
 Open access Journal Article DOI:10.1145/242223.242257

Formal methods: state of the art and future directions — Source link

Edmund M. Clarke, Jeannette M. Wing

Institutions: Carnegie Mellon University

Published on: 01 Dec 1996 - ACM Computing Surveys (ACM)

Topics: Formal methods, Formal specification, Model checking, Correctness and Software system

Related papers:

 Model checking

 The model checker SPIN

 Automatic verification of finite-state concurrent systems using temporal logic specifications

 Symbolic Model Checking

 Communicating Sequential Processes

Share this paper:

View more about this paper here: https://typeset.io/papers/formal-methods-state-of-the-art-and-future-directions-
10ye4ieh6c

https://typeset.io/
https://www.doi.org/10.1145/242223.242257
https://typeset.io/papers/formal-methods-state-of-the-art-and-future-directions-10ye4ieh6c
https://typeset.io/authors/edmund-m-clarke-3vprw689r6
https://typeset.io/authors/jeannette-m-wing-2wtehe2p0i
https://typeset.io/institutions/carnegie-mellon-university-2nn2m0cz
https://typeset.io/journals/acm-computing-surveys-32i2aemk
https://typeset.io/topics/formal-methods-7wam6ooj
https://typeset.io/topics/formal-specification-376tvf8f
https://typeset.io/topics/model-checking-sm4abkf0
https://typeset.io/topics/correctness-v0oe2aje
https://typeset.io/topics/software-system-27udaxu5
https://typeset.io/papers/model-checking-s5af6to30y
https://typeset.io/papers/the-model-checker-spin-1bgo4jtefp
https://typeset.io/papers/automatic-verification-of-finite-state-concurrent-systems-20f8fq7qdh
https://typeset.io/papers/symbolic-model-checking-pxw1i9acib
https://typeset.io/papers/communicating-sequential-processes-43isnj77cd
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/formal-methods-state-of-the-art-and-future-directions-10ye4ieh6c
https://twitter.com/intent/tweet?text=Formal%20methods:%20state%20of%20the%20art%20and%20future%20directions&url=https://typeset.io/papers/formal-methods-state-of-the-art-and-future-directions-10ye4ieh6c
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/formal-methods-state-of-the-art-and-future-directions-10ye4ieh6c
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/formal-methods-state-of-the-art-and-future-directions-10ye4ieh6c
https://typeset.io/papers/formal-methods-state-of-the-art-and-future-directions-10ye4ieh6c

Formal Methods: State of the Art and Future Directions

EDMUND M. CLARKE, JEANNETTE M. WING, ET AL.1

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA ^wing@cs.cmu.edu& and

^edmund.clarke@es.cmu.edu&

1. INTRODUCTION

Hardware and software systems will in-
evitably grow in scale and functionality.
Because of this increase in complexity,
the likelihood of subtle errors is much
greater. Moreover, some of these errors
may cause catastrophic loss of money,
time, or even human life. A major goal
of software engineering is to enable de-
velopers to construct systems that oper-
ate reliably despite this complexity. One
way of achieving this goal is by using
formal methods, which are mathemati-
cally based languages, techniques, and
tools for specifying and verifying such
systems. Use of formal methods does
not a priori guarantee correctness.
However, they can greatly increase our
understanding of a system by revealing
inconsistencies, ambiguities, and incom-
pleteness that might otherwise go unde-
tected.

The first part of this report assesses
the state of the art in specification and
verification. For verification, we high-
light advances in model checking and
theorem proving. In the three sections
on specification, model checking, and
theorem proving, we explain what we
mean by the general technique and
briefly describe some successful case
studies and well-known tools. The sec-
ond part of this report outlines future
directions in fundamental concepts, new
methods and tools, integration of meth-
ods, and education and technology
transfer. We close with summary re-
marks and pointers to resources for
more information.

2. STATE OF THE ART

In the past, the use of formal methods
in practice seemed hopeless. The nota-
tions were too obscure, the techniques
did not scale, and the tool support was
inadequate or too hard to use. There
were only a few nontrivial case studies
and together they still were not convinc-
ing enough to the practicing software or
hardware engineer. Few people had the
training to use them effectively on the
job.

Only recently have we begun to see a
more promising picture of formal meth-

1 Working Group members include Rajeev Alur,
Edmund Clarke (Co-Chair), Rance Cleaveland,
David Dill, Allen Emerson, Stephen Garland,
Steven German, John Guttag, Anthony Hall,
Thomas Henzinger, Gerard Holzmann, Cliff
Jones, Robert Kurshan, Nancy Leveson, Kenneth
McMillan, J Moore, Doron Peled, Amir Pnueli,
John Rushby, Natarajan Shankar, Joseph Sifakis,
Prasad Sistla, Bernhard Steffen, Pierre Wolper,
Jeannette Wing (Co-Chair), Jim Woodcock, and
Pamela Zave.

This research is sponsored in part by the Wright Laboratory, Aeronautical Systems Center, Air Force
Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant number
F33615-93-1-1330. Views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing official policies or endorsements, either expressed
or implied, of Wright Laboratory or the United States Government.

Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1996 ACM 0360-0300/96/0400–0626 $03.50

ACM Computing Surveys, Vol. 28, No. 4, December 1996

ods. For software specification, industry
is open to trying out notations such as Z
to document a system’s properties more
rigorously. For hardware verification,
industry is adopting techniques such as
model checking and theorem proving to
complement the more traditional one of
simulation. In both areas, researchers
and practitioners are performing more
and more industrial-sized case studies,
and thereby gaining the benefits of us-
ing formal methods.

2.1 Specification

Specification is the process of describing
a system and its desired properties. For-
mal specification uses a language with a
mathematically defined syntax and se-
mantics. The kinds of system properties
might include functional behavior, tim-
ing behavior, performance characteris-
tics, or internal structure. So far, speci-
fication has been most successful for
behavioral properties. One current
trend is to integrate different specifica-
tion languages, each able to handle a
different aspect of a system. Another is
to handle nonbehavioral aspects of a
system such as its performance, real-
time constraints, security policies, and
architectural design.

Some formal methods such as Z
[Spivey 1988], VDM [Jones 1986], and
Larch [Guttag and Horning 1993] focus
on specifying the behavior of sequential
systems. States are described in terms
of rich mathematical structures such as
sets, relations, and functions; state
transitions are given in terms of pre-
and post-conditions. Other methods
such as CSP [Hoare 1985], CCS [Milner
1980], Statecharts [Harel 1987], Tempo-
ral Logic [Pnueli 1981; Manna and
Pnueli 1991; Lamport 1984], and I/O
automata [Lynch and Tuttle 1987] focus
on specifying the behavior of concurrent
systems; states typically range over
simple domains like integers or are left
uninterpreted, and behavior is defined
in terms of sequences, trees, or partial
orders of events. Still others such as
RAISE [Nielsen et al. 1989] and LOTOS

[ISO 1987] wed two different methods,
one for handling rich state spaces and
one for handling complexity due to con-
currency. Common to all these methods
is the use of the mathematical concepts
of abstraction and composition.

The process of specification is the act
of writing things down precisely. The
main benefit in so doing is intangible—
gaining a deeper understanding of the
system being specified. It is through
this specification process that develop-
ers uncover design flaws, inconsisten-
cies, ambiguities, and incompletenesses.
A tangible byproduct of this process,
however, is an artifact that can itself be
formally analyzed, for example, checked
to be internally consistent or used to
derive other properties of the specified
system. The specification is a useful
communication device between cus-
tomer and designer, between designer
and implementor, and between imple-
mentor and tester. It serves as a com-
panion document to the system’s source
code, but at a higher level of descrip-
tion.

Notable Examples

CICS. Oxford University and IBM
Hursley Laboratories collaborated in
the 1980s on using Z to formalize part
of IBM’s Customer Information Con-
trol System, an online transaction
processing system with thousands of
installations worldwide [Houston and
King 1991]. Measurements taken by
IBM throughout the development pro-
cess indicated an overall improve-
ment in the quality of the product, a
reduction in the number of errors dis-
covered, and earlier detection of er-
rors found in the process. IBM also
estimated a 9% reduction in the total
development cost of the new release.
The success of this work is well
known and resulted in the Queen’s
Award for Technological Achieve-
ment. It inspired many others to fol-
low suit.

CDIS. In 1992 Praxis delivered to the
UK Civil Aviation Authority the CCF

Formal Methods • 627

ACM Computing Surveys, Vol. 28, No. 4, December 1996

Display Information System, a part of
the new air traffic management sys-
tem for London’s airspace [Hall 1996].
CDIS is a distributed fault-tolerant
system implemented on nearly 100
computers linked in a dual local-area
network. Praxis used formal methods
as an integral part of the development
process and in conjunction with other
software engineering, project manage-
ment, and quality assurance tech-
niques. During requirements analy-
sis, formal description supplemented
informal and structured requirements
notations. At the system specification
stage, an abstract VDM model was
developed in conjunction with con-
crete user interface definitions, semi-
formal definitions of the concurrent
behavior, and definitions of external
interfaces. During design, the ab-
stract VDM was refined into more
concrete module specifications. At a
lower level, the software for the dual
LAN was specified and developed for-
mally using CCS.

