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Abstract

In this paper we propose a behavioural model, namely
the Generalized Extended Modal Transition Systems, as a
basis for the formalization of different notions of variability
usually present in product families definitions. In particular,
a GEMTS is able to define a family of products by telling at
any state of the system whether some (and how many) tran-
sitions are optional or mandatory for any derived products
of the family. The proposed model is compared with pre-
vious proposals also based on Labeled Transition Systems,
showing its higher generality, but also pointing out weak-
nesses that still need to be addressed with more expressive
models. Hints on the solution of such weaknesses are given
by the use of constraints expressed as temporal logic formu-
lae.

1. Introduction

The development of industrial software systems may of-
ten benefit from the adoption of a development cycle based
on the so-called product-families or product lines approach
[7, 14]. This approach aims at lowering production costs by
sharing an overall reference architecture and concepts of the
products, but at the same time allowing them to differ with
respect to particular product characteristics in order to, e.g.,
serve different markets. The production process in product
lines is hence organized with the purpose of maximizing the
commonalities of the product line and minimizing the cost
of variations [25].

A description of a product family (PF) is usually com-

posed by a constant part and a variable part. The first
describes aspects common to all products of the family,
the second represents those aspects, called variabilities,
that will be used to differentiate a product from another.
The modeling of variability has been extensively studied in
the literature, especially that concerning Feature Modeling,
[2, 8, 16, 13]. In variability modeling the interest is in defin-
ing which features or components of a system are optional,
alternative, or mandatory; techniques and tools are then de-
veloped to show that a product belongs to a family, or to de-
rive instead a product from a family, by means of a proper
selection of the features or components.
In this paper we are interested in the behavioural modeling,
that is, in describing how a product of a family is able to
respond to events in the time, even in presence of variabil-
ities, an aspect that the referred techniques do not typically
deal with. Many notations and description techniques have
been recently proposed for this purpose, such as variants of
UML state diagrams [1, 27] or variants of UML sequence
diagrams, for example STAIRS [21]; another proposal is
that in [25], where UML state diagrams and sequence dia-
grams have been enriched with aside notations to describe
variation points.
In this paper, the quest for an expressive modeling formal-
ism for families is based on the choice of a basic model, that
is Labeled Transition Systems (LTS), which are one of the
most popular formal frameworks for modeling and reason-
ing about the behaviour of a system.

In this paper, we define a general LTS-based framework
for describing product families, that is, Generalized Ex-
tended Modal Transition Systems (GEMTS), that will al-
low the case of alternative variabiliy (i.e. the mandatory
selection of at least one - or some - among several differ-



ent choices) to be modeled. GEMTSs extend the EMTS
notion (Extended Modal Transition Systems), we have re-
cently proposed in [11], allowing the modeling of multiple
optionality, that is, the possibility to select a subset out of
the possible choices in a variation point. Starting from a
family definition, a product can be derived as a LTS and
a conformance relation can then be defined between the
LTS representing a product and the GEMTS representing
the family.
The proposed notions are not intended to be used as such
by engineers to describe product families, but rather to give
basic modeling concepts on which verification activities can
be carried out, when high level specification formalisms for
product families are semantically mapped over LTS-based
expressions.

In section 2 we introduce behavioural modeling of prod-
uct families by means of LTS-based formalisms. In sec-
tion 3 we introduce the GEMTS notion, showing its bet-
ter adequacy to model product families. A further refine-
ment is given in section 4, by adding to the family definition
the possibility of expressing additional constraints over the
products by means of the ACTL temporal logic. Section 5
proposes a final discussion of the introduced framework and
of its possible extensions.

2. Behavioural modeling of product families

Since we are interested in characterizing the dynamic be-
haviour of a product family, we base our discussion on La-
beled Transition Systems (LTS) and therefore we will start
defining what a Labeled Transition System is:

Definition 2.1 A Labeled Transition System (LTS) is a
quadruple: (S, Act, s0,−→), where S is a set of states, Act
is a set of actions used as transition labels, s0 ∈ S is the
initial state, and−→⊆ S×Act×S is the transition relation.
If (s, t, s′) ∈−→, we write s

t−→ s′.

