
Formal Methods: Theory Becoming Practice
Jean-Raymond Abrial

ETHZ, Zurich, Switzerland.
email: jabrial@inf.ethz.ch

I. INTRODUCTION

In this paper I will introduce the ideas behind the B formal
method, especially as crystalised in its latest version, Event-B.
I shall give some insights on modeling and formal reasoning,
activities intended to be performed before undertaking the
actual coding of a computer system, so that the software in
question will be correct by construction. At the end, I shall
present a number of real projects where the B formal method
[1] has been used with great success.

II. FORMAL METHODS

Formal methods are inescapably tied to mathematics of one
sort or another. Consequently many claim that using formal
methods is too challenging because of various intrinsic dif-
ficulties. Here are a few of these claimed difficulties: you
have to be a mathematician; the proposed formalism is hard
to master; it is not visual enough (boxes and arrows may well
be missing); people will not be able to perform proofs.

I mostly disagree with the above point of view, but I
recognize that there are some real difficulties, which, in my
mind, are the following:

• When using formal methods, you have to think a lot before
coding, which is not, as we know, the current practice.

• The usage of formal methods has to be incorporated within
a development process, and this incorporation is not easy. In
industry, people develop their products under precise guide-
lines, and usually, the introduction of such guidelines in an
industry takes a significant time. In this context, managers are
very reluctant to change the guidelines to incorporate the use
of formal methods.

• Model building is not a simple activity, and one has to be
careful not to confuse modeling and programming. More pre-
cisely, the initial model of a program describes the properties
that the program must fulfil in order that we can judge that
the final program is correct.

• Modeling has to be accompanied by reasoning. The model
of a program is not just a piece of text, whatever the formalism
being used; it should also contain proofs that are related to this
text. Often, formal methods have just been used as a means of
obtaining abstract descriptions of the program, but descriptions
are not enough. We must justify what we write by proving
some consistency properties. The problem is that software
practitioners are not used to constructing proofs, unlike people
in other engineering disciplines. A genuine obstacle here is the
lack of good tool support, usable on a large scale.

• A final difficulty encountered in modeling is the frequent
lack of good requirement documents associated with the
project. Most of the time, industrial requirement documents
are either almost nonexistent or far too verbose. Usually they
have to be rewritten before serious modeling starts.

III. A LITTLE DETOUR: BLUEPRINTS

It is my belief that people managing the development of large
and complex computer systems should adopt a view shared by
all mature engineering disciplines, namely using an artifact
to reason about the future system during its construction. In
these disciplines, people use blueprints in the wider sense
of the term, which allows them to reason formally during
the construction process. A blueprint is a representation of
the future system, giving insight into some but not all of its
aspects. You cannot drive the blueprint of a car!

The blueprints used in mature engineering disciplines have
some very desirable properties that we seek to emulate in ours.
They are typically organised into hierarchies in which: more
detailed blueprints are related to less detailed views of the
same thing; blueprints are decomposed to enhance readability;
earlier blueprints do not completely specify all aspects, leaving
later blueprints to refine options left open.

Most of the time in software construction, people do not
use such artifacts. This results in a very heavy and in-
evitably incomplete testing phase on the final product, with
its well known problems. The alternative, of using appropriate
blueprint models of the future system, ultimately allows us to
prove that the system will satisfy desirable properties, which
can be stipulated early on.

IV. THE REQUIREMENTS DOCUMENT

Before the blueprints we have just discussed can be created,
comes the very important phase of creating the Requirements
Document. As already noted, most of the time this document is
either missing or very badly written. Usually this results in lots
of difficulties in subsequent phases. In particular, the syndrome
of unavoidable specification changes occurring during the
design phases originates in the weakness of the Requirements
Document. When this document is well written, these kinds
of difficulties tend to disappear. For this reason we are going
to dwell on requirements for a while to see how this phase
can be improved.

Difficulties with the Requirements Document

Writing a good Requirements Document (RD) is a difficult
task. We must remember that the readers of this document



perform the phases that follow, namely Technical Specification
and Design. Usually, it is difficult for them to exploit the RD
because they cannot clearly identify what they have to take
into account and in what order.

Often too, important points are missing from the RD. I
have seen a huge RD for an aircraft alarm system where the
simple fact that the system should not deliver false alarms
was simply missing. When the authors of this document were
interrogated on this point, the answer they gave was rather
surprising: it was not necessary to put such detail in the RD
“of course everybody knows that the system should not deliver
false alarms.” On other occasions, the RD is full of irrelevant
detail.