Productivity on the project was the
same as or better than on comparable
projects carried out using informal
methods. There was, in other words,
no net cost in using formal methods.
However, the perceived and measured
quality of the software was much
higher. The delivered software had a
defect rate of about 0.75 faults per
thousand lines of code, a figure two to
ten times better than that for pub-
lished projects and comparable soft-
ware in air traffic control applications
that did not use formal methods.

Lockheed C130J. Praxis has been re-
cently working with Lockheed on ana-
lyzing the code for the avionic soft-
ware of the Lockheed C130J [Croxford
and Sutton 1995] being supplied to
the US Air Force and the RAF. The
software is coded in the SPARK-anno-
tated subset of Ada. Specifications are
written in the Software Productivity
Consortium’s CORE notation [SPC
1993], which is based on Parnas’s tab-

ular specifications [Heninger 1980;
Janicki et al. 1996]. Many would ex-
pect that the use of SPARK would add
to the cost of the software, while im-
proving its quality. The added qual-
ity, however, decreased the overall
cost of software development because
of the huge savings in testing. The
use of SPARK annotations to specify
the behavior of the modules led to
software that is close to being “correct
by construction,” and hence passes its
tests instead of requiring expensive
rework.

TCAS. In the early 1990s, the Safety-
Critical Systems Research Group at
the University of California, Irvine
(now at the University of Washington)
produced a formal requirements spec-
ification for the Traffic Collision
Avoidance System (TCAS) II, required
on all commercial aircraft flying in
US airspace. They used the Require-
ments State Machine Language
(RSML), which is based on State-
charts with changes made to over-
come difficulties found during the
specification process. Although an in-
dustry group was attempting to pro-
vide an English language specifica-
tion at the same time, the complexity
of TCAS impeded that process; even-
tually the English specification effort
was abandoned and the RSML specifi-
cation was adopted instead. After a
group of industry and university rep-
resentatives produced a first draft of
the TCAS II specification, a private
company on behalf of the Federal Avi-
ation Administration took over the
specification effort; official TCAS II
documentation still uses RSML. Both
the private company and the original
university researchers have produced
automated tools for RSML including
simulators, test case generators and
other test tools, and safety analysis
tools. The TCAS II specification has
been automatically checked for math-
ematical completeness and consis-
tency [Heimdahl and Leveson 1996]
and provably correct code can now be

628 • E. M. Clarke et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

automatically generated from RSML
specifications.

The TCAS II project demonstrated
(1) the practicality of writing a formal
requirements specification for a com-
plex process-control system and (2)
the feasibility of building a formal
model of a system that can be read
and reviewed by application experts
without special training.

Other case studies in formal specifica-
tion have been performed primarily on
commercial and safety-critical systems.
Some are proprietary or lack documen-
tation that we can cite. To give the
reader a sense of the applicability of
formal methods, we list some for which
we can provide references.

—Databases. An HP Medical Instru-
ments real-time database for storing
patient monitoring information [Bear
1991].

—Devices. A Tektronix family of oscillo-
scopes [Delisle and Garlan 1990]; a
Schlumberger line of household elec-
tricity meters [Arnold et al. 1996].

—Hardware. An INMOS floating-point
processor [Barrett 1989]; the virtual
channel processor in INMOS’s T9000
transputer [Barrett 1995]. (Also see
Section 2.2.2.)

—Medical. The Clinical Neutron Ther-
apy System at the University of
Washington (cyclotron controller)
[Jacky 1995].

—Nuclear. Argonne National Laborato-
ry’s work on the Reactor Safety Sys-
tem for the Experimental Breeder Re-
actor-II [Chisolm et al. 1987; Kljaich
et al. 1989]; the shutdown system of
the Darlington Nuclear Generating
System in Canada [Archinoff et al.
1990].

—Security. The security policy model for
the NATO Air Command and Control
System [Boswell 1995]; the secure
transmission of datagrams in the
Multinet Gateway System [Dinolt et
al. 1984]; the Token-based Access
Control System of the US National

Institute of Standards and Technol-
ogy [Kuhn and Dray 1990].

—Telephony. Various features of
AT&T’s 5ESS telephone switching
system using Esterel [Jagadeesan et
al. 1996] and combinations of Z and
CSP [Mataga and Zave 1995; Zave
1995; Zave and Jackson 1996]; the
University of Passau and Siemens
Nixdorf’s joint work on customizable
telephone services and features [Stef-
fen et al. 1996], recently done for
Deutsche Telekom.

—Transportation. The automatic train
protection system for the Paris Metro
[Carnot et al. 1992; Guiho and Hen-
nebert 1990]; British Rail’s signaling
rules [King 1994]; and the on-board
avionics software for an Israel air-
craft [Harel 1992].

See also Craigen et al. [1993a, 1993b,
1994, 1995] for a description of 12 case
studies in formal methods (most cited in
the preceding).

2.2 Verification

Two well-established approaches to ver-
ification are model checking and theo-
rem proving. They go one step beyond
specification; these formal methods are
used to analyze a system for desired
properties.

2.2.1 Model Checking. Model check-
ing is a technique that relies on build-
ing a finite model of a system and
checking that a desired property holds
in that model. Roughly speaking, the
check is performed as an exhaustive
state space search that is guaranteed to
terminate since the model is finite. The
technical challenge in model checking is
in devising algorithms and data struc-
tures that allow us to handle large
search spaces. Model checking has been
used primarily in hardware and proto-
col verification [Clarke and Kurshan
1996]; the current trend is to apply this
technique to analyzing specifications of
software systems.

Two general approaches to model

Formal Methods • 629

ACM Computing Surveys, Vol. 28, No. 4, December 1996

checking are used in practice today. The
first, temporal model checking, is a tech-
nique developed independently in the
1980s by Clarke and Emerson [1981]
and by Queille and Sifakis [1982]. In
this approach specifications are ex-
pressed in a temporal logic [Pnueli
1981] and systems are modeled as finite
state transition systems. An efficient
search procedure is used to check if a
given finite state transition system is a
model for the specification.2

In the second approach, the specifica-
tion is given as an automaton; then the
system, also modeled as an automaton,
is compared to the specification to de-
termine whether its behavior conforms
to that of the specification. Different
notions of conformance have been ex-
plored, including language inclusion
[Har’El and Kurshan 1990; Kurshan
1994a], refinement orderings [Cleave-
land et al. 1993; Roscoe 1994], and ob-
servational equivalence [Cleaveland et
al. 1993; Fernandez et al. 1996; Roy and
de Simone 1990]. Vardi and Wolper
[1986] showed how the temporal-logic
model-checking problem could be recast
in terms of automata, thus relating
these two approaches.

In contrast to theorem proving, model
checking is completely automatic and
fast, sometimes producing an answer in
a matter of minutes. Model checking
can be used to check partial specifica-
tions, and so can provide useful infor-
mation about a system’s correctness
even if the system has not been com-
pletely specified. Above all, model
checking’s tour de force is that it pro-
duces counterexamples, which usually
represent subtle errors in design, and
thus can be used to aid in debugging.

The main disadvantage of model
checking is the state explosion problem.
In 1987 McMillan used Bryant’s ordered
binary decision diagrams (BDDs) [Bry-
ant 1986] to represent state transition

systems efficiently, thereby increasing
the size of the systems that could be
verified. Other promising approaches to
alleviating state explosion include the
exploitation of partial order information
[Peled 1996], localization reduction
[Kurshan 1994a; Kurshan 1994b] and
semantic minimization [Elseaidy et al.
1996] to eliminate unnecessary states
from a system model.

Model checkers today are routinely
expected to handle systems with be-
tween 100 and 200 state variables. They
have checked interesting systems with
10120 reachable states [Burch et al.
1994] and, by using appropriate ab-
straction techniques, they can check
systems with an essentially unlimited
number of states [Clarke et al. 1992]. As
a result, model checking is now power-
ful enough that it is becoming widely
used in industry to aid in the verifica-
tion of newly developed designs.

Notable Examples

IEEE Futurebus1. In 1992 Clarke and
his students at Carnegie Mellon used
SMV [McMillan 1993] to verify the
cache coherence protocol described in
the IEEE Futurebus1 Standard
896.1-1991 [Clarke et al. 1993; Long
1993]. They constructed a precise
model of the protocol in the SMV in-
put language and then used SMV to
show that the resulting transition
system satisfied a formal specification
of cache coherence. They found a
number of previously undetected er-
rors and potential errors in the design
of the protocol. This appears to be the
first time that an automatic verifica-
tion tool has been used to find errors
in an IEEE standard. Although the
development of the protocol began in
1988, all previous attempts to vali-
date it were based entirely on infor-
mal techniques.

IEEE SCI. In 1992 Dill and his col-
leagues at Stanford developed the
Murphi finite state verification sys-
tem and verified the cache coherence

2 Exhaustive state space search, or reachability
analysis, dates back to the earliest papers on Petri
nets. The term “model checking” was coined by
Clarke and Emerson [1981].