2.1. Modeling a family with LTS

When modeling the behaviour of a product as a LTS,
products of a family are considered to differ in the actions
that they are able to perform at any given state; this means
that the definition of a family has to accommodate all the
possibilities desired for each derivable product, predicating
on the choices that keep a product belonging to the family.
We recall some informal definitions concerning variability:
By variation points we intend those locations in a specifi-
cation where variability is expressed, by means of listing
several choices; variation points may be:
- alternative: one and only one of the possibilities should
be chosen in a product;
- optional: a possibility can be present or not in the product;

- multiple optional: at least m out of the n possibilities
should be chosen;

Example 2.1 In order to duscuss the expressiveness LTS-
based modeling, we will use a simple running example, that
is, a family of (simplified) vending machines, for which we
give the following requirements:

• A vending machine is activated by a coin. The only
accepted coins are the one euro coin for the European
products and the one dollar coin for the US products.

• After inserting a coin, the user has to choose whether
he wants sugar or not, by pressing one of two buttons.
Then, the user may select the drink.

• The choice of drinks (coffee, tea, cappuccino) varies
between the products. However, every product of the
family delivers coffee, and every product of the family
delivers at least two different drinks.

• After delivering the drink, a done message is dis-
played, and, optionally, an alert tone is rung.

• The machine goes back in the idle state when the cup
is taken by the user.

Figure 1. LTS Model of a product family

The proposed example has three variation points
(namely, the choice of the coins, the choice among provided
drinks and the optional alert tone) which are:
- the first, alternative



- the second, multiple optional: at least two out of three pos-
sibilities should be chosen;
- the last, simply optional.

We can build a LTS representing all the possible be-
haviours conceived for the family as that represented in Fig-
ure 1: this means that the definition of a family has to ac-
commodate all the possibilities desired for the possible de-
rived products, predicating on the choices that keep a prod-
uct belonging to the family.

We can notice that the given LTS cannot distinguish re-
quired transitions from optional ones, since variation points
in the family definition are modeled as nondeterministic
choices (i.e. alternative branches), independently from the
type of variability, and cannot be distinguished by pure non-
deterministic choices.

Starting from the LTS representing the family a set
of LTSs representing possible products may be derived.
The derivation of a product will amount to choose some
alternative branches from any node of a LTS. The following
simple algorithm can be used to operate choices by visiting
one after the other the states of the LTS:

Given a LTS T , visit the graph of T in a breadth-first
fashion, applying at each state s the step visit(s), as
defined below:

visit(s):
select-transitions(s);
while( removable transitions exist )

{ if a transition t is removable:
remove t from the graph
if the state s’, target of the transition t,
is no more reachable by any other state:

remove the state s’;
mark all its outgoing transitions

as "removable";
}

The call to select-transitions(s) is actually a
request to the user, for each outgoing transition t from s, to
tell whether he/she considers the transition t present in the
derived product. If not, the transition is marked as “remov-
able”. The choice needs to be guided by the family require-
ments, but this is not enforced by the algorithm, since no
knowledge about variation points is embedded in the model.

In our coffee machine example we have that a first prod-
uct of the family, an audible coffee and cappuccino machine
for the US market, has the behaviour given by the LTS in
Figure 2. Another product of the family, a silent tea and
coffee vending machine for the EU market, is represented
by the LTS in Figure 3.

Both the products above can be derived from the family
model by means of the algorithm given above. However,
many other products may be derived following this algo-
rithm: for example a product that accepts both euro and
dollar coins, or a product that does not allow a user to ask
for sugar. It is easy to notice that the two latter examples do

Figure 2. A vending machine for the US

Figure 3. A vending machine for the EU

not satisfy the given family requirements, while the two for-
mer ones do: responsibility over conformance to the family
requirements is left to the user’s choices .

2.2. Simulation

Any LTS associated to a product derived by the previ-
ous algorithm has a simulation relation [23] with the LTS
representing the family.



