
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

April 2006

Formal Modeling and Analysis of AFDX Frame Management Formal Modeling and Analysis of AFDX Frame Management

Design Design

Madhukar Anand
University of Pennsylvania, anandm@cis.upenn.edu

Samar Dajani-Brown
Honeywell Technology Center, samar.dajani-brown@honeywell.com

Steve Vestal
Honeywell Technology Center, Steve.Vestal@honeywell.com

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_papers

Recommended Citation Recommended Citation

Madhukar Anand, Samar Dajani-Brown, Steve Vestal, and Insup Lee, "Formal Modeling and Analysis of

AFDX Frame Management Design", . April 2006.

Copyright 2006 IEEE. Reprinted from the 9th IEEE International Symposium on Object-oriented Real-time Distributed
Computing (ISORC 2006), pages: 393-399
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply
IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing
to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/246
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers/246
mailto:repository@pobox.upenn.edu

Formal Modeling and Analysis of AFDX Frame Management Design Formal Modeling and Analysis of AFDX Frame Management Design

Abstract Abstract
The Avionics Full Duplex Switched Ethernet (AFDX) has been developed to provide reliable data exchange
with strong data transmission time guarantees in internal communication of the aircraft. The AFDX
design is based on the principle of a switched network with physically redundant links to support
availability and be tolerant to transmission and link failures in the network.

In this work, we develop a formal model of the AFDX frame management to ascertain the reliability
properties of the design. To capture the precise temporal semantics, we model the system as a network
of timed automata and use UPPAAL to model-check for the desired properties expressed in CTL. Our
analysis indicates that the design of the AFDX frame management is vulnerable to faults such as network
babbling which can trigger unwarranted system resets. We show that these problems can be alleviated by
modifying the original design to include a priority queue at the receiver for storing the frames. We also
suggest communicating redundant copies of the reset message to achieve tolerance to network babbling.

Comments Comments
Copyright 2006 IEEE. Reprinted from the 9th IEEE International Symposium on Object-oriented Real-time
Distributed Computing (ISORC 2006), pages: 393-399

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or
personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document,
you agree to all provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/246

https://repository.upenn.edu/cis_papers/246

Formal Modeling and Analysis of the AFDX Frame Management Design ∗

Madhukar Anand

University of Pennsylvania,

Philadelphia, PA 19104

anandm@cis.upenn.edu

Steve Vestal

Honeywell Technology Center,

Minneapolis, MN 55418

Steve.Vestal@honeywell.com

Samar Dajani-Brown

Honeywell Technology Center,

Minneapolis, MN 55418

Samar.Dajani-Brown@honeywell.com

Insup Lee

University of Pennsylvania,

Philadelphia, PA 19104

lee@cis.upenn.edu

Abstract

The Avionics Full Duplex Switched Ethernet (AFDX)

has been developed to provide reliable data exchange with

strong data transmission time guarantees in internal com-

munication of the aircraft. The AFDX design is based on the

principle of a switched network with physically redundant

links to support availability and be tolerant to transmission

and link failures in the network.

In this work, we develop a formal model of the AFDX

frame management to ascertain the reliability properties

of the design. To capture the precise temporal semantics,

we model the system as a network of timed automata and

use UPPAAL to model-check for the desired properties ex-

pressed in CTL. Our analysis indicates that the design of

the AFDX frame management is vulnerable to faults such

as network babbling which can trigger unwarranted system

resets. We show that these problems can be alleviated by

modifying the original design to include a priority queue at

the receiver for storing the frames. We also suggest commu-

nicating redundant copies of the reset message to achieve

tolerance to network babbling.

1 Introduction

Control systems in general and avionics systems in par-

ticular, rely on complete and up to date data delivered from

the source to receiver in a timely fashion. For safety-

critical systems, reliable real-time communication links are

essential. The Avionics Full Duplex Switched Ethernet

(AFDX) [3], has been developed to meet these require-

ments for commercial aircraft applications. The AFDX is

∗This research was supported in part by NSF CCR-0209024 and ARO

DAAD19-01-1-0473.

a subset of the profiled version of IEEE 802.3 standard Eth-

ernet [9], with key enhancements to provide deterministic

timing and reliable delivery of messages. Deterministic tim-

ing is achieved through communication over virtual links

(VL) that have a bounded bandwidth and frame delivery in-

terval. Communication over redundant channels is used to

achieve reliable delivery of the messages. A frame man-

agement mechanism is responsible for checking integrity of

message frames and managing the redundancy before deliv-

ering the messages to the application. Therefore, the frame

management forms an important component of the AFDX

design and has to be guaranteed against design flaws.