630 • E. M. Clarke et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

protocol of the Scalable Coherent In-
terface, IEEE Standard 1596-1992
[Dill et al. 1992]. The SCI standard
defines several protocols, each a sub-
set of the next. They constructed a
model of a “typical” protocol and sup-
plied a specification of properties nec-
essary for cache coherence. To avoid
errors in the translation, they based
their model directly on the C code
that is given as a definition of the SCI
standard. Since the number of states
of the model could be very large, they
verified only small instances of the
system. Even with this simplification,
they found several errors in the proto-
col, ranging from omissions of vari-
able initializations to subtle logical
errors. These errors existed in the
rather basic subset that they defined,
although the protocol had been exten-
sively discussed, simulated, and even
implemented.

Stereo components. One of the emerg-
ing application domains of automatic
verification is the design of hybrid
systems, which consist of both dis-
crete and continuous components. In
1994, Bosscher, Polak, and Vaan-
drager won a best-paper award for
proving manually the correctness of a
control protocol used in Philips stereo
components [Bosscher et al. 1994]. In
1995, Ho and Wong-Toi [1995] veri-
fied an abstraction of the protocol us-
ing the symbolic model checker
HyTech and inferred, fully automati-
cally, a more efficient timing of the
protocol than the one used by Philips.
Also in 1995, Daws and Yovine [1995]
used the verification tool Kronos to
check automatically all the properties
stated and handproved by Bosscher et
al. In 1996, Bengtsson and his col-
leagues model checked the entire pro-
tocol, thus completing the quest of
fully automating a human proof that
as little as two years ago was consid-
ered far out of reach for algorithmic
methods [Bengtsson et al. 1996].

ISDN/ISUP. The NewCoRe Project
was the first full-scale application of

formal verification methods in a rou-
tine software design project within
AT&T [Chaves 1992; Holzmann
1994]. The project lasted from 1989
until 1992. Formal modeling and au-
tomated verification were applied to
the development of the International
Telecommunications Union (formerly
CCITT) ISDN/IUPP (ISDN User Part
Protocol). A team of five “verification
engineers” formalized 145 require-
ments in temporal logic, and rendered
the proofs with the help of a special-
purpose model checker [Holzmann
1992; Holzmann and Patti 1989]. A
total of 7,500 lines of Specification
and Description Language (SDL)
source code (excluding comments) was
verified; 112 errors were revealed
(and fixed) in the high-level designs;
approximately 55% of the original de-
sign requirements were discovered to
be logically inconsistent.

HDLC. A high-level data link control-
ler (HDLC) transmitter core was de-
signed at the Bell Labs Microelectron-
ics Design Center in Madrid, Spain
for an Application-Specific Integrated
Circuit library of telecommunication
macrocells. The standard design pro-
cess included capture at the register-
transfer level using VHDL, simula-
tion, and synthesis. In 1996, late in
the process, the formal verification
team at Bell Labs offered to run some
additional functional verification on
the design [Calero et al. 1996]. Since
this design was considered to be al-
most finished, it was not expected
that any errors would be found.
Within five hours of work, six proper-
ties were specified and five were veri-
fied, using the FormalCheck verifica-
tion tool [DePalma and Glaser 1996].
The sixth property was found by For-
malCheck to fail, uncovering a bug
that would have at least reduced the
throughput of the HDLC channel.
More likely, this bug would have con-
fused the higher-level protocols, caus-
ing lost transmissions. It took just a
few minutes to identify and propose a

Formal Methods • 631

ACM Computing Surveys, Vol. 28, No. 4, December 1996

fix for a design error that managed to
escape many hours of logic simula-
tion. The error was corrected and the
correction was formally verified using
FormalCheck. Plans are now in the
works at the Madrid design center to
include model checking as part of the
standard design process.

PowerScale. In 1995 a group at Bull in
collaboration with researchers of the
Verimag Laboratory used LOTOS to
describe the processors, memory con-
troller, and bus arbiter of the multi-
processor architecture called Power-
Scale. This architecture is based on
IBM’s PowerPC microprocessor and is
used in Bull’s Escala series of servers
and workstations.y They identified
four correctness properties, which ex-
press the essential requirements for a
proper functioning of the arbitration
algorithm, and formalized the proper-
ties and algorithm in terms of bisimu-
lation relations (modulo abstractions)
between finite labelled transition sys-
tems. Using the compositional and on-
the-fly model-checking techniques im-
plemented in the Cæsar/Aldébaran
Development Package (CADP) tool-
box, the correctness of the arbitration
algorithm was established automati-
cally in a few minutes [Chehaibar et
al. 1996].

Buildings. In 1995 civil engineers at
North Carolina State University used
the Concurrency Workbench to ana-
lyze the timing properties of a distrib-
uted active structural control system
[Elseaidy et al. 1996]. The system in
question was designed to make build-
ings more resistant to earthquakes by
sampling the forces being applied to
the structure and using hydraulic ac-
tuators to exert countervailing forces.
The engineers first coded their design
in a timed version of the CCS lan-
guage; the resulting model contained
in excess of 2.12 p 1019 states and was

not directly analyzable. However, by
using the semantic minimization fea-
ture of the Concurrency Workbench,
they were able to construct automati-
cally a much smaller system with the
same timing properties that could be
analyzed. In the course of their analy-
sis they uncovered an error in a timer
setting that, if undetected, could have
caused the active structural control
component to worsen, rather than
dampen, the vibration experienced by
buildings during earthquakes.

Other successful industrial-sized case
studies in model checking are too nu-
merous to list. Evidence that model
checking has come of age is that indus-
try is building its own model checkers
or simply using existing ones. Listed in
the following are some well-known
model checkers, roughly categorized ac-
cording to whether the specification
they check is given as a logical formula
or as a machine:

Temporal logic model checkers. The
very first two model checkers were
EMC [Clarke and Emerson 1981;
Clarke et al. 1986; Browne et al.
1986] and CÆSAR [Queille and Si-
fakis 1981; Fernandez et al. 1996].
SMV [McMillan 1993] is the first
model checker to use BDDs. The Spin
system [Gerth et al. 1995; Holzmann
1991] uses partial order reduction to
reduce the state explosion problem
[Holzmann and Peled 1994; Peled
1996]. Murphi [Dill et al. 1992] and
UV [Kaltenbach 1994] are based on
the Unity programming language
[Chandy and Misra 1988]. The Con-
currency Workbench [Cleaveland et
al. 1993] verifies CCS processes for
properties expressed as mu-calculus
formulas. SVE [Filkorn et al. 1994],
FORMAT [Damm et al. 1995; Damm
and Delgado-Kloos 1996], and CV [Dé-
harbe and Borrione 1995] all focus on
hardware verification. HyTech [Alur
et al. 1996] is a model checker for
hybrid systems; Kronos [Daws and
Yovine 1995; Henzinger et al. 1994],
for real-time systems.

y PowerScale and Escala are registered trade-
marks of Bull.

632 • E. M. Clarke et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

Behavior conformance checkers. The
Cospan/FormalCheck system [De-
Palma and Glaser 1996; Har’El and
Kurshan 1990] is based on showing
inclusion between omega automata.
FDR [Roscoe 1994] checks refinement
between CSP programs; most re-
cently, it has been used to verify and
debug the Needham-Schroeder au-
thentication protocol [Lowe 1996].
The Concurrency Workbench [Cleave-
land et al. 1993] checks a similar no-
tion of refinement between CCS pro-
grams; it and the tool Auto [Roy and
de Simone 1990] may also be used to
minimize systems with respect to ob-
servational equivalence and to deter-
mine if two systems are observably
equivalent.

Combination checkers. Berkeley’s HSIS
[Hojati et al. 1993] combines model
checking with language inclusion;
Stanford’s STeP [Bjørner et al. 1996]
system, with deductive methods; and
VIS [Brayton et al. 1996], with logic
synthesis. The PVS theorem prover
[Owre et al. 1992] has a model checker
for the modal mu-calculus [Rajan et al.
1995]. METAFrame [Steffen et al.
1996] is an environment that supports
model checking in the entire software
development process.

2.2.2 Theorem Proving. Theorem prov-
ing is a technique by which both the
system and its desired properties are
expressed as formulas in some mathe-
matical logic. This logic is given by a
formal system, which defines a set of
axioms and a set of inference rules.
Theorem proving is the process of find-
ing a proof of a property from the axi-
oms of the system. Steps in the proof
appeal to the axioms and rules, and
possibly derived definitions and inter-
mediate lemmas. Although proofs can
be constructed by hand, here we focus
only on machine-assisted theorem prov-
ing. Theorem provers are increasingly
being used today in the mechanical ver-
ification of safety-critical properties of
hardware and software designs.

Theorem provers can be roughly clas-

sified in a spectrum from highly auto-
mated, general-purpose programs to in-
teractive systems with special-purpose
capabilities. The automated systems
have been useful as general search pro-
cedures and have had noteworthy suc-
cess in solving various combinatorial
problems. The interactive systems have
been more suitable for the systematic
formal development of mathematics and
in mechanizing formal methods.

In contrast to model checking, theo-
rem proving can deal directly with infi-
nite state spaces. It relies on techniques
such as structural induction to prove
over infinite domains. Interactive theo-
rem provers, by definition, require in-
teraction with a human, so the theorem-
proving process is slow and often error-
prone. In the process of finding the
proof, however, the human user often
gains invaluable insight into the system
or the property being proved.