Definition 2.2 Let T1 = (S1, Act, s01 ,−→1) and T2 =
(S2, Act, s01 ,−→2) We say that s2 ∈ S2 simulates s1 ∈ S1

(written s1 �s s2) if there exists a strong simulation that
relates s1 and s2.
R ⊆ S1×S2 is a strong simulation if ∀(s1, s2) ∈ R (where
σ ∈ T1 ∪ T2),

• s1
σ−→1 s′1 implies ∃s′2 : s2

σ→2 s′2 and (s′1, s
′
2) ∈ R.

The above definition is naturally extended to LTSs by con-
sidering their initial states: A LTS T2 simulates T1 (written
T1 �s T2) iff (s01 �s s01)

In particular, any LTS P defining a product of a family
defined by the LTS F is such that F simulates P (P �s F )
since all the alternative choices possible in each product P
are included in the LTS F describing the family.

2.3. Modal Transition Systems

To overcome the low distinguishing power of LTSs
when modeling variation points, Modal Transition Systems
(MTS) [18] have been proposed to capture variability [12]:
in a MTS, transitions may be possible or required, that is,
optional or mandatory for a product.

Definition 2.3 A MTS F = (SF , Act, s0,→�,→�) is de-
fined as a LTS, having two distinct transition relations,
namely →�⊆ SF × Act × SF is the must transition re-
lation, which expresses required transitions, →�⊆ SF ×
Act × SF is the may transition relation, which expresses
possible transitions.

A MTS defines a family of LTSs, in the sense that each
LTS P = (SP , Act,−→, p0) of the family can be obtained
from the MTS F by considering the transition relation−→ to
be −→� ∪R, with R ⊂−→�, and pruning the states that are
not reachable from the initial state.

For example, the MTS of Fig. 4 can be drawn to define
our family of coffee machines, where .

A similar framework proposed for the same purpose are
Modal I/O Automata [17], based on the concept of I/O Au-
tomata, which are very close to Labeled Transition Systems,
but exploit a characterization of actions in input, output or
internal actions. This framework does not add in expres-
siveness of variability w.r.t. MTSs.

2.4. Derivation of products

The “is a product of F ” relation below, called also “con-
formance” relation, links a MTS representing a family with
a LTS representing a product.

Definition 2.4 We say that P is a product of F , written P |−
F , if and only if p0|− s0, where:
p|− f if and only if

Figure 4. Modeling a product family with
a MTS (solid arcs are required transitions,
dashed arcs are possible transitions)

• f
a−→� f ′ =⇒ ∃p′ ∈ SP : p

a−→ p′ and p′|− f ′

• p
a−→ p′ =⇒ ∃f ′ ∈ SF : f

a−→� f ′ and p′|− f ′

The LTS of a product that conforms to a family MTS can
be obtained by applying the same derivation algorithm seen
in section 2.1, in which the select-transitions(s)
procedure allows only the possible transitions outgoing
from state s to be selected as removable; the required tran-
sitions cannot be selected as removable. in the graphical
syntax, this amount to remove the selected dashed lines and
to make the remaining dashed lines become solid. Hence,
the set of products derivable are a subset of those derivable
by the family LTS and, consequently, any derivable product
is still simulated by the LTS family.

The MTS represented in Figure 4 allows the products
of Figures 2 and 3 to be derived. However, as happens in
the case of LTSs, starting from a MTS it is again possible
to derive products that do not satisfy the requirements
given in section 2.1: for example, a product that accepts
both euro and dollar coins can be derived. This is because
MTSs are not completely adequate to model the case of
alternative variabiliy (i.e. the mandatory selection of at
least one among several different choices). In section 3 we
address this problem with the proposal of new LTS variants.



3. An extended modeling framework for prod-
uct families

3.1. Extended Modal Transition Systems

In [11] we have defined, for a finer modeling of variation
points, the notion of Extended Modal Transition Systems,
in which at any state of the system, it can be defined
whether to choose at least (or at most) one from a subset
of the outgoing transitions. Indeed a similar definition
(One Variant Modal Transistion Systems - 1MTS) has been
independently proposed for the same purpose, by [26],
as a variant of the Disjunctive Modal Transition Systems
(DMTS) defined in [19]. We postpone the comparison with
these variants of Transition Systems to section 3.3.

