New systems were

described in terms of the representation techniques that they employed: rules, frames,

Horn clauses, semantic networks, etc. KBS development environments gave support at

the level of these representation techniques, and often aimed at integrating these di�er-

ent representations (e.g ART, KEE, Knowledge Craft, see [43] for a comparison). Such

programming techniques were often developed and widely used before a proper formal

1At least from a European perspective. It is well possible that from an American or Japanese perspec-

tive, a di�erent picture would emerge.
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understanding of them was available (witness e.g. the certainty factor model in MYCIN

[15], or multiple inheritance in LOOPS [48]). Although shells like EMYCIN [77] and

others made some progress towards abstraction, they were still presented in terms of the

representation language and inference engine they provided.

The move away from this �rst period was already heralded as early as 1980 by Alan

Newell in his \knowledge level" lecture [59], but should more properly be situated as late as

1985 when Clancey published his \heuristic diagnosis" paper [17]. In this paper, Clancey

analysed a number of systems at a higher level of abstraction than simply their code. In

particular, he identi�ed a speci�c problem solving method which underlay the behaviour of

a number of systems, even though they were all coded in di�erent ways. Clancey called this

method \heuristic classi�cation" and described it in terms of its essential inference steps

and the types of knowledge manipulated by these inference steps. Most importantly, this

analysis was entirely independent of the particular way this method could be programmed

in any particular representation language. This type of analysis triggered the development

of a number of Knowledge Engineering methodologies. The late '80s saw a number of such

methodologies which were all aimed at so called \knowledge level" analysis of KBS tasks

and domains. Generic Tasks [16], KADS [83, 84], Methods-to-Tasks [57] and Role-limiting

methods [54] are some of the prominent examples of such methods.

These approaches all di�er in the structure that they propose for analysing knowledge,

the degree of task-speci�city, their link with executable code, and many other properties,

but all of them are based on the idea of constructing a \conceptual model" of a sys-

tem which describes the required knowledge and strategies at a su�ciently high level of

abstraction, independent of any particular implementation formalism.

Although these methods were highly successful and widely adopted (e.g. [73, 8, 52]),

almost all of them were often criticised from both within and from outside the KBS com-

munity (e.g. from Software Engineering) for their informality and corresponding lack of

precision. Even though many of these methods claimed to be based on Newell's knowl-

edge level hypothesis, for which Newell himself had proposed logic as the ideal language for

analysis, none of the most prominent methods in the late '80s incorporated much formal

analysis. At best these methods o�ered structured and semi-formal notation without clear

semantics (e.g. the inference structures of KADS), or they interfaced directly with exe-

cutable inference and representation mechanisms (e.g. Generic Tasks), but none provided

either a formal syntax or a mathematical semantics, let alone formal derivation rules.

This lack of formal backbone in most if not all of the leading KE methodologies was

apparently felt in many places, since the third period in this historical sketch, beginning

in the early '90s, brought a plethora of attempts at formalising much of the work that had

been done before. The arguments that were used to motivate these formalisations will be

discussed in more depth in section 3. They concerned issues like the removal of ambiguity,

the possibility of formally deriving properties like soundness or completeness, and bridging

the gap between an informal conceptual model and the design of an executable system.

Much of this formal language development took place in Europe, and because of the

prominence of the KADS conceptual model in European KE, a large number of di�erent

proposals for formalising KADS were published: MODEL-K [46], OMOS [51], MoMo [80,

31] (all from GMD in Bonn), FORKADS [81, 82] from IBM Heidelberg, (ML)2 [75] from

Amsterdam. Other languages were not directly based on KADS, but were based on a

conceptual model closely related to KADS: KARL [4, 25] from Karlsruhe based on the
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MIKE model [3], K�BSSF [41] from the Dutch Telecom based on the VITAL model

[45], and TFL [62] from Paris based on the TASK model. Yet other languages were

not originally based on KADS, but it was shown how they could be used for KADS-

like models: QIL [63] from Nottingham, GCLA [5] from SICS in Sweden, AIDE [47]

from Compiegne and MODEL [7]. KADS was certainly not the only source of formal

languages. Formal modelling languages based on other conceptual models are DESIRE [76]

from the Free University of Amsterdam, MC/GETFOL [33] from Trento, and MILORD

[65] from Blanes. Full references and brief comparisons of these languages will be given

in section 3. All of these languages aim at capturing the prominent distinctions made

in these conceptual models: distinguishing di�erent knowledge types; describing the use

of these knowledge types in inference steps; a speci�cation of control knowledge; and

aiming at task- and domain -independent descriptions. Other work applied existing formal

speci�cation languages to KBS systems or architectures. Examples include the use of Z