Notable Examples

SRT division algorithm. In 1995
Clarke, German, and Zhao used auto-
matic theorem-proving techniques
based on symbolic algebraic manipu-
lation to prove the correctness of an
SRT division algorithm similar to the
one in the Pentium [Clarke et al.
1996]. This verification method runs
automatically and could have de-
tected the error in the Pentium,
which was caused by a faulty quotient
digit selection table. Later Ruess,
Shankar, and Srivas used SRI’s gen-
eral-purpose theorem prover, PVS
[Owre et al. 1992], on this same ex-
ample [Ruess et al. 1996].

Processor designs. The Verity verifica-
tion tool [Kuehlmann et al. 1995] is
widely used within IBM in the design
of many processors such as the Pow-
erPC and System/390. Applied in a
hierarchical manner, the tool can
handle entire processor designs con-
taining millions of transistors [Appen-
zeller and Kuehlmann 1995]. Using
this tool, the functional behavior of a

Formal Methods • 633

ACM Computing Surveys, Vol. 28, No. 4, December 1996

hardware system at the register-
transfer level, gate level, or transistor
level is modeled as a Boolean state
transition function. Algorithms based
on BDDs are used to check the equiv-
alence of the state transition func-
tions for different design levels.

Motorola 68020. In 1991 Boyer and Yu
constructed an Nqthm [Boyer and
Moore 1979, 1988] specification of the
Motorola 68020 microprocessor (in-
cluding 80% of the user-mode instruc-
tions) [Boyer and Yu 1996]. They used
the specification to prove the correct-
ness of many binary machine code
programs produced by commercial
compilers from source code in such
high-level languages as Ada, Lisp,
and C. For example, Yu verified the
MC68020 binary code produced by the
“gcc” compiler for 21 of the 22 C pro-
grams in the Berkeley string library.

AMD5K86. In 1995 Moore and Kauf-
mann of Computational Logic, Inc.,
and Lynch of Advanced Micro De-
vices, Inc., collaborated to prove the
correctness of Lynch’s microcode for
floating-point division on the
AMD5K86. Starting from an informal
proof of correctness, they formalized
their argument in the ACL2 logic
[Kaufmann and Moore 1995] and
checked it with the ACL2 mechanical
theorem prover. Gaps and mistakes
were found in the informal “proof” but
in the end the microcode was mechan-
ically shown to be correct [Moore et
al. 1996]. The entire effort took about
nine weeks. The mechanical proof
ended doubt about the code’s correct-
ness and allowed testers to focus on
other routines. In 1996 Russinoff used
ACL2 to check the correctness of the
floating-point square root microcode
[Russinoff 1996]. He found bugs in
the microcode itself; after they were
fixed, the final version of the square
root microcode was also mechanically
proved correct.

Motorola CAP. During 1992–1996,
Brock of Computational Logic, Inc., in

collaboration with Motorola design-
ers, developed an ACL2 specification
of the entire Motorola Complex Arith-
metic Processor (CAP), a microproces-
sor for digital signal processing
(DSP). The CAP is the most compli-
cated microprocessor yet formalized,
with a three-stage pipeline, six inde-
pendent memories, four multiplier-ac-
cumulators, over 250 programmer-
visible registers, and an instruction
set allowing the simultaneous modifi-
cation of well over 100 registers in a
single instruction. The formal specifi-
cation tracked the evolving design
and included a simpler nonpipelined
view that was proved equivalent on a
certain class of programs. Finally,
Brock used ACL2 to verify the binary
microcode for several DSP algorithms
[Brock et al. 1996].

AAMP5. During 1993–1995, Srivas of
the Stanford Research Institute and
Miller of Rockwell International col-
laborated on the specification and ver-
ification of the Collins Commercial
Avionics AAMP5 microprocessor.
They used PVS to specify 108 of the
209 AAMP5 instructions and verified
the microcode for 11 representative
instructions [Miller and Srivas 1995].

As with model checking, an increase
in the number and kinds of theorem
provers provides evidence for a growing
interest in theorem proving. There has
been a corresponding increase in the
number and kinds of examples to which
theorem provers have been applied. Fol-
lowing are some well-known theorem
provers, categorized roughly by their
degree of automation:

User-guided automatic deduction tools.
Systems like ACL2 [Kaufmann and
Moore 1995], Eves [Craigen et al.
1988], LP [Garland and Guttag 1988],
Nqthm [Boyer and Moore 1979], Reve
[Lescanne 1983], and RRL [Kapur
and Musser 1987] are guided by a
sequence of lemmas and definitions
but each theorem is proved automati-
cally using built-in heuristics for in-

634 • E. M. Clarke et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

duction, lemma-driven rewriting, and
simplification. Nqthm, the Boyer-
Moore theorem prover, has been used
to check a proof of Gödel’s first incom-
pleteness theorem, and in a variety of
large-scale verification efforts.

Proof checkers. Examples include Coq
[Cornes et al. 1995], HOL [Gordon
1987], LEGO [Luo and Pollack 1992],
LCF [Gordon et al. 1979], and Nuprl
[Constable et al. 1986]. They have
been used to formalize and verify
hard problems in mathematics and in
program verification.

Combination provers. Analytica [Clarke
and Zhao 1993], which combines theo-
rem proving with the symbolic alge-
bra system Mathematica, has success-
fully proved some hard number-
theoretic problems due to Ramanujam.
Both PVS [Owre et al. 1992] and STeP
[Bjørner et al. 1996] combine powerful
decision procedures and model check-
ing with interactive proof. PVS has
been used to verify a number of hard-
ware designs and reactive, real-time,
and fault-tolerant algorithms.

3. FUTURE DIRECTIONS

The overarching goal of formal methods
is to help engineers construct more reli-
able systems. Formal methods is thus
an area that cuts across almost all other
areas in computer science. Its founda-
tions lie squarely in mathematics, its
intended applications are hardware and
software systems, and its potential us-
ers are all developers involved in the
system engineering process.

Tremendous advances in the past de-
cade have been made on all fronts. As
technology improves, it becomes more
feasible to attack harder and larger
problems. Progress in the area depends
on doing fundamental research, invent-
ing new methods and building new
tools, integrating different methods to
work together, and making concerted
efforts by researchers to work with
practitioners to transfer technology ef-
fectively.

3.1 Fundamental Concepts

Significant advances in the practical
use of formal methods have relied on
fundamental results drawn from all ar-
eas in computer science, not necessarily
directly intended for formal methods.
Further work needs to be done in the
following areas.

—Composition. We need to understand
how to compose methods, specifica-
tions, models, theories, and proofs.

—Decomposition. We need to develop
more efficient methods for decompos-
ing a computationally demanding
global property into local properties
whose verification is computationally
simple (e.g., task decomposition and
localization reduction methods [Kurs-
han 1994b]).

—Abstraction. Real systems are difficult
to specify and verify without abstrac-
tions. We need to identify different
kinds of abstractions, perhaps tai-
lored for certain kinds of systems or
problem domains, and we need to de-
velop ways to justify them formally,
perhaps using mechanical help.

—Reusable models and theories. Rather
than defining models and theories
from scratch each time a new applica-
tion is tackled, it would be better to
have reusable and parameterized
models and theories.

—Combinations of mathematical theo-
ries. Many safety-critical systems
have both digital and analog compo-
nents. These hybrid systems require
reasoning about both discrete and
continuous mathematics.

System developers would like to be
able to predict how well their system
will operate in the field. Indeed, they
often care more about performance
than correctness. Performance model-
ing borrows strongly from probability,
statistics, and queueing theory.

—Data structures and algorithms. To
handle larger search spaces and
larger systems, new data structures
and algorithms, for example, more

Formal Methods • 635

ACM Computing Surveys, Vol. 28, No. 4, December 1996

concise data structures for represent-
ing Boolean functions, are needed.

3.2 Methods and Tools

No one method or tool can serve all
purposes. We need to support all differ-
ent kinds. From past experience, we
have learned what kinds can have the
most impact. To be attractive to practi-
tioners, methods and tools should sat-
isfy the following criteria. We realize
that some of these criteria are ideals,
but it is still good to strive for them.

—Early payback. Methods and tools
should provide significant benefits al-
most as soon as people begin to use
them.

—Incremental gain for incremental ef-
fort. Benefits should increase as de-
velopers get more adept or put more
effort into writing specifications or
using tools.

—Multiple use. It should be possible to
amortize the cost of a method or tool
over many uses. For example, it
should be possible to derive benefits
from a single specification at several
points in a program’s life cycle: in
design analysis, code optimization,
test case generation, and regression
testing.

—Integrated use. Methods and tools
should work in conjunction with each
other and with common programming
languages and techniques. Developers
should not have to “buy into” a new
methodology completely to begin re-
ceiving benefits. The use of tools for
formal methods should be integrated
with that of tools for traditional soft-
ware development, for example, com-
pilers and simulators.

—Ease of use. Tools should be as easy to
use as compilers, and their output
should be as easy to understand.

—Efficiency. Tools should make effi-
cient use of a developer’s time. Turn-
around time with an interactive tool
should be comparable to that of nor-
mal compilation. Developers are

likely to be more patient, however,
with completely automatic tools that
perform more extensive analysis.