Definition 3.1 An Extended Modal Transition System
(EMTS) is a quintuple (S, Act, s0,�, �), where S is a set
of states, Act is a set of actions, s0 ∈ S is the initial state,
� ⊆ S × 2Act×S is the at least 1-of-n transition relation,
and � ⊆ S×2Act×S is the at most 1-of-n transition relation.

We write respectively: s
a1,a2,...,an−−−−−−−→� s1, s2 . . . , sn and

s
a1,a2,...,an−−−−−−−→� s1, s2 . . . , sn to denote elements of the two

relations, meaning that in the first case any product of the
family should have at least one of the n transitions s

ai−→ si,
while in the second case any product of the family should
have at most 1 of the n transitions (that is, it can also have
no transition from this set). Note that in the arrow-like
writing style, the number of the actions on the arrow must
coincide with that of target states, and order counts as well,
since each action is paired to the corresponding state.

Figure 5 shows two examples of simple EMTSs: the first
means that action a is possible and one of the actions b, c is
required. The second means that one of the actions a, b, c, d
is possible while one of the actions c, d, e is required.

Figure 6 exemplifies the conjunction:
s

a1,a2,...,an−−−−−−−→� s1, s2 . . . , sn

and s
a1,a2,...,an−−−−−−−→� s1, s2 . . . , sn,

which means: any product of the family should have exactly
1 of the n transitions s

ai−→ si; this defines the relation
�∩� as the relation exactly 1 of n: elements of this relation
could be written for brevity s

a1,a2,...,an−−−−−−−→�� s1, s2 . . . , sn.
In Figure 6, exactly one of the actions a, b, c, should be
performed.

A MTS can be defined as an EMTS where only singleton
pairs from Act× S appear in the relations � and � (that is,
n = 1): this is obvious considering that the two relations
can be read “at least 1-of-1” and “at most 1-of-1”.

�
a

b
c

•

•

•

•

�

�
a

b

c
d

e

•

•

•

•

•

•

�

Figure 5. Examples of EMTS

�
a

b
c

•

•

•

•

�

Figure 6. Example of “exactly one” EMTS

An EMLTS defines a family of LTSs according to the
following definition:

Definition 3.2 An LTS P = (SP , Act,−→, p0) belongs to
the family (EMLTS) F = (SF , Act, f0,�, �) (we say also
is a product of F, written P |− F ) if and only if p0|− f0,
where:
p|− f if and only if

• f
a1,a2,...,an−−−−−−−→� f1, f2 . . . , fn =⇒

∃I ⊆ {1, .., n}, |I| ≥ 1 : ∀i ∈ I, p
ai−→ pi and pi|− fi

• f
a1,a2,...,an−−−−−−−→� f1, f2 . . . , sn =⇒

6 ∃I ⊆ {1, .., n}, |I| > 1 : ∀i ∈ I, p
ai−→ pi and pi|− fi

• p
a−→ p′ =⇒ ∃A ⊆ Act, S ⊆ SF , f ′ ∈ SF :

(a, f ′) ∈ A × S, (f,A × S) ∈ � or (f,A × S) ∈ �,
and p′|− f ′

3.2. Generalized Extended Modal Transi-
tion Systems

A more general notion is actually needed if we want to
model multiple optionality, that is, the fact that a product



Table 1. Meaning of modalities
modality MTS DMTS 1-MTS EMTS GEMTS
� (may) at most 1-of-1 at most n-of-n at most 1-of-n at most 1-of-n at most k-of-n
� (must) at least 1-of-1 at least 1-of-n exactly 1-of-n at least 1-of-n at least k-of-n

may have (at least, at most, exactly) k of the n choices pro-
posed by the family.