[19, 20], CCS [79, 78] and OBJ3 [58]. The community has been actively organising itself:

workshops at ECAI'92 (Vienna) and ECAI'94 (Amsterdam), as well as regular informal

meetings (Bonn '92, Karlsruhe '93, Bonn '94, Amsterdam '95 and Paris '96), plus a WWW

resource at ftp://swi.psy.uva.nl/pub/keml/keml.html. The work in this �eld has

been extensively reviewed in [27] for KADS-based languages and in [71] for a collection of

languages based on a variety of conceptual models. These reviews will be summarised in

section 3.

The evolution of KE as sketched in these three periods also has direct consequences for

the life-cycle employed in KBS development. In the �rst period, Knowledge Acquisition

was seen as a direct transfer of human problem-solving expertise to a computer program.

The acquired knowledge was immediately represented by a running prototype. In the sec-

ond period, Knowledge Acquisition is viewed not as a transfer process but as a modelling

activity. The result of Knowledge Acquisition is no longer only a running program, but

a conceptual model that describes problem-solving expertise in an implementation inde-

pendent manner. As a consequence, a large gap arose between the outcome of knowledge

acquisition and the �nal implementation of a KBS. Conceptual models described in natural

language are insu�cient input for the implementation step, because it is mainly a question

of natural language interpretation whether an implementation ful�ls such a speci�cation.

The intuition of a programmer has to �ll in the gaps and has to resolve ambiguity in such

models. Normally it is not at all clear whether a programmer has the necessary domain

and task knowledge to do this properly. The development of formal modelling techniques

were a natural answer to this shortcoming by de�ning an intermediate level between semi-

formal models and implementations. They enable a precise and detailed speci�cation of

the KBS and the required knowledge, while still abstracting in a twofold manner from the

implementation. First, they abstract from implementational details (e.g. whether a set

will be implemented by a list or by an array). Secondly, an implementation is normally

optimised to improve its e�ciency. Such e�ciency aspects which are not related to the

expertise but to the way it is implemented by appropriate data-structures and algorithms

are of no concern during knowledge acquisition. Using a formal speci�cation which is not

used as an e�cient implementation of the KBS enables to abstract from these e�ciency

aspects which are only related to its implementation. Using the implementation of a KBS

as its speci�cation leads either to a mix-up of these quite di�erent aspects or leads to non-

e�cient implementations. Therefore, formal speci�cation techniques save the abstraction
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from the implementational level as achieved by the knowledge-level hypothesis of Newel

but add substance and formal preciseness to it.

It seems fair to say that the knowledge level hypothesis of Newel was a necessary step

as it enabled to get rid of implementational details when discussing models of expertise.

Otherwise, it caused signi�cant irritation in its original formulation by Newel. Debates

arose about what could or should by speci�ed at the knowledge level, and about appropri-

ate formalisms (if any). This irritation is not at all a surprise as it could not be clear from

the beginning what the appropriate notion for specifying KBS's would be. Meanwhile, a

number of approaches exist which characterise what should be speci�ed at the knowledge

level and what are the appropriate modelling primitives to express such models. As a

consequence, work on formal speci�cation techniques could be done which de�nes formal

semantics for these new modelling primitives. In that way the semiformal speci�cations at

the knowledge level can be viewed as a necessary intermediate step. The knowledge-level

hypothesis enabled the research community to escape from the limitations of the available

implementation formalism and it created the possibility and the necessity for new types

of formal speci�cation techniques. It enforced the development of formal speci�cation

techniques which reintegrate the precision and unambiguity of implementation formalisms

into knowledge level speci�cations without losing their conceptual structure and without

getting confused by implementational aspects.

The purpose of this paper is to review and discuss the motivations for this body of

recent work (section 2), to briey survey the state of the art (section 3), and to identify

future research directions (section 4). Another paper in this issue deals with the relation of

the formal methods in KE with their counterparts in Software Engineering and Information

Systems. The �nal paper in this issue discusses the potential of these formal approaches

for validation and veri�cation of KBS.