—Ease of learning. Notations and tools
should provide a starting point for
writing formal specifications for de-
velopers who would not otherwise
write them. The knowledge of formal
specifications needed to start realiz-
ing benefits should be minimal.

—Orientation toward error detection.
Methods and tools should be opti-
mized for finding errors, not for certi-
fying correctness. They should sup-
port generating counterexamples as a
means of debugging.

—Focused analysis. Methods and tools
should be good at analyzing at least
one aspect of a system well, for exam-
ple, the control flow of a protocol.
They need not be good at analyzing
all aspects of a system.

—Evolutionary development. Methods
and tools should support evolutionary
system development by allowing par-
tial specification and analysis of se-
lected aspects of a system.

More ambitiously, rather than build a
single tool, we can build “meta-tools”
which themselves produce tools custom-
ized for a particular problem domain
[Steffen et al. 1996], formal notation
[Cleaveland et al. 1995], or logic [Gor-
don 1987; Kindred and Wing 1996].
These metatools, like compiler genera-
tors, provide an automatic way to build
specialized model checkers or proof
checkers.

Finally, for any new method or tool,
its developer should state explicitly
what its strengths, limitations, model-
ing assumptions, ease of integration
with other methods and tools, and
start-up costs are. Clear selection crite-
ria help potential users decide what
method or tool is most appropriate for
the problem at hand.

3.3 Integration of Methods

Given that no one formal method is
likely to be suitable for describing and

636 • E. M. Clarke et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

analyzing every aspect of a complex sys-
tem, a practical approach is to use dif-
ferent methods in combination. When
combining methods it is important to
consider both

—finding a suitable style for using dif-
ferent methods together; and

—finding a suitable meaning for using
different methods together.

Very often neither is addressed ade-
quately. Failure to find a suitable style
misses out on the true advantages of
combining methods. For example, the Z
school stresses the importance of pre-
sentation of specifications in an accessi-
ble form, with plenty of natural lan-
guage. This emphasis has helped in
popularizing its notation. Any combina-
tion must preserve this style of presen-
tation.

Failure to attend to the theoretical
foundations of the combination misses
out on the true advantages of formality.
In chemistry, a distinction is drawn be-
tween a mixture and a compound. In a
mixture, the ingredients merely mingle
together; in a compound, the ingredi-
ents become chemically united. So it is
with combining different formal meth-
ods. If the meaning of the combination
is not properly explained, then the re-
sult is merely a mixture: nothing more
can be deduced from the joint descrip-
tion than from the separate ones. If the
meaning of the combination is ex-
plained, then the result is much more
powerful. It then becomes possible to
have two views of a system specifica-
tion, and to reason with and refine one
view, and to understand the conse-
quences in the other view.

3.3.1 Model Checking and Theorem
Proving. One of the most promising di-
rections in method integration is in
combining model checking and theorem
proving [Kurshan and Lamport 1993;
Rajan et al. 1995; Bjørner et al. 1996],
ideally to benefit from the advantages of
both approaches. One way is to employ
model checking as a decision procedure
within a deductive framework, as is

done in tools such as PVS and STeP.
For example, a sufficiently expressive
logic can be used to define temporal
operators over finite state transition
systems in terms of maximal or minimal
fixed points. For finite state transition
systems, these fixed points can be eval-
uated using a model checker as a deci-
sion procedure. For structures with un-
bounded state spaces, the temporal
properties can be verified by means of
fixed point induction.

Another way of combining deductive
and model checking approaches is to use
deduction to obtain a finite state ab-
straction of an implementation that can
be verified using model checking. Such
abstractions are commonly used in pre-
paring a problem for model checking
but are seldom rigorously verified. De-
duction can also be used to verify as-
sumption-commitment proof obligations
generated by composing component im-
plementations that have been sepa-
rately verified by means of model check-
ing. Induction can be combined with
model checking to verify systems com-
posed of networks of finite state pro-
cesses.

3.3.2 Integration with the System De-
velopment Process. Formal methods can
complement less formal methods that
are used in the overall system develop-
ment process. They could be used not
instead of, but in addition to, informal
methods, as was done by Praxis in the
CDIS example. So far formal methods
have shown their strength in their use
in specification and verification. It is
worth exploring how they can be used in
requirements analysis, refinement, and
testing.

—Requirements analysis necessarily
deals with customers who often have
an imprecise idea of what they want;
formal methods can help customers
nail down their system requirements
more precisely.

—Refinement is the reverse of verifica-
tion; it is the process of taking one
level of specification (or implementa-

Formal Methods • 637

ACM Computing Surveys, Vol. 28, No. 4, December 1996

tion) and through a series of “correct-
ness-preserving transformations” syn-
thesizing a lower-level specification
(or implementation). Although much
theoretical work on refinement has
been done, the results have not yet
transferred to practice.

—Testing is one of the most costly areas
in all software projects. Formal meth-
ods can play a role in the validation
process, for example, using formal
specifications to generate test suites
[Richardson et al. 1989], and using
model and proof-checking tools to de-
termine formal relationships between
specifications and test suites and be-
tween test suites and code.

3.4 Education and Technology Transfer

Education is vital to the success of the
formal methods. There are different
kinds of audiences:

—Our research peers. Some of our great-
est skeptics are our own colleagues.
We can overcome this skepticism by
collaborating with them and their
students on systems that they care
about.

—Practitioners. Technology transfer
should be taken very seriously from
the very beginning. The recent spread
of formal methods is directly related
to efforts made by researchers in
teaching their techniques to industry.
For effective technology transfer,
however, we must keep in mind that
success for industry depends on
timely delivery, continuously en-
hanced functionality, understanding
customers’ needs, reuse of legacy
code, commitment to quality, elimina-
tion of errors, cost-effective develop-
ment, and real-time performance.

—Students at all levels. Some graduate
programs now incorporate formal
methods in their curricula [Garlan et
al. 1995; Oxford University 1996]. Ed-
ucators are starting to consider teach-
ing formal methods at the undergrad-
uate level. Students need to
understand not just how to build sin-

gle stand-alone programs from
scratch, but also how to construct
large systems, perhaps using off-the-
shelf components, and how to main-
tain legacy code; they need to know
not just how to code, but also how to
do high-level system design.

4. CONCLUDING REMARKS

Commercial pressure to produce higher-
quality software is always increasing.
Formal methods have already demon-
strated success in specifying commercial
and safety-critical software, and in ver-
ifying protocol standards and hardware
designs. In the future, we expect that
the role of formal methods in the entire
system-development process will in-
crease, especially as the tools and meth-
ods successful in one domain carry over
to others. Progress, however, will de-
pend strongly on continued support for
basic research on new specification lan-
guages and new verification techniques.

Ideally, system developers would all
be trained sufficiently well that they
would not even think that they are us-
ing a formal method or tool. They would
routinely use the mathematics underly-
ing the notation of a formal specifica-
tion language simply as a means of com-
municating ideas to others on their
team or of documenting their own de-
sign decisions. They would routinely use
tools such as model and proof checkers
with as much ease as they use compil-
ers. Therefore, as researchers and edu-
cators in formal methods, we should
strive to make our notations and tools
accessible to nonexperts.

Towards this ideal, however, it makes
sense to cultivate a new career path for
specialists in formal methods. They
could be experts in the use of one
method or tool or they could be knowl-
edgeable in many, offering their advice
on which to use for a given application.
Wing [1985] envisioned over ten years
ago the idea of specification firms, anal-
ogous to architecture and law firms,
whose employees would be hired for
their skills in formal methods. This vi-

638 • E. M. Clarke et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

sion has been realized by the growth
both in the number of in-house teams
that consult on projects within large
corporations (e.g., AT&T and Intel) and
in the number of independent compa-
nies (e.g., Computational Logic, Inc.,
Kestrel Institute, and ORA) that spe-
cialize in the use of formal methods and
do contract work for industry and gov-
ernment agencies. Some companies,
such as Praxis, use formal methods as a
routine part of their development pro-
cess.

Finally, for further reading, see the
April 1996 issue of IEEE Computer,
which contains a roundtable discussion
on formal methods, and the June 1996
issue of IEEE Spectrum, which gives an
overview of model checking. Online fo-
rums include the net newsgroup comp.
specification and its subnewsgroups for
specific methods, and the formal meth-
ods mailing list, fsdm@cs.uq.oz.au. The
Oxford University’s web page http:// www.
comlab.ox.ac.uk/archive/formalmethods.
html points to a wealth of information
about formal methods, including papers,
reports, tools, conferences, journals,
projects, and people.

REFERENCES

ALUR, R., HENZINGER, T., AND HO, P.-H. 1996.
Automatic symbolic verification of embedded
systems. IEEE Trans. Softw. Eng. 22, 3, 181–
201.

APPENZELLER, D. P. AND KUEHLMANN, A. 1995.
Formal verification of a PowerPC micropro-
cessor. In Proceedings of the IEEE Interna-
tional Conference on Computer Design
(ICCD’95) (Austin, TX, Oct.), 79–84.

ARCHINOFF, G. ET AL. 1990. Verification of the
shutdown system software at the Darlington
Nuclear Generating System. In International
Conference on Control and Instrumentation in
Nuclear Installations (Glasgow, Scotland,
May).