It is a matter of discussion whether multiple optionality
is really useful in family engineering. Actually, it is rarely
the case that a functional requirement on the products of
a family gives bounds on the number of the possible fea-
tures present in a product. However, non functional require-
ments may do: for example, energy consumption or budget
considerations may give an upper bound to the number of
provided features, while marketing strategies may suggest
a lower bound, under which the product looses its market.
Also, upper and lower bounds may be used to define sub-
families on the basis of non functional aspects. In our run-
ning example, the requirement that “every product of the
family delivers at least two different drinks” is not dictated
by functional needs, but by marketing strategies.

In order to give a full range of behavioural models for
variability types, we introduce the concept of Generalized
Extended Modal Transition Systems, which is able to model
multiple optionality.

Definition 3.3 A Generalized Extended Modal Transition
System (GEMTS) is a quintuple (S, Act, s0,�, �), where S
is a set of states, Act is a set of actions, s0 ∈ S is the initial
state, � ⊆ S×2Act×S×N is the at least k -of- n transition
relation, and � ⊆ S × 2Act×S × N is the at most k -of- n
transition relation.

We write respectively: s
a1,a2,...,an−−−−−−−→�k

s1, s2 . . . , sn

and s
a1,a2,...,an−−−−−−−→�k

s1, s2 . . . , sn to denote elements of
the two relations, meaning that in the first case any prod-
uct of the family should have at least k of the n transitions
s

ai−→ si, while in the second case any product of the family
should have at most k of the n transitions (that is, it can also
have no transition from this set). Again, the number of the
actions on the arrow must coincide with that of target states,
and order counts as well, since each action is paired to the
corresponding state. Note that 0 < k ≤ n should always
hold, otherwise the relation is meaningless.

The two defined transition relations have the following
properties, that derive straightforwardly from the interpre-
tation of a GEMTS as model of a family of LTSs:

• s
a1,a2,...,an−−−−−−−→�k

s1, s2 . . . , sn =⇒
s

a2,...,an−−−−−→�k−1 s2 . . . , sn

• s
a1,a2,...,an−−−−−−−→�k

s1, s2 . . . , sn and

s
a1,a2,...,an−−−−−−−→�k

s1, s2 . . . , sn

means: any product of the family should have exactly
k of the n transitions s

ai−→ si; this defines the relation
� ∩ � as the relation exactly k of n.

• If we let k to be equal to n, the may relation includes
the must relation:
s

a1,a2,...,an−−−−−−−→�n
s1, s2 . . . , sn =⇒

s
a1,a2,...,an−−−−−−−→�n

s1, s2 . . . , sn.
Inclusion does not hold if k 6= n.

• An EMTS can be defined as a GEMTS in which the
relations � and � are restricted to the constant value
k = 1: this is obvious considering that the two rela-
tions can be read “at least 1-of-n” and “at most 1-of-
n”. Consequently, a MTS can be defined as a GEMTS
in which the relations � and � are restricted to the con-
stant value k = 1, and where only singleton pairs from
Act × S appear (that is, n = 1). Note therefore that
s

a−→�1 s′ =⇒ s
a−→�1 s′ (if a transition is re-

quired is also possible, consistently with the definition
of MTSs).

Note that the “at least 1-of-1” transitions coincide with
the “exactly 1-of-1” ones and can be considered as the usual
LTS transitions. For this reason, in the graphical notation
we adopt for GEMTSs, in order to avoid notation overload-
ing, we use the box and diamond symbols only in states cor-
responding to variation points: other states in the GEMTS
with only “exactly 1-of-1” outgoing transitions are drawn
as usual in LTS. This limited usage of the modality notation
helps the reader to concentrate on variation points. For more
simplicity, box and diamond symbols will be used without
the number suffix when n = 1.

