
Formal Metrics for Large-Scale Parallel

Performance

Kenneth Moreland and Ron Oldfield

Sandia National Laboratories, Albuquerque, NM 87185, USA
{kmorel,raoldfi}@sandia.gov

Abstract. Performance measurement of parallel algorithms is well stud-
ied and well understood. However, a flaw in traditional performance met-
rics is that they rely on comparisons to serial performance with the same
input. This comparison is convenient for theoretical complexity analysis
but impossible to perform in large-scale empirical studies with data sizes
far too large to run on a single serial computer. Consequently, scaling
studies currently rely on ad hoc methods that, although effective, have no
grounded mathematical models. In this position paper we advocate using
a rate-based model that has a concrete meaning relative to speedup and
efficiency and that can be used to unify strong and weak scaling studies.

1 Introduction

Empirical scaling studies are an important component in the analysis of parallel
algorithms and systems. A scaling study tests the performance of a parallel algo-
rithm using different numbers of processing elements and usually over different
amounts of data. A good scaling study shows how effectively additional process-
ing elements are used by the algorithm and through trends provides evidence of
behavior at future larger scales.

The practice of measuring scaling relies on the well studied models for the the-
ory of parallel performance. However, current theoretic models rely on compar-
isons with algorithm behavior on a single, serial processing element. Empirically
measuring serial behavior for sufficiently large parallel problems is impractical.

1.1 Performance Analysis Theory

The following is a brief overview of parallel algorithm performance.
The speedup of a parallel algorithm is defined as

S(n, p) =
T ∗(n)

T (n, p)
(1)

where T (n, p) is the time it takes to run the parallel algorithm on p processing
elements with an input of size n, and T ∗(n) the time for the best serial algorithm
on the same input. The best possible serial algorithm may be different than the
parallel algorithm although using the same algorithm is also common practice.



In theory the best possible speedup achievable is S(n, p) = p [5] (although
superlinear measurements can occur in practice [8]). Thus, we measure the effi-

ciency as the ratio of the observed speedup to the ideal speedup.

E(n, p) =
S(n, p)

p
=

T ∗(n)

p T (n, p)
(2)

Amdahl [1] famously observes the limits of scaling any parallel algorithm
based on the fraction f of inherently serial computation that exists in any algo-
rithm. The equation derived from this observation is known as Amdahl’s law.

S(n, p) ≤
1

f + (1− f)/p
(3)

Gustafson [7] observes that the serial fraction tends to go down for larger
data sizes in parallel algorithms, which justifies the use of parallel computing for
large problems. The Gustafson-Barsis law reformulates speedup in terms of the
parallel execution rather than the serial execution.

S(n, p) ≤ p+ (1− p) · s(n, p) (4)

where s(n, p) is the fraction of time in the parallel execution performing sequen-
tial operations. This law shows that speedup can be increased indefinitely as
long as the serial fraction drops commensurately with the processing element in-
crease, which can often be done by increasing the problem size. Grama et al. [6]
introduce an isoefficiency relation that determines how much a problem needs
to grow to maintain a desired level of efficiency. Given a desired efficiency Ed,
the following inequality must hold.

T (n, 1) ≥
Ed

1− Ed

To(n, p) (5)

where To(n, p) is the total overhead (redundant, idle, and extra computation plus
communication) for running the algorithm on p processing elements for data of
size n.

Performance analysis theory is reviewed in much more detail in many parallel
computing textbooks such as Quinn’s [14].

1.2 Limitations of Performance Analysis

Although our definition for speedup and its derived quantities work well for the-
oretical complexity analysis, they all rely in some way on knowing the serial
performance. With large-scale simulations today reaching orders of billions to
trillions of elements [2,3,9,15], directly measuring serial performance is often im-
possible. The Gustafson-Barsis law needs only the serial fraction, but estimates
for serial fraction such as the Karp-Flatt metric [12] require knowing the serial
performance anyway.



Because of this issue, most studies attempt to assess scalability with a pair of
trends named strong scalability and weak scalability [11]. Strong scaling demon-
strates an algorithm’s behavior by measuring its run time on a particular data
set for various numbers of processing elements. Perfect strong scaling has a run-
ning time proportional to 1/p. As we shall see in examples later, it is difficult to
compare the quality of plotted curves to this perfect hyperbolic on both linear
and log scales.