What is difficult for the reader of the RD is to make a clear
distinction between the part of the text that is devoted to expla-
nations and the part that is devoted to genuine requirements.
Explanations are initially needed for the reader to understand
the future system. But when the reader is better acquainted
with the system, explanations become less important. What
counts then, is to recall what the real requirements are, in
order to know exactly what has to be taken into account during
system construction.

Structuring the Requirements Document

The idea is to have our RD organized around two texts
embedded in each other: the explanatory text and the reference
text. These two texts should be immediately separable, so that
it is possible to summarize the reference text independently.

Usually, the reference text takes the form of self contained
labeled and numbered short statements written using natural
language, which must be very easy to read independently from
the explanatory text. The explanatory text is there to comment
on the formal requirements in a way that could help a reader
on first becoming acquainted with the document. However,
after the initial acclimatisation period, the reference text is
the only one that counts. It is only the the reference text
whose labels and numbers act as cross references in later
development phases, providing traceability, so that it can be
checked whether all the requirements have in fact been taken
into account properly.

V. THE CONTEXT OF THE B METHOD

Every methodology has its own appropriate sphere of appli-
cability, and the B methodology we are going to describe is
no exception. In this section we focus on the context of the B
method. The kind of systems we are interested in developing
are complex and discrete. Let us develop these two ideas for
a while.

Complex Systems

What is common among, say, an electronic circuit, a file
transfer protocol, an airline seat booking system, a sorting
program, a PC operating system, a network routing program,
a nuclear plant control system, a SmartCard electronic purse,
a launch vehicle flight controller, etc.? What is common to

the requirements, specification, design and implementation of
systems that are so different in size and purpose?

Well, almost all such systems are complex in that they
are made of many parts interacting with a highly evolving
and sometimes hostile environment. They can also involve
concurrent executing agents. They require a high degree of
correctness. Finally, most of them result from a long construc-
tion process requiring a large and talented team.

Discrete Systems

Although at the physical level their behavior is ultimately
continuous, the systems listed above mostly operate in a
discrete fashion. They fall under the generic name of transition
systems. Having said this does not give us a method, but it
gives us at least a common point of departure.

Some of the examples listed are pure programs. In other
words, their transitions are essentially concentrated in one
medium only, e.g. the electronic circuit and the sorting pro-
gram. Most of the other examples however are more complex
than that because they involve many different executing agents,
and also heavy interaction with the environment. This means
that the transitions are executed by different entities acting
concurrently. Fortunately this does not change the discrete
nature of the problem.

Test Reasoning versus Model Reasoning

Thus the technology we consider in this short paper is con-
cerned with the construction of complex discrete systems. A
very important factor here is that they should operate in a
correct fashion. And as long as the main validation method
used is testing, we consider that the technology remains in
an underdeveloped state. Testing, or ‘laboratory execution,’
does not involve any kind of sophisticated reasoning. It rather
consists of always postponing any serious thinking during the
specification and design phase; the system is always re-adapted
and re-shaped according to the test results. But this, as is well
known, is often far too late.

In other technologies, say avionics, it is certainly true that
people do eventually test what they are constructing, but
the testing is just the routine confirmation of a sophisticated
design process rather than a guiding principle within it. In
fact, most of the reasoning is done before the final object is
built. It is performed on various blueprints, by analysing them
using appropriate theories. We aim to emulate this for the
construction of complex discrete systems.

VI. OVERVIEW OF THE B METHOD

It is time to outline the essential features of our blueprint
based methodology, as it is understood in Event-B [2]. As with
conventional blueprints, we shall use well defined notational
conventions to write our models. We use the language of
classical logic and set theory, familiar to most people having
some mathematical background. There is a price for this
choice: just as one cannot drive a blueprint of a car, one cannot
in general execute a system model.



States and Transitions

Roughly speaking, a discrete model consists of a state, rep-
resented by some constants and variables at a particular level
of abstraction with respect to the real system under study,
and some transitions. The variables are like those used in
conventional sciences (physics, biology, operational research)
for studying natural systems.

The transitions, here called ‘events,’ have two pieces, the
guard and the action. The guard, which is a predicate built
on the state constants and variables, represents the conditions
necessary for the event to occur. The action describes the way
certain state variables are modified when the event occurs. This
framework has been strongly influenced by the development
of Action Systems [3].

A state together with some events on it thus constitutes a
state transition machine, and we can give such a machine a
simple operational interpretation. This interpretation should
not be considered as providing the semantics of our models
(which is given by means of suitable proof obligations), it is
just given here to support their informal understanding.