3.3. Comparison with other LTS-based fam-
ily models

We now compare the expressiveness of our proposal with
other variants of MTSs that have been proposed to model
variability, namely the 1-selecting MTSs (1MTS) [26], and
the Disjunctive Modal Transition Systems (DMTS) [19].
DMTSs and 1-MTSs are analogous to GEMTSs for the fact
that they all use hypertransitions, that is, transition relations
where the target is a set of states, in contrast with MTSs,
in which the modal transition relations have only one tar-
get state. This allows modalities to predicate on a particular



choice of a subset of transitions, rather than just on a single
transition: note anyway that the possibility to have differ-
ent (hyper)transitions from the same state is maintained in
all the models. The meaning of the modalities that denote
transition relations differs as shown in Table 1. Since the
exactly 1-of-n relation is expressible as a conjunction of the
at most 1-of-n and at least 1-of-n, and the at most n-of-n
is a particular case of the at most k-of-n, from Table 1 it
emerges that GEMTSs provide the most general modeling
framework.

3.4. Deriving products from GEMTSs

A GEMTS defines a family of LTSs according to the fol-
lowing definition:

Definition 3.4 A LTS P = (SP , Act,−→, p0) belongs to the
family (GEMTS) F = (SF , Act, f0,�, �) (we say also P is
a product of F, or P conforms to F, written P |− F ) if and
only if p0|− f0, where:

p|− f if and only if

• f
a1,a2,...,an−−−−−−−→�k

f1, f2 . . . , fn =⇒
∃I ⊆ {1, . . . , n}, k ≤ |I| ≤ n :
∀i ∈ I, p

ai−→ pi and pi|− fi

• f
a1,a2,...,an−−−−−−−→�k

f1, f2 . . . , sn =⇒
6 ∃I ⊆ {1, . . . , n}, k < |I| ≤ n :
∀i ∈ I, p

ai−→ pi and pi|− fi

• p
a−→ p′ =⇒ ∃k,A ⊆ Act, S ⊆ SF , f ′ ∈ SF :

(a, f ′) ∈ A×SF , (f,A×S, k) ∈ � or (f,A×S, k) ∈
�, and p′|− f ′

We can read the previous clauses as saying: a product of
a family has at least (at most) k of the n transitions specified
in the family; moreover, if a product performs an action,
this should be found among the n transitions specified for
the family.

Notice that the second clause admits the case in which
none of the transitions is present in the product. A GEMTS
F that does not admit any product (that is, there exist no
LTS P such that P |− F ) is an inconsistent definition of
family. Consider the GEMTS defined by the following
relations, where s is the initial state:

� = � = {(s, {(a1, s1), (a2, s2)}),
(s, {(a3, s3), (a2, s2)}),
(s, {(a1s1), (a3, s3)})}.

The equality of the must and may relations means that
we have an “exactly one out of two” choice. But if we se-
lect a1 from the first choice, this is selected also for the third

choice, and these two selection prevent a2 and a3 to be se-
lected, hence giving an inconsistency: this means that no
LTS can be derived as a product from this GEMTS.

The requirements given in section 2.1 for our coffee ma-
chine can be now fully expressed by the GEMTS shown in
Figure 7.

Figure 7. Vending machines family

The LTS of a product can be obtained from the
family GEMTS by applying again the same deriva-
tion algorithm seen in section 2.1, in which the
select-transitions(s) procedure enforces the se-
lection of the user to respect the at least k-of-n and at most
k-of-n relations applicable on the transitions outgoing from
state s. Hence, the set of products derivable are, again, a
subset of those derivable by the family LTS (note that the
family LTS can be obtained from the family GEMTS by
just removing the modality notations in the graphical syn-
tax). Therefore, any derivable product is still simulated by
the LTS family.

The US and European vending machines of Figures 2
and 3 are both derivable from the family GEMTS of Fig-
ure 7. Notice that now it is no more possible to derive the
machine accepting both euro and dollar coins.

4. Dependency between variation points

In the LTS variants analysed so far, optionality and ne-
cessity of behavioural elements are defined for single vari-
ation points, with no links between choices to be done in
different variation points. Consider again the vending ma-
chine example of section 2.1, where requirements are added



due to some imaginary commercial policy that imposes that
all the vending machines sold in the US have to ring a tone
when the drink is ready, while all the ones sold in the EU
have to be silent. If we want to consider this requirement
on the whole family of vending machines, we need to en-
force a dependency between the choices made at the two
relevant variation points. There is no way to include such
an additional constraint in a LTS-based definition, hence we
necessarily should resort to some other formalism.