ARNOLD, A., BEGAY, D., AND RADOUX, J.-P. 1996.
The embedded software of an electricity
meter: An experience in using Formal Meth-
ods in an industrial project. Sci. Comput. Pro-
gram.

BARRETT, G. 1989. Formal methods applied to a
floating-point number system. IEEE Trans.
Softw. Eng. 15, 5 (May), 611–621.

BARRETT, G. 1995. Model checking in practice:

The t9000 virtual channel processor. IEEE
Trans. Softw. Eng. 21, 2 (Feb.), 69–78.

BEAR, S. 1991. An overview of HP-SL. In Pro-
ceedings of VDM’91: Formal Development
Methods, Volume 551 of Lecture Notes in
Computer Science. Springer-Verlag.

BENGTSSON, J., GRIFFIOEN, W., KRISTOFFERSEN, K.,
LARSEN, K., LARSSON, F., PETTERSSON, P., AND

YI, W. 1996. Verification of an audio proto-
col with bus collision using UppAal. In Com-
puter-Aided Verification ’96, Lecture Notes in
Computer Science 1102, R. Alur and T. Henz-
inger, Eds., Springer-Verlag, 244–256.

BJØRNER, N. ET AL. 1996. STeP: Deductive-algo-
rithmic verification of reactive and real-time
systems. In Proceedings of the Eighth Interna-
tional Conference on Computer-Aided Verifi-
cation, Number 1102 in Lecture Notes in
Computer Science (July), Springer-Verlag,
415–418.

BOSSCHER, D., POLAK, I., AND VAANDRAGER, F.
1994. Verification of an audio-control proto-
col. In FTRTFT 94: Formal Techniques in
Real-Time and Fault-Tolerant Systems, Lec-
ture Notes in Computer Science 863, H. Lang-
maack, W.-P. de Roever, and J. Vytopil Eds.,
Springer-Verlag, 170–192.

BOSWELL, A. 1995. Specification and validation
of a security policy model. IEEE Trans. Softw.
Eng. 21, 2 (Feb.), 63–68.

BOYER, R. AND YU, Y. 1996. Automated proofs of
object code for a widely used microprocessor.
J. ACM 43, 1 (Jan.), 166–192.

BOYER, R. S. AND MOORE, J. S. 1979. A Compu-
tational Logic. Academic Press, New York.

BOYER, R. S. AND MOORE, J. S. 1988. A Compu-
tational Logic Handbook. Academic Press,
New York.

BRAYTON, R. ET AL. 1996. VIS: A system for
verification and synthesis. In Proceedings of
the Eighth International Conference on Com-
puter-Aided Verification, Number 1102 in
Lecture Notes in Computer Science, Springer-
Verlag, 423–427.

BROCK, B., KAUFMANN, M., AND MOORE, J. S.
1996. Heavy inference: Theorems about com-
mercial microprocessors. In Formal Methods
in Computer-Aided Design (FMCAD’96)
(Nov.), M. Srivas and A. Camilleri Eds.,
Springer-Verlag.

BROWNE, M. C., CLARKE, E. M., DILL, D. L., AND

MISHRA, B. 1986. Automatic verification of
sequential circuits using temporal logic. IEEE
Trans. Comput. C-35, 12, 1035–1044.

BRYANT, R. E. 1986. Graph-based algorithms
for Boolean function manipulation. IEEE
Trans. Comput. C-35, 8.

BURCH, J. R., CLARKE, E. M., LONG, D. E., MCMIL-
LAN, K. L., AND DILL, D. L. 1994. Symbolic
model checking for sequential circuit verifica-

Formal Methods • 639

ACM Computing Surveys, Vol. 28, No. 4, December 1996

tion. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 13, 4 (April), 401–424.

CALERO, J., ROMAN, C., AND PALMA, G. D. 1997.
A practical design case using formal verifica-
tion. In Proceedings of Design-SuperCon’97.
To appear.

CARNOT, M., DASILVA, C., DEHBONEI, B., AND

MEIJA, F. 1992. Error-free software devel-
opment for critical systems using the B-meth-
odology. In Third International IEEE Sympo-
sium on Software Reliability Engineering.

CHANDY, K. AND MISRA, J. 1988. Parallel Pro-
gram Design. Addison-Wesley, Reading, MA.

CHAVES, J. 1992. Formal methods at AT&T: An
industrial usage report. In Proceedings For-
mal Description Techniques IV - 1991, North-
Holland, Amsterdam, 83–90.

CHEHAIBAR, G., GARAVEL, H., MOUNIER, L., TAWBI,
N., AND ZULIAN, F. 1996. Specification and
verification of the powerscale bus arbitration
protocol: An industrial experiment with LO-
TOS. In Proceedings of FORTE/PSTV’96
(Kaiserslautern, Germany). Chapman & Hall,
London.

CHISOLM, G., KLJAICH, J., SMITH, B., AND WOJCIK,
A. 1987. An approach to the verification of
a fault-tolerant, computer-based reactor
safety system: A case study using automated
reasoning (Vol. 1, interim report). Tech. Rep.
NP-4924 (Jan.), Electric Power Research In-
stitute, Palo Alto, CA. Prepared by Argonne
National Laboratory.

CLARKE, E., GERMAN, S., AND ZHAO, X. 1996.
Verifying the SRT division algorithm using
theorem proving techniques. In Proceedings of
the Eighth International Conference on Com-
puter-Aided Verification, Number 1102 in
Lecture Notes in Computer Science, Springer-
Verlag, 111–122.

CLARKE, E. AND KURSHAN, R. 1996. Computer-
aided verification. IEEE Spectrum 33, 6, 61–
67.

CLARKE, E. AND ZHAO, X. 1993. Analytica: A
theorem prover for Mathematica. Math-
ematica J., 56–71.

CLARKE, E. M. AND EMERSON, E. A. 1981. Syn-
thesis of synchronization skeletons for
branching time temporal logic. In Logic of
Programs: Workshop, (Yorktown Heights,
NY), Vol. 131 of Lecture Notes in Computer
Science, Springer-Verlag.

CLARKE, E. M., EMERSON, E. A., AND SISTLA, A.
P. 1986. Automatic verification of finite-
state concurrent systems using temporal logic
specifications. ACM Trans. Program Lang.
Syst. 8, 2, 244–263.

CLARKE, E. M., GRUMBERG, O., HIRAISHI, H., JHA,
S., LONG, D. E., MCMILLAN, K. L., AND NESS, L.
A. 1993. Verification of the Futurebus1
cache coherence protocol. In Proceedings
CHDL.

CLARKE, E. M., GRUMBERG, O., AND LONG, D. E.
1992. Model checking and abstraction. In
Proceedings of Principles of Programming
Languages.

CLEAVELAND, R., MADELAINE, E., AND SIMS, S.
1995. Generating front ends for verification
tools. In Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS
’95), Vol. 1019 of Lecture Notes in Computer
Science, E. Brinksma, R. Cleaveland, K.
Larsen, and B. Steffen Eds., Springer-Verlag,
153–173.

CLEAVELAND, R., PARROW, J., AND STEFFEN, B.
1993. The Concurrency Workbench: A se-
mantics-based tool for the verification of con-
current systems. ACM Trans. Program Lang.
Syst. 15, 1 (Jan.), 36–72.

CONSTABLE, R. ET AL. 1986. Implementing
Mathematics with the NuPRL Proof Develop-
ment Environment. Prentice-Hall, Englewood
Cliffs, NJ.

CORNES, C., COURANT, J., FILLIÂTRE, J.-C., HUET,
G., MANOURY, P., PAULIN-MOHRING, C., MUNOZ,
C., MURTHY, C., PARENT, C., SAı̈BI, A., AND

WERNER, B. 1995. The coq proof assistant
reference manual version 5.10. Tech. Rep. 177
(July), INRIA. http://pauillac.inria.fr/coq/syste-
me_coq-eng.html.

CRAIGEN, D., GERHART, S., AND RALSTON, T.
1993a. An international survey of industrial
applications of formal methods. Tech. Rep.
NIST GCR 93/626 (Vols. 1 and 2) (March),
U.S. National Institute of Standards and
Technology. Also published by the U.S. Naval
Research Laboratory (Formal Rep. 5546-93-
9582, Sept.), and the Atomic Energy Control
Board of Canada.

CRAIGEN, D., GERHART, S., AND RALSTON, T.
1993b. Observations on industrial practice
using formal methods. In Proceedings of the
Fifteenth International Conference on Soft-
ware Engineering (May).

CRAIGEN, D., GERHART, S., AND RALSTON, T. 1994.
Formal methods in critical systems. IEEE
Softw. 11, 1 (Jan.).

CRAIGEN, D., GERHART, S., AND RALSTON, T. 1995.
Formal methods reality check: Industrial us-
age. IEEE Trans. Softw. Eng. 21, 2 (Feb.),
90–98.

CRAIGEN, D., KROMODIMOELJO, S., MEISELS, I.,
NEILSON, A., PASE, B., AND SAALTINK, M.
1988. m-EVES: A tool for verifying software.
In Proceedings of the Tenth International Con-
ference on Software Engineering (Singapore,
April), 324–333.