First of all, the execution of an event, which describes a cer-
tain observable transition of the state variables, is considered
to take no time, and no two events can occur simultaneously.
The execution of an event is then the following:

• When no event guards are true, then the model execution
stops: it is said to have deadlocked.

• When some event guards are true, exactly one of the corre-
sponding events occurs and the state is modified accordingly.
Subsequently the guards are checked again, and so on.

Evidently the above exhibits potential non-determinism (exter-
nal non-determinism) as several guards may be true simulta-
neously. We make no assumption concerning the event which
is executed among those whose guards are true. When only
one guard is ever true, the model is said to be deterministic.

Notice that the termination of a model is not at all manda-
tory. As a matter of fact, most of the systems we study never
deadlock: they run for ever.

Formal Reasoning

The simple transition machine we have described, although
primitive, is nevertheless sufficiently powerful to allow us to
do interesting formal reasoning. We focus on two kinds of
model property.

The first kind of property is an invariant property. An
invariant is a condition on the state variables that must hold
permanently. In order to have an invariant, it is enough to prove
that for each event, assuming the invariant and the event’s
guard, the invariant still holds after the event’s action has been
performed.

A second kind of property, a modality, need not hold
permanently. We only consider a very special form of modality
called reachability. What we would like to prove is that an
event whose guard is not necessarily true now will nevertheless
certainly occur within a certain finite time.

Managing the Complexity of Closed Models

Note that our models cannot just describe the control part of
the intended system. They must also contain a representation
of the environment with which our system will interact. Thus
we must construct closed models which capture the actions and
reactions between system models and environment models.

The number of transitions of such complex structures will
be huge. How are we going to manage this complexity?
The answer to this question lies in three linked concepts:
refinement, decomposition, and generic instantiation.

Refinement, Decomposition, Generic Instantiation

Refinement allows us to build up a model gradually by making
it more and more precise, that is, closer to reality. We typically
construct an ordered sequence of embedded models, where
each is a refinement of its predecessor. Usually, a refined, more
concrete, model will have more variables than its abstraction.
The new variables correspond to fresh detail made visible by
seeing the system from closer up, or by viewing the system
under a microscope and turning up the magnification.

Along with the spatial extension, there is a temporal ex-
tension, because there will be new transitions modifying the
new variables. These are expressed using new events which
involve the new variables alone. These new events refine
implicit events doing nothing in the abstraction. This clean
separation of new and old is vital in keeping under control
the complexity of the reasoning needed to ensure correctness,
as the complexity of the system builds up, layer by layer. Once
the refinement process has captured all important properties,
further data-refinements map the model onto executable data
types.

By itself, refinement does not overcome the complexity
problem, since the model can become too cumbersome to
manage monolithically. At this point, it is necessary to cut up
the single model into several (almost) independent pieces, via
decomposition. The decomposition mechanism is designed so
that it is always possible to reassemble the component models
(which may themselves undergo further stages of independent
refinement), to form a single model that is guaranteed to be a
refinement of the original one.

Any development in the above style is parameterized by
some carrier sets and constants enjoying a number of proper-
ties. Such a static model may be instantiated within a different
development, by ensuring all the axioms of the static model
are mere theorems in the instantiation. This in turn can save
us redoing proofs already done in the more abstract context.

VII. FORMAL METHODS IN INDUSTRY: TWO CASES

In this final section, we present two real projects where the
B formal method has been used in a systematic fashion [4].
The two projects are separated by a nine year period: the first
one resulted in a system (Line 14 of the Paris Métro) that has
been working since October 1998, whereas the second one (the
driverless shuttle at Paris Roissy Airport) will be operational
in 2007. In both cases, not all the software for these systems
was developed using B, only the safety critical parts were,



representing one third of the overall program. Next is a table
showing the main characteristics of these systems:

Paris Métro Line 14 Roissy Shuttle
Line length 8.5 km 3.3 km
No. of stops 8 5
Inter-train time 115 s 105 s
Speed 40 km/h 26 km/h
No. of trains 17 14
Passengers / day 350,000 40,000

The information in this table has been taken from [5]. The
formally developed part of the first system has been described
in [6], while that of the second system is described in [7].

Since the Line 14 subway system is completely automatic,
the safety critical part concerns the running and stopping of the
trains, and the opening and closing of the train doors and the
platform doors. The program is distributed into three different
kinds of sub-system: the wayside equipment (several of these
along the tracks), the on-board equipment (one instance in
each train), and the line equipment (one instance), which are
all heavily interconnected. In each sub-system, the safety parts
which are developed using B, are sequential and cyclic (350
ms), and constitute a single non-interruptible task.