A first attempt to address the problem can be done how-
ever remaining inside the realm of formal tools defined over
LTSs. Among the formal tools available to reason on LTSs,
one of the most powerful is temporal logic, that can be used
to define properties that LTSs should satisfy. Temporal logic
can be used as well to express constraints for a family: such
constraints may for example be used to relate the choices
made in two variation points.

4.1. The logic ACTL

The ACTL temporal logic [9] is the action based version
of CTL [10]. ACTL is a logic suitable to express properties
of reactive systems whose behaviour is characterized by the
actions they perform.

ACTL is defined as a logic of state formulas (denoted
by φ), in which a path quantifier prefixes an arbitrary path
formula (denoted by γ). The syntax of the ACTL operators
used in this paper and their informal meaning is reported in
Table 2, while we refer to [9] for their formal semantics:the
formal semantics of ACTL is given over LTSs, defining
when a LTS S satisfies a formula φ (written S |= φ). The
problem of verifying whether a LTS S is a model for a for-
mula φ is called model-checking, and is supported by effi-
cient verification tools [6].

4.2. ACTL formuale as constraints

Temporal Logic formulae can be used to define con-
straints for a family:

Definition 4.1 A Constrained Family is defined as a pair
(F, φ) of a GEMTS F and an ACTL formula φ; a LTS P is
member of the family (F, φ) if: P |− F and P |= φ.

The constraints over vending machines respecting the
policy that all vending machines sold in the US have to ring
a tone when the drink is ready, while all the ones sold in
the EU have to be silent, is given by the following ACTL
formula:

AG[dollar]AF < ring a tone > true
&AG[euro]AG ∼< ring a tone > true

which reads: whenever the model is able to perform a
dollar action, then it will eventually ring a tone; if in-
stead the model is able to perform a euro action, then it
will never be able to ring a tone. Note that this formula
does not tell where the variation points in the model are:
this information is encoded instead by the GEMTS model
and the formula represents an additional constraint. The
products represented by the LTSs of Figures 2 and 3 satisfy
such constraint, since the former rings a tone after inserting
one dollar, hence satisfying the left hand of the conjunction,
while the latter does not ring after inserting one euro, thus
satisfying the right-hand-side of the conjunction: in both
cases the left-hand-side is satisfied trivially by the absence
of the guarding action. Other products that conform to the
GEMTS of Figure 7, such as the one that rings a tone after
inserting one euro, do not satisfy the constraint.

For a constrained family, derivation of a conforming
product can be achieved by the derivation algorithm seen in
section 3.4, followed by a run of a model-checker to check
whether or not the constraints are satisfied. In principle, it
would be possible to integrate a model-checking algorithm
in the derivation algorithm, so that only transitions satisfy-
ing the constraints can be selected by the user; this issue is
left to further investigation.

5. Open issues and conclusions

We have proposed an extended LTS-based formalism for
the behavioural modeling of different types of variabilities
in a family definition, and we have shown its higher gener-
ality w.r.t. other proposals in the literature.

However, a problem common to all the considered pro-
posals, our own included, is related to the expression of de-
pendency among variation points: we have hence proposed
to address the problem by adding constraints expressed in
the ACTL temporal logic. This is satisfactory in the partic-
ular example shown, where related variation points can be
easily identified by the actions performed at the states en-
coding variation points. This is not always the case, and
therefore we need a mean to express general constraints
such that, in deriving a product, “if a given choice is done
at a variation point a, a consequent choice is enforced at the
variation point b”. Hence, we need to include in the model
some orthogonal, non-functional, information used only to
constrain the functional behaviour of the admitted products.