In this work, we develop a formal model of the AFDX

frame management, analyze and verify whether it meets the

requirement specification under different kinds of network

faults. In developing a formal model of the frame man-

agement, we use timed automata [1] that can quantitatively

capture the temporal information. Our specific model con-

sists of a network of timed automata with a transmitting

end system, two communication channels and a receiving

end system. The system is described in UPPAAL [5] which

supports model-checking properties specified in CTL. From

our analysis, the design was found to be vulnerable to faults

like network babble which led to unwarranted resets and

dropped frames if they arrived out-of-order. To fully uti-

lize the redundancy in messages and use this redundancy to

detect faults, we propose including a priority queue at the

receiver. This will help detect network babble on a chan-

nel, and deliver frames in sequence to the application even

if they arrive out-of-order. To reduce the probability of erro-

neous resets, we suggest communicating redundant copies

of the reset message. These modifications can easily be in-

corporated into the original design and provide increased

reliability to the AFDX frame management.

The remainder of this paper is organized as follows: Sec-

1

tion 3 introduces the AFDX and the frame management,

Section 4 describes the timed automata model of the sys-

tem, Section 5 presents the analysis and results. Finally,

we present the modifications in Section 6 and conclude in

Section 7.

2 Previous Work

The ARINC-664 [2] is a commercial standard for the

avionics communication architecture. The AFDX [3] is a

vendor specific implementation of this standard. It is based

on the 802.3 standard Ethernet with enhancements to en-

sure determinism and reliability. An overview of a switched

Ethernet avionics network along with testing challenges are

identified in [10]. While their work concentrates on hard-

ware testing of various modules through simulation, our fo-

cus here, is to formally model and analyze the design under

different faults. Our model was developed using UPPAAL,

a freely available tool that allows modeling with a flavor

of timed automata, called the Timed Safety Automata [7].

The modeling language in UPPAAL builds on the timed

automata model, providing useful extensions like integer

variables, broadcast channels, urgent and committed loca-

tions, etc. The model-checker in UPPAAL allows specify-

ing queries using a simplified version of CTL, where the

query language consists of path and state formula, but the

path formulae cannot be nested. A significant body of lit-

erature exists on modeling and verification of protocols in

UPPAAL(c.f., [6, 8, 12]).

3 AFDX and the Frame Management

The main elements of the AFDX network are end-

systems, switches, and links. The function of the End-

system (ES) is to provide services, which guarantee a se-

cure and reliable data exchange to the partition software.

Each end-system has a direct, bidirectional connection to a

switch. There may be multiple such connections to be used

for redundant communication. The switched network en-

sures that the connection and bandwidth required to move

data from one end-system to another is available. Quality

of Service (QoS) provides a method for categorizing traffic

and for ensuring that particular categories of traffic will al-

ways flow across the network at the service level to which

they are entitled, regardless of competing demands. For the

aircraft network, each network transmission request must

be serviced regardless of the data type and a maximum net-

work transit delay, called end-to-end latency(L), must be

guaranteed. A guaranteed service provides a firm, mathe-

matically provable, upper bound on end-to-end latency.

The Virtual Link(VL) is the basis of the Ethernet proto-

col. Each VL defines an unidirectional connection from one

A Network

Per VL End System

Transmit

Per VL End System

Receive

B Network

Figure 1. Network Redundancy Concept

source end-system to potentially multiple destination end-

systems through which data frames are exchanged. The data

flow on the links is controlled by the end-system in accor-

dance with a Bandwidth Allocation GAP(BAG). The BAG

values are time slices allocated by and end-system to trans-

mit data for a VL. These times are defined in milliseconds

and are typically powers of two.s

Reliable frame delivery in the AFDX design is ensured

by utilizing redundant links. This basic idea of network re-

dundancy is shown in Figure 3. End-systems communicate

over multiple communication channels with the effect that

communication is protected against loss of one complete

network.