2 Pro's and cons of formal methods in Knowledge Engi-

neering

In Software Engineering, the usefulness of formal methods has been a hotly debated topic

during many decades. During the recent growth of Knowledge Engineering towards the

use of formal methods, many of the same debates resurfaced in the Knowledge Engineer-

ing community (e.g. [23]). In this section, we will �rst very briey repeat the claimed

advantages for formal methods. We will take the advantages that are claimed for formal

methods in Software Engineering (see e.g. [85]), and reinterpret these in the context of

Knowledge Engineering. In the second and major part of the this section, we will follow

[35] and [11] by listing some of the most prominent myths about the use of formal methods

in Knowledge Engineering (KE) in particular, but also in Software Engineering (SE) in

general. We try to dispel most if not all of these myths.

2.1 Advantages of formal methods in Knowledge Engineering

The advantages of the use of formal methods can be distinguished by the phase of the

system development to which they contribute:
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Modelling: The conceptual models that are constructed in a modern Knowledge Engi-

neering process are typically de�ned using a combination of natural language and graphical

elements. As a result, these models are de�ned only informally or at best semi-formally.

As is well known, such documents in natural language have an ambigous and imprecise

semantics. There are as many meanings for a speci�cation as there are readers, and it is

a question of text interpretation as to whether a speci�cation is su�cient for a system.

The ambiguity of such conceptual models in a Knowledge Engineering context was aptly

illustrated by Aben's analysis of the use of a single inference step from the KADS frame-

work in a number of papers in [8]. Aben [1, p.36] states that out of nine papers that use

the abstract inference step, only one author uses it in correspondence with the original

de�nition in [14, p.37]. Most of the other papers use di�erent versions of the inference

step, even including versions with di�erent numbers of input arguments. Models which are

expressed in a formal speci�cation language have a precise semantics grounded in mathe-

matical representations and can disambiguate the informal representations. In principle,

direct implementations of the informal models can also serve this purpose. However this

would imply either committing the conceptual model to particular machine-oriented de-

tails (in order to obtain an e�cient implementation) or to ignore such details with an

e�cient and badly designed implementation as a result (see also myth 1 below).

Design: Although formal speci�cations can often themselves not be directly e�ciently

executed, they can form a bridge between the informal high-level conceptual models and

detailed machine-oriented design. This is because formal speci�cations do provide addi-

tional detail to the informal models, but still do so at a high conceptual level. An approach

to the use of formal representations as a bridge between conceptual models and detailed

design for KBS can be found in [50].

Furthermore, formal speci�cation languages open the possibility for gradual and step-

wise re�nement of a speci�cation towards an e�cienct implementation, where each of the

re�nement steps is provably correct. This then guarantees the correctness of the �nal

implementation with respect to the initial speci�cation. Advances in this area have been

made particularly with the VDM and CIP projects [10, 9].

Evaluation and maintenance: Although not much exploited in practice yet (neither

in Software Engineering nor in Knowledge Engineering) the use of a system description

which is at the same time precise and at a high level of abstraction would be a great asset

during the maintenance of a system, provided the speci�cation of the system is kept up

to date with the evolving implemenation.

Besides these advantages related to the various phases of system development, the following

points apply to each of the phases mentioned above:

Validation and veri�cation: Because formal speci�cations are mathematical objects,

they can be subjected to formal manipulation and proofs. This can (at least in principle)

lead to proofs of desired properties such as completeness and soundness of a speci�cation

with respect to the requirements. Informally, completeness states that the entire required

I/O relation can indeed be derived by the speci�cation, while soundness states the converse:

the speci�ed I/O does not exceed the required relation. When subjected to formal analysis,
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these concepts break up into more re�ned versions (e.g. [72]). Besides these two properties,

other properties are candidates for formal veri�cation and validation, such as termination,

consistency, irredundancy, etc. See for a discussion on this issue also the accompanying

paper by Meseguer and Preece in this issue of the Journal [55].

Besides formal proofs, validation and veri�cation may also take place through testing

if the formal speci�cation is executable. KBS speci�cation languages like KARL, TFL,

DESIRE and others have both a solid formal foundation and are executable (even if not

e�ciently). Particularly in the absence of proof techniques that scale up to speci�cations

of realistic size, this use of \speci�cations as prototypes" is the only currently available

practical path today to the use of formal speci�cations in validation and veri�cation.