CROXFORD, M. AND SUTTON, J. 1995. Breaking
through the V and V bottleneck. In Proceed-
ings of Ada in Europe 1995. Springer-Verlag.

DAMM, W. AND DELGADO-KLOOS, C. 1996.
Practical Formal Methods for Hardware De-
sign. Lecture Notes in Computer Science.
Springer-Verlag.

640 • E. M. Clarke et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

DAMM, W., JOSKO, B., AND SCHLÖR, R. 1995.
Specification and Validation Methods for Pro-
gramming Languages and Systems, Chap.
Specification and verification of VHDL-based
system-level hardware designs, Oxford Uni-
versity Press, New York, 331–410.

DAWS, C. AND YOVINE, S. 1995. Two examples of
verification of multirate timed automata with
KRONOS. In Proceedings of 1995 IEEE Real-
Time Systems Symposium, RTSS’95 (Pisa, It-
aly, Dec.). IEEE Computer Society Press, Los
Alamitos, CA.

DÉHARBE, D. AND BORRIONE, D. 1995. Semantics
of a verification-oriented subset of VHDL. In
CHARME’95, Correct Hardware Design and
Verification Methods, P. Camurati and H.
Eveking, Eds., Vol. 987 of Lecture Notes in
Computer Science Springer-Verlag, 293–310.

DELISLE, N. AND GARLAN, D. 1990. A formal
specification of an oscilloscope. IEEE Softw. 7,
5 (Sept.), 29–36.

DEPALMA, G. AND GLASER, A. 1996. Formal ver-
ification augments simulation. Electr. Eng.
Times, 56.

DILL, D. L., DREXLER, A. J., HU, A. J., AND YANG, C.
H. 1992. Protocol verification as a hard-
ware design aid. In IEEE International Con-
ference on Computer Design: VLSI in Comput-
ers and Processors, 522–525.

DINOLT, G. ET AL. 1984. Multinet gateway—to-
wards A1 certification. In IEEE Symposium
on Security and Privacy (1984).

ELSEAIDY, W., CLEAVELAND, R., AND BAUGH, J.
1996. Modeling and verifying active struc-
tural control systems. Sci. Comput. Program.
(to appear). A preliminary version of this pa-
per appears in the Proceedings of the 1994
Real-Time Systems Symposium.

FERNANDEZ, J.-C., GARAVEL, H., KERBRAT, A., MA-
TEESCU, R., MOUNIER, L., AND SIGHIREANU,
M. 1996. CADP (CÆSAR/ALDEBARAN
development package): A protocol validation
and international verification toolbox. In Pro-
ceedings of the 8th Conference on Computer-
Aided Verification, Number 1102 in Lecture
Notes in Computer Science. R. Alur and T. A.
Henzinger, Eds., Springer-Verlag.

FILKORN, T., SCHNEIDER, H., SCHOLZ, A., STRASSER,
A., AND WARKENTIN, P. 1994. SVE User’s
Guide. Tech. Rep. ZFE BT SE 1-SVE-1, Sie-
mens AG, Corporate Research and Develop-
ment, Munich.

GARLAN, D., ABOWD, G., JACKSON, D., TOMAYKO, J.,
AND WING, J. 1995. The CMU Master of
Software Engineering Core Curriculum. In
Proceedings of the Eighth SEI Conference on
Software Engineering Education (CSEE) Vol.
895 of Lecture Notes in Computer Science,
Springer-Verlag, 65–86.

GARLAND, S. J. AND GUTTAG, J. V. 1988.
Inductive methods for reasoning about ab-
stract data types. In Proceedings of the Fif-

teenth Symposium on Principles of Program-
ming Languages, 219–228.

GERTH, R., PELED, D., VARDI, M. Y., AND WOLPER,
P. 1995. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Proceedings
IFIP/WG6.1 Symposium on Protocol Specifi-
cation, Testing, and Verification (Warsaw, Po-
land, June).

GORDON, M. 1987. HOL: A proof generating
system for higher-order logic. In VLSI Specifi-
cation, Verification and Synthesis. Kluwer.

GORDON, M. J., MILNER, A. J., AND WADSWORTH, C.
P. 1979. Edinburgh LCF, Vol. 78 of Lec-
ture Notes in Computer Science. Springer-
Verlag.

GUIHO, G. AND HENNEBERT, C. 1990. SACEM
software validation. In Twelfth International
Conference on Software Engineering.

GUTTAG, J. AND HORNING, J. 1993. Larch: Lan-
guages and Tools for Formal Specification.
Springer-Verlag. Written with S. J. Garland,
K. D. Jones, A. Modet, and J. M. Wing.

HALL, A. 1996. Using formal methods to de-
velop an ATC information system. IEEE
Softw. 12, 6 (March), 66–76.

HAREL, D. 1987. Statecharts: A visual formal-
ism for complex systems. Sci. Comput. Pro-
gram. 8, 231–274. Preliminary version: Tech.
Rep. CS84-05, The Weizmann Institute of Sci-
ence, Rehovot, Israel, Feb. 1984.

HAREL, D. 1992. Biting the silver bullet: To-
ward a brighter future for system develop-
ment. IEEE Comput. 25, 1 (Jan.), 8–20.

HAR’EL, Z. AND KURSHAN, R. P. 1990. Software
for analytical development of communications
protocols. AT&T Bell Lab. Tech. J. 69, 1 (Jan.–
Feb.), 45–59.

HEIMDAHL, M. AND LEVESON, N. 1996. Com-
pleteness and consistency in hierarchical state-
based requirements. IEEE Trans. Softw. Eng.
SE-22, 6 (June), 363–377.

HENINGER, K. 1980. Specifying software re-
quirements for complex systems: New tech-
niques and their application. IEEE Trans.
Softw. Eng. 6, 1 (Jan.), 2–13.

HENZINGER, T. A., NICOLLIN, X., SIFAKIS, J., AND

YOVINE, S. 1994. Symbolic model checking
for real-time systems. Inf. Comput. 111, 111–
244.

HO, P.-H. AND WONG-TOI, H. 1995. Automated
analysis of an audio control protocol. In Com-
puter-Aided Verification ’95, Lecture Notes in
Computer Science 939, P. Wolper Ed., Spring-
er-Verlag, 381–394.

HOARE, C. A. R. 1985. Communicating Sequen-
tial Processes. Prentice-Hall International,
Englewood Cliffs, NJ.

HOJATI, R., BRAYTON, R., AND KURSHAN, R. 1993.
BDD-based debugging of designs using lan-
guage containment and fair CTL. In Proceed-
ings of the Fifth International Conference on

Formal Methods • 641

ACM Computing Surveys, Vol. 28, No. 4, December 1996

Computer-Aided Verification, Number 697 in
Lecture Notes in Computer Science, C. Cour-
coubetis Ed., Springer-Verlag, 41–57.

HOLZMANN, G. 1991. Design and Validation of
Computer Protocols. Prentice-Hall, Englewood
Cliffs, New Jersey.

HOLZMANN, G. 1992. Practical methods for the
formal validation of SDL specifications. Com-
put. Commun. Special issue on Practical Uses
of FDT’s.

HOLZMANN, G. 1994. The theory and practice of
a formal method: NewCoRe. In Proceedings of
IFIP World Computer Congress (Hamburg,
Germany, Aug.).

HOLZMANN, G. AND PATTI, J. 1989. Validating
SDL specifications: An experiment. In Pro-
ceedings of the Ninth International Conference
on Protocol Specification, Testing, and Verifi-
cation, INWG/IFIP (Twente, Netherlands,
June) C. Vissers and E. Brinksma, Eds.

HOLZMANN, G. AND PELED, D. 1994. An improve-
ment in formal verification. In Proceedings of
FORTE94 (Berne, Switzerland, Oct.).

HOUSTON, I. AND KING, S. 1991. CICS project
report: Experiences and results from using Z.
In Proceedings of VDM’91: Formal Develop-
ment Methods, Volume 551 of Lecture Notes
in Computer Science, Springer-Verlag.

ISO. 1987. Information Systems Processing—
Open Systems Interconnection—LOTOS.
Tech. Rep. International Standards Organiza-
tion DIS 8807.

JACKY, J. 1995. Specifying a safety-critical con-
trol system in Z. IEEE Trans. Softw. Eng. 21,
2 (Feb.), 99–106.

JAGADEESAN, L., PUCHOL, C., AND OLNHAUSEN, J.
V. 1996. A formal approach to reactive sys-
tems software: A telecommunications applica-
tion in Esterel. Formal Aspects Comput. 8, 2
(March), 123–151.

JANICKI, R., PARNAS, D. L., AND ZUCKER, J. 1996.
Tabular representations in relational docu-
ments. In Relational Methods in Computer
Science. C. Brink, Ed., Springer-Verlag (to
appear).

JONES, C. B. 1986. Systematic Software Devel-
opment Using VDM. Prentice-Hall Interna-
tional, New York.

KALTENBACH, M. 1994. Model checking for
UNITY. Tech. Rep. TR94-31 (Dec.), The Uni-
versity of Texas at Austin.

KAPUR, D. AND MUSSER, D. 1987. Proof by con-
sistency. Artif. Intell. 31, 125–157.