The redundancy scheme operates on a per link basis in

the following manner: A transmitting end-system prepares

some data and passes it to the communications protocol

stack. Here, a sequence number field is added to each frame

to enable the receive function to reconstruct a single ordered

stream of frames without duplication before delivery to the

receiving partition. The sequence numbers are one octet

long with a range from 0 to 255 and are incremented on

each successive frame. After 255, the sequence number is

wrapped around to 1. The sequence number 0 is reserved

for communicating resets. In this way the partition is un-

aware of the underlying network redundancy, and a sim-

ple interface can be built between the communications stack

and partitions that utilize the network service.

In the default mode, each frame is sent across both of

the networks and the redundancy is taken care at the receiv-

ing end-system. In order to simplify the algorithm at the

receiving end-system, redundant copies of a frame should

be sent within a maximum time difference of 0.5 ms. Upon

reception, an algorithm in the communications stack (below

IP layer) uses a “First Valid Wins” policy. This means that

the first frame to be received from either network with the

next valid sequence number is accepted and passed up the

stack to the receiving partition. When the second frame is

received with this sequence number, it is simply discarded.

As the flow of frames given in Figure 3 below indicates,

Redundancy Management (RM) is placed after the Integrity

Checking (IC).

Under fault-free network operation, the IC simply passes

the frames that it has received on to the RM, independently

for each network. If there are faults (based on sequence

number), the IC has the task of eliminating invalid frames,

and informs the network management accordingly. For each

2

B Network

A Network

RM

Application

Network
Mgmt.

Integrity Checking

Integrity Checking
Layer
MAC

Layer
MAC

IP
,T

C
P

/U
D

P
 L

ay
ers

Figure 2. Network Redundancy Concept

network the IC tests each frame for a sequence number in

the interval: [PSN ⊕ 1, PSN ⊕ 2] where Previous Se-

quence Number (PSN) is the sequence number of the previ-

ous frame received (but not necessarily forwarded) on this

VL. The operator ⊕ takes the wrap-around of sequence

numbers into account. So, for example if PSN = 254,

then PSN ⊕ 1 = 255 and PSN ⊕ 2 = 1.

The function of the AFDX redundancy management is

merely to eliminate frames that are redundant copies of

frames that it has already passed on to the partition.The RM

assumes that the network is working properly and, in par-

ticular, the deterministic properties are verified. RM con-

figuration is generally based on the SkewMax parameter:

i.e. the maximum time between the reception of two redun-

dant frames. This value depends on the network topology

(number of switches crossed by the frames) and should be

provided by the system integrator. The SkewMax value

(expressed in ms) is given by configuration per VL.

4 System Model

We model the AFDX frame management, introduced in

the previous section as a network of timed automata. The

timed automata model allows us to quantitatively capture

the temporal aspects of the frame management such as max-

imum latency, skew and the BAG. The model was devel-

oped using UPPAAL.In our model, we have three principals

: The transmitting end-system, the channel, and the receiv-

ing end system. We will restrict ourselves to the case of two

redundant channels. However, extending the reasoning for

more redundant channels is fairly straightforward.

4.1 Transmitting End-system

The transmitting end-system sends the messages on the

redundant channels. The message (msg) is assumed to be

broken into frames (fr) that are then communicated across

the channels. The model for the transmitting system is given

in Figure 3. The initial state is Init from which the mes-

sages are sent on both the channels within 0.5ms of each

other. Since UPPAAL allows only integer constraints on

clock variables, in the model, we use c<1 to capture this

constraint.

The actual sending of the messages is captured via the

channels msg one and msg two. After the transmission,

the system waits till the end of the BAG to transit back to

the initial state. From the initial state, the system can non-

deterministically progress to the Reset state that captures

the reset of the transmitting end-system. If there is a reset,

then we wait for time HR before sending frame 0, indicat-

ing a reset, on both the channels. This reflects the time the

transmitting system takes to go though an hardware reset.

In the model, a boolean variable rchk is set whenever the

system is reset. This will help us to trace the execution of a

reset and also ascertain whether the receiving system resets

in response to a transmitter reset.

Init SentOne

c<1

SentTwo

c<=BAG

Reset

c:=0

msg_one! msg_two!

c==BAG
tfr:=(tfr<255)?(tfr+1):1,rchk:=0

msg_one!
c:=0

c>=HR

tfr:=0,rchk:=1,c:=0

Figure 3. Timed Automata Model of the Trans-

mitting End-system

4.2 Network Channel

The network channel is responsible for transmitting

frames from the receiving end-system and deliver it to the

receiving end-system. The focus of our work here is to

model different kinds of network faults and view its impact

on the frame management. In this model, we consider two

kinds of network faults :

1. Transmission Related: Under this category, we con-

sider errors such as bit-errors, dropped packets, etc.