Reuse of components: Many of the Knowledge Engineering methodologies mentioned

in section 1 place great emphasis on the reuse of various modelling components, varying

from the reuse of standardised primitive inference steps (e.g. [1] which formalises a set of

standard steps proposed in [14]), to the reuse of complex problem solving methods through

libraries of prede�ned elements (e.g. [13]). As discussed above, [1] showed the problems

in reusing informally de�ned primitive inference steps, and experiences in the Sisyphus II

project [64] show that the situation is similar in regard to problem solving methods which

are only de�ned informally. Only names are reused, but they refer to inferences or problem

solving methods with totally di�erent or even contradictory meanings. Development e�ort

and costs could be noticeably reduced by the actual reuse of prede�ned elements with a

standardised meaning which comes from their formal de�nition.

It is not necessary that the entire reuse process is formalised: [24] is an example

of an informal analysis of a family of knowledge-based systems, where the analysis has

bene�ted from the availability of formally de�ned components from which these systems

were constructed (see also the discussion under myth 5 below).

2.2 False objections to formal methods in Knowledge Engineering

Myth 1: The soft knowledge of experts cannot be adequately formalised

If this myth were true, it would not only be the end of formal methods in KE, but of KE

as an engineering discipline overall. After all, if it were true that soft expert-knowledge

cannot be formalised, it would also apply, and to a much greater extent, to the �nal

implementation of a KBS, because an executable computer program has for fundamental

reasons a more limited expressive power than, e.g., �rst order predicate logic. In addition,

the natural language description of the expertise itself already represents a signi�cant

reduction and we could ask with the same justi�cation whether human expertise which is

based primarily on skill can be described adequately using natural language.

[85] argues persuasively against this myth in the following way: \Programs, however,

are formal objects, susceptible to formal methods ... Thus, programmers cannot escape

from formal methods. The question is whether they work with informal requirements

and formal programs, or whether they use additional formalism to assist them during

requirements speci�cation." [85]
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Myth 2: Formal languages are di�cult to learn

This is the usual argument of the Assembler programmer against FORTRAN and funda-

mentally boils down to the question of what is easier to understand: low-level or high-level

programming languages. Every executable, and in the strictest sense, also every formal

speci�cation language can be considered as a programming language at a very high concep-

tual level. The aspect of an implementation which is e�cient and close to the machine is

here less important than the interest in o�ering language constructs at a high conceptual

level. Zave, who was deeply involved in the development of the operational speci�ca-

tion language PAISley, referred to the fact that: \an executable speci�cation language

is a specialized programming language" [86]. The relationship between speci�cation lan-

guages and programming languages has changed continually. Or, formulated di�erently:

the current speci�cation languages are the programming languages of the future, as the

higher conceptual level allows programming which is more e�cient because it is more

understandable.

The above argument holds for SE in general, but KE itself is in an even stronger

position to dispel this myth. The formal languages developed for KE use the model of

expertise as a conceptual model. They allow a graphic representation of most modelling

primitives and the formal speci�cation can tie onto already existing semi-formal models

and re�ne them. The graphic modelling primitives of the KADS model are supplemented

in this, for example, by Petri networks or extended entity relationship diagrams (EER).

Myth 3: Formal speci�cations are too complex and di�cult to understand

Basically, the aspects of precision and clarity are discussed here. Because formal and

executable speci�cations force a detailed formulation of the modeled knowledge, formal

speci�cations soon become very large and confusing. Structuring, hierarchization, and

modularization are well-known techniques for moderating this problem. The conceptual

models used by KE languages o�er clear advantages, particularly in this point, as they

di�erentiate clearly between di�erent types or levels of knowledge and subdivide the entire

speci�cation into small elements with clearly de�ned purposes (e.g. an elementary infer-

ence action, a domain view of an inference action, a task, a knowledge role, etc.). This

again is a clear advantage of the KE languages discussed here over the general-purpose

speci�cation languages of SE with their weaker conceptual model. We must always em-

phasize that a formal speci�cation cannot replace an informal speci�cation, but is intended

to re�ne or supplement it. It is almost always easier to understand an idea by reading a

natural language text than to attempt to extract it laboriously from lots of formulae. On

the other hand, the attempt at �nding a precise and complete natural language de�ni-

tion for a complex problem generally leads to illegible and incomprehensible multi-clause

sentences which always contain ambiguities, redundancies, breaks, and contradictions.