At this regard, a notable LTS-based modeling frame-
work for behaviour of product families is the VLTS (Vari-
ant LTS) one, proposed in [24], where possible transitions
are labeled with a guard predicating on the values of exter-
nal variables: each product defines an assignment to such
variables, and hence different variation points where tran-
sitions have labels referring to the same variable are not
independent. For example, the dollar transition and the



Table 2. Syntax and informal semantics of ACTL
φ ::= true “any behaviour is possible”

∼ φ “φ is impossible”
φ & φ′ “φ and φ′”
Eγ “there exists a possible execution in which γ”
Aγ “for each of the possible executions γ”
[a]φ “ for all next states reachable with a, φ is true”
< a > φ “there exists a next state reachable with a, in which φ”

γ ::= Fφ′ “there exists a future state in which φ holds”
Gφ′ “in any future state φ holdsφ”

ring a tone transition in the vending machine examples
would both be guarded by a predicate saying that the vari-
able nation is assigned the value US.

Such predicates resemble the use of tags to label differ-
ent choices in a variation point, which is a common strategy
in product family engineering: as an example, tags were in-
troduced in Use Cases to define the Product Line Use Case
notation [4]. We have shown in [5] how those tags can be
used to verify the compliance of a product to the definition
of a family, with a mechanism inspired by [22], that could
be applied to VLTSs as well.

In the VLTS approach the mechanism of verification of
constraints is hence separated by the mechanisms used to
reason about conformance, equivalence, and satisfaction of
logic formulae that employs classic LTS-based verification
techniques. The idea behind our GEMTS modeling frame-
work was instead to propose a unique verification frame-
work. The work [20] proposes the so called “color-blind”
Transition Systems, in which the definition of constraints is
delegated to the immersion of the family specification in an
environment defined with the same formalism, which con-
strains the behaviour of the family transition system. Our
opinion is that an approach based on temporal logics is more
suitable to express constraints at an abstract level. For this
reason we are going to investigate more powerful models
and logics, such as those defined in [3].

The adoption of temporal logic gives the added benefit,
not addressed in this paper, to reason formally over fam-
ily specifications. In particular, the availability of efficient
verification tools is attractive, since it enables early formal
analysis to be conducted once for all at the family level,
rather than repeated on the single products. For this pur-
pose, we need to know which classes of properties that are
enjoyed by family definitions are preserved in the derivation
process. In the framework considered in this paper, the fact
that products are related to family definitions by simulation
allows to exploit the result that the universal fragment of
ACTL is preserved by the simulation relation. This amounts
to say that a universal property satisfied by a GEMTS fam-
ily definition is inherited by any product LTS derived with

the proposed algorithm.
More elaborate product conformance relations have been

proposed, such as the refinement notions between MTSs of
[12]: the authors allow for unobservable actions to repre-
sent internal behaviour still to be refined at the level of the
family. Specific notions of refinement (weak and branching
refinement) take into proper account unobservable actions:
the product MTS is a refinement of the family MTS, allow-
ing new states to be introduced in a product with respect
to the family. Such a definition of the conformance relation
breaks the simplicity of the simulation relation we have con-
sidered throughout our paper, which is based on the assump-
tion that the states of a product are a subset of the states of
the family. The refinement notions of [12] can nevertheless
be applied to the LTS variants introduced in this paper as
well, and this is considered as a future research issue. Fur-
ther study is needed to characterize properties that are pre-
served by such conformance relations. Investigating more
powerful logics can be necessary, and this should also take
into account the possibility of introducing more powerful
models to deal with dependency between variation points.

On the other hand, we are fully aware of the limitations
of LTS-based modeling w.r.t. the richer formalisms that
are preferred for the actual description of the behaviour of
the system, which include, as in the case of UML State
Diagrams, the possibility to associate actions and predicates
to the state, as well as guards on the transitions. Once
again, the proposed LTS-based notions are not intended to
be used as such by engineers to describe product families,
but rather to give basic modeling concepts on which to base
the verification activities.
We leave to further work is a deeper analysis of the verifica-
tion issues: here we have only sketched the possibility that
properties proved to be verified by the family are preserved
by the derivation of products. A more extensive treatment
of this topic is necessary, also to best motivate the need for
the proposed LTS variants.
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