We model these errors as being non-deterministic and

independent. In practice, however, it is commonly

assumed that the probability of error in consecutive

frames is close to zero. Nevertheless, assuming the

errors to be independent keeps the model simple while

retaining its implications in practice.

2. Network Babble: The network can sometimes babble

i.e., deliver arbitrary frames to the receiver and we

model this fault in the network channel. Again, we

assume that the babbling is non-deterministic and in-

dependent of other faults.

Initially, the system is in the state Idle. Upon receiv-

ing the message msgr (which could be either msg one

or msg two), it transits to the transmitting state. If the

transmission is successful, then, SendSuccessful state

is reached. The system can remain in this state for as long

3

Idle

TransmittingSendSuccessful
cn<=max_latency

SendFailed
cn<=max_latency

Update

Babble

BabbleSend

no_error?

cn:=0

error?
cn:=0

rfr:=nfr, chk:=((nfr>prfr)&&(nfr-prfr<=2))||((nfr<prfr) && (nfr-prfr+255<=2))?1:0

msgd!
prfr:=nfr

msgr?
frq[ub]:=tfr,ub:=(ub<4)?(ub+1):0

ub!=lb
nfr:=frq[lb],lb:=(lb<4)?(lb+1):0

tr!

msgr?
frq[ub]:=tfr,ub:=(ub<4)?(ub+1):0

nfr=tfr
msgr?

nfr:=rv1

msgr?

chk:=3

msgd!

Figure 4. Timed Automata Model of the Channel

as max latency and then the frame is delivered to the re-

ceiving end-system by passing through the Update state.

The delivery of the frame is signaled by msgd. If the

transmission fails, then SendFailed state is reached from

which the system returns to the initial state. Network bab-

bling is modeled in states Babble and BabbleSend dur-

ing which the network delivers random numbered frames

(rv1) to the receiving end-system.

We also implement a message frame queue in frq. In

the model, we consider the maximum length of this queue to

be 5. This allows the network and the transmitter to be inde-

pendent. Whenever the the transmitting end-system trans-

mits, the frame is queued and subsequently transmitted by

the network.

A variable chk is introduced to keep track of frame be-

ing delivered. If a valid frame is being delivered, then, it

takes a value 1 else it is assigned 0. If the frame being de-

livered is a result of babbling, then chk is assigned 3.

4.3 Receiving End-system

The receiving end-system implements the integrity

checking (IC) and redundancy management (RM). Frames

that are not in the interval [PSN ⊕ 1, PSN ⊕ 2] are dis-

carded by the IC, except in the case when the frame number

is 0. Frames may also be discarded in the RM because of

the “first valid wins” policy. Both these policies are imple-

mented in our model.

The automata for receiving end-system, given in Fig-

ure 5, is initially in the state NotRecd. If a valid packet

is received from the first channel, then it updates the pre-

vious sequence number (psn) by going through the state

RecdOne. A valid frame is similarly handled through the

state RecdTwo. Both these states are labeled as committed.

Therefore, time is not allowed to pass in this state and the

transition back to NotRecd is taken immediately. psnlb

BAG

t

Lmin

Figure 6. A system with two agents

and psnub are used to keep track of the interval bounds.

Upon receiving a 0, the system is reset via the state Reset.

We incorporate several variables to check for certain

cases of interest such as acceptance of a babbling frame,

resets, etc.:

1. chk: This variable is shared with the network channel

and is assigned 2 when it is discarded by the RM but

passes through the IC.

2. resetchk : This is a boolean variable that is set

whenever the receiving system resets.

3. babchk :A boolean variable that is set whenever a

babbling frame is accepted. Note that the babbling

frame is tracked by verifying if chk=3.

4. valid : This variable is also a boolean that is set

whenever the frame is accepted by entering one of the

states RecdOne or RecdTwo.