A further rebuttal of this point resembles the argument against Myth 1: if formal

speci�cations are too complex and di�cult to understand, then this must surely apply

with equal if not more force to the lower level implementation languages used in everyday

practice, since the programs expressed in these languages are often an order of magnitude

larger than the corresponding speci�cation in a high level formal language.
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Myth 4: Formal methods are all about proving programs correct

The point is made in [35] that the value of formal speci�cations is often not in the �nal

product (the actual speci�cation text), but rather in the process of creating that product.

This process, with its enforced precision and detail, reveals many insights into the nature of

the system to be produced, and it are these insights, rather than the actual �nal document,

which justi�es the formal speci�cation e�ort. In industrial practice, it turns out that the

bene�t obtained during the process of formal speci�cation are already so crucial that

large speci�cation projects report the successful use of formal methods without ever doing

a single line of proof (again, see [35]). It is important not to see speci�cations only as a

useful product, but to see the writing of speci�cations as an important process. In this

process, statements are made more precise, ambiguities and contradictions are recognized

and eliminated. The errors and problems which are recognized can be used to improve

the informal speci�cations. Thus occasionally a formal speci�cation is not necessary as a

�nal document, but only the process of formalization and the improvement of the informal

speci�cation which it enables. Wing says on this subject: \The greatest bene�t in applying

a formal method often comes from the process of formalizing it rather than from the end

result." [85]

Myth 5: Formal methods are too expensive and time consuming to use

In fact the formalization of a speci�cation does generate additional costs. On the other

hand, this objection is probably the most super�cial. Every standard textbook of SE is full

of admonitions that the later a speci�cation or programming mistake is discovered in the

software development process, the more expensive it will be to eliminate it. An informal

speci�cation with its basic incompleteness forces the programmer literally to bridge gaps

using his imagination. And he or she does not always meet the expectations of the later

users or the lacking expert knowledge.

The predominant share of the e�ort in the construction of a formal speci�cation is thus

not due to the use of a formal speci�cation but rather to the goal of making an informal

speci�cation more precise and eliminating ambiguities and contradictions. If the system

is to be implemented, then this e�ort must be expended anyway. But this will then no

longer be carried out in an appropriate phase and by the appropriate persons. \The fact

is that writing a formal speci�cation decreases the cost of development." [35]

Besides these general points, again KE is in a particularly strong position to dispel this

myth. As shown in [74], the close correspondence between the informal conceptual model

and the formal speci�cation language in KE can be exploited to give a much stronger

support (both automated and non -automated) to the transition from informal to formal

model, and such support is likely to signi�cantly reduce the cost associated with formal

speci�cation.

Finally, the KE community has traditionally placed great emphasis on the possibility to

re-use library elements or fragments of existing models in the construction of new models.

Such re-use is only properly possibly if the fragments are indeed speci�ed precisely enough

to be reusable. In the context of Knowledge Engineering, these fragments will consist of

the contents or structure (ontology) of domain-knowledge, elementary inference steps [1]

or entire problem-solving methods [13]. Each of these fragments must be accompanied

by a precise characterisation of the assumptions it makes about the knowledge, data and
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computational environment required for its proper functioning. Re-use of such fragments

will then (among other things) require a (preferably formal) proof that the requirements

of a particular fragment are indeed ful�lled in the given circumstances. Such an increased

possibility of reuse will be a great pay -back for the additional e�ort involved in building

the �nal speci�cation of the building blocks.

Myth 6: Formal methods never worked in SE, so why would they work in KE

First of all, the premise of this myth is increasingly untrue as time proceeds. Highly pub-

licized accounts of the application of formal methods to a number of well-known systems,

e.g. the Darlington Nuclear Facility in the UK [2, 60], the CICS project at IBM-UK [40]

and Airbus [61], all reported in [39]. References [22] and [21] provide a useful survey of

the use of formal methods in SE.

Secondly, as already stated above, the formal languages recently developed for KE

purposes are tightly coupled with the underlying conceptual models developed earlier in

the �eld. This has as advantages (i) that these languages can give strong support for

the construction of a formal speci�cation and (ii) that the structural correspondence can

be used to verify that the formal speci�cation does indeed capture the informally stated

requirements.

The same argument about the close correspondence between informal and formal mod-

els can also be used to rule out the following:

Myth 7: Formal methods are unacceptable to users

In particular the graphical representations available for many formal languages in KE (see

e.g. MIKE [3]) and the possibility to interpret the formal constructions in terms of the

underlying conceptual model form a signi�cant bridge to users and domain experts alike.