Per Amdahl’s law, there are inevitable limits to strong scaling. In contrast
weak scaling varies the problem size proportionally with the number of process-
ing elements. It may not always be possible to keep the problem size proportional
to the job size, which makes weak scaling more difficult. The metrics advocated
in this paper simplify studying scalability by removing the dependence between
problem size and number of processing elements. We encourage using them to
sample the 2D parameter space of problem size and number of processing ele-
ments as widely as possible for a broader view of the scalability.

Some studies use an ad hoc version of speedup or efficiency that replaces
the immeasurable T ∗(n) with some arbitrarily chosen measurement, usually the
time run on the smallest number of processing elements. The problem with this
approach is that the absolute meaning of “speedup” and “efficiency” changes
between experiments in a study. Furthermore, the metric cannot be used in
weak scaling because the problem size is not held constant.

Finally, some studies use rate in terms of the size of input computed per unit
time rather than absolute run time to assess scalability [11]. Rate is formally
defined as

R(n, p) =
n

T (n, p)
(6)

Some analysts have discovered that rate, being essentially a reciprocal of time,
provides a much better visual analysis of scaling, and it is an essential mechanism
advocated in this position paper.

This paper establishes a more pragmatic definition and efficiency that can
be easily measured empirically. Furthermore, we demonstrate how rate can be
used as a proxy for speedup and can unify strong and weak scaling to provide a
more complete analysis. These metrics are demonstrated using real performance
data.

2 Deriving Efficiency from Cost Analysis

In this section we will use cost, a metric that is simple to measure, to define
efficiency in lieu of the immeasurable speedup. Cost is intuitively the number of
processing elements used multiplied by the amount of time they are used.

C(n, p) = p T (n, p) (7)

Cost is sometimes used in theoretical algorithm analysis [10] and is often used
for HPC allocations, which are typically measured in core-hours.



Clearly the most efficient algorithm will be the one that costs the least to
run. Although we expect the cost to go up with the problem size, a perfectly
scaled algorithm on a fixed input size will cost the same regardless of how many
processors are used. That is, adding processors reduces the time proportionally.
Given a strong scaling study on a problem of a particular size, we can identify
the best (minimal) cost, C∗(n), that uses p∗ processing elements. With this best
cost we can redefine efficiency as the ratio of this best cost to the actual cost.

E(n, p) =
C∗(n)

C(n, p)
(8)

If we make the typical assumptions that the minimal cost is when the serial
algorithm is run (C∗(n) = T ∗(n)), then we observe that Equation 8 simplifies
to Equation 2, making this definition of efficiency equivalent but broader than
the traditional definition. And unlike the traditional definition of efficiency, de-
termining efficiency from cost is straightforward at large scales.

3 Strong and Weak Scaling with Cost Per Unit

Our previous definition of efficiency (Equation 8) works well for strong scaling
where the data size is constant but cannot be compared across different data
sizes for weak scaling. To describe efficiency under weak scaling we define the
new metric cost per unit, Cu. Cost per unit is the amortized computational cost
for one unit of data.

Cu(n, p) =
C(n, p)

n
=

p T (n, p)

n
=

p

R(n, p)
(9)

The important feature of cost per unit is that under perfect scaling the cost
per unit is constant under any number of processing elements or data sizes.
Thus, given multiple strong scaling studies over data of different sizes, we can
find the best cost per unit, C∗

u
, that uses p∗ processing elements operating on

data of size n∗. The best cost per unit is generally the minimum. We are not
considering, however, outlier experiments where data sizes are not representative
of practical runs. For example, it is well known that a sufficiently small data size
could fit in the cache of a sufficiently large parallel job [8]. An experiment of this
nature would report a much lower cost per unit but would be of little relevance
to the scale of problems run in practice and therefore should be disqualified from
ideal.

With this best cost per unit we can adjust the efficiency to be comparable
across all possible configurations.

E(n, p) =
C∗

u

Cu(n, p)
(10)

This this definition of efficiency allows us to combine strong and weak scaling
studies into one unified analysis.



4 Rate as a Proxy for Speedup

Both efficiency and speedup are good metrics for parallel performance analysis.
However, many analysts prefer using speedup, particularly for visual (chart)
analysis. This is because good scaling shows an upward sloping speedup as jobs
get larger whereas even a good scaling algorithm will show a gradual drop-off
from a perfect efficiency of 1.

Although there is no way to compute the speedup at large scales, we can
show that rate (Equation 6) is a valid proxy for speedup. If we substitute rate
for time in Equation 1, we get the following.