The Roissy Airport shuttle system is derived from the light
shuttle system of Chicago’s O’Hare Airport. The difference
between the former and the latter, is that the former has a
significant computerized part located along the tracks, called
the Wayside Control Unit. There are several such units located
along the tracks. They are linked by means of an Ethernet
network. The Wayside Control Units drive the trains by
sending them predefined speed programs which they have to
follow. The programs are sent in response to the current state
of the train which is detected by means of sensors situated on
the track and connected to the Wayside Control Units.

The following table records a number of facts comparing
the two projects. The most important data in are the first and
the last rows. The first contains the number of lines in the
two programs, whereas the last contains the time needed to
perform the corresponding interactive proofs.

Line 14 Shuttle
No. of ADA lines 86,000 158,000
No. of B lines 115,000 183,000
No. of proofs 27,800 43,610
Interactive proof percentage 8.1 3.3
Interactive proof effort (M-Mths) 7.1 4.6

The number of ADA lines represents the size of that part of
the software system which was developed using the B formal
method. These lines were not modified by the engineers.

The time used for doing the interactive proofs is calculated
by taking an average of 15 interactive proofs per Man-Day,
and 21 days in a month. As can be seen, the gain from the first
to the second case study is quite significant. Roughly speaking,
twice as many lines of code were automatically generated for
half of the proving time. The manufacturer also stated that in
the second case study, a significant amount time was saved

in the building of the Concrete Model. Such differences came
from the use of a semi-automatic refining tool [8], [9]. Note
that in both cases no unit tests were performed. They were
replaced by some global tests which were all successful.

One important difference between the two case studies is
that the RD of the first was created specially for it, whereas
for the second, it was derived from an existing RD (that of the
Chicago O’Hare Airport shuttle). In that second case, the RD
had to be modified and extended in order to deal with the new
requirements and functionality of the Roissy Airport shuttle.
This caused a number of problems which were only discovered
during the development of the model. Similar train control
systems are presently being developed with these techniques
for the New York City subway, the Barcelona subway, the
Prague subway, and Line 1 of the Paris Métro.

VIII. CONCLUSIONS

In this paper, we have presented a brief panorama of formal
methods in the B style, which relies on refinement and proofs
to rigorously transform an abstract high level model into
a correct implementation. It must be emphasised that the
practicality of this approach is entirely dependent on the
quality and power of tool support. As the case studies suggest,
it would be impossible to complete such a large project in
the time given, were it necessary to do everything manually.
Worse, even if that were not so, there would be no confidence
that the final result was correct — human beings are simply
not capable of handling such quantities of low level (and ulti-
mately rather featureless) mathematical detail without making
mistakes. Work on tools for this methodology is still active.
The European Project Rodin [10], which runs till September
2007, will create a new platform, implemented on Eclipse, for
embedding the Event-B techniques described above.

Acknowledgments: This research was carried out as part of
the EU research project IST 511599 RODIN (Rigorous Open
Development for Complex Systems) [10]. I would like to thank
Richard Banach for his help in preparing this paper.

REFERENCES

[1] J.-R. Abrial, The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[2] ——, Event-B, to be published.
[3] R. Back and R. Kurki-Suonio, “Decentralization of process nets with

centralized control,” in Proc. 2nd. ACM SIGACT-SIGOPS Symp. on
Distributed Computing, 1989, pp. 131–142.

[4] J.-R. Abrial, “Formal methods in industry: Achievements, problems
future,” in Proc. ACM/IEEE ICSE 2006 International Conference on
Software Engineering, 2006, pp. 761–768.

[5] Siemens, Siemens Transportation Systems
http://www.siemens.fr/transportation/.

[6] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier, “Météor: A
successful application of B in a large project,” in Proc. FM 1999, LNCS
1708, 1999, pp. 369–387.

[7] F. Badeau and A. Amelot, “Using B as a high level programming
language in an industrial project: Roissy val,” in Proc. ZB 2005, LNCS
3455, 2005, pp. 334–354.

[8] L. Burdy, “Automatic refinement,” in Proc. BUGM at FM 1999, 1999.
[9] D. Dollé, “Vital software: Formal method and coded processor,” in Proc.

ERTS 2006 http://www.erts2006.org/, 2006.
[10] Rodin, European Project Rodin (Rigorous Open Development for Com-

plex Systems) http://rodin.cs.ncl.ac.uk/.