Myth 8: Formal methods are only useful in safety-critical systems

It is true that safety-critical applications can gain obvious bene�ts from formal methods.

We quote the following from [11]:

\The UK Ministry of Defence (MoD) draft Interim Defence Standards 00-55 and 00-56

mandate the extensive use of formal methods. Standard 00-55 sets forth guidelines and

requirements; the requirements include the use of a formal notation in the speci�cation of

safety-critical components, and an analysis of such components for consistency and com-

pleteness. All safety-critical software2 must also be validated and veri�ed; this includes

formal proof and rigorous (but informal) correctness proofs, as well as more conventional

static and dynamic analysis. Standard 00-56 deals with the classi�cation and hazard anal-

ysis of the software and electronic components of defence equipment, and also mandates

the use of formal methods".

The Atomic Energy Control Board (AECB) in Canada in conjunction with David

Parnas at McMaster University has commissioned a proposed standard for software for

computers in the safety systems of nuclear power stations. Ontario-Hydro has developed

a number of standards and procedures within the framework set by AECB and further

procedures are under development.

2Safety critical software is de�ned as software which on its own could cause a signi�cant accident.
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Many reported applications concern safety-critical systems, for example [39] mentions

railway signaling and railway tra�c tracking, Airbus cabin communication systems, be-

sides some of the applications mentioned above. Nevertheless, non-safety-critical appli-

cations have been reported as well: [39] mentions instrumentation systems, telephone

switching systems, secure operating systems and microprocessors. Famous examples of

which include the T800 Transputer oating-point unit and parts of the T9000 transputer

pipeline architecture (all of these reported in [11]). These real-life examples also dispel

the following:

Myth 9: Formal methods are not used on real large-scale systems

Besides the extensive lists of applications mentioned above, it is important to realise here

that formal methods need not necessarily be applied to entire systems. It is often possible

to isolate crucial, complicated or critical components of a large system, and to limit the

use of formal methods to these subsystems.

We must admit at this point however that the applications listed above concern formal

methods from SE. Formal methods in KE have not yet reached the degree of maturity

that they have made their way into industrial applications, and this must be seen as one

of the major challenges of the �eld in the years to come.

3 Current state of the art

The work on formal methods in KE has been recently and extensively surveyed in [71] and

[27], and we refer the interested reader to these works for detailed comparisons between the

di�erent approaches. In this section, we will instead give a broader, less detailed and also

somewhat more recent overview of the current state of the �eld. Based on this overview,

in the �nal section of this paper we will identify the most important and urgent points on

the agenda of this community.

The work in the �eld until now is best summarised by the catalogue of formal languages

that have been developed in recent years. Three groups of work can be distinguished here:

(i) formal languages based on the KADS conceptual model, (ii) formal languages based on

other conceptual models, and (iii) the use of formal languages from Software Engineering.

The languages of group (i) have been surveyed and compared in detail in [27]. That

paper compares languages by looking at their operational aspects, their epistemological

commitments and their formal underpinning. A very brief survey of this paper is given

in table 1. Analysis in this paper shows that a major determinant of choices made in the

various languages was whether a language was intended to be operational or not. Some

languages (OMOS, MODEL-K, MoMo) aim at clarifying the meaning of conceptual models

through operationalising such models, and do not aim at providing a formal semantics.

Other languages ((ML)2, QIL, K�BSSF) aim at formalising conceptual models, but use

such expressive formal constructions that this precludes e�ective executability. This non-

executability is not only a matter of e�ciency, but often also of the much more principled

issue of (semi)-decidability. A third group of languages (KARL, FORKADS) aims to

combine executability and formalisation. This main aim of language was found to explain

3This column indicates whether the language is still the subject of active research, development and

use, or whether work on the language has stopped.
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language site language executable static dynamic active3

constructs semantics semantics

OMOS GMD, frames, yes no no no
[51] Bonn hierarchies,

predicates,
functions

MODEL-K GMD, frames, yes no no no
[46] Bonn hierarchies,

predicates,
functions

MoMo GMD, Petri nets, yes no no yes
[80, 31] Bonn functions,

arbitrary
KR-languages

FORKADS IBM, sorted logic yes Tarskian no no
[81, 82] Heidelberg models

KARL Univ. of F-logic yes perfect Kripke yes
[4, 25] Karlsruhe Horn logic Herbrand models