KAUFMANN, M. AND MOORE, J. S. 1995. ACL2: A
Computational Logic for Applicative Common
Lisp, The User’s Manual (Version 1.8). ftp://
ftp.cli.com/pub/acl2/v1-8/acl2-sources/doc/
HTML/acl2-doc.html.

KINDRED, D. AND WING, J. 1996. Fast, auto-
matic checking of security protocols. In Pro-

ceedings of the USENIX Workshop on Elec-
tronic Commerce Protocols (1996).

KING, T. 1994. Formalising British Rail’s sig-
nalling rules. In FME’94: Industrial Benefit of
Formal Methods, Volume 873 of Lecture
Notes in Computer Science (1994), Springer-
Verlag, 45–54.

KLJAICH, J., SMITH, B., AND WOJCIK, A. 1989.
Formal verification of fault tolerance using
theorem-proving techniques. IEEE Trans.
Comput. 38, 366–376.

KUEHLMANN, A., SRINIVASAN, A., AND LAPOTIN, D. P.
1995. Verity—a formal verification program
for custom CMOS circuits. IBM J. Res. Dev.
39, 1/2, 149–165.

KUHN, D. AND DRAY, J. 1990. Formal specifica-
tion and verification of control software for
cryptographic equipment. In Sixth Computer
Security Applications Conference (1990).

KURSHAN, R. AND LAMPORT, L. 1993. Verifi-
cation of a multiplier: 64 Bits and beyond. In
Computer Aided Verification, Volume 697 of
Lecture Notes in Computer Science, C. Cour-
coubetis, Ed., Springer-Verlag, 166–179.

KURSHAN, R. P. 1994a. Computer-Aided Verifi-
cation of Coordinating Processes. Princeton
University Press, Princeton, NJ.

KURSHAN, R. P. 1994b. The complexity of verifi-
cation. In Proceedings 26th ACM Symposium
on Theory of Computing (STOC) (Montreal),
365–371.

LAMPORT, L. 1984. The temporal logic of ac-
tions. ACM Trans. Program. Lang. Syst., 872–
923.

LESCANNE, P. 1983. Computer experiments
with the REVE term rewriting system gener-
ator. In Proceedings of the Tenth Symposium
on Principles of Programming Languages
(Austin, Texas, Jan.), 99–108.

LONG, D. L. 1993. Model checking, abstraction,
and compositional reasoning. Ph.D. Thesis,
Carnegie Mellon Univ., Computer Science
Dept.

LOWE, G. 1996. Breaking and fixing the Need-
ham-Schroder public-key protocol using FDR.
In Tools and Algorithms for the Construction
and Analysis of Systems, Vol. 1055 of Lecture
Notes in Computer Science. Springer-Verlag.

LUO, Z. AND POLLACK, R. 1992. LEGO proof de-
velopment system: User’s manual. Tech. Rep.
ECS-LFCS-92-211 (May), Computer Science
Dept., Univ. of Edinburgh.

LYNCH, N. AND TUTTLE, M. 1987. Hierarchical
correctness proofs for distributed algorithms.
Tech. Rep. (April), MIT Laboratory for Com-
puter Science, Cambridge, MA.

MANNA, Z. AND PNUELI, A. 1991. The Temporal
Logic of Reactive and Concurrent Systems,
Springer-Verlag, New York.

MATAGA, P. AND ZAVE, P. 1995. Multiparadigm
specification of an AT&T switching system. In

642 • E. M. Clarke et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

Applications of Formal Methods, M. G.
Hinchey and J. P. Bowen, Eds., Prentice-Hall
International, Englewood Cliffs, NJ, 375–398.

MCMILLAN, K. L. 1993. Symbolic Model Check-
ing: An Approach to the State Explosion Prob-
lem. Kluwer.

MILLER, S. P. AND SRIVAS, M. 1995. Formal ver-
ification of the AAMP5 microprocessor: A case
study in the industrial use of formal methods.
In WIFT’95: Workshop on Industrial-Strength
Formal Specification Techniques (Boca Raton,
FL), IEEE Computer Society, Washington,
DC, 2–16.

MILNER, A. 1980. A Calculus of Communicating
Systems, Vol. 92 of Lecture Notes in Com-
puter Science. Springer-Verlag.

MOORE, J. S., LYNCH, T., AND KAUFMANN, M. 1996.
A mechanically checked proof of the correct-
ness of the AMD5K86 floating point division
algorithm. http://devil.ece.utexas.edu:80/lynch/
divide/divide.html.

NIELSEN, M., HAVELUND, K., WAGNER, K., AND

GEORGE, C. 1989. The RAISE language,
method and tools. Formal Aspects Comput. 1,
85–114.

OWRE, S., RUSHBY, J., AND SHANKAR, N. 1992.
PVS: A prototype verification system. In Elev-
enth International Conference on Automated
Deduction (CADE), Vol. 607 of Lecture Notes
in Artificial Intelligence, D. Kapur Ed.,
Springer-Verlag, 748–752.

OXFORD UNIVERSITY. 1996. http://www.comlab.
ox.ac.uk/igdp/. Master’s of Science in Soft-
ware Engineering.

PELED, D. 1996. Combining partial order reduc-
tions with on-the-fly model-checking. J. For-
mal Meth. Syst. Des. 8 (1), 39–64. Also ap-
peared in the Proceedings of the Sixth
International Conference on Computer Aided
Verification 1994 (Stanford, CA), Lecture
Notes in Computer Science 818, Springer-Ver-
lag, 377–390.

PNUELI, A. 1981. A temporal logic of concurrent
programs. Theor. Comput. Sci. 13, 45–60.

QUEILLE, J. AND SIFAKIS, J. 1982. Specification
and verification of concurrent systems in
CÆSAR. In Proceedings of Fifth ISP.

RAJAN, S., SHANKAR, N., AND SRIVAS, M. 1995.
An integration of model-checking with auto-
mated proof checking. In Computer-Aided
Verification, ’95, Volume 939 of Lecture Notes
in Computer Science P. Wolper, Ed., Spring-
er-Verlag, 84–97.

RICHARDSON, D., O’MALLEY, T., AND MOORE, C. T.
1989. Approaches to specification-based
testing. In ACM SIGSOFT 89: Third Sympo-
sium on Software Testing, Analysis, and Veri-
fication (Dec.).

ROSCOE, A. 1994. Model-checking CSP. In A

Classical Mind: Essays in Honour of C.A.R.
Hoare, A. Roscoe, Ed., Prentice-Hall, Engle-
wood Cliffs, NJ.

ROY, V. AND DE SIMONE, R. 1990. Auto/Auto-
graph. In Computer-Aided Verification ’90,
Vol. 3 of DIMACS Series on Discrete Mathe-
matics and Theoretical Computer Science
(Piscataway, NJ, June), E. Clarke and R. Kur-
shan, Eds., American Mathematical Society,
Providence, RI, 235–250.

RUESS, H., SHANKAR, N., AND SRIVAS, M. 1996.
Modular verification of SRT division. In Pro-
ceedings of the Eighth International Confer-
ence on Computer-Aided Verification, No.
1102 in Lecture Notes in Computer Science
(July), Springer-Verlag, 123–134.

RUSSINOFF, D. 1996. A mechanically checked
proof of the correctness of the AMD K5 float-
ing-point square root algorithm (submitted).

SPC. 1993. Consortium requirements engineer-
ing guidebook. Tech. Rep. SPC-92060-CMC
version 01.00.09, Software Productivity Con-
sortium, Herndon, VA.

SPIVEY, J. M. 1988. Introducing Z: a Specifica-
tion Language and its Formal Semantics.
Cambridge University Press, New York.

STEFFEN, B., MARGARIA, T., CLASSEN, A., AND

BRAUN, V. 1996. The Meta ’95 environ-
ment. In Proceedings of Computer-Aided Veri-
fication ’96, Lecture Notes Computer Science,
Springer-Verlag.

STEFFEN, B., MARGARIA, T., CLASSEN, A., BRAUN, V.,
AND REITENSPIESS, M. 1996. An environ-
ment for the creation of intelligent network
services. In Intelligent Networks: IN/AIN
Technologies, Operations, Services, and Appli-
cations—A Comprehensive Report (Chicago), I.
E. Consortium Ed., 287–300. Invited contribu-
tion. Also invited to the Annual Review of
Communications, IEC, 919–935.

VARDI, M. Y. AND WOLPER, P. 1986. An automa-
ta-theoretic approach to automatic program
verification. In Proceedings of Logic in Com-
puter Science.

WING, J. 1985. Specification firms: A vision for
the future. In Proceedings of the Third Inter-
national Workshop on Software Specification
and Design (London, Aug.), 241–243.

ZAVE, P. 1995. Secrets of call forwarding: A
specification case study. In Proceedings of the
Eighth International IFIP Conference on For-
mal Description Techniques for Distributed
Systems and Communications Protocols
(FORTE ’95) Chapman & Hall, London, 153–
168.

ZAVE, P. AND JACKSON, M. 1996. Where do oper-
ations come from? A multiparadigm specifica-
tion technique. IEEE Trans. Softw. Eng. 22, 7
(July), 508–528.

Formal Methods • 643

ACM Computing Surveys, Vol. 28, No. 4, December 1996