S(n, p) =
T ∗(n)

T (n, p)
=

T ∗(n)

n
R(n, p) (11)

We can observe that for a given problem size (i.e. n held constant) the
speedup is proportional to the rate. This means that the rate curve will have
the exact same shape as the speedup curve, and visually they will be identical
with the appropriate scaling of the ordinate axis.

For a proper parallel performance analysis we need to compare our measured
metrics with the ideal metrics. These ideal values are implicit in the definition
of efficiency (Eideal(n, p) = 1) and speedup (Sideal(n, p) = p). The ideal rate can
be derived from Equation 10 by substituting the cost per unit with the rate
(Equation 9) and solving for rate when the efficiency is the optimal value of 1.

Rideal(n, p) =
p

C∗

u

(12)

Note that the curve for Rideal(n, p) is independent of n, which means we
can use the same ideal rate for both strong and weak scaling analysis and can
compare these rates with each other.

5 Examples

In the previous sections we provide mathematical derivations to show how to use
rate as a proxy for speedup and to use cost per unit to find the efficiency and
ideal rate across all scales. In this section we demonstrate using these metrics
on real measured data. We can observe that the metrics of rate and efficiency
make it easier to visually identify the behavior and trends at different scales of
processing elements.

5.1 Gordon Bell Finalist

Our first data set comes from a study by Habib et al. [9], which is one of the
2013 Gordon Bell finalists. We choose this source because in addition to showing
impressive scaling, the authors make many measurements across many scales
and report the results completely enough to extract the information and continue



analysis. In particular, we look at the performance data for scaling the full HACC
code on Titan (Section 4.3.2 in the original paper).

Figure 1 on the left shows the performance data from the strong and weak
scaling studies using a traditional time plot. The curves for the data are very
similar for what we would expect for perfect scaling: a hyperbolic curve for strong
scaling and a horizontal line for weak scaling. Habib et al. also provide an ad hoc
metric of time over data size to unify the curve shape of the two plots, which
is also replicated in Figure 1 on the right. Again, both curves appear close to
perfect.

Figure 2 shows the same data using the rate and efficiency metrics advocated
in this paper. The weak scaling is shown to diverge from ideal by a measurable
fraction, which is to be expected when scaling over 3 orders of magnitude. The

Fig. 1. Data from the Habib et al. [9] Gordon Bell finalist. The left chart shows the
data using a traditional time metric. The right chart replicates the presentation of
Figure 3 in the original paper using an ad hoc metric and a log-log scale. Both charts
present the data in a way to suggest near perfect scaling for both scaling studies.

Fig. 2. Data from the Habib et al. [9] Gordon Bell finalist using the rate (left) and
efficiency (right) metrics advocated in this paper. These plots give a more realistic and
visually measurable representation of scaling than the charts in Figure 1.



strong scaling study is shown to diverge very far from ideal, which is not at all
apparent in the original charts.

5.2 Imperfect Scaling

Our second data set comes from a study by Oldfield et al. [13]. In this study a
visualization algorithm has a high communication overhead and therefore has a
known limit on its scalability. The study shows how transferring data between
parallel jobs of different sizes can sometimes be faster than combining both in
one large job.

A traditional plot of the time of the visualization component shown in Fig-
ure 3 gives curves that suggest good scaling performance. However, when we
show the same data using the rate and efficiency metrics, shown in Figure 4,
we can clearly see the effect the communication overhead has on the scalability

Fig. 3. Data from the Oldfield et al. [13] simulation-visualization integration study
where the visualization (shown here) has a high communication overhead. These plots
use the traditional method of showing the trend of run time using linear and log-log
scaling.

Fig. 4. Data from Oldfield et al. [13] using rate (left) and efficiency (right) to reveal
that the communication overhead has a severe impact on the overall scalability.



of the algorithm. Without such a presentation, erroneous interpretation of the
performance is sure to occur.

6 Discussion

In this paper we discuss limitations of traditional parallel performance analysis
and problems with the current metrics often used. We provide derivations of rate
as a proxy for speedup, ideal rate, and efficiency and demonstrate with real data
how these provide accurate visual representations of scalability. As scientists,
we should demand this high level of transparency and honesty in performance
analysis.

With these observations, we provide the following recommendations for the
visual display of parallel performance.

– Do not rely on running time for performance analysis. Instead use rate,
efficiency, or both.