Dynamic logic models

(ML)2 Univ. of sorted logic no Tarskian Kripke yes
[75] Amsterdam meta-logic models models

dynamic logic

QIL Univ. of predicate logic no Tarskian Kripke yes
[63] Nottingham temporal logic models models

epistemic logic

K�BSSF PTT Labs algebra, no Tarskian Plotkin no
[41] Netherlands sorted logic models, style

procedures initial
algebras

TFL Univ. de algebraic no loose loose yes
[62] Paris Sud data types algebraic algebraic

semantics semantics

GCLA SICS, generalised yes partial partial yes
[5] Sweden logic programs inductive inductive

de�nitions de�nitions

Figure 1: A brief survey of languages that can be used to operationalise and formalise

KADS models of expertise.
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many of the di�erences found in the detailed comparisons between the languages presented

in [27].

This detail in the comparison was possible because all the languages discussed in

[27] were based on the same underlying conceptual model. This was not the case for

the languages compared in [71]. The basis of that comparison was a speci�c task- and

domain-model (a simple time -table scheduling task) which was modelled in a number

of languages. Again, the purpose of the language (operationalisation, formalisation or a

combination of these two) was found to be of prime importance. The following common

properties were found to hold across the set of languages discussed in [71]:

� the composition of a complex speci�cation out of components which are each declar-

atively speci�ed.

� distinctions between static and dynamic aspects of a speci�cation

� distinctions between generic and domain-speci�c parts of the speci�cation.

A coarse comparison was done among the languages, based on three dimensions:

Expressive power for domain knowledge: The main distinction here was between

languages which used a sublanguage of �rst-order predicate logic (such as Horn

logic) and those which used full �rst-order logic. Other languages which were used

(such as modal logic) could in principle be encoded within �rst-order order logic so

that from a strict semantic point of view, these languages are equivalent.

Flexibility of reasoning patterns: AIDE has a completely �xed structure of reasoning

pattern, (ML)2 and KARL have a �xed overall structure but can be con�gured within

this structure: the three-layer structure of these languages (based on KADS) is �xed,

but they are con�gurable within each of these three layers. MC and DESIRE are

fully con�gurable and impose no �xed con�guration.

Expressiveness of control knowledge: [71] agreed with [27] that this is the main point

of di�erence between the various languages.

A more detailed comparison was also carried out in [71], and is summarised in �gure 2

The two survey papers discussed above both focussed on novel speci�cation languages

speci�cally designed for use in Knowledge Engineering. Another (although much smaller)

body of work has concentrated on using existing languages from Software Engineering to

problems in Knowledge Engineering. Examples of this approach are:

[19, 20]: speci�cations of a blackboard architecture (CASSANDRA) and a production-

rule architecture (including meta-rules, ELEKTRA), using Z [66, 67].

[79, 78]: speci�cations of a large number of blackboard architectures using CCS [56].

[58]: speci�cation of a simple scheduling task (from [71]) using OBJ3 [30].

[69]: speci�cation of diagnostic reasoning patterns using Z.

[49]: speci�cation of medical knowledge models using Z.

12



(ML)2 MC AIDE KARL DESIRE OBJ3 MILORD K�BSSF

[75] [32] [47] [4, 25] [76] [58] [65] [41]

1 FOL FOL restricted Horn 3-valued FOL order multi- sorted

meta-logic meta-logic FOL logic, meta-logic sorted valued logic +

dyn. logic dyn. logic temp. logic algebra logic algebra +

proc. lang.

2 yes yes only at yes component- only at locally only at

domain wise. domain domain

level temp. level level

composition

3 yes by the yes yes yes no yes yes

user

4 yes yes yes yes yes yes yes yes

5 yes yes no yes yes yes yes hard

6 no yes no no yes no yes via para-

meterised

deduction

7 partial no limited yes partial yes yes partial

8 yes yes partial yes yes yes yes yes

1. Expressive power

2. Declarativeness

3. Adequacy to specify dynamic aspects of reasoning patterns

4. Possibility to specify multi-level architectures

5. Adequacy to specify non-classical reasoning

6. Possibility to specify integrated systems

7. Executability (\partial" means that the language has an executable subset)

8. Availability of formal semantics

Figure 2: Detailed comparison in [71]

4 Future research directions

As the concluding section of this survey paper, we will sketch what we see as the most

important and/or challenging research problems for this community in the next few years.