5 Analysis and Results

The semantics of the frame management depend on the

relationship between various parameters such as, actual la-

tency, the skew between reception of redundant frames, and

the time for hardware reset. Here, we consider two distinct

cases:

Let Lmax be the maximum latency of arrival of a frame,

Lmin the minimum latency, and SkewMax, the time be-

tween delivery of redundant frames. Consider the scenario

4

NotRecd

Reset

RecdOne

RecdTwo

(fr!=psnlb)&&(fr!=psnub)
recd_two?

chk:=(chk2==1) && (fr!=psn)?2:chk

(fr!=psnlb)&&(fr!=psnub)
recd_one?

chk:=(chk1==1) && (fr!=psn)?2:chk

fr==0
recd_one?

babchk:=(chk1==3)?1:0

fr==0
recd_two?

babchk:=(chk2==3)?1:0

psnlb:=1,psnub:=2,resetchk:=1,rchk:=0,psn:=0

(fr==psnlb)||(fr==psnub)
recd_one?

babchk:=(chk1==3)?1:0,valid:=1

resetchk:=0,psnlb:=(fr<255)?fr+1:1,psnub:=(fr+2>255)?fr-253:fr+2,psn:=fr,valid:=0

(fr==psnlb)||(fr==psnub)
recd_two?

babchk:=(chk2==3)?1:0,valid:=1

resetchk:=0,psnlb:=(fr<255)?fr+1:1,psnub:=(fr+2>255)?fr-253:fr+2,psn:=fr,valid:=0

Figure 5. Timed Automata Model of the Receiving End-system

of frame arrivals as shown in Figure 6. Let us assume that

a frame was delivered at time t on the first channel. The

redundant frame on the other channel can arrive as late as

t+SkewMax and the successive frame on the first channel

may arrive as early as Lmin in the next BAG. Therefore if

BAG− t+Lmin > SkewMax, then, the redundant frame

will arrive before the successive frame on the first channel.

Since t can be as large as Lmax in the worst case, to require

that redundant frames arrive before the successive frame,

we should have BAG − Lmax + Lmin > SkewMax. We

now analyze the model based on this condition.

1. Case SkewMax < (Lmax + BAG − Lmin):
This situation may apply to many types of messages

such as those with real-time data. In this case, al-

though the frames arrive in-order, we would want to

test the behavior under transmission faults, network

babble and reset messages.

(a) A babbling frame is never accepted : The vari-

able babchk was used to verify this prop-

erty. The desired property is the expressed

by the CTL condition E<> (rs1.babchk &&

rs1.valid). This property was satisfied in the

model, and the following diagnostic trace was

generated: If one of the network babbles such

that the babbling frame number lies in [PSN ⊕

1, PSN ⊕ 2], then this gets accepted and in this

process, the legitimate frame from the other net-

work gets rejected even though it is delivered

successfully.

(b) A receiving end-system reset implies a trans-

mitting system reset: This was expressed us-

ing the condition, A[] rs1.Reset imply

rchk. The following counterexample was gen-

erated in this case: If a network babbles a reset

frame number, then that results in the receiving

end-system erroneously reseting.

2. Case SkewMax ≥ (Lmax + BAG − Lmin):
For certain kind of messages, such as those with mul-

timedia content, the skew may actually be longer than

Lmin + BAG−Lmax. In this case, it is possible that,

the redundant frames arrive after the next frame arrives

on the first channel. Therefore, apart from ensuring

that babbling frames are never accepted and no erro-

neous resets, we test whether a frame is ever dropped

when delivered to the receiver.

When model-checked, a counterexample was gener-

ated for all the three cases. We present the coun-

terexample that was generated when testing for the last

property. The counterexample for first two cases are

similar to those given above.

• If a valid and non-redundant frame is delivered,

then it is not discarded This property was ex-

pressed using the CTL condition A[] chk!=2.

When the faster of the two networks delivers suc-

cessive invalid and valid frames before the slower

network can deliver the first frame, the receiving

end-system accepts the second frame from the

faster network and considers the valid first frame

as invalid and discards it.

We note that although this scenario is mentioned

in the AFDX design document [3], it has not been

addressed there. Dropped frames could affect the

QoS and hence should be avoided. In the next

section, we show that a minor modification to the

original design can help avoid this problem and

thereby ensure good QoS.

6 Improving the Frame Management Design

The frame management design could be modified to be

handle network babbling and also not disregard valid frames

that arrive late. We suggest two changes to the design that

will help us achieve these goals.

5

B Network

A Network Application

Network
Mgmt.Layer

MAC

Layer
MAC

IP
,T

C
P

/U
D

P
 L

ay
ers

Integrity Checking

with a Priority Queue
and Redundancy Mgmt.