– Avoid using log-log scaling on plot axes, which hides major inefficiencies. If
necessary, repeat linear plots at different scales.

– Rather than performing separate weak and strong scaling studies, incorpo-
rate them in one. Perform several strong scaling studies at different scales of
data size. Then find an overall minimal practical cost per unit and plot all
the measurements together as demonstrated in the figures in this paper.

As architectures continue to advance, many are beginning to advocate mea-
suring electrical power instead of or in addition to speed [4]. As future work we
advocate using a cost model for this as well. It would be interesting to derive
efficiency in terms of optimal watt-hours per data unit (although rate may lose
meaning).

The use of rate or efficiency to measure parallel performance is not itself a
new technique. After all, the ubiquitous “FLOPS” measurement is itself a rate,
and measurements given in data unit per time unit can be found throughout
the literature. However, other metrics of varying effectiveness are also found in
published material with little or no justification for the choice. The decision for
scaling metrics should not be arbitrary; it can have enormous impact on the
viability of the analysis. Our intention is to show that the metric visualized does
matter, to provide a best practices for measuring scalability, and to explain why
these metrics work better than others.

Acknowledgment

This material is based in part upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research, Sci-
entific Discovery through Advanced Computing (SciDAC) program under Award
Number 12-015215.

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin



Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000. SAND 2015-2890 C

References

1. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the AFIPS ’67. pp. 483–485 (April 1967),
DOI 10.1145/1465482.1465560

2. Bernaschi, M., Bisson, M., Fatica, M., Melchionna, S.: 20 petaflops simulation
of proteins suspensions in crowding conditions. In: Proceedings of the SC 2013
(November 2013), DOI 10.1145/2503210.2504563

3. Bussmann, M., et al.: Radiative signatures of the relativistic Kelvin-
Helmholtz instability. In: Proceedings of the SC 2013 (November 2013),
DOI 10.1145/2503210.2504564

4. Cameron, K.W., Ge, R.: Generalizing Amdahl’s law for power and energy. IEEE
Computer 45(3), 75–77 (March 2012), DOI 10.1109/MC.2012.92

5. Faber, V., Lubeck, O.M., White Jr., A.B.: Superlinear speedup of an efficient
sequential algorithm is not possible. Parallel Computing 3(3), 259–260 (July 1986),
DOI 10.1016/0167-8191(86)90024-4

6. Grama, A.Y., Gupta, A., Kuma, V.: Isoefficiency: Measuring the scalability of
parallel algorithms and architectures. IEEE Parallel & Distributed Technology:
Systems & Applications 1(3), 12–21 (August 1993), DOI 10.1109/88.242438

7. Gustafson, J.L.: Reevaluating Amdahl’s law. Communications of the ACM 31(5),
532–533 (May 1988), DOI 10.1145/42411.42415

8. Gustafson, J.L.: Fixed time, tiered memory, and superlinear speedup. In: Proceed-
ings of the Fifth Distributed Memory Computing Conference. pp. 1255–1260 (April
1990), DOI 10.1109/DMCC.1990.556383

9. Habib, S., et al.: HACC: Extreme scaling and performance across di-
verse architectures. In: Proceedings of the SC ’13 (November 2013),
DOI 10.1145/2503210.2504566

10. JáJá, J.: An Introduction to Parallel Algorithms. Addison Wesley (1992), ISBN 0-
201-54856-9

11. Kaminsky, A.: Big CPU, Big Data: Solving the World’s Toughest Computational
Problems with Parallel Computing. Unpublished manuscript (2015), retrieved from
http://www.cs.rit.edu/~ark/bcbd

12. Karp, A.H., Flatt, H.P.: Measuring parallel processor performance. Communica-
tions of the ACM 33(5), 539–543 (May 1990), DOI 10.1145/78607.78614

13. Oldfield, R.A., Moreland, K., Fabian, N., Rogers, D.: Evaluation of methods to
integrate analysis into a large-scale shock physics code. In: Proceedings of the ICS
’14. pp. 83–92 (June 2014), DOI 10.1145/2597652.2597668

14. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill
(2004), ISBN 978-0-07-282256-4

15. Rossinelli, D., et al.: 11 PFLOP/s simulations of cloud cavitation collapse. In:
Proceedings of the SC ’13 (November 2013), DOI 10.1145/2503210.2504565

http://www.cs.rit.edu/~ark/bcbd

	Formal Metrics for Large-Scale Parallel Performance