Formalisms for dynamics

As we have seen above, both survey papers [71] and [27] identi�ed formalisms for dy-

namics as the cause of the largest di�erences between the currently available speci�cation

languages. In Software Engineering and Information Systems Design we also see a wide

variety of formalisms to deal with dynamic behaviour of systems (e.g. evolving algebras

[34], dynamic logic [36] and variants thereof [68], Petri nets [44], temporal logics [70]).

These are discussed in some detail in the accompanying paper by Fensel [26]. It is at

the moment unclear what the strengths and weaknesses of the various formalisms are, and

what the actual requirements of Knowledge Engineering speci�cation languages are in this

respect.
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Semantics

Connected with the open question on appropriate formalisms for dynamic behaviour of

KBS is the semantics provided for such formalisms. Again, the set of currently available

languages di�er widely in this respect, and even more options are available in the literature

on Software Engineering and on Logic.

A second problem with the semantics of these languages is the following: almost all

languages view a complex speci�cation as built out of simpler components in a structured

way. Good traditional semantic foundations exist for most of the individual components

employed in these languages, but it is often unclear how the overall semantics should be

composed out of these individual components. Foundational work is required for a clear

view on such compositional semantics.

Proof calculi

Clearly related to the problem with semantics is the development of proof calculi for these

languages. Notwithstanding our reply to myth 4 above, in order to reap the full bene�ts

of these formal speci�cation languages, we need proof calculi which allow proving general

properties of speci�cations. In general, a proof calculus is required which enables us to

prove properties of the form

preconditions ^ speci�cation ! post-conditions;

where preconditions and post-conditions are sets of �rst-order formulae, and speci�cation

is a formal speci�cation which includes static as well as dynamic aspects of a system. That

is, speci�cation is a set of formulae in a logic which includes states and changes of states.

Examples for this type of logic are dynamic and temporal logic. A formal reasoning

calculus together with automated proof support elicits the full power of formalisation

as it becomes possible to prove implicit properties of a speci�ed system (e.g. [37, 38]).

Approaches in Software Engineering like VDM already deliver good results in this area

[10].

Validation and Veri�cation

Closely related to such proofs of properties of a speci�cation is the use of these speci�cation

languages for validation and veri�cation. This de�nes a strong link to work done in

program veri�cation (see [18, 28] for a survey and [38] for an approach using theorem

proving in dynamic logic), and to work done in validating and verifying KBS (cf. [6, 53]).

Until now, most of the work in validating and verifying knowledge-based systems is focused

on speci�c implementation formalisms but this could change now as these techniques can

be applied to conceptual models when these models are supplemented by a formal language

and semantics. Furthermore, the current techniques only apply to the static semantics of

knowledge, and do not take into account the control structures under which this knowledge

is to be used. The paper by Meseguer and Preece in this issue provides a discussion on the

relationship between conceptual modelling, formal methods and validation and veri�cation

of KBS.
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Interaction with environment

A weak aspect of many if not all of the current Knowledge Engineering speci�cation lan-

guages is a limitation already inherent in the conceptual models on which these languages

are based. This concerns the modelling of the interaction of a system with its environ-

ment. Issues such as interaction with a user, interaction with asynchronous events and

interaction with other software systems in a heterogeneous environment have all remained

very underdeveloped until now. The task- and cooperation model in KADS [12] is a step

in this direction, but not nearly as fully developed as the corresponding conceptual model

of expertise. Work on DESIRE also has taken the interaction with the environment into

account and is ahead of KADS in this respect.

This is all the more urgent since each of these points is likely to be a signi�cant factor in

many application areas. Extensive work remains to be done here, both at the conceptual

and at the formal level.

Exposure to applications

In our replies to myths 6 and 8, we were forced to use almost exclusively examples from ap-

plications of formal methods in Software Engineering rather than Knowledge Engineering.

The reason for this is of course that the use of formal methods in Knowledge Engineering

has simply not yet reached the stage of industrial application. Of all the open points

of future work in this section, this point is perhaps the most important one. After the

development of a variety of formal speci�cation languages, many of which now seem to be

stable, the time is ripe for proving the value of these languages in real-life applications.

Areas where KBS are already used and which seem appropriate for the use of these formal

techniques are the process-industry (e.g. chemical plants, energy production), health (e.g.

medical decision-making [29]), transport and �nance.
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