Figure 7. Redundancy Management with a

Priority Queue

6.1 Integrating the IC and RM with a Pri-
ority Queue

The first suggestion for improving the frame manage-

ment is the introduction of a integrity check with queuing

module instead of the distinct IC and RM modules in the

original design. The modified design is presented in Figure

7. Listing 1 describes the action taken when a frame fr

with frame number frn is delivered to the module. The

main idea is that, whenever a frame is delivered such that

it is valid for that particular channel, it is enqueued. If that

particular frame is already present in the queue, it is veri-

fied for consistency. If a channel delivers a frame with the

same frame number twice, it is treated as network babble

and the frame ignored. Since the previously delivered frame

from the same channel could also be due to the network bab-

ble, we should delete it from the queue to avoid accepting

frames that are not legitimate.

In the Listing 1, we assume that enqueue and

isPresent are functions that are implemented.

enqueue is assumed to take the message and the

frame number as input and enqueue it in the queue ac-

cording to the priority. isPresent is assumed to check

whether a particular frame is already present in the queue

and return the frame if present else return null. The case

of resets i.e., frn=0 is treated in the next section. We also

assume that we have two counters, psn[ch],ch=1,2,

that keep a track of the previous sequence number of that

channel.

1: wait(fr)
2: if ((frn > 0) ∧ (frn ∈ [psn[ch] ⊕ 1, psn[ch]⊕ 2])) then

3: if (isPresent(frn) = null) then

4: enqueue(fr)

5: psn[ch]← frn

6: else if (isPresent(frn) 6= fr) then

7: // Inconsistent frames

8: end if

9: else if (frn = psn[ch]) then

10: // Channel ch babbling

11: end if

Listing 1: Handling frames with the priority queue

Dequeuing the frames: Messages in the queue can be

dequeued and handed over to the application at hand. Every

time we enqueue an element, it can be timestamped and

dequeued either upon receipt of the redundant frame from

the other channel or after time SkewMax. If the redundant

frame fails to arrive, then, we would have to wait for the

successive frame to arrive on the channel, so that it can be

tested for babbling (a wait of Lmax +BAG−Lmin). The

queue is also to be emptied after the frame 255 is received

to keep it from interfering with the priorities once the frame

number starts over from 1.

Compared to the modified design, where the additional

latency could be as high as Lmax +BAG−Lmin, the orig-

inal design introduces, at worst, a delay of of SkewMax

when the frame is dropped on the first channel. However,

despite higher latencies, the modified design may be pre-

ferred for implementation as it offers better data integrity

and QoS.

6.2 Handling Resets

One of the problems with the AFDX frame management

is that it is vulnerable to babbling resets. The IC works as

long as frame numbers are greater than 0, but accepts the

frame 0 and resets. The problem is that, with just two chan-

nels and one reset message, we cannot achieve tolerance to

both network babble and transmission loss: If only one re-

set message is received at the end-system, it could either be

due to network babble on one channel or due to transmis-

sion loss on the other.

One strategy to achieve tolerance to babbling, is to in-

crease the number of redundant channels. That way, a vot-

ing scheme [4] can be used to decide on resets. To achieve

tolerance to one channel babble, we would need at least

three channels. However, including more redundant chan-

nels adds a significant overhead and therefore not an attrac-

tive option for implementation.

An alternative to having more redundant channels, is to

send redundant messages on each of the channels. The idea

is that, instead of sending frame 0 once, we send two reset

messages (frame 0) on both the channels. The receiver re-

sets only when it gets at least one 0 frame from either of

the channels. This is described in Listing 2. It can easily be

seen that this modification makes the design tolerant to bab-

bling on one channel and one message loss due to transmis-

sion. The disadvantage here, when compared to adding an

extra channel, is the increased delay before the receiver re-

set. However, since there is no extra overhead, this scheme

may be preferred over adding an extra channel.

Analysis on the modified design: We modified the timed

automata models with the above suggestions and checked

for the desired properties. Only the reset property A[]

rs1.Reset imply rchk generated a counter example

when both the frames on one channel were dropped. Al-

though this is a possibility, the probability of this happening

6

1: resetCounter[1]← 0
2: resetCounter[2]← 0
3: wait(fr)
4: if (frn = 0) then

5: resetCounter[ch]← resetCounter[ch] + 1
6: end if

7: if (resetCounter[1] ≥ 1) ∧ (resetCounter[2] ≥ 1) then

8: // reset

9: end if

Listing 2: Handling resets

in practice are extremely small.

6.3 Design Tradeoffs

We notice that there is a tradeoff between latency at the

receiver versus adding an extra channel: By increasing the

number of independent channels, we can reduce the latency

and by reducing the number of channels, we would have

to transmit multiple copies, and this results in increased la-

tency. Therefore the exact design choice would have to de-

pend on the application at hand. If the extra latency is ac-

ceptable, then we could do without an extra channel. How-

ever, many critical applications an extra channel would have

to be employed to achieve fault tolerance.

7 Conclusions and Future Work

The AFDX is an implementation of the commercial

standard for avionics communication architecture, called

ARINC-664. It has been developed for providing reliable

and deterministic delivery of frames in a switched Ether-

net for avionics applications. To provide these guarantees,

frames are sent over redundant links that have a bounded

latency and bandwidth. The frame management is respon-

sible for managing the redundancy and checking integrity

of frames before handing it to the application. The frame

management also aims to achieve tolerance to faults such as

transmission errors and network babbling. In this work, we

have developed a formal model of the AFDX frame man-

agement using a network of timed automata. From our

analysis, we have uncovered that the design is vulnerable

to babbling resets and dropping of frames. To address these

issues, we have proposed integrating the redundancy man-

agement and integrity checking with the help of a priority

queue, and duplication of reset message on each channel.

These modifications are relatively simple to incorporate into

the original design and help achieve tolerance to channel

babble and a better QoS.

7.1 Testing AFDX Implementations

As future work, we propose to generate test suites based

on the UPPAAL model we have developed. Testing AFDX

implementations would involve injecting faults in the net-

work as per the automata model and observing for changes

registered at the receiving end-system. The faults injected

in the network would then have to be controlled and the be-

havior observed for possibilities of different errors, includ-

ing multiple instances of the same error and simultaneous

occurrence of distinct types of errors. Online testing based

on UPPAAL models have been developed [11] and we hope

to adapt it for generating tests for our models.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theo-

retical Computer Science, 126(2):183–235, 1994.
[2] ARINC. Specifi cation 664: Aircraft data network, part 7-

deterministic networks(draft 2,oct 10,2003).
[3] ARINC. Arinc project paper 664: Aircraft data network,

part 7-avionics full duplex switched ethernet(afdx) network,

2005.
[4] T. A.S and S. M.V. Distributed systems:Principles and

Paradigms. Prentice Hall PTR, Uppersaddle River,NJ, USA,

2001.
[5] G. Behrmann, A. David, and K. G. Larsen. A tutorial on

UPPAAL. In 4th International School on Formal Methods

for the Design of Computer, Communication, and Software

Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–

236, September 2004.
[6] J. Bengtsson, W. O. D. Griffi oen, K. J. Kristoffersen, K. G.

Larsen, F. Larsson, P. Pettersson, and W. Yi. Automated

analysis of an audio control protocol using UPPAAL. Jour-

nal of Logic and Algebraic Programming, 52–53:163–181,

July-August 2002.
[7] J. Bengtsson and W. Yi. Timed automata: Semantics, al-

gorithms and tools. In Lecture Notes on Concurrency and

Petri Nets. W. Reisig and G. Rozenberg (eds.), number 3098

in LNCS. Springer–Verlag, 2004.
[8] A. David and W. Yi. Modelling and analysis of a commer-

cial fi eld bus protocol. In Proceedings of the 12th Euromi-

cro Conference on Real Time Systems, pages 165–172. IEEE

Computer Society, 2000.
[9] IEEE. Std.802.3:information technology, 1998.

[10] B. K and T. T. Switched ethernet testing for avionics appli-

cations. In Proceedings of IEEE Systems Readiness Tech-

nology Conference, pages 546–550, 2003.
[11] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou. Test-

ing real-time embedded software using uppaal-tron: an in-

dustrial case study. In EMSOFT ’05: Proceedings of the

5th ACM international conference on Embedded software,

pages 299–306, New York, NY, USA, 2005. ACM Press.
[12] H. Lonn and P. Pettersson. Formal Verifi cation of a TDMA

Protocol Startup Mechanism. In Proc. of the Pacifi c Rim

Int. Symp. on Fault-Tolerant Systems, pages 235–242, Dec.

1997.

7

	Formal Modeling and Analysis of AFDX Frame Management Design
	Recommended Citation

	Formal Modeling and Analysis of AFDX Frame Management Design
	Abstract
	Comments

	tmp.1155583066.pdf.aV2oX

